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Abstract

This thesis is centered on the following question: Given an ab-

stract group action by an Abelian group G on a set X, when is

there a compact Hausdorff topology on X such that the group

action is continuous? If such a topology exists, we call the group

action compact-realizable.

We show that if G is a locally-compact group, a necessary condi-

tion for a G-action to be compact-realizable, is that the image of

X under the stabilizer map must be a compact subspace of the

collection of closed subgroups of G equipped with the co-compact

topology. We apply this result to give a complete characteriza-

tion for the case when G is a compact Abelian group in terms

of the existence of continuous compact Hausdorff pre-images of

a certain topological space associated with the group action. If

G is not compact, we will show that the necessary condition is

not sufficient. Together with various examples, we then present a

general two-stage method of construction for compact Hausdorff

topologies for R-actions.

For discrete groups, the necessary condition above turns out to

be not very strong. In the case of G = Z2 we will see that the two

cases |X| < c and |X| ≥ c must be treated very differently. We

derive necessary conditions for a group action with |X| < c to be

compact-realizable by constructing particularly nice open parti-

tions of the space X. We then use symbolic dynamics together

with some generic constructions to obtain a partial converse in

this case. If |X| ≥ c we give further constructions of compact

Hausdorff topologies for which the group action is continuous.
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Chapter 1

Introduction

Although continuity is one of the fundamental concepts in general topology,

its implications for the structure of functions and the underlying space have

only been given scarce attention. The easily stated question what self-maps

on a set X can possibly be continuous if X is equipped with a sensible

topology seems so general that a satisfying answer appears to be out of

reach. In spite of this in this thesis we obtain far-reaching results which

can, for the most part, be stated using little more mathematical language

than an undergraduate would know. In the proofs, however, a wide variety

of mathematical topics is used, touching amongst others on the lattice of

topologies, non-Hausdorff spaces, and convergence spaces. The use of these

techniques gives another striking argument why they should move from their

current status as fringe interests into the heart of mainstream mathematics.

Already in the 1950s there was considerable interest in the consequences

of continuity. Ellis [5] was the first to explicitly ask

[. . . ] how may one construct a topology in S [the set], in general

non-trivial, so that in this topology γ [the map] will be continu-

ous?

Powderly and Tong [11] solved this problem, but only de Groot and de

Vries [1] construct non-discrete T1 topologies for all cases in which S is infi-

nite. They are the first to show more generally that the topology can always

be chosen to be metrizable and non-discrete (provided the set is infinite).

1



CHAPTER 1. INTRODUCTION 2

We can rephrase these questions as problems about continuous semi-group

actions, in this particular case Z+, or, provided the map is bijective, group

actions. The phase spaces modern day dynamicists are mostly interested in

are compact metric spaces. So given a group G, for example Z or R, we

would like to characterize all continuous G-actions for which the phase space

is compact metric. However, already in 1957 de Vries [2] had shown that

even if the phase space has size ω or c, it is in general impossible (in ZFC) to

achieve this. In fact, he proved that the Continuum Hypothesis is equivalent

to the assertion that for every set X of size c and every bijection f on X

there is a compact metrizable topology on X such that f is continuous, i.e.

a homeomorphism.

Therefore, when the question was picked up again by Iwanik [8], he chose

to focus on compact Hausdorff topologies. He gave a characterization of those

Z-actions for which a compact Hausdorff topology on the phase space exists,

such that the action is continuous. Independently and using an entirely

different approach, Good et al [7] give necessary and sufficient conditions for

the phase space of a Z+-action to have a compact Hausdorff topology under

which the action is continuous.

It then becomes natural to ask about other groups or classes of groups

leading to the main question around which the results of this thesis revolve:

Question. Given a topological group G and an abstract G-action on a set

X, when is there a compact Hausdorff topology on X such that the action

is continuous?

Why have we chosen compact Hausdorff as the required property on the

phase space? From the early studies mentioned above, it seems reasonable

that a form of separation axiom, T1, T2 or even metrizability, should be used

to exclude the indiscrete topology.

It is harder to exclude the discrete topology by some general topological

property. De Groot and de Vries [1] note that “in general, it is impossible to

render (the infinite) S dense in itself so that γ becomes continuous.” (their

emphasis; S is the phase space, γ the self-map in question).



CHAPTER 1. INTRODUCTION 3

However, it becomes clear that a characterization might be possible if we

use Hausdorffness instead of metrizability to exclude the indiscrete topol-

ogy and compactness to exclude the discrete topology. The combination of

compactness and Hausdorffness is also interesting for the reason that these

topologies are minimal among the Hausdorff topologies and maximal among

the compact topologies. In this sense they occupy a well-defined position in

the lattice of topologies on the set X.

Given the abstract setting of the problem, a group action on a set without

any additional structure, the characterizations have to be given in terms of

the periodicity of the orbits, i.e. the stabilizers. In chapter 2, we introduce

the concept of the (weighted) orbit spectrum to capture this abstract struc-

ture of a group action. The (weighted) orbit spectrum provides a natural

ordering of the actions of a fixed group, which can be viewed as measuring

their complexity.

We will then prove in chapter 3 that for an Abelian group the orbit

spectrum can be equipped with a suitable topology such that it is the image of

the stabilizer map, x 7→ stab(x), and that this map is continuous. Factoring

out the orbit equivalence relation leaves us with a continuous map from the

orbit space of a group action into the set of closed subgroups of the group

under consideration. This gives us the Continuity Theorem (3.11), namely

that (under fairly general assumptions) the orbit spectrum must be a compact

space in the co-compact topology on the collection of closed subgroups of

G. In this chapter we will also establish the Continuum Theorem (3.13)

which states that if G is a σ-compact Abelian group acting continuously on

a compact Hausdorff space X such that all orbits are non-compact, then

there are at least c many orbits.

In chapter 4 we show how the order on the weighted orbit spectra in-

troduced in chapter 2 gives rise to a notion of reducibility of group actions.

One application is the rather nice Theorem 4.4: If G is an Abelian, locally

compact group and an abstract group action has a fixed point, then there

will exist a compact Hausdorff topology making the group action continu-

ous. We will also give other methods of modifying a group action for which

a compact Hausdorff topology making it continuous exists.
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The next three chapters are devoted to the study of particular groups. We

start in chapter 5 with a precise statement of the characterization given in [7]

and [8] of abstract Z-actions for which the phase space can be equipped with

a compact Hausdorff topology. This result indicates that small Z-actions (i.e.

actions where the phase space has cardinality less than c) and large Z-actions

(the cardinality of the phase space is at least c) require a fundamentally

different treatment.

This difference generalizes to Z2-actions where we discuss actions with

small and large phase spaces separately. For small phase spaces we present

two approaches for deriving necessary conditions that a Z2-action can be

continuous on a compact Hausdorff space. A major difference compared

to Z-actions turns out to be the two-dimensional nature of Z2. While all

Z-actions which have periodic and non-periodic orbits can be realized as

compact, continuous Z-actions, we can show that this is no longer the case

for Z2-actions. We then give a variety of constructions for large classes of

Z2-actions. Unfortunately we were unable to construct all Z2-actions which

are not explicitly forbidden by the necessary conditions derived earlier. How-

ever, I feel that substantial progress has been made towards a complete

characterization of Z2-actions which can be realized as compact continu-

ous actions. The situation for large phase spaces is much more satisfying.

Considering the differences between Z and Z2-actions in the realm of small

phase spaces, it is surprising that for large phase spaces the results are very

similar. We manage to construct all Z2-actions with large phase space which

do not have essential forced-compact subsets. These are the fundamental

building blocks of Z2-actions with large phase spaces.

Chapter 6 focuses on compact Abelian groups and shows that for these

that the conditions in the Corollary 3.12 to the Continuity Theorem are not

only necessary but in fact sufficient. For compact Abelian Lie groups this

amounts to the simple theorem that there will exist a compact Hausdorff

topology on the phase space making an abstract group action continuous if

and only if the orbit spectrum of the action is compact in the co-compact

topology.
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Chapter 7 concerns itself with the group of additive reals, perhaps the

most important group after Z in this context. A general two-stage method of

construction for R-actions is provided with which appropriate compact Haus-

dorff topologies can be constructed for a large class of abstract R-actions.

Examples showing the limitation of this construction method are given as

well.

I would like to thank the countless number of mathematicians who have

either indirectly, through their published papers, or directly, through talks

and conversations, nudged me in the right direction and influenced my style

of doing mathematics. In particular I would like to thank my supervisor Dr

R W Knight for his excellent support and friendship, his ideas and his critical

questions during my time in Oxford. I would also like to thank Dr P J Collins

for making it possible for me to study at the University of Oxford and to

arrange meetings with numerous mathematicians in a relaxed atmosphere.

This thesis would not have seen the light of day, were it not for the moral

and financial support of my parents and Brasenose College. My deepest love

and thanks go to Anna Hoerder who shared my happiness during the ups

and consoled me during the downs in the production of this work.



Chapter 2

Basic Concepts

In this chapter we will introduce the definitions and notations which will

be used throughout the thesis. Apart from standard terminology, we intro-

duce the fundamental notion of an order relation on group actions for some

fixed Abelian group G. This order relation approximately describes how

complicated a group action is, when seen from an abstract point of view.

Whereas standard notation and definitions are given in the running text, we

will number the new concepts defined in this thesis.

We also remark that we assume that every group is an Abelian Hausdorff

topological group.

2.1 Abstract Group Actions

Given a group G and a set X, an abstract G-action on X is a map

ρ : G×X → X; ρ(g, x) = gx

such that g(hx) = (gh)x for all g, h ∈ G, x ∈ X and ex = x for all x ∈ X

where e is the identity of G. We will frequently omit explicit mention of

the map ρ and simply write (X,G) for the G-action. If G is clear from the

context, we will refer to the abstract group action by its phase space X.

For sets F ⊂ G and A ⊂ X we write FA = {gx : g ∈ F, x ∈ A} ⊂ X and

shorten {g}A and F {x} to gA and Fx if no ambiguity can arise. With this

notation the orbit of x ∈ X is the set Gx. The relation x ∼ y ⇐⇒ y ∈ Gx

6
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defines an equivalence relation on X (the orbit equivalence relation) and we

denote the collection of equivalence classes by O(X) = {Gx : x ∈ X}.

The stabilizer of a point x ∈ X is the subgroup stab(x) = {g ∈ G : gx = x}.

This defines a map from X into the collection of subgroups of G. Note that

if gx = y then stab(x) = g−1 stab(y)g. Therefore, as G is Abelian, stab is

constant on orbits and thus induces a map, also denoted by stab, from O(X)

into the collection of subgroups of G. The image of an orbit under this

induced map is also called the type of this orbit.

Definition 2.1. For an abstract group action by an Abelian group G we

define the weighted orbit spectrum as the family (κH)H≤G where

κH = |{Gx : stab(Gx) = H}| .

The orbit spectrum on the other hand is the set

{H ≤ G : ∃x ∈ X. stab(x) = H} .

Given an abstract action defined by the weighted orbit spectrum (κH)H≤G,

the orbit spectrum {H ≤ G : κH > 0} of the action is called the induced orbit

spectrum.

Note that two abstract G-actions (G Abelian) with the same weighted

orbit spectrum are conjugate, i.e. if ρ : G×X → X, ρ′ : G×X ′ → X ′ have

the same weighted orbit spectrum then there is a bijection f : X → X ′ such

that f(ρ(g, x)) = ρ′(g, f(x)) for all g ∈ G, x ∈ X.

Definition 2.2. The canonical representation of a weighted orbit spectrum

wO, denoted by C(wO), is the space

⋃

H≤G

{H} × κH ×G/H

with action ρ(g, (H,α, hH)) = (H,α, ghH) for h, g ∈ G,H ≤ G,α ∈ κH .

