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Abstract

We propose and axiomatize a model of preferences over acts such that the decision maker
prefers act f to act g if and only if Eµφ (Eπu ◦ f) ≥ Eµφ (Eπu ◦ g), where E is the
expectation operator, u is a vN-M utility function, φ is an increasing transformation,
and µ is a subjective probability over the set Π of probability measures π that the
decision maker thinks are relevant given his subjective information. A key feature of our
model is that it achieves a separation between ambiguity, identified as a characteristic
of the decision maker’s subjective information, and ambiguity attitude, a characteristic
of the decision maker’s tastes. We show that attitudes towards risk are characterized
by the shape of u, as usual, while attitudes towards ambiguity are characterized by the
shape of φ. We also derive φ (x) = − 1

α
e−αx as the special case of constant ambiguity

aversion. Ambiguity itself is defined behaviorally and is shown to be characterized by
properties of the subjective set of measures Π. This characterization of ambiguity is
formally related to the definitions of subjective ambiguity advanced by Epstein-Zhang
(2001) and Ghirardato-Marinacci (2002). One advantage of this model is that the well-
developed machinery for dealing with risk attitudes can be applied as well to ambiguity
attitudes. The model is also distinct from many in the literature on ambiguity in that
allows smooth, rather than kinked, indifference curves. This leads to different behavior
and improved tractability, while still sharing the main features (e.g., Ellsberg’s Paradox,
etc.). The Maxmin EU model (e.g., Gilboa and Schmeidler (1989)) with a given set of
measures may be seen as an extreme case of our model with infinite ambiguity aversion.
Two illustrative applications to portfolio choice are offered.
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1 Introduction

Savage’s axiom P2, often referred to as “the Sure Thing Principle”, states that, if two acts
are equal on a given event, then it should not matter (for ranking the acts in terms of pref-
erences) what they are equal to on that event. Even though an “extra-logical principle”,
in the sense that it is not derived as a logical consequence of more primitive principles,
it would find ready acceptance in many circumstances. It has been observed, however,
that there is at least one kind of circumstance where a decision maker (DM) might find
the principle less persuasive — if the DM were worried by cognitive or informational con-
straints that leave him uncertain about what odds apply to the payoff relevant events.
Ellsberg (1961) presented examples inspired by this observation; the following table is a
stylized description of one of those examples. The table shows four acts, f, g, f ′ and g′,
with payoffs contingent on three (mutually exclusive and exhaustive) events, A, B and
C.

A B C
f 10 0 0
g 0 10 0
f ′ 10 0 10
g′ 0 10 10

Note that P2 implies, if f is preferred to g then f ′ is preferred to g′. Consider a situation
where the DM “knows” that the probability of event A occurring is 1/3, though he has
no information about how the complementary probability, 2/3, is “divided” between B
and C. The DM decides to choose f over g but g′ over f ′, justifying his choice as follows.
Taking into account his perception of the environment, he calculates the expected utility
from f , Eu (f) = u(10)×1/3 while he thinks Eu (g) could equal any number in the interval
[u(10)× 0, u(10)× 2/3]; similarly, he calculates Eu (g′) = u(10)×2/3 but realizes ex ante
evaluations for f ′, Eu (f ′), could be any number in the interval [u(10)× 1/3, u(10)] . He
has some aversion to uncertainty about ex ante evaluations: he worries that he may take
the “wrong” decision ex ante because he has a relatively vague idea as to what the true
probability is and is therefore prone to make a “wrong” evaluation. Hence, his choices.
The normative case for the violation of P2 in the circumstance where the DM is bothered
by his uncretainty with respect to the relevant priors is, of course, debatable. What (we
think) is beyond debate is that, in such a circumstance many DMs would, on deliberation,
find it justified to violate P2. This paper presents a model of decision making which can
explicitly reflect the circumstance that the DM is (subjectively) uncertain about the
priors relevant to his decision. The model allows for the relaxation of P2 specifically and
exclusively under such a circumstance, so that behavior, given the uncertainty about ex
ante evaluation, may display aversion (or love) for that uncertainty along the lines of the
justification discussed in the above example.

The paper first presents a set of assumptions on individual preferences over Savage
acts, leading to a functional representation for these preferences. Following that we give
results which show how different components of the functional identify elements such
as the DM’s subjective beliefs and the DM’s attitude toward the various uncertainties
in the problem and thus the precise links between behavior and these elements. We
define behaviorally what it means for a DM’s belief about an event to be ambiguous
and go on to show that, in our model, this definition is essentially equivalent to the
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DM being uncertain about the probability of the event. Thus we are able to identify
ambiguity with uncertainty/multiplicity with respect to relevant priors and hence, ex
ante evaluations. Correspondingly, we define attitude towards ambiguity as an attitude
towards this uncertainty in a way analogous to the standard notion of attitude toward
risk. This highlights one advantage of our approach: familiar techniques from the theory
of risk attitudes may be used to deal with ambiguity as well, while maintaining a clear
distinction between the two.

Preferences axiomatized in this paper are shown to be represented by a functional of
the following double expectational form

V (f) =

∫
∆

φ

(∫
S

u (f) dπ

)
dµ ≡ Eµφ (Eπu ◦ f) ,

where f is a real valued function defined on a state space S (an “act”); u is a von
Neumann-Morgenstern utility function; π is a probability measure on S; φ is a map from
reals to reals. There may be subjective uncertainty about what the “right” probability
on S is — µ is the DM’s subjective prior over ∆, the possible probabilities over S, and
therefore measures the subjective relevance of a particular π as the “right” probability.
While u, as usual, characterizes attitude toward risk, we show that ambiguity attitude
is captured by φ. In particular, a concave φ characterizes ambiguity aversion, which we
define to be an aversion to mean preserving spreads in µf , where µf is the distribution
over expected utility values induced by µ and f . It is worth noting that this preference
model does not, in general, impose reduction between µ and the π’s in the support of µ.
Such reduction only occurs when φ is linear, a situation that we show is identified with
ambiguity neutrality and wherein the preferences are observationally equivalent to that
of a subjective expected utility maximizer.

The basic structure of the model and assumptions are as follows. Our focus of interest
is the DM’s preferences over acts on the state space S. This set of acts is assumed
to include a special subset of acts which we call lotteries, i.e., acts measurable with
respect to a portion of S over which probabilities are assumed to be objectively given
(or unanimously agreed upon). We start by assuming preferences over these lotteries are
expected utility preferences. From preferences over lotteries, the DM’s risk preferences
are revealed, identified by v N-M index u. We then consider preferences over acts each
of whose payoff is contingent on which prior (on S) is the “right” probability — we call
these acts second order acts. For the moment, to fix ideas, think of these acts as “bets
over the right prior”. Our second axiom states that preferences over second order acts are
subjective expected utility (SEU) preferences. The point of defining second order acts
and imposing Axiom 2 is to model explicitly the uncertainty about the “right prior” and
uncover the DM’s subjective beliefs with respect to this uncertainty and attitude to this
uncertainty. Indeed, following this axiom we recover µ and v: the former is a probability
measure over possible priors on S revealing the DM’s subjective information while the
latter is the v N-M index summarizing the DM’s risk attitude toward the uncertainty
over the “right” prior. Our third axiom connects preferences over second order acts to
preferences over acts on S. The axiom essentially identifies an act f , defined on S, with
a second order act that yields for each prior π on S, the certainty equivalent of the
lottery induced by f and π. Upon setting φ ≡ v ◦ u−1, the three axioms lead to the
representation given above. Notice, a concave φ implies that v is a concave transform of
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u. Hence, ambiguity aversion in this framework will be shown to mean that the DM is
more risk averse to the subjective uncertainty about priors than he is to the uncertainty
in lotteries, suggesting the interpretation that the DM considers the information reflected
in the prior µ to be “less hard”, or of a different character, than the information about
probabilities contained in the description of lotteries. Relatedly, ambiguity neutrality
obtains if the DM’s attitudes to risk on the two domains of uncertainty are identical.

It is not hard to think of real world instances wherein a decision maker’s information
is consistent with multiple probabilities on the state space relevant to the decision at
hand. One example is expert opinion. A manager seeking assessments of the probability
of success of a venture from a set of experts may find that different experts report dif-
ferent probability numbers. Possibly there would be a further aspect to the manager’s
information: some prior belief about the credibility of each expert. As a second example,
think of a decision maker applying a model to forecast the realization of an observable
variable. The model maps a parametric configuration, whose value is not precisely known
to the decision maker, to a probability distribution over a set of possible realizations of
the observable variable. Data on past realizations of the observable variable would allow
the decision maker to update his prior (or, say, estimate a 95% confidence interval) on the
possible values of the parameters. Hence, the decision maker will typically be left with
a set of probability distributions governing the future realizations of the observable vari-
able, along with some belief over the relevant probabilities. The idea, which echoes the
recent literature investigating decision rules robust to model misspecification or “model
uncertainty” (Hansen, Sargent, and Tallarini (1999), Hansen, Sargent, Turmuhambe-
tova, and Williams (2001)), finds application in many contexts. Think, for instance, of a
monetary policy maker setting policy on the basis of a model which, given parameters,
solves to yield a probability distribution on a set of macroeconomic variables of interest.
This DM is likely uncertain about the parameters, which involve details of technology,
tastes, and political decisions. Or, consider a DM in charge of policy whose impact is
contingent on long term realizations of environmental/climatic variables. The DM has
access to a model that predicts a probability distribution on the set of climate variables
of interest, like precipitation, temperature, given a particular parametrization involving
variables like future trajectory of political agreements on emission controls. But, in this
case too, the DM is uncertain about the actual values of the parameters and the course
of future political decisions.

Notice in the context of the first example, we may think of second order acts as
acts which pay off depending on which expert is the best informed, even though the
acts are effectively bets on which prior is right. Similarly, in the context of the second
example, second order acts may be thought of as acts whose payoffs are contingent on
a particular parametric configuration being the relevant one. Correspondingly, µ and
v may be regarded as representing preferences for such acts. Ambiguity averse DMs
have preference for acts whose performance is more robust to the possible variation in
probabilities. In our model, this is equivalent to v being more concave than u (φ being
concave). To see this in the context of our examples, imagine a DM in one of the
examples thinking, “My best guess of the chance that expert ‘π’ is the best informed (or,
that politics of emission control will resolve in a particular way) is 20%. However, this
is far less informed a guess than knowing that the chance in an objective lottery is 20%.
Hence, I would like to behave with more caution, with respect to the former risk.” It
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is a thought such as this that our model suggests as a way of understanding ambiguity
aversion (as we have defined it).

Apart from providing (what we think is) a simple and clarifying perspective on ambi-
guity and ambiguity attitude, we believe our model, and more specifically our functional
representation, will be particularly useful in economic modeling involving comparative
statics and ambiguity. Suppose we have an economic model where agents’ beliefs reflect
some ambiguity and consider, as a benchmark, equilibrium behavior in the model if all
agents were neutral to this ambiguity (say, they behaved as SEU maximizers). Next,
without perturbing the information structure any further, we want to ask how the equi-
librium would change if ambiguity aversion were to replace ambiguity neutrality, both in
the case where the aversion is uniform across agents and, more generally, if the ambiguity
attitude varied in intensity across the agents. Another comparative statics exercise might
hold the taste parameters such as ambiguity attitudes fixed and ask how the equilibrium
is affected if the perceived ambiguity varied across agents. The point is, working out
such comparative statics properly requires a model which separates an agent’s subjective
uncertainty from his attitude toward that uncertainty and parametrizes each of these in a
tractable way. We argue below that the models allowing for ambiguity attitude available
in the literature do not make this separation in a way that is clear and complete enough.

Consider, for instance, the classic model of maxmin expected utility (MEU) prefer-
ences (Gilboa and Schmeidler (1989)), which, along with the pioneering Choquet expected
utility model of Schmeidler (1989), remains among the most popular models capable of
incorporating ambiguity aversion. MEU preferences are represented by the following
functional:

V (f) = min
π∈Π

Eπ (u ◦ f) ,

where f is an act and Π is a set of probability measures. The model does not, in general,
impose a separation of information/beliefs and ambiguity attitudes. In general, the set Π
may not be interpreted as being completely characterized by the decision maker’s beliefs.
It represents beliefs intertwined with ambiguity attitude in an inseparable way. A common
comparative statics exercise that uses this model to reveal the effect of ambiguity aversion
proceeds by comparing the behavior corresponding to one set of priors Π with the behavior
corresponding to a more inclusive set Π′, i.e., Π ⊂ Π′, while controlling for risk attitudes
by holding u fixed. The larger set of priors could reflect differences in information or
perception, differences in ambiguity attitude, or both. This is problematic because we are
unable to see if the answers differ because the ambiguity in the environment is changing
or because of a change in attitude towards ambiguity. For instance, consider a principal-
agent model with moral hazard which is “standard” in every respect except that the
players’ beliefs about the contractible signal (e.g., output) reflect ambiguity. In such a
model it is natural to pose the question, “How does the optimal contract change if the
agent becomes more ambiguity averse than the principal?” Suppose we require, as in
the standard model, that the comparative statics exercise respect the assumption that
the principal and agent have the same (prior) information/beliefs about the contractible
signal. Such an exercise would be very hard to execute, if not impossible, in the MEU
model. The problem is that there are no known results which would tell us how we could
alter the set of priors in the representation of the agent’s preferences in a way that would
incorporate a change in ambiguity attitude while at the same time maintaining that the
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agent’s priors and the set of priors corresponding to the principal and agent incorporating
the same information about the contractible signal.

It may seem that the problem of conflating beliefs and attitudes can be finessed if we
take the special case where the set Π is interpreted as the set of probabilities the decision
maker thinks is relevant, i.e., we interpret it as “pure” information/belief. Then, per
force, we fix the decision maker’s ambiguity attitude to the extreme case where he only
worries about the worst case scenario given his information. This interpretation imposes
at least two kinds of limitations on the comparative static exercises. One, we cannot
allow for heterogeneity of tastes (specifically, ambiguity attitudes) among agents in the
model. Two, we have no way of knowing whether the results of the comparative static
exercise are true only for the extreme attitude or extend more generally to intermediate
degrees of ambiguity aversion. One advantage of our model is that it does not suffer from
these difficulties. For further discussion relating our approach to others in the literature
see Section 6.

The rest of the paper is organized as follows. The next section states our basic
assumptions on preferences, derives the representation, and presents a definition and
characterization of ambiguity attitude. Section 3 defines and characterizes ambiguity in
this model. Section 4 focuses on the characterization of comparative ambiguity attitudes.
Section 5 contains both formal results and discussion relating the preference-based notion
of ambiguity presented in Section 3 to two leading preference-based notions of ambiguity
available in the literature. Section 6 contains a general discussion of literature related
to our model. Finally, Section 7 presents two illustrative portfolio choice applications of
the theory developed here. All proofs, unless otherwise noted in the text, appear in the
Appendix.

2 Axioms and representation

2.1 Preliminaries

Let A be the Borel σ-algebra of a metric space Ω, and B the Borel σ-algebra of [0, 1).
Consider the state space S = Ω× [0, 1), endowed with the product σ-algebra Σ ≡ A⊗B.
For the remainder of this paper, all events will be assumed to belong to Σ unless stated
otherwise.

We denote by f : S → C a Savage act, where C is the set of consequences. We assume
C to be an interval in R containing the interval [−1, 1]. F is the set of all simple acts, that
is, the set of all Σ-measurable functions f : S → C such that the set {x ∈ R : f(s) = x
for some s ∈ S} is finite. The space [0, 1) is introduced simply to model a rich set of
lotteries1 as a set of Savage acts.2 An act l ∈ F is said to be a lottery if l depends only
on [0, 1) — i.e., l(ω1, r) = l(ω2, r) for any ω1, ω2 ∈ Ω and r ∈ [0, 1) — and it is Riemann

1By the phrase “a rich set of lotteries” we simply mean that, for any probability p ∈ [0, 1), we may
construct an act which yields a consequence with that probability. While this richness is not required in
the statement of our axioms or in our representation result, it is invoked later in the paper in Theorems
2 and 3.

2Our modelling of lotteries in this way and use of a product state space is similar to the “single-stage”
approach in Sarin and Wakker (1992), Sarin and Wakker (1997), and to Anscombe-Aumann style models.
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integrable. The set of all such lotteries is L. If f ∈ L and r ∈ [0, 1), we sometimes write
f(r) meaning f(ω, r) for any ω ∈ Ω.

Given the Lebesgue measure λ : B → [0, 1], let π : Σ → [0, 1] be a countably additive
product probability such that π(A×B) = π(A× [0, 1))λ(B) for A ∈ A and B ∈ B. The
set of all such probabilities π is denoted by ∆. Let C (S) be the set of all continuous
(w.r.t. the product topology of S) and bounded real-valued functions on S. Using C (S)
we can equip ∆ with the vague topology, that is, the coarsest topology on ∆ that makes
the following functionals continuous:

π �→

∫
ψdπ for each ψ ∈ C (S) and π ∈ ∆.

Throughout the paper we assume ∆ to be endowed with the vague topology. Let σ (∆) be
the Borel σ-algebra on ∆ generated by the vague topology. The following lemma shows a
property of σ (∆) that is quite crucial for our purposes, as observed right after Theorem
1 (its routine proof is omitted).

Lemma 1 σ (∆) coincides with the σ-algebra generated by the real-valued functions on
∆ given by

π �→

∫
ψdπ π ∈ ∆ and ψ ∈ B (Σ) , (1)

where B (Σ) is the set of all bounded and real-valued Σ-measurable functions.

Since we wish to allow ∆ to be another domain of uncertainty for the decision maker
apart from S, we model it explicitly as such. To formally identify the decision maker’s
subjective uncertainty about this domain, i.e., whether he at all regards this domain as
uncertain and if so, what his subjective information and beliefs are, we look at the decision
maker’s preferences over second order acts which assign consequences to elements of this
domain. The interpretation of second order acts and their domain is discussed in detail
in Remark 2.

Definition 1 A second order act is any bounded σ (∆)-measurable function f : ∆ → C
that associates an element of ∆ to a consequence. We denote by F the set of all second
order acts.

Let 	2 be the decision maker’s preference ordering over F. The main focus of the
model is 	, a preference relation defined on F (the set of simple acts on S).

2.2 Basic axioms

Next we describe three assumptions on the preference orderings 	 and 	2. The first
axiom applies to the preference ordering 	 when restricted to the domain of lottery acts.
Preferences over the lotteries are assumed to have a expected utility representation.

Axiom 1 (Expected utility on lotteries) There exists a unique u : C→ R, continu-
ous, strictly increasing and normalized so that u(0) = 0 and u(1) = 1 such that, for all
f, g ∈ L, f 	 g if and only if

∫
[0,1)

u(f(r))dr ≥
∫
[0,1)

u(g(r))dr.
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In the standard way, the utility function, u, represents the decision maker’s attitude
towards risk generated from the lottery part of the state space. The next axiom is on
	2, the preferences over second order acts. These preferences are assumed to have a
subjective expected utility representation.3

Axiom 2 (Subjective expected utility on 2nd order acts) There exists a unique
finitely additive probability µ : σ (∆) → [0, 1] and a continuous, strictly increasing v :
C → R, such that

f 	2 g ⇐⇒

∫
∆

v (f (π)) dµ ≥

∫
∆

v (g (π)) dµ, ∀f, g ∈ F

Further, if there exists a J ⊆ ∆ such that 0 < µ (J) < 1, then v is unique up to positive
affine transformations.

We denote by Π the support of µ, that is, the smallest closed (w.r.t. the vague
topology) subset of ∆ whose complement has measure zero; Π is the subset of ∆ the
decision maker subjectively considers as “relevant”. Given any E ⊆ Π, we interpret
µ (E) as the decision maker’s subjective assessment of the likelihood that the relevant
probability lies in E; hence, µ may be thought of as a “second order probability” over
the first order probabilities π. Notice that Π may well be a finite subset of ∆. Finally,
the utility function v can be seen as representing the decision maker’s attitude towards
risks generated from the space of first-order probabilities.

Notation 1 An act f and a probability π induce on consequences a distribution πf
defined by πf (x) = π (f−1 (x)) for each x ∈ C. The support of πf is the range of the
act f ; denote it by {x1, ..., xn} ⊆ C. We now construct a lottery act lf ∈ L inducing a
distribution on C identical to πf , as follows:

lf(ω, r) =




x1 if r ∈ [0, πf (x1))
x2 if r ∈ [πf (x1) , πf (x2) + πf (x1))
...

...
...

xn if r ∈ [
∑n−1

i=1 πf (xi) ,
∑n

i=1 πf (xi) = 1)

Finally, let δx denote the constant act with consequence x ∈ C, and let cf (π) denote the
certainty equivalent of the lottery lf , i.e., δcf (π) ∼ lf .

Continuity of u (Axiom 1) and the assumption that lotteries have finite support
guarantee that the certainty equivalent exists for any lottery. We also assumed (in Axiom
1) that u is increasing; this assumption guarantees that the certainty equivalent is unique.
Axiom 1 also implies that the order of the enumeration of the support of πf in the
construction of lf does not matter for 	. Additionally, the fact that each π restricted to
Ω×B is the Lebesgue measure implies that the only property of the chosen events in the
construction of lf that matters for 	 is their length.

3Each of the first two axioms could be replaced by more primitive assumptions on � and �2, re-

spectively, which deliver the expected utility representations. Since such developments are by now well

known and easily adapted to our setting, we do not do so here.
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Our final basic axiom requires the preference ordering of primary interest, 	, to be
consistent with Axioms 1 and 2 in a certain way. Essentially, the axiom requires the
decision maker to view act f ∈ F as equivalent to a second-order act f 2 ∈ F which yields
the consequence cf (π) whenever π is the “true” probability law. Thus, f is associated
with a vector of several certainty equivalents, each of them corresponding to a particular
possible probability. Since this vector of certainty equivalents is a second-order act, it
is reasonable to ask that its evaluation be consistent with Axiom 2. Since f together
with a possible probability π generates a distribution over consequences identical to that
generated by lf , it seems reasonable to require (for consistency with Axiom 1) that the
certainty equivalent of f , given π, be same as the certainty equivalent of lf .

Definition 2 Given f ∈ F, f 2 ∈ F denotes a second order act associated with f,
defined as follows

f2 (π) = cf (π) for all π ∈ ∆.

Axiom 3 (Consistency with preferences over associated 2nd order acts) Given
f, g ∈ F and f2, g2 ∈ F,

f 	 g ⇐⇒ f2 	2 g2.

Remark 1 Let δ2c denote a second order act such that δ2c (π) = c, for all π ∈ ∆. Since
both v and u are strictly increasing, we have δ2c 	

2 δ2c′ if and only if δc 	 δc′ .

Remark 2 Axioms 1 through 3, taken together, imply that if the DM were to know that
the “event π” in the domain of second order acts has occurred (i.e., µ (π) = 1), then he
evaluates an act f ∈ F using an expected utility functional with probability π (on S).
In other words, the “event π” is just some event such that the DM’s conditional prefer-
ences given that event is expected utility with probability π. It is a useful abstraction,
facilitating directness and parsimony in the general framework, to describe “the event
π” literally as “the event such that π is the relevant/right probability”, even though
such a description is open to the criticism that such an event may not be objectively
verifiable. It is important to recognize, however, that the domain of second order acts
does not literally have to be ∆. A set of objectively verifiable, mutually exclusive events,
E = {Eπ}π∈∆, which are not payoff relevant with respect to acts in F , would do just as
well, provided Axioms 2 and 3 apply to acts defined on E , as explained next. First we
need to redefine a second order act as f : E → C , i.e., it associates an element of E to a
consequence. Correspondingly, we redefine a second order act associated with f ∈ F as,
f 2 (Eπ) = cf (π), for all Eπ ∈ E. Now we assume that Axioms 2 and 3 to apply to the
redefined acts and obtain our representation result as in Theorem 1. As noted earlier, if
Axioms 2 and 3 are satisfied by preferences over the redefined acts it will be implied, in
particular, that the DM’s conditional preferences given event Eπ is expected utility with
probability π. Hence, the notion that “Eπ is associated with the probability π” has a
meaning that is conceptually clear and something that may be, in principle, verified ob-
jectively by observing the DM’s preference behavior (conditional on the event Eπ) w.r.t.
acts in F . (Note, the description of event Eπ, given that the description uses objective
propositions, need not contain a reference to π.) Given particular contexts, events such
as Eπ will have objectively verifiable identities that go with the context, as suggested by
our examples on page 3, and the domain of second order acts will be identified with such
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events. For instance, recall the example involving expert advice about the success of a
business venture. In that context, an Eπ could be the contingency described as, “Ex-
pert A is the best informed”. If the DM were to know that this event is true, he would
choose according the A’s advice, and his preference behavior would, in principle, reveal
(in an objectively verifiable way) the prior π applied to acts in F . To summarize, it is
not necessary that the domain of second order acts be taken literally as ∆ for our theory
to obtain. We write the domain as that to be clear about its relevance to preferences on
acts in F , which is purely through its information content about the appropriate prior
on S.

The above three axioms are basic to our model in that they are all that we invoke
to obtain our representation result. Theorem 1 below shows that given these axioms,
	 is represented by a functional which is an “expected utility over expected utilities”.
Evaluation of f ∈ F proceeds in two stages: first, compute all possible expected utilities
of f , each expected utility corresponding to a π in the support of µ; next, compute the
expectation (with respect to the measure µ) of the expected utilities obtained in the first
stage, each expected utility transformed by the index φ.

As will be shown in subsequent analysis, this representation allows a clear decompo-
sition of the decision maker’s tastes and beliefs: u determines risk attitude, φ determines
ambiguity attitude, and µ determines the subjective ambiguity of information. The repre-
senting functional is also invariant to positive affine transforms of the vN-M utility index
that applies to the lotteries. That is, when u is translated by a positive affine transfor-
mation to u′, the class of associated φ′ is simply the class of φ with domain shifted by
the positive affine transformation.

Formally, let U denote the range {u (x) : x ∈ C} of the utility function u.

Theorem 1 Given Axioms 1, 2 and 3, there exists a continuous and strictly increasing
φ : U → R such that 	 is represented by the preference functional V : F → R given by

V (f) =

∫
∆

φ

[∫
S

u (f (s)) dπ

]
dµ ≡ Eµφ (Eπu ◦ f) (2)

Furthermore, if there exists J ⊆ ∆ with 0 < µ (J) < 1, then, given u, the function φ is
unique up to positive affine transformations. Moreover, if ũ = αu + β, α > 0, then the
associated φ̃ is such that φ̃(αy + β) = φ (y), where y ∈ U.

The integrals in (2) are well defined because of Lemma 1, which guarantees their
existence. Hereafter, when we write a preference relation	, we assume that it satisfies the
conditions in Theorem 1. This theorem can be viewed as a part of a more comprehensive
representation result (reported in the Appendix as Theorem 6) for the two orderings 	
and 	2 in which Axioms 1, 2 and 3 are both necessary and sufficient. Theorem 6 also
notes explicitly an important point explained in the proof of Theorem 1, that φ is to
equal v ◦ u−1.

We close by observing that, though in Axiom 1 we assumed expected utility prefer-
ences on lotteries, we could relax that assumption by allowing more general preferences.
For example, if preferences over lotteries were Rank Dependent Expected Utility prefer-
ences with a suitable probability distortion ψ : [0, 1] → [0, 1], then the representation in
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Eq. (2) would take the form ∫
∆

φ

(∫
S

u (f (s)) dψ (π)

)
dµ,

where the inner integral is in the sense of Choquet. More generally, we conjecture that
any suitable preferences over lotteries for which risk attitudes may be usefully defined
and for which certainty equivalents exist might be plugged into Axiom 1. Along these
lines, the subjective expected utility assumption on preferences for second order acts
might also be something that could be relaxed. We suspect that the key features needed
would be some version of probabilistic sophistication along with comparability of risk
attitudes over second order acts with risk attitudes over lotteries. Paring assumptions
down to probabilistic sophistication would, as usual, often restrict the representation to
an “implicit” form. We prefer to stick to expected utility in both Axioms principally
for two reasons. One, it serves to sharpen the focus of our exercise, and thus enhance
clarity. Two, as explained in the introduction, we are strongly motivated by the need to
obtain a functional form that would facilitate economically interesting comparative static
analyses. An explicit, tractable representation, that would identifiably separate beliefs
and attitudes, is absolutely essential for that.

2.3 Characterizing ambiguity attitude

In this section we provide a definition of a decision maker’s ambiguity attitude and we
show that this ambiguity attitude is characterized by properties of φ, one of the func-
tions from our representation above. Comparison of ambiguity attitudes across preference
relations is dealt with in Section 4. To discuss ambiguity attitude, we first require an
additional assumption. In the classical theory, risk attitude is assumed to be a property
of the individual and not of their environment. In particular, it is commonly implicitly
or explicitly assumed that a given individual will display the same risk attitude across
settings in which she might hold different subjective beliefs. We would like to assume the
same. In the context of our theory, this entails the assumption that risk attitudes derived
from lotteries and risk attitudes derived from second-order acts are independent of an
individual’s beliefs. In fact, a slightly weaker assumption suffices for our purposes: the
assumption that these two risk attitudes do not vary with the support of an individual’s
belief. In terms of the axioms and representation of the previous section, this will mean
that u and v do not depend on Π, the support of µ.

To state this formally in our setting, consider a family {	Π,	
2

Π
}Π⊆∆ of pairs of pref-

erence relations (over acts and over second-order acts respectively) characterizing each
decision maker, wherein there is a pair of preference relations corresponding to each pos-
sible support Π, that is, to each possible state of information he may have about which
probabilities π (over S) are relevant to his decision problem. In reading the axiom, recall
that supports are, by definition, closed subsets of ∆.

Axiom 4 (Separation of tastes and beliefs ) Fix a family of preference relations {	Π

,	2

Π
}Π⊆∆ for a given decision maker.

(i) The restriction of 	Π to lottery acts remains the same for every closed subset Π ⊆
∆.

10



(ii) The same invariance with respect to Π holds for the risk preferences derived from
	2

Π
.

Imposing Axiom 4 in addition to the earlier axioms guarantees that as the support
of a decision maker’s subjective belief varies (say, due to conditioning on different infor-
mation), the decision maker’s attitude towards risk in lotteries, as embodied in u (from
Axiom 1), and attitude towards risk on the space ∆ of probabilities, as embodied by v
(from Axiom 2) remain unchanged. Importantly, this will also mean that the same φ
may be used to represent each 	Π for a decision maker. To see this, simply recall that
φ may be taken to equal v ◦ u−1.

Notice that there is no restriction on the decision maker’s belief associated with each
	Π, besides that of having support Π. Though we do not need to assume it for our
results, a natural possibility is that all such beliefs be connected via conditioning from
some “original” common belief.

We now proceed to develop a formal notion of ambiguity attitude. Recall that an act
f together with a probability π induces a distribution πf on consequences. Each such
distribution is naturally associated with a lottery lf ∈ L that yields each consequence c
in the support of πf on a subset of [0, 1) with length equal to πf (c). Each such lottery
has a certainty equivalent cf (π). By Axiom 2, there is a probability µ supported by the
set of probabilities Π. Fixing an act f , the probability µ may then be used to induce
a measure µf on {u (cf (π)) : π ∈ Π}, the set of expected utility values generated by f
corresponding to the different π’s in Π (using the utility function from Axiom 1). This
is done in Definition 3, as follows.

Definition 3 Given f ∈ F , the induced distribution µf on U is as follows:

µf (u (x)) ≡ µ
((

f2
)
−1

(x)
)

for each x ∈ C.

Given an act f , the derived (subjective) probability distribution over expected utili-
ties, µf , smoothly aggregates the information the decision maker has about the relevant
π’s and how each such π evaluates f , without imposing reduction between µ and the π’s.
In this framework the induced distribution µf represents the decision maker’s subjective
uncertainty about the “right” (ex ante) evaluation of an act. The greater the spread in
µf , the greater the uncertainty about the ex ante evaluation. In our model it is this uncer-
tainty through which ambiguity of about beliefs may affect behavior: ambiguity aversion
is an aversion to the uncertainty about ex ante evaluations. Analogous to risk aversion,
aversion to this uncertainty is taken to be the same as disliking a mean preserving spread
in µf . First we introduce notation for denoting the mean of µf .