Definition 2.3. Given two weighted orbit spectra

wO = (κH)H≤G and wO′ = (κ′H)H≤G we define wO ≤wos wO
′ if and only if

for each H ≤ G
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(i) κH ≤ κ′H ;

(ii) if κ′H 6= 0 then there is H ′ ≥ H with κH′ 6= 0;

Similarly for two orbit spectra O,O′ we define O ≤os O
′ if and only if O ⊂ O′

and for each H ∈ O′ there is an H ′ ≥ H with H ′ ∈ O.

If wO ≤wos wO
′ then the condition that κH ≤ κ′H for each H ≤ G implies

that C(wO) ⊂ C(wO′). The second condition then gives rise to a retraction

of the canonical representation of wO′ onto the canonical representation of

wO as follows.

Lemma 2.4. Let G be an Abelian group, wO, wO′ be weighted orbit spec-

tra of abstract G-actions with wO ≤wos wO
′. Then there is a retraction

R : C(wO′)→ C(wO) such that stab(x) ≤ stab(R(x)) for each x ∈ C(wO′).

Proof. For each orbit O1 ⊂ C(wO′) \ C(wO) choose an orbit O2 ⊂ C(wO)

with stab(O1) ≤ stab(O2). Such an orbit O2 always exists since by the second

condition there exists H ′ ≥ stab(O1) with κH′ 6= 0. Choose x′ ∈ O1 = Gx′

and x ∈ O2 = Gx and let R(gx′) = gx for every g ∈ G. Since stab(x′) is a

subgroup of stab(x) this is well defined. On C(wO) we define R to be the

identity.

Clearly R thus defined is a retraction from C(wO′) to C(wO) with

stab(x) ≤ stab(R(x)) for each x ∈ C(wO′).

It is convenient to also define an order relation between two orbit types

along the same lines. Given two orbit typesH1, H2 ≤ G we say thatH1 ≤ot H2

and say that H1 covers H2 if and only if H1 ⊃ H2. ≤ot can be seen as an

information order: intuitively we can say that the smaller the orbit type the

more restricted its appearance is.

With regards to our question of when an abstract group action is compact-

realizable, the rule of thumb is that orbits with smaller orbit type are harder

to include, but once taken care of help in adding further orbits. For a precise

statement we refer the reader to Chapter 4.
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2.2 Continuous Group Actions

If G is a topological group and X a topological space we call a G-action

continuous if and only if ρ is a continuous map. In this case O(X) will be

equipped with the quotient topology and referred to as the orbit space.

A compact group action will denote a continuous group action on a com-

pact Hausdorff space. Note that a compact group action whose orbits are all

compact has a Hausdorff orbit space.

Definition 2.5. A weighted orbit spectrum wO of an abstract G-action

(G Abelian) is called compact-realizable if and only if there is a compact

G-action which has weighted orbit spectrum wO. An orbit spectrum O is

called compactifiable if and only if there is an compact G-action which has

orbit spectrum O and for which Gx 6= Gy =⇒ stab(Gx) 6= stab(Gy), i.e.

each orbit type occurs at most once. Since the weighted orbit spectrum

determines an abstract group action (up to conjugacy) we call an action

compact-realizable if and only if its weighted orbit spectrum is.

Trivially, every element of the orbit spectrum of a continuous group action

is a closed subgroup.

Lemma 2.6. If O is the orbit spectrum of a continuous, Hausdorff G-action

(G Abelian) then its elements are closed subgroups of G.

Proof. Suppose that (X,G) is a continuous group action, that x ∈ X and that

g ∈ stab(x). If U is an open set containing gx then by continuity there are

open sets V ∋ x and F ∋ g such that FV ⊂ U . Since F is a neighbourhood of

g there must be h ∈ F ∩ stab(x) and thus hx = x ∈ U . Thus, every open set

containing gx also contains x which, by Hausdorffness of X implies gx = x,

i.e. g ∈ stab(x).

Since stab(x) 6= ∅ for all x ∈ X, stab is a map into the collection of closed

subgroups of G, which we will denote by G≤.

In view of the last lemma, we can restrict our attention to group actions

which only have closed subgroups as stabilizers.
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Definition 2.7. Let (X,G) be an abstract group action where G is an

Abelian topological group. We say that (X,G) is an admissable group action

if and only if for all x ∈ X, stab(x) is a closed subgroup of G.



Chapter 3

Restrictions on the Orbit

Spectrum

Even under very general conditions on the group, there are, surprisingly, a

number of restrictions on the structure of a compact group action and on

the orbit spectrum. In this chapter we will explore these restrictions at a

general level. For applications to specific groups we point the reader to the

appropriate chapters, namely chapter 5 for Z and Z2, chapter 6 for compact

groups and in particular compact Lie groups, and chapter 7 for the group of

additive reals.

The most important result of this chapter consists of finding a topology,

namely the co-compact topology, on the collection of closed subgroups of an

Abelian group G such that the stabilizer is a continuous map from X into

G≤. The order on the orbit types which was given in the previous chapter is

intimately tied up with this topology. In fact, this order turns out to be the

specialization order of the co-compact topology.

Note that the co-compact topology is a very non-Hausdorff topology. In

fact, for some groups (e.g. Z) this topology is anti-Hausdorff. In the authors

opinion, the natural occurrence of a non-Hausdorff topology in this setting

emphasizes the need to further the study of these topologies along the lines

that are started in e.g. [9]. At the moment non-Hausdorff topologies seem

to be internal topological problems or come up in the study of problems

inspired from a computer science background. Our discoveries point to wider

applicability in particular in the area of function spaces.

11
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We will also observe the curious behaviour of the category of topological

spaces when confronted with function spaces. Although this could be over-

come by switching to a suitable Cartesian closed category, specifically the

category of convergence spaces, a lot of the sharpness and appeal would be

lost. The category of topological spaces seems to be right on the edge between

too broad categories (e.g. convergence spaces) and too narrow categories (e.g.

metric spaces). It is this tension which leads to a better understanding of

the subtleties and nuances of the problem at hand.

3.1 The Structure of Orbits

There is only little that we can say about the topology of an individual orbit.

However, the following lemma is of great importance.

Lemma 3.1. If (X,G) is a compact group action with G Abelian, O is

an orbit of type H and G/H is compact Hausdorff, then the restriction of

the group action to O is topologically conjugate to the quotient group action

(G/H,G) given by G×G/H → G/H; (g, hH) 7→ ghH.

Proof. Fix x ∈ O and note that the mapG/H → O; gH 7→ gx is a continuous

bijection from a compact to a Hausdorff space and thus a homeomorphism.

Trivially it respects the group action, i.e. is a conjugacy.

No such theorem can be given about orbits of type H where G/H is

non-compact. The most we can say generally is that an orbit of type H is

the continuous bijective image of G/H. However in certain situations we

can show that if G/H is non-compact then the orbit of type H cannot be

compact. Surprisingly, the following theorem appears to be unpublished.

Theorem 3.2 (Non-compactness Theorem). Suppose G is a locally compact,

Lindelöf, non-compact Abelian Hausdorff topological group. If (X,G) is a

compact group action with X = Gx then stab(x) 6= {e}.

Proof. Write σ for the topology on G and suppose stab(x) = {e}. We may

then identify X with G by picking some xe ∈ X and identify y = gxe with
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g ∈ G. We will write τ for the induced compact Hausdorff topology on G and

Gτ for the space (G, τ), whereas (G, σ) will be denoted by Gσ. For subsets A

of G we will write Aσ and Aτ for the subspaces A of Gσ and Gτ respectively.

If U is τ -open and V the inverse image of U under the group action then

V ∩Gσ × {xe} = U × {xe} must be open in Gσ × {xe} and thus τ ⊂ σ.

Since Gσ is locally compact we can find U ∈ σ with e ∈ U and U
σ

com-

pact. Since τ ⊂ σ the identity map id: Gσ → Gτ is continuous and thus by

compactness U
τ

= U
σ

= C. We claim that C is nowhere dense in Gτ .

Let V be the τ -interior of C = C and assume that h ∈ V . We will show

that id : Gσ → Gτ must then be open and therefore a homeomorphism which

is a contradiction to Gσ being non-compact and Gτ being compact. Thus

V = ∅ showing that C is nowhere dense in Gτ as claimed.

Since id : Gσ → Gτ is a continuous bijection and C is compact Haus-

dorff id: Cσ → Cτ is a homeomorphism and thus id : Vσ → Vτ is a homeomor-

phism. If W ∈ σ we can write W =
⋃

g∈W gh−1Vg for some σ-open Vg ⊂ V ,

giving id(W ) =
⋃

g∈W gh−1 id(Vg). For every g ∈W , Vg is σ-open in V and id

is a homeomorphism from Vσ to Vτ . Therefore id(Vg) will be a τ -open subset

of V and thus τ -open. Hence id(W ) is τ -open, giving the desired result.

Observe that U ⊂ C so that if {gU : g ∈ H} covers G for some H ⊂ G

then so does {gC : g ∈ H}. Since Gσ is Lindelöf and {gU : g ∈ G} covers G

there is a countable H ⊂ G with {gU : g ∈ H} covering G.

Lastly note that since C is nowhere dense in Gτ and the group action is

continuous, in particular h 7→ gh is an autohomeomorphism of Gτ for every

g ∈ G, gC is nowhere dense in Gτ for every g ∈ G. But then Gτ =
⋃

g∈H gC

is a countable union of nowhere dense sets contradicting the Baire Category

theorem, which must hold for the compact space Gτ .

Note that ifH is a closed subgroup ofG, thenG/H is a Hausdorff topolog-

ical group. Moreover, if G acts continuously on a space X with H ⊂ stab(x)

for all x ∈ X, then G/H ×X → X; (gH, x) 7→ gx is a continuous group ac-

tion as well. Thus we have the following corollary.
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Corollary 3.3. If (X,G) is a compact group action, where G is Abelian, with

precisely one orbit, say of type H, and G/H is locally compact and Lindelöf,

then G/H is in fact compact.

Let us show that the conditions ‘locally compact and Lindelöf’ are strict.

The first example shows that we cannot omit Lindelöfness.

Example 3.4. Let Gσ = 2ω with the box topology and Gτ = 2ω with the

usual Tychonoff topology. Clearly τ ⊂ σ and Gσ is non-compact whereas Gτ

is compact. Observe that Gσ is a locally compact topological group (in fact

it has the discrete topology).

Note that the natural action Gσ ×Gτ → Gτ ; (g, h) 7→ gh is continuous as

Gτ is a topological group, i.e. Gτ ×Gτ → Gτ ; (g, h) 7→ gh is continuous and

τ ⊂ σ. Then Gτ is a compact orbit with trivial stabilizer under the action of

Gσ.

The second example show that local compactness cannot be omitted ei-

ther.

Example 3.5. Let Gτ = T with its usual topology τ and Gσ = T with the

topology σ where a neighbourhood basis at x is given by sets of the form

U \ S where U ∋ x is at τ -open set and S 6∋ x is a countable τ -discrete set

with unique τ -limit point x. Gσ is clearly Lindelöf, non-compact and finer

than τ . However, it is not locally compact.

Note that as above the natural action of Gσ on Gτ is continuous so that

Gτ is a compact orbit with trivial stabilizer under the action of Gσ.

3.2 Forced-compact Sets

We have an easy lemma which forces some sets to be compact invariant

subsets of X.

Lemma 3.6. Suppose (X,G) is a compact group action with G Abelian. For

every subset H of G the set FixH = {x ∈ X : ∀h ∈ H. hx = x} is a closed,

compact, G-invariant subset of X.
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Proof. Since the map x 7→ gx is continuous for every g ∈ G all the sets

Fixg = {x ∈ X : gx = x} are closed and invariant under G. Thus an inter-

section of these sets, FixH =
⋂

h∈H Fixh, is closed and invariant under G.

The sets FixH for H ⊂ G will be called forced-compact subsets of X.

It turns out that conceptually there are two types of forced-compact sets.

Those which have only finitely many ≤ot-minimal orbit types are typically

easy to handle and either make compactifiability outright impossible (e.g.

they consist of precisely one orbit which cannot be compact for example

due to the Non-compactness Theorem 3.2) or will not pose a problem. The

other type has infinitely many ≤ot-minimal orbit types and therefore presents

a non-trivial challenge. The latter will be called ‘essential’ forced-compact

sets. Since the group actions without proper essential forced-compact sets

can be viewed as the building blocks of more general group actions we will

call them ‘fundamental’ group actions.

We will see that these forced-compact sets are in some sense a glimpse of

the following section. However, their ease and simplicity make them worth

mentioning as a separate phenomenon.

3.3 Continuity of stab

In this section we will equip G≤ with a topology such that the stabilizer map

stab: X → G≤ and therefore the induced map on the orbit space are both

continuous. Note that the orbit spectrum is in fact the image of X under

stab. Thus, if stab is continuous, then the orbit spectrum is a compact

subspace of G≤!

We begin by shifting our attention from the topological point of view

to a convergence-theoretic point of view. To this end, we give a very brief

definition of convergence structures and how they are related to topological

spaces.

In the same way that topologies can be seen as generalized metric spaces,

we can see convergences as generalized topological spaces. One motivation
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for their invention is that their category-theoretic behaviour is much better

than that of topological spaces. We will not concern ourselves with these con-

siderations but merely remark that the category of convergences is Cartesian

closed and that the category of topological spaces forms a full subcategory.

3.3.1 Definition of Convergence Theoretic Structures

A convergence is a relation→ between the filters on a set X and its elements.

It satisfies the following axioms:

(i) {A ⊂ X : x ∈ A} → x;

(ii) if F1 ⊂ F2 and F1 → x then F2 → x;

If F is a filter on X we write limF = {x ∈ X : F → x}.

The concept of continuity is generalized as expected:

A map f between to convergence spaces X and Y is said to be (con-

vergence)-continuous if and only if F →X x implies f(F)→Y f(x) for each

filter F of X and each point x ∈ X, where f(F) denotes the filter generated

by {f(F ) : F ∈ F}.

Finally we briefly mention the relation between topologies and conver-

gences. Every topology τ on X gives rise to a convergence→τ on X, namely

that F →τ x if and only if F contains all neighbourhoods of x. Note that

a continuous map between two topological spaces is convergence-continuous

between the two induced convergence spaces.

Conversely every convergence → on X gives rise to a topology τ→ on X

defined via the closure operator:

A = {x ∈ X : ∃F → x. A ∈ F}

Note however that these operations are not inverses of each other as in general

→τ→ 6=→. If however →τ→=→ then we say that → is topological. If X,Y

are two topological convergence spaces and f a convergence-continuous map

from X to Y then f is continuous with respect to the induced topologies.

A more detailed introduction to convergence spaces can be found in [4]

and [3].
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3.3.2 A Topology on G≤

We can now proceed to use the above machinery to deal with our specific

problem of finding a topology on G≤ such that stab is continuous. The

convergence of interest to us is the upper Kuratowski convergence.

Definition 3.7. Let X be a topological space. The upper Kuratowski con-

vergence on the set of closed, non-empty subsets of X, C(X), is defined by

F → C if and only if
⋂

F∈F

⋃

F ⊂ C.

The proof of the next lemma, namely that stab is a convergence-continuous

map, formalizes the idea that if xα is a net in X converging to x and hα a

net in G converging to h such that hαxα = xα for each α then hx = x. Note

however that due to diagonalization issues, a näıve approach does not work.

The notation regarding uniform spaces is taken from [6], where a uniformity

is defined as a family U of entourages of the diagonal (i.e. a family of sym-

metric subsets of X2 containing idX = {(x, x) : x ∈ X}) which is closed under

taking supersets and finite intersections and furthermore satisfies

(i) ∀V ∈ U . ∃W ∈ U . 2W ⊂ V ,

(ii)
⋂

U = ∆.

For x, y ∈ X and U ∈ U we say that |x− y| < U if and only if (x, y) ∈ U and

define the set U(x) = {z ∈ X : |x− z| < U}.

Lemma 3.8. If (X,G) is a completely regular continuous group action where

G is an Abelian Hausdorff topological group, then stab: X → G≤ is convergence-

continuous from X with the convergence induced by the topology, to G≤ with

the upper Kuratowski convergence.

Proof. First, equip X with a uniformity U inducing its topology, which is

possible as X is completely regular.

Let F be a filter on X and x ∈ limF . To show that stab is convergence-

continuous, we need to prove that stab(x) ∈ lim stab(F), or using the defini-

tion of the upper Kuratowski convergence that
⋂

F∈F

⋃

y∈F stab(y) ⊂ stab(x).

So let h be an element of the left hand side.
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We will show that for each U ∈ U we have |hx− x| < U . T1-ness of X

then implies that x = hx as required. To do this let V ∈ U with 2V ⊂ U . If

|hx− gy| < V and |gy − x| < V then we must have |hx− x| < U .

Continuity of the group action implies that there is a neighbourhood A

of h and some W ∈ U such that AW (x) ⊂ V (hx) and W ⊂ V . As F → x

we have W (x) ∈ F and thus h ∈
⋃

y∈W (x) stab(y), i.e. there exists some

g ∈ A ∩ stab(y) for some y ∈ W (x). But with these choices gy = y giv-

ing |gy − x| = |y − x| < V and |hx− gy| < V . Hence g and y witness that

|hx− x| < U as required.

So far we used the convenient framework of convergences to obtain our

result. We will now translate back into the better known and more widely

used topological spaces.

The appropriate topology on G≤ turns out to be the co-compact topology.

Definition 3.9. The co-compact topology, τCo, on the set C(G) of closed,

non-empty subsets of G is the topology generated by the base

B = {{C ∈ C(G) : C ∩K = ∅} : K compact ⊂ G} .

In other words, a typical basic open set is the collection of closed subsets of

G which miss a fixed compact subset of G.

As G will always be an Abelian topological group in our applications and

we are only interested in the subspace G≤ of closed subgroups of C(G), we

will denote
{

H ∈ G≤ : H ⊂ U
}

by Û for every subset U of G.

In [4] the close connection between the upper Kuratowski convergence

and the co-compact topology has been demonstrated.

Theorem 3.10. If G is a locally compact, completely regular space then the

upper Kuratowski convergence on C(G) is topological and induces a topology

which coincides with the co-compact topology on C(G).

Note that in the same paper other premises replacing Čech-completeness

are given. The above is sufficient for us, as all specific groups considered in

the sequel are indeed Čech-complete.
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Collecting the above theorems and lemmas together we arrive at the fol-

lowing rather neat result.

Theorem 3.11 (Continuity Theorem). If G is a locally compact Abelian

Hausdorff group acting continuously on a Tychonoff space X then the map

stab: X → (G≤, τCo);

x 7→ stab(x)

is continuous. In particular, this theorem holds if X is compact Hausdorff.

Theorem 3.11 gives us a strong restriction on the image of X under stab,

i.e. the orbit spectrum.

Corollary 3.12. The orbit spectrum of a continuous action of a locally com-

pact Abelian Hausdorff group on a compact Hausdorff space is the continuous

image of a compact Hausdorff space, thus in particular compact. Moreover, if

every orbit type of this action occurs at most once and every orbit is compact

then the orbit spectrum has a finer compact Hausdorff topology.

Note that not only compactness, but also connectedness is preserved by

continuous maps. The orbit spectrum of a continuous action therefore gives

insight into the dynamical structure of the action.

Finally we address the comment made in the section on forced-compact

sets. If g ∈ G and stab is continuous intoG≤, e.g. G is locally compact andX

is compact Hausdorff, we may consider the co-compact subset U = G \ {g} of

G. The associated open set Û in the co-compact topology contains precisely

those elements of G≤ that do not contain g. Its complement, i.e. all H ∈ G≤

with g ∈ H is closed and thus stab−1(
{

H ∈ G≤ : g ∈ H
}

) is a closed subset

of X, hence compact. Noting that stab−1(
{

H ∈ G≤ : g ∈ H
}

) = Fix{g} we

see that the forced-compact sets are inverse images of closed sets under stab.

3.4 Non-compact Orbits

Our considerations above give only restrictions on the orbit spectrum and

only indirectly on the weighted orbit spectrum. In particular they do not give
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any information about the size of κH for H ≤ G but only distinguish between

κH = 0 and κH > 0. In view of Lemma 4.1 there cannot be a stronger general

theorem.

However, if all orbits are non-compact, it is possible to say a lot more.

Dr Knight (private communication) proved that continuous R-actions on

compact Hausdorff spaces with only non-compact orbits must have c many

orbits.

We can generalize this to the following powerful theorem which holds for

a wide variety of groups.

Theorem 3.13 (Continuum Theorem). If G is a σ-compact Abelian Haus-

dorff group acting continuously on a compact Hausdorff space X such that

every orbit is non-compact, then there are at least c many orbits.

We will prove this theorem in two steps.

Lemma 3.14. Suppose (X, ρ,G) is a compact group action such that every

orbit is non-compact. Then there exists a non-empty closed invariant subset

X ′ of X, such that no orbit in (X ′, ρ|X′ , G) is open. We will call this subset

the core of the group action.

Proof. We will define X ′ by recursion. Let X0 = X and define

Xα+1 = Xα \
⋃

{Gx : Gx open in Xα} .

For limit ordinals γ > 0 we let Xγ =
⋂

β<γ Xβ.

As
⋃

{Gx : Gx open in Xα} is a union of Xα open sets and therefore open

in Xα, each Xα+1 will be closed, provided Xα is. Since the intersection of

closed sets is closed, Xγ will be closed for every limit ordinal γ. Hence by

recursion every Xα will be closed.

Note also that if γ > 0 is a limit ordinal and Xγ = ∅ then compactness

of X implies that Xβ = ∅ for some β < γ. However if Xα+1 = ∅ but Xα 6= ∅

then Xα is a closed, therefore compact subset of X which is the topological

sum of non-empty non-compact sets, a contradiction. Thus by recursion

Xα 6= ∅ for all α provided X0 = X 6= ∅.
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Let α0 be the least ordinal such that Xα0 = Xα0+1. Then no orbit of Xα0

is open in Xα0 and Xα0 is a non-empty closed invariant subsystem of X as

required.

Next we will construct a set of size ≥ c in this core that meets every orbit

at most once. An adaptation of the standard bisection construction of a

Cantor subset of I easily gives a Cantor subset of X. We will further modify

this construction to ensure our condition on the intersections with the orbits.

Lemma 3.15. Let (X,G) be a compact group action without open orbits. If

G is σ-compact, Abelian and Hausdorff there is a subset of size c of X which

meets each orbit at most once.

Proof. SinceG is σ-compact we may writeG =
⋃

n∈ω Gn where for each n ∈ ω

Gn is compact, e ∈ Gn ⊂ Gn+1 and G−1
n = Gn.

Since X has no open orbits, every open subset of X meets at least two

orbits. For if U is open and U = Gx ∩ U then GU = Gx is an open subset

of X. In particular if n ∈ ω and x1, . . . , xk ∈ X then U \
⋃k

l=1Gnxl is a

non-empty open set.

By induction on n we will construct open sets Uf for each f ∈ 2n such

that

• if g extends f then Uf ⊃ Ug;

• if f, g ∈ 2n are distinct then GnUf ∩GnUg = ∅.

For f = ∅ we let Uf = X. Suppose we have constructed Uf as claimed for all

f ∈ 2n. For f ∈ 2n we write f i for the element g of 2n+1 such that g(n) = i

and g|2n = f . Enumerate all elements of 2n as {f1, . . . , f2n}. A simple re-

cursion on k provides x0
k, x

1
k ∈ Ufk

for k = 1, . . . , 2n such that the Gn+1x
i
k

are all disjoint. The recursion works since U 0
k = Ufk

\
⋃

l≤k,i=1,2G2(n+1)x
i
k is

non-empty, so choosing x0
k+1 ∈ U

0
k and x1

k+1 ∈ U
0
k \G2(n+1)x

0
k+1 works. Since

Gn+1 is compact, the Gn+1x
i
k are closed and thus can be separated by disjoint

open sets U i
k. Continuity of the group action, G−1

n+1 = Gn+1 and compactness

of the latter provides a U ′
f i

k

∋ xi
k with Gn+1U

′
f i

k

⊂ U i
k. Now regularity gives a
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Uf i
k

with xi
k ∈ Uf i

k
⊂ Uf i

k
⊂ U ′

f i
k

∩ Uf . It is clear that the Uf i
k

satisfy the two

conditions.