Notation 2 Let e
(
µf

)
≡

∫
U
xdµf . Notice u−1

(
e
(
µf

))
∈ C.

Recalling the notation for constant acts, we see δ
u−1(e(µf)) is simply the constant

act which yields the same utility as the mean of µf . Equivalently, µδ
u−1(e(µf))

is the

degenerate distribution on e
(
µf

)
. The definition below formally describes the notion that

a given decision maker displays ambiguity aversion if each member of the family {	Π}Π⊆∆
shows a preference for an act, δ

u−1(e(µf)), that induces the degenerate distribution on the

mean of µf , µδ
u−1(e(µf))

, over the act f that induces µf .
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Definition 4 A decision maker displays smooth ambiguity aversion if

δ
u−1(e(µf)) 	Π f

for all f ∈ F and all closed subsets Π ⊆ ∆.4

In a similar way, we can define smooth ambiguity love and neutrality. The proposition
below shows that smooth ambiguity aversion is characterized in the representing func-
tional by the concavity of φ. The proposition also shows that smooth ambiguity aversion
is equivalent to the DM being more risk averse to the uncertainty about the right prior
on S than he is to the risk involving lotteries (whose probalities are objectively known).
A result characterizing smooth ambiguity love by convexity of φ (and u being a concave
transform of ) follows from the same argument. Similarly, smooth ambiguity neutrality
is characterized by φ linear. It is worth noting that a straightforward adaptation of the
proof of the analogous result in risk theory does not suffice here. The reason is that the
needed diversity of associated second order acts is not guaranteed in general.

Proposition 1 Under Axioms 1-4, the following conditions are equivalent:

(i) the function φ : U → R is concave;

(ii) v is a concave transform of u;

(iii) the decision maker displays smooth ambiguity aversion.

The proposition has the following corollary (whose simple proof is omitted) which
shows that the usual reduction (between µ and π) applies whenever ambiguity neutrality
holds. In that case we are back to subjective expected utility. An ambiguity neutral
decision maker, though informed of the multiplicity of π’s, is indifferent to the spread
in the ex ante evaluation of an act caused by this multiplicity; he only cares about the
“expected prior” ν.

Corollary 1 Under Axioms 1-4, the following properties are equivalent:

(i) the decision maker is smoothly ambiguity neutral;

(ii) φ is linear;

(iii) v is a linear transform of u;

(iv) V (f) =
∫
S
u (f (s)) dν, where ν (E) =

∫
∆
π (E) dµ for all E ∈ Σ.

4This definition is actually stronger than we need for our later results. It is enough that the indicated
preference hold for (in addition to the original preference, �) some �Π whose set Π contains exactly two
measures having disjoint support. While we stick with the stronger definition for ease of statement, the
observation here indicates that many fewer preference relations need to be considered (two rather than
an infinite number) than the stronger version would lead one to think.
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Our final axiom imposes a (behavioral) restriction on the preference order so that
its ambiguity attitude is “well behaved”. This good behavior will be useful in the next
section when we discuss ambiguous events and acts. In words, the restriction is that if a
preference is not neutral to ambiguity then there exists at least one interval in U which
satisfies the following property. Consider the set of acts for which the set the expected
utilities corresponding to each act lies within the given interval. We require that the
decision maker displays either strict ambiguity aversion, or strict ambiguity love, but not
both, for all such acts. What is ruled out (and this is the essence of the restriction)
is the possibility that the decision maker’s ambiguity attitude flits between ambiguity
aversion and ambiguity love, continuously from one point to the next, over the entire
range of U . Note, it is entirely permissible that there be several intervals, over some of
which the decision maker is ambiguity averse while over others he is ambiguity loving.
Furthermore, outside a chosen interval, ambiguity attitude may be as inconsistent as
desired. The statement of the axiom is immediately followed by a proposition which
gives an equivalent characterization in terms of φ.

Axiom 5 (Consistent ambiguity attitude over some interval) The decision maker’s
family of preferences satisfies at least one of the following three conditions:

(i) smooth ambiguity neutrality,

(ii) there exists an open interval J ⊆ U such that smooth ambiguity aversion holds
strictly when limited to all f ∈ F for which supp

(
µf

)
is a non-singleton subset of

J,

(iii) there exists an open interval K ⊆ U such that smooth ambiguity love holds strictly
when limited to all f ∈ F for which supp

(
µf

)
is a non-singleton subset of K.

Proposition 2 Under Axioms 1-4, we have:

1. Axiom 5 (i) holds if and only if φ linear;

2. Axiom 5 (ii) holds if and only if φ strictly concave on some open interval J ⊆ U;

3. Axiom 5 (iii) holds if and only if φ strictly convex on some open interval K ⊆ U.

The following lemma and remark shows that if φ were twice continuously differentiable,
as it is likely to be in any application, then Axiom 5 is actually implied by the other axioms
and is not an additional assumption.

Lemma 2 Suppose φ is twice continuously differentiable. If φ is not linear, then φ is
either strictly concave or convex over some open interval.

Remark 3 It follows immediately from Proposition 2 and Lemma 2 that under twice
continuous differentiability of φ, Axioms 1—4 imply Axiom 5.

It is perhaps worth noting that there exist functions on [0, 1] that are strictly increas-
ing, continuous and almost everywhere differentiable for which the conclusion of Lemma
2 does not hold. It can be shown that this is the case, for example, of the function
presented in Takacs (1978).
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3 Ambiguity: ambiguous events and ambiguous acts

We have mentioned that an attractive feature of our model is that it allows one to separate
ambiguity from ambiguity attitude. In this section we concentrate on the ambiguity part.
First, we propose a preference based definition of ambiguity. We then show that this
notion of ambiguity has a particularly simple characterization in our model and go on
to present results to demonstrate appropriateness of the definition in the context of our
model.

What makes an event ambiguous or unambiguous by our definition rests on a test of
behavior, with respect to bets on the event, inspired by the Ellsberg 2-color experiment
(Ellsberg (1961)). The role corresponding to bets on the draw from the urn with the
known mixture of balls is played here by bets on events in Ω×B. We dub an event E ∈ Σ
as ambiguous if, analogous to the modal behavior observed in the Ellsberg experiment,
betting on E is preferred to betting on some event B in Ω×B, and betting on Ec is also
preferred to betting on Bc. The proposition following the definition shows an equivalent,
shorter, form of the definition which essentially follows from the continuity of φ, which
is assured in our model given the first three axioms. This equivalent form, though it
lacks immediate intuitive identification with the Ellsberg experiment, adds clarity to our
understanding of what makes an event unambiguous: an event is unambiguous if it is
possible to calibrate the likelihood of the event with respect to events in Ω× B.

Notation 3 If x, y ∈ X and A ∈ Σ, xAy denotes the binary act which pays x if s ∈ A
and y otherwise.

Definition 5 An event E ∈ Σ is unambiguous if, for each event B ∈ Ω × B, and
for each x, y ∈ X such that δx � δy, either, [xEy � xBy and yEx ≺ yBx] or,
[xEy ≺ xBy and yEx � yBx] or [xEy ∼ xBy and yEx ∼ yBx] . An event is ambiguous

if it is not unambiguous.

Proposition 3 Assume 	 satisfies the conditions in Theorem 1. An event E ∈ Σ is
unambiguous if and only if for each x and y with δx � δy,

xEy ∼ xBy ⇐⇒ yEx ∼ yBx. (3)

whenever B ∈ Ω× B.

If 	 satisfies Axioms 1 through 3 then all events in Ω×B are unambiguous. Given any
particular preference relation, it of course may be checked using our definition whether an
event in Ω×B is unambiguous. We also observe here that the role of B in our definition
may be played equally well by some other rich set of events over which preferences display
a likelihood relation representable by a probability measure. Furthermore, the product
structure of our state space also does not play an essential role in formulating such a
definition. In general, replace Ω× B with the desired alternative set.

The next theorem relates ambiguity of an event to event probabilities in our repre-
sentation.

Theorem 2 Assume 	 satisfies the conditions in Theorem 1. If the event E is ambiguous
according to Definition 5, then there exist µ-non-null sets Π′ ⊆ Π and Π′′ ⊆ Π and
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γ ∈ (0, 1), such that π(E) < γ for all π ∈ Π′ and π(E) > γ for all π ∈ Π′′. If the event E
is unambiguous according to Definition 5, then, provided 	 satisfies Axioms 4 and 5 and
is not smoothly ambiguity neutral, there exists a γ ∈ [0, 1] such that π(E) = γ, µ-a.e.

Thus, in our model, if there is agreement about an event’s probability then that
event is unambiguous. Furthermore, if 	 has some range over which it is either strictly
smoothly ambiguity averse or strictly smoothly ambiguity loving then disagreement about
an event’s probability implies that the event is ambiguous. When the support Π of µ is
finite, the meaning of disagreement about an event’s probability in the theorem above
simplifies to: there exist π, π′ ∈ Π such that π(E) �= π′(E).

To understand why conditions are needed for one direction of the theorem think of the
case of ambiguity neutrality i.e., φ linear. Recall that in this case, even if the measures in
Π disagree on the probability of an event, the decision maker behaves as if he assigns that
event its µ-average probability. Recall that Lemma 2 and Remark 3 showed that under
conditions likely to be assumed in any application (twice continuous differentiability of
the function φ and Axiom 4) ambiguity neutrality is the only case where there will fail to
be a range of strict ambiguity aversion (or love) and so the only case where disagreement
about an event’s probability will not imply that the event is ambiguous.

We say that a collection of events A ⊆ Σ is a λ-system if (i) S ∈ A; (ii) A ∈ A ⇒
Ac ∈ A; and (iii) A1, A2 ∈ A and A1 ∩ A2 = ∅ ⇒ A1 ∪ A2 ∈ A. This could be called
a finite λ-system since (iii) requires only closure under finite disjoint unions rather than
the closure under countable disjoint unions required in e.g., Billingsley (1986), p. 36.
It has been widely argued in the literature (e.g., Epstein and Zhang (2001), Ghirardato
and Marinacci (2002), Zhang (2002)) that the maximal collection of unambiguous events
forms a λ-system and not necessarily an algebra. Hence we include the following corollary
to Theorem 2 which observes that in our model, given our definition of ambiguous events,
the collection of all unambiguous events does form a λ-system.

Corollary 2 Suppose 	 satisfies Axioms 1 through 5. Let Λ ⊆ Σ be the collection of all
unambiguous events in Σ. Then Λ is a (finite) λ-system.

Next, we identify an unambiguous act as an act which is measurable with respect to
Λ, the collection of all unambiguous events in Σ. Notice, if an act f is unambiguous then
the induced distribution µf is degenerate.

Definition 6 An act f ∈ F is an unambiguous act if it is measurable with respect to
Λ. Let H be the set of all unambiguous acts.

To gain further insight into our definition of an ambiguous event and its appropri-
ateness in the context of our model, we introduce the following concept combining the
standard notion of a qualitative probability with an additional necessary condition for the
existence of a probability and likelihood revealed through bets on events. (Conditions
(i) through (iv) in the definition define a qualitative probability, condition (v) is also
necessary for the existence of a representing probability and condition (vi) connects this
qualitative probability with 	 over bets.)
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Definition 7 We call a binary relation 	q on a λ-system A ⊆ Σ a qualitative proba-

bility relation for 	 if it is (i) complete and transitive, (ii) S �q ∅ , (iii) A 	q ∅ for
A ∈ A, (iv) for A,B,C ∈ A, if A ∩ C = B ∩ C = ∅ then

A �q B ⇐⇒ A ∪C �q B ∪ C

(v) for A,B ∈ A,
A �q B ⇐⇒ Bc �q A

c

and (vi) for A,B ∈ A, A 	q B if there exist consequences x, y with δx � δy such that

xAy 	 xBy.

	 is said to have probabilistic beliefs if there exists a qualitative probability relation for
	 on all of Σ.

If A is an algebra, conditions (i)-(iv) imply (v) (see e.g., Kreps (1988), p. 118).
However, as observed by Zhang (1999), this is not true if A is merely a λ-system. Since
(v) is a necessary condition for the existence of a probability representing 	q on A, it
makes sense to include it here. In any event, the result below on the existence of a
qualitative probability relation for 	 is false without condition (v).

The next result uses this preference based notion of qualitative probability relation to
give an alternative characterization of ambiguous events in our setting.

Corollary 3 Assume 	 satisfies Axioms 1 through 5. Fix an event E ⊆ Σ. Then E is
unambiguous if and only if there exists a qualitative probability relation for 	 on some
λ-system that is a superset of {E,Ec,Ω×B}.

Remark 4 The “if” part of the claim in Corollary 3 does not depend on 	 satisfying
Axioms 1 through 5.

The existence of a qualitative probability relation for 	 on a λ-system containing
{E,Ec,Ω×B} intuitively means that the event E can be compared in a consistent way
with the rich set of events in the Borel σ-algebra B.

The most important class of preferences exhibiting probabilistic beliefs are the prob-
abilistically sophisticated preferences of Machina and Schmeidler (1992). Besides prob-
abilistic beliefs, they also require some additional conditions which we do not consider
because they are superfluous for our purposes. Given Axioms 1 through 5, the only depar-
ture from expected utility that may arise in our model is one due to ambiguity sensitive
behavior, behavior that is not probabilistically sophisticated, as formally detailed in the
following corollary.

Corollary 4 Assume 	 satisfies Axioms 1 through 4. Consider the following four prop-
erties:

(i) 	 has probabilistic beliefs

(ii) 	 is probabilistically sophisticated
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(iii) 	 has a subjective expected utility representation

(iv) For each event E, there exists a γ ∈ [0, 1] such that π(E) = γ, µ-a.e.

Then,
(iv) =⇒ (iii) =⇒ (ii) =⇒ (i).

Moreover, all four properties are equivalent whenever 	 satisfies Axiom 5(ii) or
(iii), while the first three are equivalent (and true) whenever 	 satisfies Axiom
5(i).

When φ is linear (	 satisfies Axiom 5(i)), recall that reduction applies and 	 has
a SEU representation with the subjective prior on E equal to

∫
π (E) dµ. Hence, if φ is

linear 	 is SEU even if all the π’s do not agree. This is meaningful since all it says is
that if the decision maker is ambiguity neutral his behavior is indistinguishable from an
SEU maximizer even if the information is ambiguous.

4 Comparison of ambiguity attitudes

In this section we study differences in ambiguity aversion across decision makers. For each
decision maker we consider the entire family of preferences {	Π,	

2

Π
}Π⊆∆, parametrized

by the state of information given by Π. Throughout the section (with the exception of
Proposition 5), we assume Axiom 4 holds, in addition to the first three axioms. Hence,
ambiguity attitudes do not depend on the support Π of µ, that is, on the particular
information available to the decision makers.

We begin with our definition of what makes one preference order more ambiguity
averse than another. The idea behind it is that if two decision makers are such that
they share the same attitude to risk and the same beliefs and yet one of the two is more
averse to acts with uncertain consequences, then the comparatively “extra” aversion to
uncertainty is due to a relatively greater aversion to ambiguity.

Definition 8 Let A and B be two decision makers whose families of preferences share
the same vN-M utility function u and share the same probability measures µΠ for each
support Π. We say that decision maker A is more ambiguity averse than B if

f 	A

Π
δx =⇒ f 	B

Π
δx (4)

for every f ∈ F, every x ∈ C, and every closed subset Π ⊆ ∆.

We can now state our comparative result, which shows that differences in ambiguity
aversion across decision makers are captured by the relative concavity of their functions
φ, thus showing that the concavity of φ plays here the role of the concavity of utility
functions in standard risk theory.

Theorem 3 Let A and B be two decision makers whose families of preferences share the
same vN-M utility function u and the same probability µ

Π
for each support Π. Then, decision

maker A is more ambiguity averse than B if and only if

φA = h ◦ φB

for some strictly increasing and concave h : φB (U) → R.
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Using results from standard risk theory we get the following corollary as an immediate
consequence of Theorem 3.

Corollary 5 Suppose the hypotheses of Theorem 3 hold. If φA and φB are twice contin-
uously differentiable, then decision maker A is more ambiguity averse than B if and only
if, for every x ∈ U,

−
φ′′

A
(x)

φ′

A (x)
≥ −

φ′′

B
(x)

φ′

B (x)
.