Finally note that for each f ∈ 2ω we have Cf =
⋂

n∈ω Uf |n =
⋂

n∈ω Uf |n

and the latter is non-empty as X is compact. Hence we may choose xf ∈ Cf .

We want to show that {xf : f ∈ 2ω} meets every orbit at most once. So

suppose that x ∈ Gxf ∩Gxh for f 6= h ∈ 2ω. Write x = gfxf = ghxh with

gf , gh ∈ G and choose n such that gf , gh ∈ Gn and f |n 6= h|n. Then

gfxf ∈ GnUf |n = Vf , ghxh ∈ GnUh|n = Vh and Vf ∩ Vh = ∅ by construction.

However this contradicts gfxf = ghxh.

Therefore {xf : f ∈ 2ω} is a set of size c which meets every orbit at most

once.

Proof of theorem. Use Lemma 3.14 to obtain the core X ′ of X to which we

may apply Lemma 3.15 to see that X ′ and hence X contains at least c many

different orbits.

Since every σ-compact topological space is also Lindelöf we can com-

bine Theorem 3.13 with the Non-compactness Theorem (Theorem 3.2). We

therefore obtain the corollary:

Corollary 3.16. Suppose G is a locally compact, σ-compact, Abelian, Haus-

dorff topological group acting continuously on a compact Hausdorff space X.

If G/ stab(x) is locally compact, Lindelöf and non-compact for each x ∈ X,

then there are at least c many orbits.



Chapter 4

General Constructions

We will now give some generic constructions which allow us to modify the

orbit spectrum of a continuous compact group action under very general

assumptions. These will be helpful when we show that certain abstract group

actions are compact-realizable.

Although all of these results serve mostly as a means to an end, there is

some interest in how these constructions work. Essentially we consider the

orbit space of a compact group action and try to assign levels, as one would

if one had a scattered space. We then have the options of

• adding more isolated orbits: in the language of scattered spaces that

amounts to adding new isolated points and possibly turning some of

the formally isolated points into limit points.

• changing isolated orbits, in particular enlarging them: this can be seen

as replacing one point of an isolated orbit by multiple copies.

• shrinking the orbits in the top layer: this amounts to a taking a quotient

under a suitable closed relation.

Since the orbit space is neither necessarily Hausdorff, nor in general scattered,

this cannot be done formally. Nevertheless it serves as a good image to have

in mind.

Specific mention should be made of Theorem 4.4 which exploits the order

relation on G-actions to show that abstract actions with a fixed point are

compact-realizable provided G is locally compact, Abelian Hausdorff.

23
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4.1 Extending Orbit Spectra

In Lemma 2.4 we have seen that the order relation between (weighted) orbit

spectra can be interpreted as denoting extendibility. This carries through to

the continuous case and further justifies our choice of the order.

Lemma 4.1 (Adding Lemma). Let G be a locally compact, Abelian, Haus-

dorff topological group and let wO, wO′ be weighted orbit spectra of admiss-

able G-actions. If wO is compact-realizable and wO ≤wos wO
′ then wO′ is

compact-realizable.

Proof. Let τ be a compact Hausdorff topology on C(wO) such that the

canonical group action is continuous. We will extend this topology to one on

C(wO′).

Equip M = C(wO′) \ C(wO) with the topology τM in which every orbit

Gx is clopen and has topology G/ stab(Gx).

The topology τ ′ on C(wO′) is then generated by

τM ∪
{

R−1(U) \ C : U ∈ τ, C compact ⊂M
}

,

where R is the retraction defined in Lemma 2.4.

Clearly τ ′ is a compact Hausdorff topology on C(wO′).

If x ∈M then ρ′ is continuous at each (g, x) for g ∈ G, since G acts contin-

uously on G/ stab(Gx) ≈ Gx ⊂M ⊂ C(wO′). So let x ∈ C(wO), g ∈ G and

consider R−1(U) \ C for x ∈ U ∈ τ , C a compact subset of M . Continuity of

ρ implies that there are open F ⊂ G, V ∈ τ such that g ∈ F, x ∈ V, FV ⊂ U .

SinceG is locally compact, we may assume that F is compact. Now y ∈ R−1(V ),

f ∈ F implies R(fy) = fR(y) ∈ U so FR−1(V ) ⊂ R−1(U). Note that F
−1
C

is a compact subset of M and if fy ∈ C with f ∈ F then y ∈ F−1C. Thus

F (R−1(V ) \ F
−1
C) ⊂ R−1(U) \ C and R−1(V ) \ F

−1
C is an open set con-

taining x. This shows continuity of ρ′ at (g, x).

The restriction to locally compact groups is essential as the next example

shows.
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Example 4.2. Let G = Q and consider an abstract group action (X,Q)

consisting of c many orbits of type Z (i.e. of period 1) and one orbit OH of

type H ( Z, e.g. a non-periodic orbit.

We claim that this group action is not compact-realizable. For suppose

τ were a compact Hausdorff topology on X making the group action con-

tinuous. Considering FixZ we see that the orbit of type H must be open,

therefore locally compact (an open subset of a compact space is locally com-

pact). Take an open subset U of OH with U ⊂ OH and U compact (which

exists by local compactness and regularity of (X, τ)). Then U is a countable

compact set, and therefore must contain an isolated point x0, say. However,

x0 then is also isolated in U and thus in X. Since every map X → X;x 7→ qx

for q ∈ Q is a homeomorphism, that implies that every point of Qx0 = OH is

isolated. This contradicts that the map Q→ X; q 7→ qx0 is continuous, i.e.

that Qx has a coarser topology than Q.

Note on the other hand that an abstract Q-action that consists of c many

orbits of type Z is compact-realizable. Thus the Adding Lemma cannot be

applied to groups which are not locally compact.

From Lemma 4.1 we immediately get the following corollary.

Corollary 4.3. Let G be a locally compact, Abelian, Hausdorff topological

group and O,O′ orbit spectra of admissable G-actions. If O ≤os O
′ and O is

compactifiable then so is O′.

Proof. We observe that if O ≤ O′ then there are G-actions ρ, ρ′ with orbit

spectra O,O′ respectively such that their weighted orbit spectra, wO, wO′,

also satisfy wO ≤wos wO
′. Moreover if wO is chosen such that κH ≤ 1 for

every H ≤ G then we may choose wO′ to satisfy the same condition.

We will begin to see the importance of these constructions in the next

chapters. For now, let us note that they give the following theorem.

Theorem 4.4 (Fixed-point Compactification Theorem). If G is a locally

compact, Abelian, Hausdorff topological group, and ρ an admissable G-action

with a fixed point, then ρ is compact-realizable.
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Proof. Note that the weighted orbit spectrum with κG = 1, κH = 0 forH 6= G

is ≤wos-minimal and trivially compact-realizable. Now apply Lemma 4.1.

4.2 Modifying Orbit Types

In the previous section we have shown how to add orbits to a compact group

action. Now we concern ourselves with modifying orbits of a compact group

action. There are three basic operations which may be carried out. Since

they modify already existing orbits (instead of adding new ones) the topology

of the modified orbits has to be taken into account. The first two operations

concern themselves with compact orbits while the last considers isolated or-

bits. Note that the two former change only finitely many orbits at a time,

whereas the last one allows to change infinitely many orbits at once.

Lemma 4.5 (Identification Lemma). Suppose that (X,G) is a compact group

action with G Abelian Hausdorff. If two orbits O1,O2 are compact and have

the same orbit type, then we can identify them and obtain a continuous com-

pact G-action.

Proof. Let xi ∈ Oi and consider the relation

R = id∪{(gx0, gx1) : g ∈ G} ∪ {(gx1, gx0) : g ∈ G}

on X2. R is invariant under G (since the orbit types of O1 and O2 are

the same) so the result follows provided R is closed. To that end note that

(O1, G) , (O2, G) are conjugate by Lemma 3.1 and hence {(gx0, gx1) : g ∈ G}

is homeomorphic to idO1×O2 which is compact, hence closed.

Lemma 4.6 (Shrinking Lemma). Suppose that (X,G) is a compact group ac-

tion with G Abelian Hausdorff. If O is a compact orbit and stab(O) ⊂ H ∈ G≤

then O may be replaced by an orbit of type H.

Proof. Since O is compact it is conjugate to G/ stab(O) so that the relation

id∪{(x, hx) : x ∈ O, h ∈ H}

is closed in X2 and invariant under G.
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Lemma 4.7 (Expanding Lemma). Suppose that (X,G) is a compact group

action where G is locally compact, Abelian, Hausdorff. If each Oα, α ∈ I with

stab(Oα) = Hα is open in X and G/Hα is compact, then we may replace each

Oα with O′
α with stab(O′

α) = H ′
α ∈ G

≤ provided H ′
α ⊂ Hα and each G/H ′

α is

compact Hausdorff.

Proof. Let τ be the compact Hausdorff topology on X. Define

Y = (X \
⋃

α∈I

Oα) ∪
⋃

α∈I

O′
α

and define a topology τ ′ on Y as follows: choose xα ∈ Oα and x′α ∈ O
′
α

(α ∈ I).

• each orbit O′
α (α ∈ I) is open and equipped with the topology G/H ′

α;

• if U ∈ τ then

U ′ = (U \
⋃

α∈I

Oα) ∪ {gx′α : g ∈ G, gxα ∈ U, α ∈ I}

is open in τ ′.

τ ′ is Hausdorff: Suppose U, V ∈ τ are disjoint and that y ∈ U ′ ∩ V ′. Clearly

y ∈ O′
α for some α. Hence there must be gU , gV ∈ G such that y = gUx

′
α = gV x

′
α

with gUxα ∈ U, gV xα ∈ V . But then gU = gV h for some h ∈ H ′
α ⊂ Hα so

gUxα = gV hxα = gV xα contradicting disjointness of U and V . Hence Haus-

dorffness of X implies that any two points from Y \
⋃

αO
′
α can be separated

by open sets. Since each orbit O′
α is closed (compact) and open in Y and

since G/H ′
α is Hausdorff this is sufficient to guarantee Hausdorffness of τ ′.

τ ′ is compact: Since for every every τ -open set U containing Oα, U ′ con-

tains O′
α and since all the Oα are open and all the O′

α compact, compactness

of X implies compactness of Y .

The group action on Y is continuous: This follows directly from the

definition and the fact that the group action on X is continuous.
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Discrete Groups

In this chapter we will consider countable discrete (Abelian) groups, in par-

ticular Z and Z2. We note however that the techniques presented will work

for Zn as well. We will find that a major factor in compactifiability is the size

of the set X. In particular, there is a fundamental difference between sets

with |X| ≥ c and sets with |X| < c with the latter being far more restricted

than the former. As will be explained below this is due to the fact that a

compact Hausdorff space of size less than c is a zero-dimensional, scattered

space.

Note that since all discrete groups are locally compact (in their discrete

topology), the results from chapters 2, 3 and 4 apply to the abstract group

actions we will be investigating in this chapter.

As remarked in the introduction the case for Z-actions has been solved

independently in [8] and [7]. We may summarize their results as follows.

Theorem 5.1. An abstract group action (X,Z) is compact-realizable if and

only if

1. all orbits are finite =⇒ there are finitely many minimal orbit types or

|X| ≥ c;

2. all orbits are infinite =⇒ |X| ≥ c.

This theorem provides a good starting point to explore the situation in

Z2.