Analogous to risk theory, we will call the ratio

λ(x) = −
φ′′ (x)

φ′ (x)

the coefficient of ambiguity aversion at x ∈ U .

Corollary 6 Under Axioms 1-4, φ is concave if and only if the decision maker is more
ambiguity averse than an expected utility decision maker, that is, a decision maker all of
whose associated preferences 	Π are expected utility.

Remark 5 Corollary 6 connects our definition of smooth ambiguity aversion (Definition
4) to the comparative notion of ambiguity aversion in Definition 8. It shows that they
agree, with expected utility taken as the dividing line between ambiguity aversion and
ambiguity loving. Corollary 4, in Section 3, shows that if Axiom 5 holds nothing would
change if we were to take probabilistic sophistication, rather than expected utility, as the
benchmark.

We close the section by considering the two important special cases of constant and
extreme ambiguity attitudes. We begin by defining a behavioral notion of constant am-
biguity attitude.

Definition 9 Suppose acts f , g, f ′, g′ and k ∈ R are such that, for each ω ∈ Ω and
r ∈ [0, 1),

u(f ′(ω, r)) = u(f(ω, r)) + k

u(g′(ω, r)) = u(g(ω, r)) + k.

We say that the decision maker displays constant ambiguity attitude if, for each closed
subset Π ⊆ ∆,

f 	Π g ⇐⇒ f ′ 	Π g′.

To see the spirit of the definition notice, by bumping up utility (not the raw payoffs)
in each state by a constant amount we achieve a uniform shift in the induced distribution
over ex-ante evaluations, i.e.,

µf ′ = µf + k and µg′ = µg + k

The intuition of constant ambiguity attitude is that the decision maker views the “am-
biguity content” in µf and its “translation” µf + k to be the same. Next we show that
constant ambiguity attitudes are characterized by a negative exponential φ. It is of some
interest to note that the proposition does not assume that φ is differentiable.
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Proposition 4 The decision maker displays constant ambiguity attitude if and only if
there exists an α �= 0 such that, for all x ∈ U, either φ (x) = x or φ (x) = − 1

α
e−αx, up to

positive affine transformations.

We now turn to extreme ambiguity attitudes. The Maxmin expected utility model
(e.g., Gilboa and Schmeidler (1989)) with a given set of measures Π, may be viewed as
an extreme case of our model as the ambiguity aversion tends to infinity, as shown in the
following proposition. It may similarly be shown that Maxmax expected utility with a
given set of measures Π, may be viewed as the case where ambiguity aversion tends to
negative infinity (extreme ambiguity love).

Proposition 5 Let 	 be an ordering on F satisfying Axioms 1, 2 and 3. Then there
exists a sequence {	n}

∞

n=1 of orderings on F satisfying Axioms 1, 2 and 3, with 	1=	,
such that

(i) all 	n share the same vN-M utility function u and the same measure µ,

(ii) limn λn (x) = +∞ and λn (x) ≥ λn−1 (x) for all n ≥ 1 and all x ∈ U.

Moreover, given any f and g in F if it holds, eventually, that f 	n g, then,

min
π∈Π

Eπu (f) ≥ min
π∈Π

Eπu (g) ,

while
min
π∈Π

Eπu (f) > min
π∈Π

Eπu (g)

implies that, eventually, f �n g.

5 Relating to other notions of ambiguity

In this section, we compare, in the context of our model, our definition of ambiguity with
the definitions proposed in Epstein and Zhang (2001) and Ghirardato and Marinacci
(2002). Throughout this section we assume that Ω is finite and that Σ = 2Ω ⊗B.

We first relate our definition to the behavioral notion of ambiguity developed in Ep-
stein and Zhang (2001). Their notion of ambiguity was designed to apply to a wide
variety of models of preferences.

Definition 10 (Epstein-Zhang (2001)) An event T is unambiguous if: (a) for all dis-
joint subevents A, B of T c, acts h, and outcomes x∗, x, z, z′,


x∗ if s ∈ A
x if s ∈ B

h (s) if s ∈ T c\ (A ∪B)
z if s ∈ T


 �




x if s ∈ A
x∗ if s ∈ B
h (s) if s ∈ T c\ (A ∪B)
z if s ∈ T




⇒




x∗ if s ∈ A
x if s ∈ B

h (s) if s ∈ T c\ (A ∪B)
z′ if s ∈ T


 �




x if s ∈ A
x∗ if s ∈ B
h (s) if s ∈ T c\ (A ∪B)
z′ if s ∈ T


 ;

and (b) the condition obtained if T is everywhere replaced by T c in (a) is also satisfied.
Otherwise, T is ambiguous .
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This definition works by looking for conditional likelihood reversals over events in
the complement of the event being tested for ambiguity. Our definition instead looks
for likelihood reversals involving the event being tested for ambiguity and events in B.
Note that such a strategy was not available to Epstein and Zhang since they wished their
definition to have power in environments that might lack an appropriately rich set of
unambiguous events.

Is our definition of ambiguity identical to that of Epstein and Zhang (2001) when ap-
plied to our model of preferences? The answer is no. How do they differ? It is of interest
to note at the outset, given the many discussions comparing notions of ambiguity due
to Epstein and Zhang (2001) and Ghirardato and Marinacci (2002), the reason for the
difference cannot be that our definition confounds ambiguity with probabilistically sophis-
ticated departures from expected utility. As we have shown in the previous subsection,
whenever our definition identifies an event as ambiguous, behavior is not probabilistically
sophisticated. Nevertheless, one might still expect, since we can take advantage of the
rich structure of our model, that any difference would lie in the direction of our definition
classifying more events as ambiguous than Epstein and Zhang. This is part of the story:
in Example 1 we show that there may be some events that are ambiguous according to
our definition that are not according to Epstein and Zhang.

Example 1 Let Ω = {ω1, . . . , ωn}. The measure µ assigns probability 1/2 to both π0

and π1, where π0 and π1 yield marginals on Ω of

π0 (ω1) = λ1, π0 (ωj) =
1− λ1
n− 1

, j �= 1

and

π1 (ω1) = λ2, π1 (ωj) =
1− λ2
n− 1

, j �= 1,

respectively, with λ1<λ2. The utility function is u(x) = x (risk neutrality). The function
φ is φ(x) = −e−αx with α > 0.

Since π0 (ω1) = λ1 < λ2 = π1 (ω1) and φ is strictly concave, Theorem 2 implies that
the event ω1 × [0, 1) is ambiguous according to the definition in this paper. We now
demonstrate that it is unambiguous according to the definition of Epstein and Zhang
(2001) (Definition 10). To this end, consider T = ω1×[0, 1) in their definition. Notice that
all events in T c are assigned the same relative weights under π0 as under π1. Specifically,
for any E ⊆ T c, π0(E) = 1−λ1

1−λ2
π1(E). Under the specified preferences, the top pair of acts

in Definition 10 is evaluated according to

−
1

2
e−α(λ1z+π0(A)x

∗+π0(B)x+
∫
s∈Tc\(A∪B) h(s)π0(s)) −

1

2
e−α(λ2z+π1(A)x

∗+π1(B)x+
∫
s∈Tc\(A∪B) h(s)π1(s)),

(5)
and

−
1

2
e−α(λ1z+π0(A)x+π0(B)x∗+

∫
s∈Tc\(A∪B) h(s)π0(s)) −

1

2
e−α(λ2z+π1(A)x+π1(B)x∗+

∫
s∈Tc\(A∪B) h(s)π1(s)),

(6)
respectively. Substituting π0(E) = 1−λ1

1−λ2
π1(E) and simplifying yields (5) ≥ (6) if and only

if
π1(A)x

∗ + π1(B)x ≥ π1(A)x+ π1(B)x∗. (7)
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The evaluation of the lower pair of acts in Definition 10 differs only by substituting z′

for z. It is not hard to show that preference in the lower pair is also determined by (7).
Therefore condition (a) of the definition is satisfied. Setting T = (ω1× [0, 1))c and noting
that, again, all events in T c will be assigned the same relative weights under any π leads
to the conclusion that condition (b) of the definition holds as well. Therefore, ω1 × [0, 1)
is unambiguous according to Definition 10. �

The intuition behind this example is that Epstein and Zhang (2001) ambiguity requires
a reversal in the relative likelihoods of two events lying in the complement of the candidate
ambiguous event. The preferences in the example have the property that the ambiguity on
the candidate event affects the likelihoods of all events in its complement in the same way
— thus relative likelihoods in the complement are unchanged. In the formal result below,
we show that such situations are in some sense rare in that by perturbing the beliefs of
the decision maker even slightly one may have the ambiguity generate the differences in
relative likelihoods needed for Definition 10.

This is not the whole story however. We show in Example 2 that the Epstein and
Zhang definition may, more surprisingly, classify as ambiguous some events that are
unambiguous according to our definition. This may appear somewhat strange, given
that if E is unambiguous in our framework (with 	 satisfying Axioms 1 through 5)
then preferences restricted to acts measurable with respect to the λ-system generated by
{∅, E, Ec,Ω× B, S} are probabilistically sophisticated (and, in fact, are expected utility).

Example 2 Let Ω = {ω1, ω2, ω3, ω4}. The measure µ assigns probability 1/2 to both π0
and π1, where π0 and π1 yield marginals on Ω of

π0 (ω1) = 0.5, π0 (ω2) = 0.22, π0 (ω3) = 0.18, π0 (ω4) = 0.1,

and
π1 (ω1) = 0.5, π1 (ω2) = 0.02, π1 (ω3) = 0.18, π1 (ω4) = 0.3,

respectively. The utility function is u(x) = x (risk neutrality). The function φ is φ(x) =
ln(x).

Since π0 (ω1) = π1 (ω1) = 0.5, the event ω1 × [0, 1) is unambiguous according to
the definition in this paper. We now demonstrate that it is ambiguous according to
the definition of Epstein and Zhang (2001) (Definition 10). In their definition, let T =
ω1 × [0, 1), A = ω3 × [0, 1), B = ω4 × [0, 1), x∗ = 1, x = 0, h(s) = 0, z = 0, and
z′ = 100. Calculation shows that for the top pair of acts in their definition the act
on the left is strictly preferred to the one on the right, since ln(0.18) > 0.5 ln(0.1) +
0.5 ln(0.3). However, for the bottom pair of acts the preference is reversed, as ln(50.18) <
0.5 ln(50.1) + 0.5 ln(50.3). �

What is going on in this example? The function φ(x) = ln(x) does not reflect a
constant ambiguity attitude. In particular, as the acts under consideration get better
and better in terms of expected utilities, the ambiguity aversion of such a decision maker
diminishes. This is in close analogy to risk theory, since ln(x) displays constant relative
risk aversion but diminishing absolute risk aversion when used as a utility function. In our
example, A is unambiguous, while B is ambiguous but has a higher average probability
than A. When z = 0 the expected utilities of the acts are relatively low under all the
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measures and the portion of the ln(x) function that is quite ambiguity averse is the
relevant one. Here A gets favored over B. When considering z′ = 100 however, the acts
get considerably higher expected utilities and a portion of the ln(x) function that is much
less concave (ambiguity averse) is relevant. In the second case, ambiguity aversion has
diminished enough that the decision maker is now willing to favor the ambiguous-but-
higher-average-probability event, B over the unambiguous one, A. Examples of this kind
may be constructed quite generally when ambiguity aversion is not constant. In such a
case, changing payoffs on any event E, no matter what its ambiguity status, may lead
to a conditional likelihood reversal between two events in Ec if at least one of the two
events in Ec is ambiguous. This occurs because changing payoffs may change ambiguity
attitude thus possibly affecting the decision maker’s ranking of events. If all events in Ec

are unambiguous, changing ambiguity attitude cannot affect the ranking of these events
and thus a conditional likelihood reversal would not occur in this case.

This example suggests that when a rich set of events like B over which the decision
maker has a probability is available, our approach allows one to distinguish between
reversals due to the ambiguity of the event being tested and those due to changing
ambiguity attitude.

As the next theorem shows, the differences identified in the above two examples are
in some sense the only ones separating the two definitions of ambiguity in our setting.
The second example is dealt with by the assumption of constant ambiguity aversion.
The first example is dealt with by showing that perturbing the beliefs of the decision
maker by as small amount as one wishes can eliminate this type of disagreement. We
should note up-front that the statement in part (b) of the theorem below (concerning
differences in the direction of the first example) does not go as far as one might hope. In
particular, the perturbation argument we develop works for events in 2Ω × [0, 1) rather
than general events in Σ, assumes that µ has a finite support and, even though the
perturbations required are arbitrarily small, we have not been able to rule out that they
might change the ambiguity classification of some compound events (i.e., events not of the
form ω × [0, 1)). This contrasts with part (a) of the theorem (concerning differences in
the direction of the second example), which applies to all events and whose proof does not
make use of the finite support assumption. Part (a) shows quite strongly that differences
in the direction of the second example indeed stem from non-constant ambiguity attitude.

Definition 11 An event E ⊆ Ω is null if, for all x, y, z ∈ C,(
x if s ∈ E × [0, 1)

y if s ∈ Ec × [0, 1)

)
∼

(
z if s ∈ E × [0, 1)

y if s ∈ Ec × [0, 1)

)
.

Proposition 6 An event E ⊆ Ω is null if and only if π(E × [0, 1)) = 0, µ-a.e.

Theorem 4 Assume that Ω contains at least three non-null states and that φ (x) =
−e−αx, α > 0.

(a) If an event E ∈ Σ is unambiguous according to Definition 5, then it is unambiguous
according to the definition in Epstein-Zhang (2001).

(b) If an event E × [0, 1) is ambiguous according to Definition 5, then there exists
a sequence of perturbations of Π, denoted Π (εn), with limn→∞Π (εn) = Π and
limn→∞ εn = 0, such that for all n, given Π (εn):
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(i) The event E× [0, 1) is ambiguous according to the definition in Epstein-Zhang
(2001), and,

(ii) for each ω ∈ Ω, ω × [0, 1) is ambiguous according to Definition 5 if and only
if ω × [0, 1) was ambiguous according to Definition 5 given Π.

An analogous result is true with α < 0 and φ(x) = e−αx (constant ambiguity love).
Next we relate our behavioral definition of ambiguity to the behavioral definition

proposed by Ghirardato and Marinacci (2002). The definition they propose applies to a
very general class of preferences which includes the preferences axiomatized in the present
paper. In their definition, they invoke a notion of a benchmark preference for 	 which is
any SEU preference that is less ambiguity averse than 	 (in the sense of Definition 8).

Definition 12 (Ghirardato and Marinacci (2002)) For a given benchmark preference
� for 	 the set of � −unambiguous acts, denoted Hgm

� , is the largest subset of F
satisfying the following two conditions:

(A) For every f ∈ Hgm

� and every x ∈ C,

δx � f ⇐⇒ δx 	 f and δx � f ⇐⇒ δx � f ;

(B) For every f ∈ Hgm

� and every g ∈ F , if {g−1(x) : x ∈ C} ⊆ {f−1(x) : x ∈ C}, then
g ∈ Hgm

� .

Theorem 4 in the working paper version of Ghirardato and Marinacci (2002),5 shows
that Hgm

� is actually independent of the particular benchmark � and hence we may
drop the subscript and let Hgm denote the set of acts identified as unambiguous in the
Ghirardato-Marinacci definition. Correspondingly, they define the set of unambiguous
events Λgm as the collection of all the ‘upper pre-image’ sets of the unambiguous acts
f ∈ Hgm. (An upper pre-image set of an act f : S → C is a set of the form

{
s : δf(s) 	 δx

}
for x ∈ C.)

In the following theorem we show if 	 satisfies all our axioms, the collection of unam-
biguous events (Λ) and the collection of unambiguous acts (H) identified by the definitions
in this paper (Definitions 5 and 6, respectively) are identical to the collections identified
by the corresponding definitions in Ghirardato and Marinacci (2002).

Theorem 5 Suppose 	 satisfies Axioms 1 through 5. Then, H = Hgm and Λ = Λgm.