28
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We note that the second implication is reflected in the corollary to the

Continuum Theorem (Corollary 3.16) and still holds for Z2. As there are

a variety of different infinite orbits, it does not tell the whole story. There

might be essential forced-compact subsets and we need to apply this result

to each of those.

A similar observation can be made about the first implication. Here the

Adding Lemma (Lemma 4.1), which is also applicable to G = Z, partially

explains the condition. Again we have to be careful to apply it to all the

essential forced-compact subsets. However, even if there are no essential

forced-compact subsets and we have at least c many orbits, there is a dis-

tinctly different flavour in the construction of an appropriate topology. This

comes from the potential interaction between two generators of Z2, i.e. the

existence of orbits whose stabilizer contains SlTm but neither Sl nor Tm.

The most striking difference between G = Z and G = Z2 however lies in

the case which is not explicitly mentioned in the above theorem, namely

the mixture of finite and infinite orbits in a countable phase space. For

G = Z a clever construction (in fact [7] and [8] use two entirely different

constructions) ensures that in this case we always have a compactifiable group

action. As we will see when examining the same case for G = Z2, these

constructions rely on the fact that for G = Z and any two distinct points

x, y in the same infinite orbit, there is essentially only one path between the

two, i.e. one of x, Sx, S2x, . . . , Snx, y or x, S−1x, S−2x, . . . , y where S is a

generator of Z. This clearly does not hold in Z2 any more and the multiplicity

of paths between such two points allows the deduction of additional necessary

conditions. In particular, we show that the existence of a finite orbit and an

orbit with trivial stabilizer will, in general, not be sufficient to guarantee that

an abstract group action (X,Z2) is compactifiable.

5.1 The Group Z2

Let us note a corollary of Lemma 4.1 which is similar in spirit to Theorem

4.4.
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Lemma 5.2. If an abstract group action (X,Z2) has only finitely many min-

imal orbit types and each of the minimal orbit types is finite, then the group

action is compact-realizable.

It will also be convenient to fix a set of generators S, T for Z2. Given

a subset S of a group G we will write 〈S〉 for the smallest subgroup of G

containing S, i.e. the group generated by S.

5.1.1 Forced Compact Subsystems

Note that for G = Z there are no essential forced-compact subsets. This

is different for G = Z2 as can be easily seen from an abstract group action

composed of orbits of type
〈

Sl0, T ni
〉

∪
〈

Sli , ST ni
〉

where ni does not divide

nj and li does not divide lj for i 6= j.

We will therefore focus on fundamental group actions, i.e. group actions

which do not contain an essential forced-compact proper subset. Note that

finitely many compact-realizable fundamental group actions can be pieced

together by simply taking the topological sum. Problems only occur when

infinitely many, possibly intersecting essential forced-compact subsets exist.

5.1.2 The Subgroups of Z2

Since all orbit types of abstract group actions of Z2 will be subgroups of Z2

we now give a listing of all of these, using the generators S and T .

Lemma 5.3. Every subgroup H of Z2 = 〈S, T 〉 is one of the following:

1.
〈

Sk, SlTm
〉

=
〈

SjT n, Tmk/j
〉

where 0 ≤ |l| < k, 0 < m, j = gcd (k, l),

n is chosen such that j ≡ nl (mod k) and 0 ≤ n < mk/j; in this case

the corresponding orbit is finite.

2.
〈

SlTm
〉

where l,m ∈ Z; in this case the corresponding orbit is infinite.

Proof. We write (α, β) Z for {(nα, nβ) : n ∈ Z}.

First observe that for any m1, n1,m2, n2, α ∈ Z we have

(m1, n1) Z + (m2, n2) Z = (m1, n1) Z + (m2 + αm1, n2 + αn1) Z.
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Hence, using the technique from the Euclidean algorithm, for each (m1, n1),

(m2, n2) ∈ Z2 where the mi are non-zero, there are (m, 0) , (m′, n′) ∈ Z2 such

that

(m1, n1) Z + (m2, n2) Z = (m, 0) Z + (m′, n′) Z. (5.1)

Thus if {Sm1T n1 , Sm2T n2} ∪ F (mi non-zero) is a set of generators of

H ≤ G, then so is
{

Sm, Sm′

T n′}

∪ F for some m,m′, n′ ∈ Z. We may then

further simplify F so that if SpT q ∈ F then |p| < |m| , |q| < |n′|.

Thus F is finite and we may apply equation 5.1 repeatedly, to obtain a

set of generators consisting of at most one element of type SlTm with l,m

non-zero and elements of type Ski and Tmi . Taking the greatest common

divisor for both the families {ki} and {mi}, we arrive at a generating set of

at most
{

SlTm, Sk0 , Tm0
}

with k0,m0, l,m ∈ Z.

If this set actually contains less than three elements we stop. Otherwise,

note that

(l,m) Z + (0,m0) Z =

(

l
m0

j
, 0

)

Z + (l′, j) Z

for j = gcd (m,m0) = αm+ βm0 and l′ = αl, to obtain a set of generators

of the form
{

SlTm, Sk0 , Sk1
}

. If k then is the greatest common divisor of k0

and k1 a generating set
{

Sk, SlTm
}

with two elements is found.

Above we have fixed an arbitrary set of generators {S, T} for Z2. It can

be advantageous however, to choose some specific generators. It is therefore

important to know that given any g = SLTM 6= e, we can find generators

S ′, T ′ of Z2 such that g = S ′L
′

for some L′ ∈ Z.

Lemma 5.4. Suppose {S, T} generate Z2 and that g = SLTM 6= e with

gcd(L,M) = 1. Then there is h ∈ Z2 such that {g, h} generate Z2.

Proof. Since gcd(L,M) = 1 there are P,Q ∈ Z such that PL+QM = 1.

Consider h = SQT−P and note that gPhM = SPL+QMTPM−MP = S whereas

gQh−L = SQL−LQTQM+LP = T .
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5.2 Small Phase Spaces

We will first consider group actions on sets of cardinality less than c. We

will see that these are fundamentally different from group actions on sets

of cardinality greater or equal to c, although the latter may contain closed

G-invariant subsets of size < c.

5.2.1 Necessary Conditions using Scattered Spaces

The main result of this section will be the following theorem. Just as impor-

tant as the theorem, however, are the techniques used in the proof. In fact,

these techniques allow a detailed study of the structure of the group action.

Theorem 5.5. Suppose that (X,Z2) is a continuous compact Hausdorff

group action with |X| < c.

• If Z2x is an infinite orbit, then there is y ∈ X with finite orbit satisfying

stab(x) ⊂ stab(y).

• If there is no orbit with trivial stabilizer, then there are finitely many

g1, . . . , gn ∈ Z2 such that there are orbits of type 〈gi〉 , i = 1, . . . , n and

all but finitely many minimal orbits have stabilizer
〈

gki

i , hi

〉

, ki 6= 0,

hi ∈ Z2.

• If there is no orbit with stabilizer 〈g〉 for g 6= e then there are only

finitely many minimal orbit types.

5.2.1.1 Zero-dimensional and scattered spaces

We need two facts about compact Hausdorff spaces X with |X| < c.

Theorem 5.6. Every compact Hausdorff spaceX with |X| < c is zero-dimen-

sional, i.e. has a basis of closed-and-open sets.

Recall that a scattered space is a topological space in which every non-

empty subspace contains an isolated point. In a scattered space we can define

a tower of subsets, the derived sets, by recursion. For any subspace A of X,
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A′ denotes the set of limit points of A in X. With this notation define by

recursion

X(0) = X

X(α+1) =
(

X(α)
)′

X(γ) =
⋂

β<γ

X(β) for γ a limit ordinal

The height of X, ht(X), is the least ordinal α such that X(α) = ∅ if such an α

exists. The height of a point x ∈ X, ht(x), is the unique ordinal α such that

x ∈ Iα(X) = X(α) \X(α+1), the αth level of X. Thus Iα(X) is the collection

of isolated points in X(α). We may totally order the points of X by x ≤s y if

and only if ht(x) ≤ ht(y) with x =s y if and only if ht(x) = ht(y). The top

level of the scattered space is then the collection of all maximal points with

respect to ≤s.

Using this terminology we can state the following well known theorem.

Theorem 5.7. Every compact Hausdorff space X with |X| < c is scattered

with height a successor ordinal < c and finite top-level.

5.2.1.2 Analysing scattered zero-dimensional compact Hausdorff

phase spaces

In the following we identify conditions on the orbit spectrum of (X,G) which

must hold under this assumption. Although our analysis is mainly concerned

with the case G = Z2, the techniques can be used to study the cases G = Zn

for any n ∈ N.

We start with a two simple observations.

Lemma 5.8. If (X,G) is a compact group action with |X| < c then every

level Iα(X) and every derived set X(α) is invariant under the group action.

Proof. For each x ∈ X, ht(x) is preserved under homeomorphisms.

Corollary 5.9. If (X,G) is a compact group action with |X| < c then there

is a finite orbit.
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Proof. The top-level of X is finite, non-empty and invariant under the group

action, so it must consist of finite orbits.

We now proceed with an intricate analysis of various cases, depending on

the existence or non-existence of certain infinite orbits.

Our approach will be made in two steps. First, we show that if we have a

finite open partition satisfying certain properties, then we can make deduc-

tions about the relationship of the stabilizers of various points of the phase

space. Secondly, we show that under certain conditions on the orbit spectrum

of (X,G), a particularly nice finite open partition exists.

Let us start with a definition.

Definition 5.10. Suppose U is a finite open partition of the scattered space

X.

We say that U satisfies the maximality condition if and only if for each

U ∈ U there is a unique ≤s-maximal point in U , say zU . For x ∈ X we write

Ux for the unique U ∈ U with x ∈ U and zx for the ≤s-maximal element of

Ux. Write MU = {zU : U ∈ U}, the set of ≤s-maximal points with respect to

U . An element zx of MU will be called U -maximal or simply maximal if U is

clear from the context.

Now assume that G acts on X. If U satisfies the maximality condition we

say that the pair (x, h) ∈ X ×G is obedient with respect to U if and only if

zx ≤s zhx =⇒ hx ∈ Uhzx

and zx ≥s zhx =⇒ x ∈ Uh−1zhx
.

For a fixed H ⊂ G invariant under taking inverses, we say that x is obedient

with respect to U and H if and only (x, h) is obedient with respect to U for

all h ∈ H. If H or U are clear from the context we omit the references to

them. We use the term rebellious to indicate that a pair (x, h) ∈ X ×G or

a point x ∈ X is not obedient.

We denote the set of all U , H-obedient points by GH
U or simply GU if H

is clear from the context.

We call a set M ⊂ X periodically closed with respect to H if and only

if for each x ∈M and each W = SLTM ∈ Z2 such that x is W -periodic,
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there is a finite sequence f0 = e, f1, . . . , fk(x,W ) = W of elements of G (de-

pending on both x and W ) such that hi = fi+1f
−1
i ∈ H for i = 0, . . . , k − 1,

i 6= j =⇒ hi 6= h−1
j and

∀i ∈ {0, . . . , k(x,W )− 1} , l ∈ Z. fiW
lx ∈M.

Again, if H is clear from the context, we will omit the reference to it.

We say that U satisfies the periodic closure condition (pcc) in X(β) if the

set X(β) ∩ {zU : U ∈ U} is periodically closed. If U satisfies the pcc in X(0)

then we simply say that U satisfies the pcc.

The definition and a lot of what is to follow makes sense for H not closed

under taking inverses. However, since we want to maintain a certain sym-

metry, we will always assume in the following that in fact H−1 = H.

We also remark that (x, h) being obedient roughly means that x follows

zx under h up to the open partition U . That a set M is periodically closed

means that for each W -periodic point x of M there is a path in the set M

through x,Wx,W 2x,W 3x, . . . with each step in the path being an element of

H. It can therefore be thought of as a form of (discrete) path-connectedness.

From now on we will always assume that H is a finite, fixed subset of G

and that 〈H〉 = G. If G = Z2 we will always work with H = {S±1, T±1} in

the remainder of this section unless explicitly stated otherwise.

Let us note a few facts about the various concepts defined here.

Lemma 5.11. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition.

Then the following holds for all x ∈ X, g ∈ G.

(i) (x, g) is obedient if and only if

zx ≤s zgx =⇒ zgx = zgzx

and zgx ≤s zx =⇒ zx = zg−1zgx
.

(ii) If gzx = zgx then (x, g) is obedient.
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(iii) If (x, g) is obedient and zx =s zgx then gzx = zgx.

(iv) If zx = x then (x, g) is obedient.

(v) If y ∈ Ux then x ∈ Uy and Ux = Uy.

(vi) If zy ∈ Ux then zx = zy.

(vii) If (x, g) is obedient then so is (gx, g−1).

Proof. This follows directly from the definitions and the fact that

w ∈ Uy ⇐⇒ y ∈ Uw.

These facts will be used in the following without mentioning them explic-

itly.

Our interest in open partitions satisfying the maximality condition and

the pcc stems from the next theorem. It shows that a lot of information about

the structure of a dynamical system is contained in these open partition.

Theorem 5.12. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition and the pcc such that all points of X are obedient.

Suppose that x is a point of X such that zx is ≤s-minimal among the zy

for y ∈ Gx. If x is W -periodic (W ∈ G) with period q and zx is W -periodic

with period p then q ∈ pZ.

Proof. Let f0(zx,W ) = e, f1(zx,W ), . . . , fk(zx,W )(zx,W ) be the sequence pro-

vided by periodic closedness of U . Then fiW
lzx =s zx is maximal for all i, l

and hence all of them are ≤s-minimal among the zy, y ∈ Gx.

The obedience of fiW
lx (i = 0, . . . , k(zx,W )− 1; l ∈ Z) then implies by

induction that zfiW lx = fiW
lzx for i = 0, . . . , kW − 1; l ∈ Z. But W qx = x so

zx = zW qx = W qzx. If p is the W -period of zx then we must clearly have p|q,

i.e. q ∈ pZ.
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It is clear that using the last theorem with different partitions of X will

give different information about the group action. If, for example, a partition

contains a point with trivial stabilizer as a U -maximal point, then the last

theorem does not tell us very much unless we have a more detailed knowledge

of the partition. Our next task is therefore to construct particularly nice open

partitions, for example ones where every U -maximal point has non-trivial

stabilizer. However, first we give a lemma that extends the information we

can extract using the above theorem.

Lemma 5.13. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition and the pcc such that all points of X are obedient.

If x ∈ X, zx is ≤s-minimal among the zy, y ∈ Gx and zx is g-periodic for

all g ∈ G, then zgx = gzx for all g ∈ G and stab(x) ⊂ stab(zx).

Proof. Suppose that zx 6= x and let W ∈ H. Since zx ≤s zWx we have

Wx ∈ UWzx
. However, zx being W -periodic implies that Wzx is U -maximal.

Thus zWx = Wzx and zWx is also ≤s-minimal among the zy, y ∈ Gx. Since

H was assumed to generate G, we have by induction that in fact zgx = gzx

for all g ∈ G. If now g ∈ stab(x) then gzx = zgx = zx so that g ∈ stab(zx)

and thus stab(x) ⊂ stab(zx) as claimed.

The scatteredness of the space X suggest to start with an open partition

approximating the structure of the group action rather crudely and refining

this further and further until all points are obedient. We will go down through

the layers of the scattered space, since for each point x ∈ X we can find a

closed-and-open neighbourhood of it in which x is the ≤s-maximal point.

Our starting point, the partition approximating the structure of (X,G)

in a rather crude way, is provided by the following.

Lemma 5.14. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c.

Then there is a finite open partition satisfying the maximality condition

such that the top-level of X consists of obedient points only.
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Proof. Since the top-level is finite, we can enumerate it as T = {x1, . . . , xn},

say. For i = 1, . . . , n− 1 choose closed-and-open sets Ui such that Ui ∩ T = {xi},

i = 1, . . . , n− 1 and that the Ui are pairwise disjoint. This is possible as X

is Hausdorff. Now set Un = X \
⋃n−1

i=1 Ui and note that U = {U1, . . . , Un} is

as desired.

The important observation which allows us the inductive refinement of

the open partitions consist of the following two lemmas.

Lemma 5.15. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition.

If H is is a finite subset of G then the collection of obedient points, GH
U ,

is closed-and-open in X.

Proof. First assume that x ∈ X is obedient. Then (x, h) is obedient for every

h ∈ H. Consider the open neighbourhood Vh = Ux ∩ h
−1(Uhx) of x. If y ∈ Vh

then zy = zx, zhy = zhx and hzy = hzx. Therefore if zy ≤s zhy then zx ≤s zhx

and therefore hy ∈ Uhx = Uhzx
= Uhzy

where the first equality follows from

obedience of (x, h). If on the other hand zy ≥s zhy then similarly zx ≥s zhx

and therefore y ∈ Ux = Uh−1zhx
= Uh−1zhy

. Thus (y, h) is obedient. Now con-

sider the open neighbourhood
⋂

h∈H Vh of x and note that by the foregoing

every point of it is obedient. Therefore GH
U is open.

Conversely suppose that x is rebellious. Then there is some h ∈ H such

that (x, h) is rebellious. Take any point y ∈ Vh as defined above. If zy ≤s zhy

then hy ∈ Uhx 6= Uhzx
= Uhzy

where the inequality expresses the fact that

(x, h) is rebellious. If on the other hand zy ≥s zhy we may deduce that

y ∈ Ux 6= Uh−1zhx
= Uh−1zhy

. Thus (y, h) is rebellious for every y ∈ Vh. There-

fore GH
U is closed.

The last lemma implies that the set of rebellious points of X is a closed

hence compact subset and as such a scattered space itself.

Lemma 5.16. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition.
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The least ordinal α such that X(α) ⊂ GU is a successor ordinal βU + 1

or 0 in which case we write βU = −1. In the case that βU 6= −1 the set of

rebellious points in level βU , IβU
(X) \GU , is non-empty and finite.

Proof. This is a direct consequence of Lemma 5.14, Theorem 5.7 and the

compactness of the set of rebellious points which follows from Lemma 5.15.

In order to describe how to change a finite open partition U satisfying

the maximality condition, it is convenient to have some descriptive language

which hides the technical complexities. The following definition provides two

basic operations which we will use over and over in the process of refinement.

Definition 5.17. Suppose that (X,G) is a compact group action (GAbelian)

with |X| < c. Let U be a finite open partition satisfying the maximality

condition. When saying that we move x ∈ X to U ∈ U we mean that we

choose a closed-and-open set U ′ ⊂ Ux such that x is the unique ≤s-maximal

point in U ′ and replace U by the finite open partition

(U \ {U,Ux}) ∪ {Ux \ U
′, U ∪ U ′} .

When saying that we isolate x ∈ X we mean that we choose a closed-and-

open set U ′ ⊂ Ux such that x is the unique ≤s-maximal point in U ′ and

replace U by the finite open partition

(U \ {Ux}) ∪ {Ux \ U
′, U ′} .

It is important to know how the obedience status of pairs (x, g) of X ×G

change when moving or isolating a point. This is what the next lemma

describes.

Lemma 5.18. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c. Let U be a finite open partition satisfying the maximality con-

dition.

If we move a point x ∈ X to U ∈ U then the obedience status of all (y, g)

with y ∈ X(ht(x)) and y, gy 6= x is unchanged (g ∈ G).
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If we isolate a point x ∈ X then the obedience status of all (y, g) with

y ∈ X(ht(x)) and y, gy 6= x is unchanged (g ∈ G), whereas (x, g) will be obe-

dient for any g ∈ G.

Proof. Suppose that y, gy 6= x and y ∈ X(ht(x)). Then by moving x to U ∈ U

we have not changed zy, zgy, gzy, g
−1zgy, zgzy

, zg−1zhy
. Since obedience of (y, g)

depends only on the latter, it has not changed. By isolating x on the other

hand we have not changed zy, zgy. If y 6= zy then ht(zy) > ht(x) so none of

hzy, zgzy
has changed. If on the other hand y = zy then gzy = gy, zgzy

= zgy

and these have not been changed. Similar considerations apply to g−1zgy and

zg−1zy
. Finally to see that (x, g) is now obedient just note that by definition

zx = x after the isolation.

In the process of isolating points in Iα(X), we might arrive at an open

partition that does not satisfy the pcc in X(α) although the original partition

did. The next lemma ensures that further isolation of at most finitely many

points gives an open partition which has the pcc in X(α) without worsening

the obedience status of points in X(α).

Lemma 5.19. Suppose that (X,Z2) is a compact group action with |X| < c

and that U is a finite open partition satisfying the maximality condition.

If all points of X(β) are obedient and all U-maximal points have height at

least β, i.e. MU ⊂ X(β), and U satisfies the pcc in X(β+1) then there exists

a finite open partition U ′ satisfying the maximality condition such that all

points of X(β) are U ′-obedient and U ′ satisfies the pcc in X(β). Moreover the

sets {zx : x ∈ X, stab(zx) = {e}} are identical with respect to U ,U ′.

Proof. We will isolate finitely many points in Iβ(X). By Lemma 5.18 this

will give a finite open partition U ′ satisfying the maximality condition such

that all points of X(β) remain obedient.

Let

S = {x ∈ Iβ(X) : zx = x}

and assume x ∈ S. If x is periodic, then isolate all points in Gx, noting

that the latter is finite. We then certainly have that for any W ∈ Z2 any

y ∈ Gx and any sequence f0 = e, . . . , fk(y,W ) = W ∈ Z2 with fi+1f
−1
i ∈ H
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that zfiW ly = fiW
lzy. If on the other hand x has stabilizer 〈W n〉, where

W = SLTM ∈ Z2 with gcd(L,M) = 1 we let

g0 = e,g1 = Ssgn(L)1, . . . , g|L| = SL,

g|L|+1 = SLT sgn(M)1, . . . , g|L|+|M | = SLTM)

and hi+|L|+|M | = hi = gi+1g
−1
i ∈ H for i = 0, . . . , |L|+ |M | − 1. Then isolate

all points yi,m = giW
mx for i = 0, . . . , |L|+ |M | − 1;m = 0, . . . , n− 1 and

define

fk(yi,m,W ) =
k

∏

j=1

hj+i−1, k = 0, . . . , |L|+ |M |

(we redefine fk(yi,m,W ) in this way if necessary). As every element W ′ under

which yi,m is periodic can be generated by W we can define the sequence

fk(yi,m,W
′) by concatenation and possible reversal from fk(yi,m,W ).

Informally, what we do is choose a band (without backtracking) through

x around the cylinder representing Gx and isolate all its points. Then we

choose a sequence for each point in the band so that its images under elements

from the sequence are in the band again.

Doing this for every x ∈ S gives a finite open partition U ′ as required.

As no points with stabilizer {e} were isolated the sets

{zx : x ∈ X, stab(zx) = {e}}

are indeed identical for U ,U ′.

Recall that we would like to arrive eventually at a finite open partition

with respect to which there are no maximal points with trivial stabilizer. As

this is our only aim, we can deal with other points in a crude way.

Lemma 5.20. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition such that all points of X(β+1) are obedient and U satisfies the pcc

in X(β+1).

If all points x ∈ Iβ(X) with stab(x) = {e} are U-obedient, then there is

a finite open partition U ′ satisfying the maximality condition such that all
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points of X(β) are U ′-obedient, the sets {zx : stab(zx) = {e}} are identical

for U and U ′, and U ′ satisfies the pcc in X(β).

Proof. Isolate all U -rebellious points in the βth level of X all of which have

non-trivial stabilizer by assumption. By Lemma 5.15 there are only finitely

many of them and by Lemma 5.18 all points of X(β) will be obedient in the

new partition. Finally apply Lemma 5.19 to the new partition in order to

obtain U ′ as desired.