While Ghirardato and Marinacci (2002) does provide a simple characterization of
ambiguous acts and events for case of biseparable preference they do not have a corre-
sponding result for general preferences. In particular, the class of preferences axiomatized
in the present paper is not contained in the biseparable class. Hence, the formal relation-
ship described above between our definitions and the Ghirardato-Marinacci definitions of
ambiguous acts and events in the context of 	, does not follow from the characteriza-
tion obtained in Ghirardato and Marinacci (2002). What explains the above result that
the two definitions of ambiguous acts, ours and Ghirardato-Marinacci’s, coincide in our

5For convenience, we reproduce the relevant section of the theorem in the Appendix as Theorem 7.

It appears just before the statement of the proof of our Theorem 5.
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model? The explanation lies in two key properties shared by the definitions. One is that
according to both definitions, if two acts are measurable with respect to the same collec-
tion of events, then if one of the acts is unambiguous so is the other; the actual payoffs do
not matter only the partition generated by the acts. This property is, for instance, not
shared by the Epstein-Zhang definition: we saw in Example 2 simply changing payoffs
(without changing the measurability of the act) can affect the ambiguity status of the un-
derlying events. The other key property is that the set of unambiguous events, according
to Ghirardato-Marinacci, is a partition such that the ranking between acts measurable
with respect to that partition is the same, whether given by the benchmark preference
relation or whether given by the ambiguity sensitive preference relation: behavior with
respect to these events is unaffected by ambiguity attitude. In our model there is a nat-
ural benchmark corresponding to any given preference, namely the SEU relation obtained
by making reduction hold (i.e., Axiom 5 (i) ) without changing any other aspect of the
given preference. Our definition of ambiguity identifies those events as unambiguous for
which there is no disagreement about probabilities. In our model, ranking between acts
measurable with respect to such events according to the given preference must coincide
with that corresponding to the benchmark SEU preference.

6 More on related literature

A key idea in the present paper, relaxing reduction between first and second order prob-
abilities to accommodate ambiguity sensitive preferences, owes its inspiration to the re-
search reported in Segal (1987). That paper presented a model of decision making under
uncertainty which assumes a unique second order probability over a set of given first
order probabilities, but relaxes reduction and weights the possible first order probabil-
ities non-linearly. Using examples, Segal observed that such a model would be flexible
enough to accommodate both Allais and Ellsberg type behavior. While Segal (1987) did
not axiomatize a general preference order incorporating ambiguity aversion, Segal (1990)
developed the key idea of relaxing reduction further in the context of choice under risk
and obtained a novel axiomatization of the Anticipated Utility model.

Another paper that invokes this same idea of relaxing reduction to model ambiguity
aversion is Nau (2001), (revised and expanded in Nau (2002)). The paper presents an
axiomatic model of partially separable preferences where the decision maker may satisfy
the independence axiom selectively within partitions of the state space whose elements
have “similar degrees of uncertainty”. The axiomatization makes no attempt to uniquely
separate beliefs from state-dependent cardinal utilities. Indeed, a major and innovative
contribution of the paper(s) is to present an intuitive notion of ambiguity aversion in a
state dependent utility framework; this goes beyond what is in the previous literature,
which does not allow state dependent utility. Our paper, on the other hand, axioma-
tizes and investigates a model of ambiguity aversion staying very much within the state
independent utility framework, separating beliefs and ambiguity attitude from state inde-
pendent utilities, while using Segal’s idea of relaxing reduction. The notion of ambiguity
aversion characterized in our paper is not as general as Nau’s in that it is not applicable to
a state dependent framework. Also, as we show in our formal results, our notion of ambi-
guity is closely related to the principal notions in the existing literature. A related point
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which underscores the more modest scope of our analysis, compared to Nau’s, is that in
our framework the only departure from SEU is ambiguity aversion/preference, whereas in
Nau’s framework departure from SEU can occur in various ways. Ergin and Gul (2002), a
work contemporaneous to ours, considers a preference framework very analogous to Nau’s
and obtains a representation which, at least in a special case, is essentially the same as
obtained in the present paper. Just as Nau’s framework has two possible partitions of the
state space with the DM being (possibly) differently risk averse on one partition as com-
pared to the other, Ergin and Gul’s framework is also a product space, each component
of which they call an “issue”. Their key axiom permits “issue preference”, that is, agents
may not be indifferent among gambles that yield the same probability distribution if they
depend on different issues. In other words, the DM is permitted to have different risk
attitudes on different components of the product space. Unlike Nau, Ergin and Gul do
not allow for state-dependence. However, an important respect in which their analyses
is more general than either Nau’s or ours is that they do not invoke expected utility on
each component but only require probabilistic sophistication. They do raise a matter of
interpretation, in particular the verifiability of the states underlying second order acts,
that might differentiate our work from theirs. This partly motivated our discussion of
verifiability in Remark 2.

The seminal work of Kreps and Porteus (1978) is not concerned with ambiguity, but
is quite related to our modeling approach in that the representation we derive has a two-
stage recursive form with expected utility at each stage. This is similar to a simplified,
two-stage, with only last stage consumption version of their functional. Moreover, as
they relate the convexity/concavity of their first stage evaluation function to attitude
towards the timing of the resolution of risk, we are able to relate convexity/concavity
of our first stage evaluation function with attitude towards ambiguity. In both cases,
neutrality leads reduction to hold and preferences to be expected utility. The analogy is
not perfect, however. Aside from the obvious fact that Kreps and Porteus (1978) works
with purely objective temporal lotteries while we are in a more subjective setting, there
is at least one important structural difference in the objects over which preferences are
formed. While it is possible to associate a natural two-stage lottery with each act in our
setting (imagine first choosing a probability over the state space according to a subjective
distribution and then imagine that probability determining the state and thus the realized
outcome according to the act) only a restricted subset of two-stage lotteries will be so
associated. This is true both because there is only one distribution over probabilities
over the state space and, more importantly, because the second stage lotteries induced
by an act as the probabilities over the state space vary will be strongly related due to the
underlying mapping of states to outcomes. For this reason it does not appear fruitful for
us to try to directly adapt existing work on recursive preferences over two-stage lotteries
to our setting. For example, Grant, Kajii, and Polak (2000) examine the degree to which
the assumption of expected utility at each stage may be relaxed for recursive preferences
over two-stage lotteries. They find some striking results. For instance, if the decision-
maker always prefers later resolution of risk, if both first and second stage preferences
satisfy the rank dependent model, and if second stage preferences display risk aversion
then second stage preferences must in fact be expected utility. Reasoning by analogy
and drawing on some of our results, this suggests that in our model, if the decision
maker is both ambiguity averse and risk averse, then our assumption that preferences
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over lotteries are expected utility may be relaxed to rank dependence while leaving the
representation unchanged (i.e., still implying that preferences over lotteries are expected
utility). However, we believe that this is not true as explain at the end of Section 2.2. We
conjecture that the Grant, Kajii, and Polak (2000) results fail to translate to our setting
precisely because of the restricted set of two-stage lotteries implicit in our framework.

Another paper modeling ambiguity attitude by indirectly relaxing the reduction as-
sumption is Halevy and Feltkamp (2001). They try to rationalize ambiguity aversion by
assuming that a decision maker mistakenly views his choice of an action as determining
payoffs for two positively related replications of the same environment, rather than sim-
ply for a single environment. If he is risk averse and has expected utility preferences over
a single instance then this “bundling” of problems may lead to Ellsberg type behavior.
Nehring (2001) defines a class of preferences, termed “utility sophisticated”, whose iden-
tifying spirit is that the members of this class do not show Allais type departures from
expected utility though they do allow for Ellsberg type behavior. The preferences mod-
eled in the present paper do satisfy this spirit though it remains to be formally verified
whether the preferences actually satisfy utility sophistication as defined by Nehring.

In the introduction, we mentioned that the MEU model of preferences may be crit-
icized for conflating perception of ambiguity (or more generally, beliefs) with attitude
towards ambiguity (tastes). In particular we pointed out two shortcomings in assuming
that the set of priors Π reflected beliefs only: (1) homogeneity of ambiguity attitude
would be imposed and (2) that ambiguity attitude would be extreme. The two problems
may seemingly be addressed by a generalization of the maxmin functional to the so called
α-maxmin form(α-MEU):6

V̂ (f) = αmax
π∈Π

Eπ (u ◦ f) + (1− α)min
π∈Π

Eπ (u ◦ f) ,

where the ambiguity attitude may be varied parametrically by varying α. However, there
is another limitation of the maxmin model that is not resolved by the α-maxmin gen-
eralization and from which our model does not suffer. The limitation is, once again,
particular to the case where we interpret Π simply as the set of probabilities that the
decision maker thinks is relevant. This interpretation of the α-maxmin functional implies
that the preferences do not take into account any information that the decision maker
may have about plausibility of each π in Π. The functional does not smoothly aggre-
gate the information concerning how the act performs under each possible π but only
looks at the extremal performance values (the worst under maxmin, the best and the
worst under α-maxmin). Taking Π to be the set of probabilities subjectively thought
as possible, the choice rule generated by the functional looks almost pathological and
even, in a way, contrary to the general intuition following from Ellsberg type behav-
ior. For instance, take two acts f and g which share the same extremal valuations (i.e.,
maxπ∈ΠEπ (u ◦ f) = maxπ∈ΠEπ (u ◦ g) and minπ∈Π Eπ (u ◦ f) = minπ∈ΠEπ (u ◦ g)) but
for “almost all” probabilities in Π, Eπ (u ◦ f) > Eπ (u ◦ g) . The choice rule would rank
the acts equally. Relatedly, take two acts f and g which share the same extremal valua-
tions but suppose valuations for f are far less spread out than g’s. Again, f and g would
be ranked equally, which is somewhat contrary to the general Ellsberg intuition that am-
biguity averse decision makers have preference for acts whose performance is more stable,

6This form has recently been axiomatized in Ghirardato, Maccheroni, and Marinacci (2002). A similar
functional was proposed previously in Jaffray (1995).
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more robust to the possible variation in probabilities. The following example serves to
illustrate the point.

Example 3 Consider two acts f and g whose utility payoffs in states 1, 2, 3 and 4 are
as given in the following table:

State 1 State 2 State 3 State 4
u ◦ f 1 2 3 4
u ◦ g 1 1 4 4

Figure 1, depicts the two acts.
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Figure 1: Contingent utility payoffs of f and g

Suppose a decision maker thinks the four probabilities, π1, π2, π3, π4, described in
the table below, are possible/relevant.

State 1 State 2 State 3 State 4
π1 .7 .1 .1 .1
π2 .1 .7 .1 .1
π3 .1 .1 .7 .1
π4 .1 .1 .1 .7

The points to note about the possible πi’s are that each favors one state, is uniform across
the other states, and every state is favored by some πi. The “linear” act f is more robust
to variation in probabilities than is the “zigzag” act g. The latter, which concentrates
its payoffs on states 3 and 4, does very well under π3, π4 but rather poorly under π1,
π2. Notice, though, the best and worst expected utility evaluations are the same for
the two acts, hence any α-maxmin functional will evaluate the two acts identically. The
functional is insensitive to the non-robustness of g relative to f . The insensitivity arises
because of the “non-smooth” aggregation of the information that results from exclusive
concentration on extremal values. The point is made more vividly if one considers a prior
on the πi’s, say µ, as an example of a decision maker’s information about the relevance
of each πi, and use the prior to aggregate the information smoothly by looking at the
induced distribution on the expected utility values generated by each act. Given f and
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µ, µf is generated in the following way: µf (Eπi
(u ◦ f)) = µ (πi). Figures 2 and 3 show

the distributions corresponding to µ being the uniform prior. As is evident, µg is a mean
preserving spread of µf . �
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Figure 2: µf : Probability distribution on expected utility generated by f
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Figure 3: µg : Probability distribution on expected utility generated by g.

Finally, we remark that it may be helpful to think of the part of the difference be-
tween the model in this paper and models such as MEU and α-MEU as analogous to that
between first and second order risk aversion (Segal and Spivak (1990), Loomes and Segal
(1994)). Models such as MEU and α-MEU display ambiguity averse behavior when the
corresponding indifference curves in the utility space are kinked (behavior which may be
dubbed first-order ambiguity aversion). The model in this paper focuses on incorporat-
ing ambiguity aversion even when the indifference curves are not kinked (“second order
ambiguity aversion”), thus the moniker "a smooth theory."7

7Of course, kinks are not ruled out in our model and may be included if desired — they are simply

not needed to generate behavior reflecting ambiguity.
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7 Portfolio Choice Examples

In this section we consider two examples of simple portfolio choice problems. The ex-
amples are intended both as a simple, concrete illustration of our framework and as
suggestive of the potential of our approach in applications. We focus, in particular, on
comparative statics in risk attitude and in ambiguity attitude.

The environment for the examples is as follows. The space Ω contains two elements,
ω1 and ω2. The measure µ assigns probability 1/2 to both π0 and π1, where π0 and π1

yield marginals on Ω of

π0 (ω1) =
1

4
, π0 (ω2) =

3

4
and π1 (ω1) =

3

4
, π1 (ω2) =

1

4
,

respectively. The function u is given by u(x) =

{
−e−ax if a > 0

x if a = 0
. This utility func-

tion displays constant absolute risk aversion with a as the coefficient of absolute risk

aversion. The function φ is given by φ(x) =

{
−e−αx if α > 0

x if α = 0
. This function may

be said to display constant ambiguity aversion with this terminology justified by Propo-
sition 4 of the previous section. α is thus the coefficient of ambiguity aversion.

Table 1 illustrates the acts that will appear in our examples. Each of these acts is
meant to represent the gross payoff (in dollars) per dollar invested in a particular asset
as a function of the state of the world.

ω1 × [0, 1
2
) ω1 × [1

2
, 1) ω2 × [0, 1

2
) ω2 × [1

2
, 1)

f 2 2 1 1
l 3 1 3 1
δ1.15 1.15 1.15 1.15 1.15

Table 1. Gross $ payoff per $ invested for each of three assets.

Observe that f is an example of an ambiguous act, as its payoff depends on the
ambiguous events ω1 × [0, 1) and ω2 × [0, 1). l is an example of an unambiguous, but
risky, act (it is also a lottery). δ1.15 is an example of a constant act, involving neither risk
nor ambiguity. Thinking of these in terms of assets and asset returns, f reflects a 100%
return when the state of the world s ∈ ω1 × [0, 1) and 0% otherwise; l reflects a return
of 200% with probability 1/2 and a return of 0% with probability 1/2; and δ1.15 reflects
a sure return of 15%.

Example 4: (Allocating $1 between a safe asset & an ambiguous asset)
The classic simple example of a static portfolio choice problem is the decision of how

to allocate wealth between a safe asset and a risky asset. As is well known, an increase
in risk aversion (here an increase in a) leads more wealth to be invested in the safe asset.
Here, the asset underlying f is not only risky but is also ambiguous. δ1.15 is the safe
asset. By varying α and a in this example, we can vary the ambiguity aversion and
risk aversion of the agent respectively. What are the comparative statics results in this
framework? Just as with a risky asset, holding ambiguity aversion (α) fixed, an increase
in risk aversion (a) leads more to be invested in the safe asset. Furthermore, holding risk
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aversion (a) fixed, an increase in ambiguity aversion (α) leads more to be invested in the
safe asset. Table 2 gives a numerical illustration of this effect when risk aversion is fixed
at a = 2.

ambiguity aversion (α) amount allocated to safe asset
0 0.1327

0.02 0.132973
2 0.158941
20 0.344943
100 0.620079
200 0.675267

Table 2. Optimal amount out of $1 allocated to the safe asset as

ambiguity aversion varies holding risk aversion at a = 2.

In this example, ambiguity aversion and risk aversion work in the same direction. If we
view the ambiguous asset as a proxy for equities, this example suggests that if observed
portfolio allocations between equities and safe assets are rationalized by risk aversion only
— ignoring ambiguity aversion — then levels of risk aversion may be overestimated. Thus
ambiguity aversion may play a role in helping to explain the equity premium puzzle. A
number of previous papers have noted this possible role for ambiguity aversion, including
Chen and Epstein (2002), Epstein and Wang (1994). Also, work including Hansen, Sar-
gent, and Tallarini (1999) and Hansen, Sargent, Turmuhambetova, and Williams (2001)
has suggested that model uncertainty plays a similar role in reinforcing risk. While the
cited papers are complete, dynamic models and we present merely a very simple, static
example, one reason to think that our approach may be useful here is the particularly
clean separation between tastes (risk aversion, ambiguity aversion) and beliefs (µ) it pro-
vides, which allows one to be confident in doing comparative statics that the intended
feature is all that is being varied. �

Our second example will show that ambiguity aversion and risk aversion do not always
reinforce each other. In particular, there can be a trade-off between risk and ambiguity.