Note that quite often we could probably do much better, in that we do

not really need to isolate as many points as we describe above. For our

purposes, however, the previous lemma is sufficient.

We are therefore left with the problem that some points (in the level under

consideration) with trivial stabilizer are rebellious. What we need to do is to

move them, so that they will be obedient in the new partition. We will make

essential use of the two-dimensional nature of Gx in case stab(x) = {e}.

An auxiliary lemma will be shown first. This involves some form of ‘dia-

gram chasing’. The conditions we list in the lemma can be read as ‘all points

in higher layers behave very well’ and referred to later when actually using

these lemmas.

Lemma 5.21. Suppose that (X,G) is a compact group action (G Abelian)

with |X| < c and that U is a finite open partition satisfying the maximality

condition.

Suppose we have a diagram as shown

a
W
−−−→ x

V





y





y
V

b −−−→
W

y

where W,V ∈ H, (V za,W ), (V −1zb,W ) are obedient and

Wza = zx, WzV W−1zx
= zWV W−1zx

,

Wzb = zy, WzV −1W−1zy
= zWV −1W−1zy

(a, b, x, y ∈ X;W,V ∈ G).

Then (x, V ) is obedient.
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Proof. Suppose first that zx ≤s zy. za = W−1zx ≤s W
−1zy = zb and obedi-

ence of (a, V ) means b = V a ∈ UV za
= UV W−1zx

. Therefore VW−1zx ∈ Ub

giving zV W−1zx
= zb = W−1zy. Hence zV zx

= zWV W−1zx
= WzV W−1zx

= zy and

therefore V zx ∈ Uzy
= Uy. Thus V x = y ∈ UV zx

as required. If on the other

hand zx ≥s zy then the same argument with a, b, x, y, V replaced by b,a,y,x,V −1

respectively shows that x ∈ UV −1zV x
. We have therefore shown that (x, V ) is

obedient as claimed.

We have assembled all the necessary ingredients to be able to deal with

rebellious points with trivial stabilizer.

Lemma 5.22. Suppose that (X,Z2) is a compact group action with |X| < c.

Assume that U is a finite open partition of X satisfying the maximality prop-

erty, that all points of X(β+1) are obedient, all U-maximal points are contained

in X(β+1) and U satisfies the pcc in X(β+1).

If O is an orbit of type {e} such that all points {zy : y ∈ O} are peri-

odic, then there is a finite open partition U ′ of X satisfying the maximality

condition such that all U-obedient points of X(β) are U ′-obedient, all points

of O are U ′-obedient, all U ′-maximal points are contained in X(β+1) and U ′

satisfies the pcc in X(β+1).

Proof. If no point of O is rebellious we are done. So assume that there are

rebellious points in O. By Lemma 5.15 there are only finitely many rebellious

points in O. Thus there is a rectangle R = (0,K)× (0, L) ⊂ Z2 with (K,L)

minimal in the partial product order on N× N such that there is x ∈ O

with all rebellious points contained in W kV lx for (k, l) ∈ R. In the following
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diagram of the situation the arrows labelled 1 are obedient by assumption.

x
W
−−−→

1
Wx

W
−−−→

1
W 2x · · · WK−1x

W
−−−→

1
WKx

V





y
1 V





y
1 V





y
1 V





y
1 V





y
1

V x
W
−−−→

1
WV x

W
−−−→ W 2V x · · · WK−1V x

W
−−−→

1
WKV x

V





y
1 V





y
2 V





y
V





y
V





y
1

V 2x
W
−−−→

1
WV 2x

W
−−−→ W 2V 2x · · ·WK − 1V 2x

W
−−−→

1
WKV 2x

V





y
1 V





y
2 V





y
V





y
V





y
1

...
...

...
...

...

V





y
1 V





y
2 V





y
V





y
V





y
1

V L−1x
W
−−−→

1
WV L−1x

W
−−−→ W 2V L−1x· · ·WK−1V L−1x

W
−−−→

1
WKV L−1x

V





y
1 V





y
1 V





y
1 V





y
1 V





y
1

V Lx
W
−−−→

1
WV Lx

W
−−−→

1
W 2V Lx · · · WK−1V Lx

W
−−−→

1
WKV Lx

Our plan is to move points in Rx to shrink the rectangle until all points of

O are obedient.

Since U satisfies the pcc in X(β+1) we have Wzu = zWu and V zu = zV u

for every zu ∈ X
(β+1). From Lemma 5.21 we can deduce that (WV lx, V )

(the arrows labelled 2) are obedient for l = 1, . . . , L− 1. If K ≥ 4, we move

the points W 2V lx to UWz
WV lx

for l = 1, . . . , L− 1. From Lemma 5.18 and

K ≥ 4 this only changes the obedience status of points of R and possibly

V 2x,WKV 2x. By the choice of the moves, however, we have made sure that

(WV lx,W ) is obedient. Therefore we have shrunk the width, K, of R and

possibly increased its height, L. Repeat this until K < 4. If K ≤ 2 we use

Lemma 5.21 to see that in fact K = 0, i.e. there are no more rebellious

points in O. Thus we may assume that K = 3. The picture now looks as

follows, where points labelled ∗g, ∗a, ∗b and arrows labelled 1 are obedient by
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assumption, arrows labelled 2 are obedient by Lemma 5.21.

∗g
W
−−−→

1
∗a

W
−−−→

1
∗b

W
−−−→

1
∗g

V





y
1 V





y
1 V





y
1 V





y
1

∗g
W
−−−→

1
∗u

W
−−−→

4
∗y

W
−−−→

1
∗g

V





y
1 V





y
2 V





y
2 V





y
1

∗g
W
−−−→

1
∗

W
−−−→ ∗

W
−−−→

1
∗

V





y
1 V





y
2 V





y
2 V





y
1

...
...

...
...

V





y
1 V





y
2 V





y
2 V





y
1

∗g
W
−−−→

1
∗

W
−−−→ ∗

W
−−−→

1
∗g

V





y
1 V





y
2 V





y
2 V





y
1

∗g
W
−−−→

1
∗g

W
−−−→

1
∗g

W
−−−→

1
∗g

Using Lemma 5.21 with W and V interchanged shows that in fact the arrow

labelled 4 is obedient, and thus, by induction, all arrows are obedient.

Let us collect the lemmas together to construct certain open partitions

to which we can then apply Theorem 5.12.

First among these is the case in which no orbits of type 〈g〉 , g 6= e exist.

Note that this includes the possibility that all orbits are in fact finite. The

idea is that when combined with Theorem 5.12, we can conclude that there

are only finitely many minimal orbit types.

Theorem 5.23. Suppose that (X,Z2) is a compact group action with |X| < c.

If there are no orbit types of the form 〈g〉 , g 6= e, then there is a finite open

partition U of X satisfying the maximality property and the pcc, such that

stab(zx) 6= {e} for every x ∈ X and with respect to which every point is obe-

dient. Hence X contains only finitely many minimal orbits.
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Proof. We claim that for every α there is an open partition U of X with

{zx : x ∈ X} ⊂ X(α) satisfying the maximality property and the pcc in X(α)

such that all points in X(α) are obedient and stab(zx) 6= {e} for every x ∈ X.

By Lemma 5.14 this is true for every α with α + 1 ≥ ht(X). Let α0 be the

minimal α for which the above is true. If α0 = 0 we are done. Otherwise let

U witness that α0 satisfies the above. By Lemma 5.16 we may assume that

α0 = β + 1 and that the set N of rebellious points in Iβ(X) is non-empty and

finite. If N does not contain points with stabilizer {e} we can apply Lemma

5.20 and obtain a contradiction to minimality of α0. Otherwise apply Lemma

5.22 and again Lemma 5.20 to obtain a contradiction to minimality of α0.

To see that this implies that there are only finitely many minimal orbit

types, enumerate GU as z1, . . . , zn. If x ∈ X has finite orbit, let yx ∈ Gx be

such that zyx
is minimal among the zy, y ∈ Gx. Since zyx

is periodic under

every element of Z2 (it has a finite orbit) we can apply Lemma 5.13 to see

that stab(yx) ⊂ stab(zyx
). Hence only those orbits containing points from

GU have minimal orbit type and there are only finitely many of these.

Secondly, we consider the case if there are no orbits with trivial stabilizer.

This can be proven by the same technique as the previous.

Theorem 5.24. Suppose (X,Z2) is a compact group action with |X| < c. If

there are no orbits with trivial stabilizer, then there is a finite open partition

U of X satisfying the maximality condition and the pcc such that every point

of X is obedient. Thus, there are g1 = SL1TM1, . . . , gn = SLnTMn ∈ Z2 such

that gcd(Li,Mi) = 1, there exists an orbit of type
〈

gki

i

〉

for every i and for

all but finitely many minimal orbit types there is i (depending on the orbit)

such that the gi-period of it is a multiple of ki.

Proof. By Lemma 5.13 every orbit Gx with minimal type must either contain

a U -maximal point (and therefore consists entirely of U -maximal points) or

zx must be in an infinite orbit and ≤s-minimal among the zy, y ∈ Gx. Write

stab(zx) =
〈

(SLTM)k
〉

with L,M co-prime and observe that by Theorem

5.12 the SLTM -period of x is a multiple of k.

As there are only finitely many U -maximal points with respect to U the

result follows.
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We can now prove the Theorem 5.5.

Proof of Theorem 5.5. We prove the three statements in turn.

If Gx is an infinite orbit, then there is y ∈ X with finite orbit satis-

fying stab(x) ⊂ stab(y). Write stab(x) = 〈g〉 for g ∈ Z2 and consider Fixg.

This is an invariant closed subset of X and as such must contain a finite

orbit, all of whose elements are necessarily fixed under g.

If there is no orbit with trivial stabilizer, then there are finitely

many g1, . . . , gn ∈ Z2 such that there are orbits of type 〈gi〉 , i = 1, . . . , n

and all but finitely many minimal orbits have stabilizer
〈

gk
i , h

〉

,

k 6= 0, h ∈ Z2. This follows directly from Theorem 5.24.

If there is no orbit with stabilizer 〈g〉 for g 6= e then there are only

finitely many minimal orbit types. This follows directly from Theorem

5.23.

5.2.2 Necessary Conditions using Even Continuity

There is an alternative approach to derive some of the results from the section

5.2.1. This has been used in [8] to obtain necessary conditions for the case

G = Z. It centres around the concept of even continuity which originates in

the study of function spaces.

5.2.2.1 Even Continuity and the Ascoli Theorem

This material can be found in great detail in [6]. We only give the definition

of a family of evenly continuous functions and the Ascoli Theorem.

Suppose a F is a family of continuous functions from X to Y , both being

topological spaces. Fixing some x ∈ X, we say that F is evenly continuous

at x provided for every y ∈ Y and every open set V ∋ y there is an open set

U ∋ x and an open setW ∋ y such that for all f ∈ F f(x) ∈W =⇒ f(U) ⊂ V .

We can explain the concept roughly as follows: Given an x and some

open set V continuity of a map f guarantees an open neighbourhood U of
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x with f(U) ⊂ V provided of course that f(x) ∈ V . Even continuity of a

collection F of maps guarantees that the same U works for every element of

F . If, for example f is a continuous self-map on a space X fixing a point x

then continuity of f says that points sufficiently close to x will be mapped

to points which are also close to x. Even continuity of {fn : n ∈ N} means

that in fact the whole itinerary of points sufficiently close to x will stay close

to x.

Trivially every finite collection of continuous maps is evenly continuous.

In this context we can see even continuity as a kind of compactness for a

collection of maps. The precise statement of this is the Ascoli Theorem.

Theorem 5.25 (Ascoli Theorem). If X is a k-space (i.e. the continuous

Hausdorff image of a locally compact space) and Y is a regular space, then

a closed subset F of the collection of continuous functions from X to Y ,

Y X , with the compact-open topology is compact if and only if F is an evenly

continuous family of mappings and the set {f(x) : f ∈ F} ⊂ Y has compact

closure for every x ∈ X.