Example 5 : (Allocating $1 between a risky asset & an ambiguous asset)
Here we consider the allocation problem where the assets available are the risky (but

unambiguous) asset underlying l and the ambiguous asset underlying f . If the agent
is both ambiguity neutral (α = 0) and risk neutral (a = 0), the optimal allocation is
to invest as much as possible in asset l, since its return would first-order stochastically
dominate that of f . However, as risk aversion increases, holding ambiguity aversion fixed,
the agent will want to diversify into the asset f since it is not perfectly correlated with
l, trading-off expected return against risk. On the other hand, as ambiguity aversion
increases, holding risk aversion fixed, the ambiguity about the payoff from f drives the
agent towards l, as f becomes a less effective diversifier and less valuable. Thus risk
aversion and ambiguity aversion work in opposite directions here. Tables 3 and 4 give

30



numerical illustrations of these effects.

Coefficient of ambiguity aversion (α) Optimal amount allocated to asset l
0 0.47577

0.02 0.475807
2 0.479518
20 0.511136
100 0.599734
200 0.635793

Table 3. Optimal amount out of $1 allocated to the risky asset as ambiguity

aversion increases holding risk aversion at a = 2

Coefficient of risk aversion (a) Optimal amount allocated to asset l
0 +∞ (1)

0.02 21.2026 (1)
2 0.47577
20 0.344886
100 0.335644
200 0.334489

Table 4. Optimal amount out of $1 allocated to the risky asset as risk

aversion increases holding ambiguity aversion at α = 0.

In this case, if such behavior is examined ignoring ambiguity aversion, the agent’s
level of risk aversion will typically be underestimated. This suggests that ambiguity may
play a role in explaining the underdiversification puzzle — the finding that the portfolios
of risky assets that individuals hold are not diversified as much as plausible levels of risk
aversion say they should be. One example of the underdiversification puzzle is home-bias,
where the assets that are not sufficiently diversified into are those of companies geograph-
ically removed from the investor. If one hypothesizes that investors are ambiguity averse
and perceive more ambiguity with increased distance then this could generate home-bias.
Generation of underdiversification in the context of a model uncertainty framework ap-
pears in Uppal and Wang (2002). Epstein and Miao (2001) generates home-bias in a
heterogeneous agent dynamic multiple priors setting. �

A Appendix: Proofs and Related Material

A.1 Theorem 1

By Axiom 3, f 	 g ⇔ f 2 	2 g2. By Axiom 2, f 2 	2 g2 ⇔
∫
v (cf (π)) dµ ≥∫

v (cg (π)) dµ. Hence,

f 	 g ⇐⇒

∫
v (cf (π)) dµ ≥

∫
v (cg (π)) dµ. (8)
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Given Remark 1, v and u must represent the same ordinal preferences on C. Therefore,
v (cf (π)) = φ (u (cf (π))) for some strictly increasing φ. Since v and u are continuous, so
is φ. Substituting for v (cf (π)) in (8), we get

f 	 g ⇐⇒

∫
φ (u (cf (π))) dµ ≥

∫
φ (u (cg (π))) dµ. (9)

Now, recall,

δcf (π) ∼ lf ⇐⇒ u (cf (π)) =

∫
[0,1)

u (lf (r)) dr.

So,

u (cf (π)) =
∑

x∈supp(πf)

u(x)πf(x) =

∫
S

u (f (s)) dπ. (10)

Thus, substituting (10) into (9),

f 	 g ⇐⇒

∫
φ

(∫
S

u (f (s)) dπ

)
dµ ≥

∫
φ

(∫
S

u (g (s)) dπ

)
dµ

This proves the representation claim in the Theorem. To see the uniqueness properties
of φ, notice that

v (cf (π)) = φ (u (cf (π))) ⇔ φ (y) = v
(
u−1 (y)

)
.

Let ũ = αu+ β and let y ∈ U . Then,(
ũ−1

)
(αy + β) = {x : ũ (x) = αy + β}

= {x : αu (x) + β = αy + β}

= {x : u (x) = y}

= u−1 (y) .

Hence, ∀y ∈ U , φ̃ (αy + β) = (v ◦ ũ−1) (αy + β) = (v ◦ u−1) (y) = φ (y). Finally, if there
exists J ⊆ ∆ with 0 < µ (J) < 1, then v is unique up to positive affine transformations
according to Axiom 2, so, fixing u, φ is as well. �

We close this section by stating the result mentioned right after Theorem 1.

Theorem 6 Let 	 and 	2 be two binary relations on F and F, respectively. The follow-
ing statements, (i) and (ii), are equivalent:

i. Axioms 1, 2 and 3 hold.

ii. There exists a continuous, strictly increasing φ : U → R, a unique finitely additive
probability µ : σ (∆) → [0, 1], continuous and strictly increasing utility functions
v : C → R and u : C → R, such that

(a) φ = v ◦ u−1
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(b) 	2 is represented by the preference functional V 2 : F → R given by

V 2(f) = v (f) dµ

(c) 	 is represented by the preference functional V : F → R given by

V (f) =

∫
U

φ (x) dµf =

∫
φ

[∫
S

u (f) dπ

]
dµ ≡ Eµφ (Eπu ◦ f) .

If there exists J ⊆ ∆ with 0 < µ (J) < 1, then v is unique up to positive affine
transformations. Moreover, u is unique up to positive affine transformations and if
ũ = αu + β, α > 0, then the associated φ̃ is such that φ̃(αy + β) = φ (y), where
y ∈ U.

A.2 Results of Subsection 2.3

We begin with a useful lemma (see Theorems 88 and 91 in Hardy, Littlewood, and Polya
(1952)).

Lemma 3 Let φ : A ⊆ R → R be a continuous function defined on a convex set A.
Then, φ is concave (strictly concave) if and only if there exists λ ∈ (0, 1) such that, for
all x, y ∈ A with x �= y,

φ (λx+ (1− λ) y) ≥ (>)λφ (x) + (1− λ)φ (y) . (11)

Proof of Proposition 1. (i) implies (iii): By the Jensen inequality, φ
(∫

xdµf
)
≥∫

φ (x) dµf . Thus, φ
(
e
(
µf

))
≥

∫
φ (x) dµf , which in turn implies δ

u−1(e(µf)) 	 f by

Theorem 1.
(iii) implies (i): Suppose Π consists of two mutually singular probability measures

π′ and π′′, i.e., there is some event E with π′ (E) = 1 and π′′ (E) = 0. Given any
x, y ∈ U let a = u−1 (x) and b = u−1 (y). Hence, a, b ∈ C and so f ≡ aEb ∈ F .
Then, u (cf (π

′)) = u (a) = x and u (cf (π
′′)) = u (b) = y. Since, by definition, µ

Π
has

full support on Π, there is λ ∈ (0, 1) such that µ (π′) = λ and µ (π′′) = 1 − λ. Thus,
µ
Π,f (x) = λ and µ

Π,f (y) = 1− λ. By (iii) and the representation,

φ (λx+ (1− λ) y) ≥ λφ (x) + (1− λ)φ (y) . (12)

So, there exists λ ∈ (0, 1) such that, given any x, y ∈ U , Equation (12) holds. By Lemma
3, φ is concave. Finally, by Axiom 4, φ is independent of the choice of Π above

(i) is equivalent to (ii): Follows from the fact that φ = v ◦ u−1and thus v = φ ◦ u up
to a positive affine transformation. �

Proof of Proposition 2. To prove (1.), apply Proposition 1 and its analogue for
smooth ambiguity love and note that φ both concave and convex is equivalent to φ
linear. Now turn to the proof of (2.). φ strictly concave on an open interval J ⊆ U
implies φ

(∫
xdµf

)
>

∫
φ (x) dµf for all µf with non-singleton supp

(
µf

)
⊆ J by the strict
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version of Jensen’s inequality. Thus, φ
(
e
(
µf

))
>

∫
φ (x) dµf , which in turn implies

δu−1(e(µ
Π
)) � f for all f ∈ F with non-singleton supp

(
µf

)
⊆ J by Theorem 1. The

reverse direction follows directly from the argument in the proof of Proposition 1 that
smooth ambiguity aversion implies concavity of φ with the weak inequalities replaced
with strict and attention limited to the restriction of φ to J . Part (3.) follows exactly
as (2.) with concavity replaced by convexity and inequalities reversed. �

Proof of Lemma 2. Suppose φ : U → R is twice continuously differentiable and is
not linear. There exists x0 ∈ U such that φ′′ (x0) �= 0. For, suppose per contra that
φ′′ (x) = 0 for all x ∈ U . Then φ′ (x) = k ∈ R for all x ∈ U . Hence, φ (x) = kx + c for
some k, c ∈ R, a contradiction. We conclude that there is x0 ∈ U such that φ′′ (x0) �= 0.
Since φ′′ is continuous, there exists an interval (α, β) ⊆ U , with x0 ∈ [α, β], such that
φ′′ (x)φ′′ (x0) > 0 for all x ∈ (α, β), which implies the desired conclusion. �

A.3 Proposition 3

Suppose (3) holds. Let E be such that xEy � xBy. By Theorem 1, V (xBy) =
φ (u (x)β + u (y) (1− β)), where β = π (B) for all π ∈ Π. Since φ (u (y)) ≤ V (xEy) ≤
φ (u (x)), by the continuity of φ there is β∗ ≥ β such that

φ (u (x) β∗ + u (y) (1− β∗)) = V (xEy) . (13)

Since λ is non-atomic, there is Ω × B � B∗ ⊇ B such that π (B∗) = β∗ for all π ∈ Π.
Hence, by (13) and by Theorem 1, xEy ∼ xB∗y. By (3), this implies that yEx ∼ yB∗x.
As φ is strictly increasing, φ (u (x) (1− β∗) + u (y)β∗) < φ (u (x) (1− β) + u (y) β), and
so, by Theorem 1, yB∗x ≺ yBx. Hence, yEx ≺ yBx, and we conclude that

xEy � xBy =⇒ yEx ≺ yBx.

A similar argument proves the converse implication, and so

xEy � xBy ⇐⇒ yEx ≺ yBx.

Finally, again a similar argument shows that

xEy ≺ xBy ⇐⇒ yEx � yBx,

as desired. This completes the proof as the “only if” part is trivial. �

A.4 Theorem 2

Let I be an index set for Π, i.e., Π = {πi : i ∈ I}. By assumption, 	 satisfies the
conditions in Theorem 1 and so the representation there applies. Fix an event E. Suppose
that E is ambiguous. This means that there exists an event B ∈ Ω×B and x, y ∈ X with
δx � δy such that either [xEy � xBy and yEx 	 yBx] or [xEy ≺ xBy and yEx � yBx]
or [xEy ∼ xBy and yEx � yBx]. Let β denote πi (B)(= πj (B) for all j ∈ I). If πi (E)
were equal to some fixed α ∈ [0, 1] for µ-almost-all i, then, by the representation, for all
w, z ∈ X,

wEz 	 wBz ⇐⇒ αu (w) + (1− α) u (z) ≥ βu (w) + (1− β) u (z) .
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However, this makes it impossible for E to be ambiguous. Therefore πi (E) must vary
with i. Specifically, if γ =

∫
I
πi (E) dµ, then there exist µ-non-null sets I ′ ⊆ I and I ′′ ⊆ I

such that πi (E) < γ for i ∈ I ′ and πi (E) > γ for i ∈ I ′′ and the first claim in the
theorem is proved.

Next, suppose that 	 are not smoothly ambiguity neutral, Axioms 4 and 5 hold and
E is unambiguous. Proposition 2 implies that φ is strictly concave (or strictly convex)
on a non-empty open interval (u1, u2) ⊆ U . Fix k, l ∈ U such that u1 < k < l < u2. Let
γ =

∫
I
πi (E) dµ. One can think of γ as the decision maker’s “expected” probability of

the event E. According to our representation of preferences the following is true:

V
(
u−1 (l)Ω× [0, γ) u−1 (k)

)
= φ(γl + (1− γ) k),

V
(
u−1 (l)Eu−1 (k)

)
=

∫
I

φ (πi(E)l + (1− πi(E)) k) dµ,

V
(
u−1 (k)Ω× [0, γ) u−1 (l)

)
= φ(γk + (1− γ) l),

V
(
u−1 (k)Eu−1 (l)

)
=

∫
I

φ(πi(E)k + (1− πi(E)) l)dµ.

Since φ is strictly concave (the strictly convex case follows similarly) on the interval [k, l],
Jensen’s inequality (and the definition of γ) implies that

V
(
u−1 (l)Eu−1 (k)

)
≤ V

(
u−1 (l) Ω× [0, γ) u−1 (k)

)
and

V
(
u−1 (k)Eu−1 (l)

)
≤ V

(
u−1 (k)Ω× [0, γ) u−1 (l)

)
with both inequalities strict if it is not the case that πi (E) takes on the same value
everywhere (specifically, πi (E) = γ for µ-almost-all i). Suppose that both inequalities
are indeed strict. This says that

u−1 (l)Eu−1 (k) ≺ u−1 (l) Ω× [0, γ)u−1 (k)

and
u−1 (k)Eu−1 (l) ≺ u−1 (k) Ω× [0, γ) u−1 (l)

implying that E is ambiguous, a contradiction. Therefore it must be that πi (E) = γ for
µ-almost-all i and the second claim in the theorem is proved. �

A.5 Corollary 2

Let I be an index set for Π, i.e., Π = {πi : i ∈ I}. Let 	 satisfy Axioms 1 through 4.
First consider the case where 	 also satisfies Axiom 5(i). In this case, by Corollary 1,
preferences are SEU and hence Λ coincides with Σ, a σ-algebra and therefore, a λ-system.
Next consider the case where either Axiom 5(ii) or Axiom 5(iii) holds and let E, F ∈ Σ
s.t. E∩F = ∅. By Theorem 2, E unambiguous implies there exists a γ ∈ [0, 1] such that
πi(E) = γ for µ almost all i. Also, πi(E

c) = 1 − γ for µ almost all i. Similarly, there
exists a γ′ ∈ [0, 1] such that πi(F ) = γ′ and πi(F

c) = 1− γ′and for µ almost all i. Since
πi is a probability measure and E ∩ F = ∅, it follows that πi(E ∪ F ) = γ + γ′ for µ
almost all i. Hence, by Theorem 2, E ∪ F is unambiguous. Finally, note that it follows
directly from Definition 5 that S is unambiguous and that if E is unambiguous then so
is Ec. �
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A.6 Corollary 3

Let I be an index set for Π, i.e., Π = {πi : i ∈ I}. “If part”: Fix an event E. Suppose
that	q is a qualitative probability relation for	 on a λ-systemA ⊇ E = {E,Ec,Ω× B} .
By properties (i), (v), and (vi) in the definition of a qualitative probability relation, E is
unambiguous.

“Only if part”: Let Λ denote the set of all unambiguous events in Σ. Suppose that
E, and therefore all elements of E , is unambiguous. By Corollary 2, Λ is a λ-system.
By our hypothesis, E ⊆ Λ. Let 	 satisfy Axioms 1 through 4. First, suppose 	 also
satisfies either Axiom 5(ii) or Axiom 5(iii). By Theorem 2 for every A ∈ Λ there exists a
γ (A) ∈ [0, 1] such that πi(A) = γ (A) for µ almost all i. So, a probability γ representing
the likelihood relation on λ-system Λ ⊇ E exists and therefore a qualitative probability
relation for 	 exists on the same λ-system. Next, suppose 	 satisfies Axiom 5(i) (in
addition to Axioms 1 through 4). In this case, by Corollary 1, preferences are SEU and
hence a probability γ representing the likelihood relation on λ-system Λ ⊇ E exists and
therefore a qualitative probability relation for 	 exists on the same λ-system. Therefore
E unambiguous implies the existence of a qualitative probability relation for 	 on a
λ-system containing E. �

A.7 Corollary 4

By the representation (iv) =⇒ (iii). The implications (iii) =⇒ (ii) =⇒ (i) are obvious.
By Theorem 2, (i) =⇒ (iv) when 	 satisfies Axiom 5(ii) or (iii). To see this, observe
that if 	q is a qualitative probability relation for 	 on Σ, then by Corollary 3 all events
E ∈ Σ are unambiguous. By Theorem 2, provided 	 satisfies Axiom 5(ii) or (iii), this
implies agreement about each event’s probability. As to the case where 	 satisfies Axiom
5(i), recall that 	 has an SEU representation if 	 is smoothly ambiguity neutral. �

A.8 Theorem 3

The “if” part follows easily from the Jensen inequality. As to the “only if”, set h (x) =(
φA ◦ φ−1B

)
(x) for all x ∈ U . The function h is clearly strictly increasing. Moreover, since(

φ−1A ◦ φA
)
(x) = x =

(
φ−1B ◦ φB

)
(x) for all x ∈ U , we have φA = h ◦ φB. We want to

show that h is concave if and only if A is more ambiguity averse than B.
By Definition 8,

∫
φAdµf ≥ φA (u (x)) implies

∫
φBdµf ≥ φB (u (x)) for all f ∈ F

and x ∈ C. Since U is an interval, given any f ∈ F there exists xf ∈ C such that∫
φAdµf = φA (u (xf)). Hence, f ∼1 δxf and so, by (4),

∫
φBdµf ≥ φB (u (xf )). In turn

this implies that, for all f ∈ F ,

φ−1B

(∫
φBdµf

)
≥ φ−1A

(∫
φAdµf

)

and so

h

(∫
φBdµf

)
≥

∫
φAdµf =

∫
(h ◦ φB) dµf . (14)

Let φB (x) , φB (y) ∈ φB (U). By proceeding as in the proof of Proposition 1, there is a
set Π, an act f and a λ ∈ (0, 1) such that µΠ,f (x) = λ and µΠ,f (y) = 1− λ. Hence, Eq.
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(14) reduces to

h (λφ (x) + (1− λ)φ (y)) ≥ λh (φ (x)) + (1− λ) h (φ (y)) .

Since φB (U) is an interval, by Lemma 3 we conclude that h is concave. �

A.9 Corollary 6

Construct a family of expected utility preferences {	eu
Π }Π⊆[0,1] as follows: Fix u and µΠ so

that they match those for 	Π and take φeu to be the identity. Suppose φ is concave. Then
φ is an increasing, concave transformation of φeu. By Theorem 3, 	 is more ambiguity
averse than 	eu. In the other direction, suppose 	 is more ambiguity averse than some
	eu. Then by Theorem 3, φ is an increasing, concave transformation of φeu. Since φeu

must be linear (as Axiom 4 implies φ is the same for each Π ⊆ ∆), this implies φ is
concave. �

A.10 Proposition 4

W.l.o.g., assume that U = [0, 1]. Let k ∈ (0, 1) and set Uk = [0, 1− k]. Let Ck ⊆ C be
such that u (Ck) = Uk and consider

Fk = {f ∈ F : f (s) ∈ Ck for each s ∈ S} .

Define 	k

Π on Fk as follows: f 	k

Π g if and only if∫
φk

(∫
u (f (s)) dπ

)
dµΠ ≥

∫
φk

(∫
u (g (s)) dπ

)
dµΠ,

where φ
k
(x) = φ (x+ k) for each x ∈ Uk. We have:

f 	 k

Πδx ⇐⇒

∫
φ
k

(∫
u (f (s)) dπ

)
dµΠ ≥ φ

k
(u (x))

⇐⇒

∫
φ

(∫
(u (f (s)) + k) dπ

)
dµΠ ≥ φ (u (x) + k)

⇐⇒

∫
φ

(∫
u (f ′ (s)) dπ

)
dµΠ ≥ φ (u (x) + k)

⇐⇒ f ′ 	Π δu−1(u(x)+k) ⇐⇒ f 	Π δx,

where the last equivalence follows from Definition 9. Hence, 	k is as ambiguity averse as
	, when restricted to Fk. By Theorem 3, there exist a (k) > 0 and b (k) ∈ R such that,
for all x ∈ [0, 1− k],

φ (x+ k) = φ
k
(x) = a (k)φ (x) + b (k) . (15)

Since k was arbitrary, we conclude that the functional equation (15) holds for all k ∈ (0, 1)
and all x ∈ (0, 1) such that x+k ≤ 1. This is a variation of Cauchy’s functional equation
(see p. 150 of Aczel (1966)), and its only strictly increasing solutions are (up to positive
affine transformations) φ (x) = x or φ (x) = − 1

α
e−αx, α �= 0 . �
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A.11 Proposition 5

The proposition is a consequence of the following lemma, which we prove for the sake of
completeness.

Lemma 4 Let ∆(X) be the set of all finitely supported probabilities defined on a conse-
quence space X. Let λn be the Arrow-Pratt coefficient of un. Let � be a vN-M ordering
on ∆(X). There exists a sequence {�n}

∞

n=1 of vN-M orderings on ∆(X), with �1=�,
such that

i all �n agree on X,

ii limn λn (x) = +∞ and λn (x) ≥ λn−1 (x) for all n ≥ 1 and all x ∈ X,

Given any p and q in ∆(X), if it holds, eventually, that p �n q, then

min
x∈supp(p)

u (x) ≥ min
x∈supp(q)

u (x) , (16)

while
min

x∈supp(p)
u (x) > min

x∈supp(q)
u (x) (17)

implies that, eventually, p �n q.

Proof. Let �n be the vN-M ordering whose vN-M utility index is given by u1 (x) = u (x),
and un (x) = −u (x)−n for all n > 1. Since un is obtained from u through the increasing
transformation −x−n, point (i) is satisfied. On the other hand, λn (x) = nλ (x), and so
point (ii) as well is satisfied.

We begin by showing that

lim
n

(
−

∫
−u (x)−n dp

)
−

1

n

= min
x∈supp(p)

u (x) . (18)

To prove it, first observe that, given any bounded X -measurable function ψ : X → R, we
have (see, e.g., Lemma 12.1 in Aliprantis and Border (1999)):

lim
n

(∫
(ψ (x))n dp

) 1

n

= max
x∈supp(p)

ψ (x) . (19)

As,

lim
n

(
−

∫
−u (x)−n dp

)
−

1

n

=

(
min

x∈supp(p)
u (x)

)
lim
n

(∫ (
u (x)

minx∈supp(p) u (x)

)
−n

dp

)
−

1

n

,

and

lim
n

(∫ (
u (x)

minx∈supp(p) u (x)

)
−n

dp

)
−

1

n

= lim
n

1(∫ (
min

x∈supp(p) u(x)

u(x)

)
n

dp
) 1

n

= 1,
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we conclude that Eq. (18) holds.

On the other hand, since −x−
1
n is an increasing transformation, it is easy to check

that, given any p and q in ∆(X), we have
∫
−u (x)−n dp ≥

∫
−u (x)−n dq if and only if

(
−

∫
−u (x)−n dp

)
−

1
n

≥

(
−

∫
−u (x)−n dq

)
−

1
n

. (20)

Hence, p �n q implies Eq. (20), and so if eventually it holds p �n q, we have

lim
n

(
−

∫
−u (x)−n dp

)
−

1
n

≥ lim
n

(
−

∫
−u (x)−n dq

)
−

1
n

.

By Eq. (18), we finally conclude that Eq. (16).
To complete the proof, assume that Eq. (17) holds. By Eq. (18), there exists n0 large

enough so that, for all n ≥ n0,∣∣∣∣∣
(
−

∫
−u (x)−n dp

)
−

1

n

− min
x∈supp(p)

u (x)

∣∣∣∣∣ <
minx∈supp(p) u (x)−minx∈supp(q) u (x)

2
,

∣∣∣∣∣
(
−

∫
−u (x)−n dq

)
−

1

n

− min
x∈supp(q)

u (x)

∣∣∣∣∣ <
minx∈supp(p) u (x)−minx∈supp(q) u (x)

2
.

Hence, for all n ≥ n0 it holds

(
−

∫
−u (x)−n dp

)
−

1

n

>

(
−

∫
−u (x)−n dq

)
−

1

n

,

which in turn implies p �n q. �

A.12 Results of Section 5

For the following proofs we need a piece of notation. As in Section 5 we assumed Ω to be
finite, we can use [0, 1] as an index set for ∆, that is, ∆ = {πi : i ∈ [0, 1]}. In this case,
µ can be viewed as defined on the Borel σ-algebra of [0, 1], with support I.

A.12.1 Proposition 6

Suppose πi(E × [0, 1)) = 0, for µ almost all i. By Theorem 1,

f =

(
x if s ∈ E × [0, 1)

y if s ∈ Ec × [0, 1)

)
∼

(
z if s ∈ E × [0, 1)

y if s ∈ Ec × [0, 1)

)
= g,

39



iff ∫
I

φ

[∑
ω∈E

∫
[0,1)

u (x) πi ({ω × [0, 1)}) dr +
∑
ω∈Ec

∫
[0,1)

u (y) πi ({ω × [0, 1)}) dr

]
dµ

=

∫
I

φ

[∑
ω∈E

∫
[0,1)

u (z)πi ({ω × [0, 1)}) dr +
∑
ω∈Ec

∫
[0,1)

u (y)πi ({ω × [0, 1)}) dr

]
dµ

⇔

∫
I

φ

[∑
ω∈Ec

∫
[0,1)

u (y) πi ({ω × [0, 1)}) dr

]
dµ

=

∫
I

φ

[∑
ω∈Ec

∫
[0,1)

u (y) πi ({ω × [0, 1)}) dr

]
dµ.

Therefore E is null. To prove the other direction, suppose E is null. To generate a
contradiction assume πi(E × [0, 1)) > 0 for i ∈ H where µ(H) = c > 0. Fix x and z such
that δx � δz. Set y = 0. By Theorem 1,

f =

(
x if s ∈ E × [0, 1)

y if s ∈ Ec × [0, 1)

)
∼

(
z if s ∈ E × [0, 1)

y if s ∈ Ec × [0, 1)

)
= g,

iff ∫
I

φ

[∑
ω∈E

∫
[0,1)

u (x) πi ({ω × [0, 1)}) dr +
∑
ω∈Ec

∫
[0,1)

u (0) πi ({ω × [0, 1)}) dr

]
dµ

=

∫
I

φ

[∑
ω∈E

∫
[0,1)

u (z)πi ({ω × [0, 1)}) dr +
∑
ω∈Ec

∫
[0,1)

u (0)πi ({ω × [0, 1)}) dr

]
dµ

⇔

∫
I

φ

[∑
ω∈E

∫
{r∈[0,1)|(ω,r)∈E}

u (x)πi ({ω × [0, 1)}) dr

]
dµ

=

∫
I

φ

[∑
ω∈E

∫
{r∈[0,1)|(ω,r)∈E}

u (z)πi ({ω × [0, 1)}) dr

]
dµ

⇔ u(x) = u(z),

a contradiction. �

A.12.2 Theorem 4

(a) Fix any event E that is unambiguous according to Definition 5. Suppose,


x∗ if s ∈ A
x if s ∈ B

h (s) if s ∈ C ≡ Ec\ (A ∪B)
z if s ∈ E


 	




x if s ∈ A
x∗ if s ∈ B
h (s) if s ∈ C ≡ Ec\ (A ∪B)
z if s ∈ E


 .

Then according to our representation,∫
I

−e−α[u(z)πi(E)+u(x
∗)πi(A)+u(x)πi(B)+

∫
C
u(h(s))dπi]dµ (21)

≥

∫
I

−e−α[u(z)πi(E)+u(x)πi(A)+u(x
∗)πi(B)+

∫
C
u(h(s))dπi]dµ.
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Since E is unambiguous according to Definition 5 and φ is strictly concave, Theorem 2
implies πi (E) is almost everywhere constant in i and hence the u (z) term can be taken
outside the integral on both sides and canceled. This can clearly be done, in exactly the
same way, if z is replaced by some z′ in the acts above. Therefore for any z′ ∈ C,


x∗ if s ∈ A
x if s ∈ B

h (s) if s ∈ C ≡ Ec\ (A ∪B)
z′ if s ∈ E


 	




x if s ∈ A
x∗ if s ∈ B

h (s) if s ∈ C ≡ Ec\ (A ∪B)
z′ if s ∈ E


 .

Since, under Definition 5, E unambiguous implies that Ec is unambiguous, a similar
preference implication can be derived replacing E by Ec. Thus E is unambiguous
according to the definition in Epstein and Zhang (2001).

(b)8 Fix any E ⊆ Ω such that E × [0, 1) is ambiguous according to definition 5.
The strategy for showing that this event is ambiguous according to Epstein and Zhang
(2001) after a suitable perturbation of the measures in Π is as follows: We eventually
select a particular pair of acts for which we will show that there is the type of conditional
likelihood reversal required by Epstein and Zhang (2001). Using our representation, we
are able to find equations (22, 23) that are necessary for no reversal to occur. It turns
out that there are essentially only two ways these two equations can hold simultaneously
given that πi (E × [0, 1)) is not constant. One way is for the relative probabilities of the
events in the complement of E × [0, 1) to remain unchanged, as happened in Example
1. A second, related way is that although the relative probabilities of the events in the
complement do change, they do so in a way which happens to exactly “cancel out” on
level sets of πi (E × [0, 1)). We construct the perturbation of Π precisely to prevent these
two circumstances from happening (and also to maintain the ambiguity/unambiguity of
all events of the form ω × [0, 1) as required by part b(ii) of the theorem). We then are
able to conclude that the needed reversal in preference does occur and E× [0, 1) is indeed
ambiguous according to Epstein and Zhang (2001).

We begin by constructing the needed perturbation to prevent both the “cancelling
out” on level sets problem (by making sure all such sets are singletons) and the constancy
of relative probabilities problem (by direct perturbation). Since E × [0, 1) is ambiguous
and unambiguous events are closed under disjoint unions, there must exist an ω1 ∈ E
such that ω1 × [0, 1) is ambiguous. Fix such an ω1. Choose ω2, ω3 ∈ Ω as follows. By
Theorem 2, there exist i, j ∈ I such that πi (E × [0, 1)) �= πj (E × [0, 1)). Given such i
and j, since probabilities sum to 1, there must be an ω′ ∈ Ω\E such that ω′ × [0, 1) is
ambiguous. Set ω2 equal to some such ω′. Choose ω3 to be any element of Ω\ (E ∪ {ω2})
such that ω3 × [0, 1) is non-null. Without loss of generality we may assume that such a
ω3 exists.9

Given Π, construct Π (εn) as follows:

8We are grateful to Rakesh Vohra for his help in constructing this proof. (Full responsibility lies with
the authors for any mistakes.)

9If no such ω3 exists, since there were assumed to be at least three ω ∈ Ω such that ω × [0, 1) is
non-null, it must be that at least two of these lie in E. If E × [0, 1) above is replaced by (Ω\E)× [0, 1),
then (Ω\E)×[0, 1) will be ambiguous according to definition 5 and ω2, ω3 ∈ E with the desired properties
will exist. The proof may then be carried through for (Ω\E)× [0, 1). This will then imply the result
for E × [0, 1) since both definitions of ambiguous event are closed under complementation.
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Step 1 : Recall that I ⊆ [0, 1]. Divide I into sets of the form

Iκ ≡ {i ∈ I | πi (E × [0, 1)) = κ} .

Let J ′ denote the collection of sets Iκ including exactly each such set that is not a
singleton, has κ �= 0 and κ �= 1, and has πi (ω2 × [0, 1)) > 0 for all i ∈ Iκ. Let J
= {i | i ∈ Iκ for some Iκ ∈ J ′}. Let H ′ denote the collection of sets Iκ including exactly
those that are not in J ′, and have κ �= 0. Let H = {i | i ∈ Iκ for some Iκ ∈ H ′}. Choose
εn > 0 no larger than the minimum of {half the minimum distance between the κ values as-
sociated with the Iκ sets, half ofmini∈J (1− πi (E × [0, 1))), half ofmini∈J πi (ω2 × [0, 1)),
half of mini∈H (1− πi (ω2 × [0, 1))), half of mini∈H πi (E × [0, 1)), half of

max
i,j∈I

|πi (ω2 × [0, 1))− πj (ω2 × [0, 1))| ,

and half of

min
i,j∈I,ω∈E s.t. πi(ω×[0,1))�=πj(ω×[0,1))

|πi (ω × [0, 1))− πj (ω × [0, 1))|}.

If there are ω ∈ E such that ω × [0, 1) is unambiguous, then transfer a total mass of εn
to ω1 taken evenly from these unambiguous states for each i.

For each i ∈ J , let

π1
i (εn) (ω1 × [0, 1)) = πi (ω1 × [0, 1)) + iεn

and
π1
i (εn) (ω2 × [0, 1)) = πi (ω2 × [0, 1))− iεn.

Note that the way we have chosen εn and the fact that I ⊆ [0, 1] ensures that E × [0, 1),
ω1 × [0, 1) and ω2 × [0, 1) remain ambiguous according to definition 5 and that no new
“bunchings” of πi (E × [0, 1)) have been created.

Step 2 : For each i ∈ H, let (if there was mass transferred to ω1 from the unambiguous
states in E in the previous step)

π1
i (εn) (ω1 × [0, 1)) = πi (ω1 × [0, 1))− iεn,

otherwise

subtract the iεn from the ambiguous states in E in any way that doesn’t push any below 0

and
π1
i (εn) (ω2 × [0, 1)) = πi (ω2 × [0, 1)) + iεn.

Note that the way we have chosen εn and the fact that I ⊆ [0, 1] ensures that E × [0, 1),
ω1 × [0, 1) and ω2 × [0, 1) and any other ambiguous ω ∈ E remain ambiguous according
to definition 5 and that no new “bunchings” of πi (E × [0, 1)) have been created.

Step 3: For all points and for all i ∈ I at which π1
i (εn) has yet to be defined, let

π1
i (εn) (.) = πi (.) .
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The end result of Steps 1 through 3 is a set of probabilities Π1 (εn) ≡ {π1
i (εn)}i∈I that

has the same set of ambiguous events of the form ω × [0, 1) as Π but, except (possibly)
where π1

i (εn) (E × [0, 1)) = 0, π1
i (εn) (E × [0, 1)) takes on distinct values for each i ∈ I

and π1
i (εn) (ω2 × [0, 1)) > 0 for all i ∈ I.

Step 4 : This step should only be undertaken if the ratio
π1
i
(εn)(ω3×[0,1))

π1
i
(εn)(ω2×[0,1))

is constant

across all i ∈ I such that π1
i (εn) (E × [0, 1)) > 0. Notice that since ω2 × [0, 1) is am-

biguous, this can only occur if ω3 × [0, 1) is ambiguous as well. Select an m ∈ I such
that

π1
m (εn) (E × [0, 1)) > 0.

Set
π2
m (εn) (ω3 × [0, 1)) = π1

m (εn) (ω3 × [0, 1)) +
m

2
εn

and
π2
m (εn) (ω2 × [0, 1)) = π1

m (εn) (ω2 × [0, 1))−
m

2
εn.

Step 5 : For all points and for all i ∈ I at which π2
i (εn) has yet to be defined, let

π2
i (εn) (.) = π1

i (.) .

Then define Π(εn) = Π2 (εn). Notice, because of Step 4, that the ratio πi(εn)(ω3×[0,1))
πi(εn)(ω2×[0,1))

cannot be constant across all i ∈ I such that πi (εn) (E × [0, 1)) > 0. This fact will be
used in the proof below.

Above, εn was allowed to be real number strictly between zero and an upper bound
that was the minimum of several terms. To form a sequence, select any sequence of
numbers {εn}

∞

n=1 in this range such that the limn→∞ εn = 0. Observe, that given our
construction, limn→∞Π (εn) = Π (specifically, limn→∞ πi (εn) (E) = πi (E) for all i ∈ I
and all E ∈ Σ). Now we proceed to show that, given any such Π (εn) ,the event E× [0, 1)
is ambiguous according to the definition in Epstein and Zhang (2001). Consider the
pair of acts depicted below (where E, ω2 and ω3 are as in the construction of Π (εn) and
C ≡ (E × [0, 1))c \ ((ω3 × [0, t)) ∪ (ω2 × [t, 1)))).


1 if s ∈ ω3 × [0, t)
0 if s ∈ ω2 × [t, 1)
0 if s ∈ C
0 if s ∈ E × [0, 1)


 ,




0 if s ∈ ω3 × [0, t)
1 if s ∈ ω2 × [t, 1)
0 if s ∈ C
0 if s ∈ E × [0, 1)


 .

Given our representation of preferences, the decision maker is indifferent between these
two acts iff

k∑
i=1

−e−αtπi(εn)(ω3×[0,1))µ (i) =
k∑

i=1

−e−α(1−t)πi(εn)(ω2×[0,1))µ (i) . (22)

Let t∗ be the unique t that solves equation (22). Such a t∗exists since the left-hand side
is continuously increasing in t and is equal to −1 at t = 0 while the right-hand side is
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continuously decreasing in t and is equal to −1 at t = 1. If E × [0, 1) were unambiguous
according to Epstein and Zhang (2001), it would be the case that


1 if s ∈ ω3 × [0, t∗)
0 if s ∈ ω2 × [t∗, 1)
0 if s ∈ C

u−1(c) if s ∈ E × [0, 1)


 ∼




0 if s ∈ ω3 × [0, t∗)
1 if s ∈ ω2 × [t∗, 1)
0 if s ∈ C

u−1(c) if s ∈ E × [0, 1)




for all c ∈ U . In terms of our representation, this means

k∑
i=1

−e−α[t∗πi(εn)(ω3×[0,1))+cπi(εn)(E×[0,1))]µ (i)

=
k∑
i=1

−e−α[(1−t
∗)πi(εn)(ω2×[0,1))+cπi(εn)(E×[0,1))]µ (i) for all c ∈ U . (23)

Taking the derivative of both sides of equation (23) with respect to c and evaluating at
c = 0,

k∑
i=1

−e−αt
∗πi(εn)(ω3×[0,1))µ (i)πi (εn) (E × [0, 1))

=
k∑
i=1

−e−α(1−t
∗)πi(εn)(ω2×[0,1))µ (i)πi (εn) (E × [0, 1)) . (24)

In fact, since equation (23) is an identity in c, we can differentiate both sides as many
times as we wish while maintaining equality. Calculating this out, we see

k∑
i=1

−e−αt
∗πi(εn)(ω3×[0,1))µ (i) [πi (εn) (E × [0, 1))]m

=
k∑
i=1

−e−α(1−t
∗)πi(εn)(ω2×[0,1))µ (i) [πi (εn) (E × [0, 1))]m (25)

for all m = 0, 1, 2, ... . Since by construction of {πi (εn)}
k

i=1, either πi (εn) (E × [0, 1)) = 0,
in which case those terms in the system of equations (25) get no weight, or, for the
remaining i’s we can strictly order the πi (εn)’s by the weight they give to E× [0, 1) . Let
i∗ be the index of the πi (εn) that gives the largest such weight. Divide both sides of the
each equation in the system of equations above by [πi∗ (εn) (E × [0, 1))]m. We can then
rewrite the system as, for all m = 0, 1, 2, . . . ,

−e−αt
∗πi∗(εn)(ω3×[0,1))µ (i∗)

+
∑
i�=i∗

−e−αt
∗πi(εn)(ω3×[0,1))µ (i) [πi (εn) (E × [0, 1))]m

[πi∗ (εn) (E × [0, 1))]m

= −e−α(1−t
∗)πi∗(εn)(ω2×[0,1))µ (i∗)

+
∑
i�=i∗

−e−α(1−t
∗)πi(εn)(ω2×[0,1))µ (i) [πi (εn) (E × [0, 1))]m

[πi∗ (εn) (E × [0, 1))]m
. (26)
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A necessary condition for the above system of equations to hold is that

−e−αt
∗πi∗ (εn)(ω3×[0,1))µ (i∗) = −e−α(1−t

∗)πi∗(εn)(ω2×[0,1))µ (i∗) . (27)

To see this, observe that for any δ > 0 there exists an M such that for all m > M ,

δ >
∑
i�=i∗

−e−αt
∗πi(εn)(ω3×[0,1))µ (i) [πi (εn) (E × [0, 1))]m

πni∗ (εn) (E × [0, 1))

−
∑
i�=i∗

−e−α(1−t
∗)πi(εn)(ω2×[0,1))µ (i) [πni (εn) (E × [0, 1))]m

πni∗ (εn) (E × [0, 1))
> −δ.

This is true because 0 ≤ πi (εn) (E × [0, 1)) < πi∗ (εn) (ω1 × [0, 1)) ≤ 1 and all the other
terms are bounded.

Given equation (27), we can cancel the i∗ terms from both sides of the equations in
the system (25). This gives a new system of equations. For this new system find the i
such that πi (εn) (E × [0, 1)) gives the largest weight and repeat the above steps to show
that

−e−αt
∗πi(εn)(ω3×[0,1))µ (i) = −e−α(1−t

∗)πi(εn)(ω2×[0,1))µ (i) ,

for that i. Canceling and repeating k − 2 more times (or until the largest remaining
πi (εn) (E × [0, 1)) = 0), we find

−e−αt
∗πi(εn)(ω3×[0,1)) = −e−α(1−t

∗)πi(εn)(ω2×[0,1)),

for all i ∈ I such that πi (εn) (ω1 × [0, 1)) > 0. This is only possible if

πi (ω3 × [0, 1))

πi (ω2 × [0, 1))
=

1− t∗

t∗

for all i ∈ I such that πi (εn) (ω1 × [0, 1)) > 0. As noticed above in the construction of
Π (εn), this cannot be true. Therefore we have a contradiction and it cannot be that
E × [0, 1) unambiguous according to the definition in Epstein and Zhang (2001). �

A.12.3 Theorem 5

We first report a result from the working paper version of Ghirardato and Marinacci
(2002), where it is stated as Theorem 4.

Theorem 7 Let 	 be an ambiguity averse monotonic preference relation. For all �1,
�2 belonging to the set of benchmark preferences corresponding to 	, we have

Hgm

�1
= Hgm

�2
≡ Hgm and Λgm�1

= Λgm�2
≡ Λgm.

We can now prove Theorem 5.

Proof of Theorem 5. Let �, the benchmark, be the special case of 	 where φ is

linear. That is,� is represented by V�(f) =
∑

ω

[∫
[0,1)

u (f (ω, r)) dr
]
ν (ω), where ν (ω) =∫

I
πi ({ω × [0, 1)}) dµ for all ω ∈ Ω.
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Suppose φ is linear (i.e., Axiom 5(i) holds). Then Hgm = F . On the other hand, by
Corollaries 3 and 4, φ linear means that all events are unambiguous. Hence, H = F as
well. For the rest of the proof we suppose φ is strictly concave or strictly convex over
some open interval J ⊆ U (i.e., Axiom 5(ii) or (iii) holds)

First we prove that H ⊆ Hgm. By Theorem 2, πi = πj ≡ π̄ on Λ. Hence, we have, for
f ∈ H,

V (f) = φ

(∑
ω

[∫
[0,1)

u (f (ω, r)) dr

]
π̄ (ω)

)
. (28)

Since φ is strictly increasing, the way 	 ranks acts belonging to H is equivalently given
by the functional, ∑

ω

[∫
[0,1)

u (f (ω, r)) dr

]
π̄ (ω) .

Notice, V�(f) as well reduces to the functional (28). Hence, 	 and � agree on H. Since
H contains all the constant acts this proves that part (A) of Definition 12 holds for H.
On the other hand, it is immediate to see that part (B) holds as well. Thus, since H�

is the largest subset satisfying (A) and (B), it follows that H ⊆ Hgm
� . Furthermore, by

Theorem 7, Hgm
� = Hgm.

As to the converse inclusion, we consider the case of φ strictly concave on J (the
strictly convex case being similar). We take an act f /∈ H and go on to show that
f /∈ Hgm

� either. It is enough to consider acts f such that supp
(
µf

)
⊆ J . To see why

this is the case, assume f is such that supp
(
µf

)
� J . Let {x1, ..., xn} be the range of the

finite-valued act f . Since u is strictly increasing on the interval C, it is differentiable on C,
except on at most a countable subsetM of C. The function u is therefore locally Lipschitz
on C−M . Since J is an open interval and u is strictly increasing and continuous, u−1 (J)
is an open interval. Hence, u−1 (J) ∩ (C −M) �= ∅, and so there exists c ∈ u−1 (J) at
which u is locally Lipschitz. Let (c− ε, c+ ε) be a neighborhood of c over which u is
locally Lipschitz. Since J is an open interval, by taking ε small enough, we can assume
that [u (c)− ε, u (c) + ε] ⊆ u−1 (J). It is easy to check that there exist α �= 0 and β ∈ R
such that |αxi + β − c| ≤ ε for each i = 1, ...n. Hence, by the local Lipschitz property,
|u (αxi + β)− u (c)| ≤ ε, and so∣∣∣∣

∫
u (αf + β) dπ − u (c)

∣∣∣∣ ≤ ε

for all probabilities π ∈ ∆. Hence,

supp
(
µαf+β

)
⊆

[
inf
π∈∆

∫
u (αf + β) dπ, sup

π∈∆

∫
u (αf + β) dπ

]
⊆ [u (c)− ε, u (c) + ε] ⊆ J .

Set g = αf + β. As g (s) = g (s′) if and only if f (s) = f (s′) for all s, s′ ∈ S, we have
{f−1(x) : x ∈ C} = {g−1(x) : x ∈ C}. Hence, by (B) of Definition 12, f ∈ Hgm

� if and only
if g ∈ Hgm

� and by Definition 6, f ∈ H if and only if g ∈ H. All this shows that in what

follows we can assume that supp
(
µf

)
⊆ J .
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As in Definition 4, take the constant act δ
u−1(e(µf)). As f /∈ H, either δ

u−1(e(µf)) �

f or δ
u−1(e(µf))

∼ f . Suppose, first, the preference is strict. Since for the benchmark

preference �, δ
u−1(e(µf)) and f are indifferent, part (A) of Definition 12 is violated for f .

Next, suppose δ
u−1(e(µf)) ∼ f . By the strict concavity of φ (on J ⊇ supp

(
µf

)
) this

implies that µf has a singleton support. For, if µf did not have a singleton support then
by strict concavity of φ,

V (f) =

∫
φ (x) dµf < φ

(∫
xdµf

)
= φ

(
e
(
µf

))
= V

(
δ
u−1(e(µf))

)
, (29)

and so δ
u−1(e(µf)) � f . Hence it remains to consider the case f /∈ H with µf having

singleton support. We show, next, that in this case the condition (B) of Definition 12 is
violated for f .

Since f /∈ H there exists an x ∈ C such that the event f−1 (x) is ambiguous. Call that
event A (x). Define g : S −→ C as follows,

g (s) = f (s) if s /∈ A (x) ,

g (s) = x′ if s ∈ A (x) ,

with x′ /∈ {f (s) : s ∈ S} (recall that all our acts are finite valued). Since A (x) is am-
biguous there exist µ-non-null sets I ′ ⊆ I and I ′′ ⊆ I such that for any i ∈ I ′ and j ∈ I ′′,
πi (A (x)) �= πj (A (x)). Since, µf has singleton support, for µ-almost-all i, j, Eπi

(u ◦ f) =
Eπj

(u ◦ f) . Hence, for µ-almost-all i ∈ I ′ and j ∈ I ′′, Eπi
(u ◦ f) = Eπj

(u ◦ f). For all
such i, j pairs,

Eπi
u (g)− Eπj

u (g) = Eπi
u (f)− πi (A (x)) [u (x)− u (x′)]

−Eπj
u (f) + πj (A (x)) [u (x)− u (x′)]

= [u (x)− u (x′)] [πj (A (x))− πi (A (x))]

�= 0.

Therefore, µg does not have a singleton support since it is not true that Eπi
(u ◦ f) =

Eπj
(u ◦ f) for µ-almost-all i, j. By strict concavity of φ (see Eq. 29) we then conclude

that δ
u−1(e(µg)) � g. This violates part (B) of the Definition 12.

Hence, summing up, we may conclude f /∈ Hgm
� , and so, again by Theorem 7, f /∈ Hgm.

This completes the proof that H = Hgm.
Since all acts are finite-valued, the λ-system Λ can be viewed as the set of all pre-

image sets of the acts in H. As Λgm is defined as the collection of all pre-image sets of
acts in Hgm, it follows that Λ = Λgm. �
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