In the case of interest to us we have that X = Y is a compact Hausdorff

space and the collection F is a subset of the group G, i.e. consists entirely of

homeomorphisms. Compactness of X ensures that the last condition of the

theorem is fulfilled so that we may paraphrase it in this particular situation

as “F is evenly continuous if and only if it is a compact subset of XX with

the compact-open topology”.

5.2.2.2 Showing even continuity of group actions

When proving that a certain collection of functions is evenly continuous at a

point we make use of the following observations. The first of these concerns

even continuity at fixed points.

Lemma 5.26. Suppose that X is a Hausdorff space. If x is fixed under every

element of F and F is not evenly continuous at x then we can find a basic

neighbourhood V of x, a net xα → x and fα ∈ F such that fα (xα) /∈ V for

all α.
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Proof. Suppose that F is not evenly continuous at x and that f (x) = x

for every f ∈ F . By the definition of even continuity, we can find a y ∈ X

and a neighbourhood V of y such that for every neighbourhood U of x and

every neighbourhood W of y there is some fU ∈ F with fU (x) ∈W and

fU (U) 6⊂ V .

Note that we must have x = y. For, if x 6= y then by Hausdorffness we

can find a neighbourhood W of y not containing x and then fU (x) = x /∈W ,

a contradiction. On the other hand, if x = y then the condition fU (x) ∈W

is trivially fulfilled.

If we let the U range through a neighbourhood basis of x then choosing

an xU ∈ U with fU (xU) /∈ V results in a net xU converging to x and fU ∈ F

such that fU (xU) /∈ V . Clearly we may shrink V to a basic neighbourhood

V ′ of x.

We can now extend the previous Lemma from fixed points (points whose

orbit is has size 1) to points with finite orbit under F . This is expected since

in view of the Ascoli theorem, even continuity can be seen as a compactness-

like property.

Lemma 5.27. Suppose X is a Hausdorff space. If F is an Abelian group

of homeomorphisms and the orbit of x under F is finite, then F is evenly

continuous at x if and only if stab (x) is evenly continuous at x.

Proof. If F is evenly continuous at x, then so is stab (x). Conversely, suppose

stab (x) is evenly continuous at x. Take any y ∈ X and any neighbourhood

V of y.

If y is not in the finite orbit of x then choose a neighbourhood W of y

disjoint from the orbit of x under F . Clearly f (x) /∈ W for every f ∈ F , so

we may choose any neighbourhood U of x.

If on the other hand y = f (x) for some f ∈ F , then f−1 (V ) is a neigh-

bourhood of x. Thus by even continuity of stab (x) at x, there is a neigh-

bourhood U of x such that h (U) ⊂ f−1 (V ) for every h ∈ stab (x) and thus

fh (U) ⊂ V for every h ∈ stab (x). Choose W such that W ∩ Fx = {y}.
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With these choices of U and W we have that if g ∈ F then either g (x) = y

hence f−1g ∈ stab (x) and so g (U) = f (f−1g (U)) ⊂ V or g (x) 6= y and then

g (x) /∈ W .

The previous two Lemmas suggest that provided that all orbits are finite,

a continuous group action is in fact evenly continuous. That this is indeed

the case for finitely generated groups is shown in the next Lemma.

Lemma 5.28. Suppose X is a compact Hausdorff zero-dimensional space

and that G is a finitely generated Abelian group of auto-homeomorphisms of

X such that (X,G) has only finite orbits. Then G is evenly continuous on

X.

Proof. Suppose not. Then G is not evenly continuous at some x ∈ X. By

Lemma 5.27 we may assume that in fact x is fixed under G. Then by Lemma

5.26 and zero-dimensionality of X, we can find a closed-and-open neighbour-

hood U of x, a net xα → x and fα ∈ G such that fα (x) /∈ U .

Let f1, . . . , fn be a minimal set of generators forG and write fα = f
mα

1
1 · · · f

mα
n

n

for (mα
1 , . . . ,m

α
n) ∈ Zn such that

∑n
i=1 |m

α
i | is minimal.

Choose the fα such that sα =
∑

|mα
i | is minimal. We must have sα

unbounded for otherwise only finitely many different fα were involved. Hence

without loss of generality mα
1 is unbounded. By passing to a subnet and

possibly replacing f1 by f−1
1 we may assume that mα

1 →∞ and that mα
1 > 0.

Consider the points yα = f−1
1 fαxα. By minimality of sα we have yα ∈ U .

By compactness, we may assume, by taking an appropriate subnet, that yα

converges to some y ∈ U = U . By continuity of f1 we know that

f1yα → f1y ∈ X \ U . Since y has a finite orbit under G, there is a p ∈ N

such that fp
1 y = y and hence that f1−p

1 y = f1y /∈ U . As nα
1 →∞ eventually

nα − p > 0 and thus by minimality of sα we then have

f1−p
1 yα = f−p

1 fαxα ∈ U.

But then considering the convergence of the left hand side, we find

f1−p
1 y = f1y ∈ U = U,
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a contradiction.

5.2.2.3 Using even continuity of group actions

Having established that for certain group actions continuity implies even

continuity, we can use this stronger property to construct open sets which

interact nicely with the stab-map. These open sets are analogous to the open

sets in the obedient partitions constructed earlier.

Lemma 5.29. Suppose X is a compact Hausdorff space, (X,G) (G Abelian)

has only finite orbits and G is evenly continuous on X.

Then U (x) = {y ∈ X : stab (y) ≤ stab (x)} is open for every x ∈ X.

Proof. Note that it is sufficient to show that x is in the interior of U (x),

since if y ∈ U (x) then U (y) ⊂ U (x).

As the orbit of x under G is finite, we can enumerate its elements as

x0, . . . , xn with x = x0. Choose pairwise disjoint open sets U0, . . . , Un such

that xi ∈ Ui for i = 0, . . . , n.

By even continuity for each i there is an open neighbourhood Vi of x such

that ∀g ∈ G. g (x) = xi =⇒ g (Vi) ⊂ Ui. Let V = U0 ∩
⋂n

i=0 Vi.

Then for every g ∈ G, there is precisely one j such that g (V ) ∩ Uj 6= ∅.

This follows since g (x) = xj for a unique j and then g (V ) ⊂ g (Vj) ⊂ Uj and

the Uj are all disjoint.

If y ∈ V ⊂ U0 and g ∈ stab (y) then y ∈ g (V ) ∩ U0 6= ∅, so g (V ) ⊂ U0.

But then necessarily g (x) = x0 = x as Gx ∩ U0 = {x}, so g ∈ stab (x).

Thus for every y ∈ V stab (y) ≤ stab (x). Hence V ⊂ U (x) and since

x ∈ V and V is the finite intersection of open sets, thus open, the result

follows.

We collect the results together to obtain a strong necessary condition for

compact group actions by a finitely generated group with countable, compact,

Hausdorff phase space in which all orbits are finite. Note that in the special

case G = Z2 this is a strictly weaker version of Theorem 5.5. The ease of its

proof, the greater generality and the different point of view, however, make

the approach using even continuity worthwhile. A careful analysis of even
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continuity and its connection to the Ascoli theorem might show that in fact

the two approaches lead to equivalent results.

Theorem 5.30. Suppose the group action (X,G) with G finitely generated

and Abelian has only finite orbits.

If it is compact-realizable, then either one orbit type occurs at least c often

or there are only finitely many minimal orbit types.

Proof. Suppose that no orbit type occurs at least c often. Since G is finitely

generated, G must be countable and hence |X| < c. Thus if (X, τ) is a

compact Hausdorff space for some topology τ , it must be zero-dimensional.

Hence if the elements of G are auto-homeomorphisms of (X, τ), then G is

evenly continuous and so the sets U (x) are open for every x ∈ X. Since the

U (x) cover the compact space X there is a finite subcover U (x1) , . . . , U (xn).

But then for any y ∈ X, we have stab (y) ≤ stab (xi) for some i = 1, . . . , n.

Hence the only minimal orbit types can be stabGx1, . . . , stabGxn.

5.2.3 Constructions

One of the most useful methods of constructing compact group actions with

small phase spaces uses symbolic dynamical systems. Classically a sym-

bolic dynamical system is a closed subset of 2ω with shift map σ defined by

σ((xn)n∈ω) = (xn+1)n∈ω. σ is then a (non-injective) continuous self-map of

the compact Hausdorff space 2ω. This can be easily extended to 2Z. In fact,

if G is any discrete group then 2G is a compact Hausdorff space on which G

acts continuously by g(xh)h∈G = (xgh)h∈G. Of course the ‘base’ space 2 can

be replaced by any other compact Hausdorff space F , although typically F

is finite. In fact, if F is finite then it can be shown that G acting on FG is

conjugate to a G-action on a compact, shift-invariant subset of 2G. Note that

it is important that G is discrete. If G were not discrete, then the continuity

of the G-action could no longer be guaranteed, although every map x 7→ gx

for fixed g ∈ G would still be continuous.

We will be interested in symbolic dynamical systems F Z
2

where the Z2

action is represented by the left-shift S : (xn,m) 7→ (xn−1,m) and the up-shift

T : (xn,m) 7→ (xn,m−1).
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We have, unfortunately, not managed to construct all the fundamental

group actions not forbidden by the results from Theorem 5.5. In particular,

it appears necessary in various cases that there are two orbits with types of

the form
〈

gK
〉

6= {e} which are linearly independent. We therefore present a

selection of constructions which we feel to be particularly instructive.

The first construction is a direct generalization of the construction in [8]

for G = Z with finite and infinite orbits. One might be tempted to assume

that it should generalize easily when the finite orbits of types
〈

Ski , Tmi
〉

are

replaced by more general finite orbits of types
〈

Ski , SliTmi
〉

. However, this

seems not to be the case unless gcd(li, ki)→∞ as i→∞ or we also introduce

more infinite orbits. We will consider this case below.

We use the notation ai →∞ to mean that ai diverges, i.e. that for every

N ∈ N there is I ∈ N such that i > I =⇒ ai > N .

Lemma 5.31. Suppose the group action (X,Z2) has orbit spectrum

{

{e} ,
〈

Sl
〉

, 〈T n〉 ,
〈

Sk, Tm
〉}

∪
{〈

Ski , Tmi
〉

: i ∈ N
}

where l, n, k,m, ki,mi are positive integers, k|l, m|n, ki →∞ and mi →∞.

Then (X,G) is compactifiable.

Proof. Let j = l/k, j′ = n/m. F = {0, 1, 2, 3} and let A be a k ×m-block

A =

0 1 · · · 1
1 1
...

...
1 · · · · · · 1

,

i.e. A consists of 1s except for a 0 in the top left corner.

For each i write ki = αijk + βi,mi = α′
ij

′m+ β′
i for 0 < βi ≤ m, 0 < β′

i ≤ k.

Write αi = γiβi + δi, α
′
i = γ′iβ

′
i + δ′i with 0 < δi ≤ βi and 0 < δ′i ≤ β′

i. Choose

N sufficiently large that γi < βi, γ
′
i > β′

i for all i ≥ N . For i ≥ N consider
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the block

Bi =

↓
A · · · A Y1 A · · · A Y1 · · · Y1 A · · · A
...

...
...

...
...

... · · ·
...

...
...

A · · · A Yj′γ′
i

A · · · A Yj′γ′
i
· · · Yj′γ′

i
A · · · A

X1 · · · Xjγi
Z X1 · · · Xjγi

Z · · · Z X1 · · · Xjδi

A · · · A Y1 A · · · A Y1 · · · Y1 A · · · A
...

...
...

...
...

... · · ·
...

...
...

A · · · A Yj′γ′
i

A · · · A Yj′γ′
i
· · · Yj′γ′

i
A · · · A

X1 · · · Xjγi
Z X1 · · · Xjγi

Z · · · Z X1 · · · Xjδi

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

X1 · · · Xjγi
Z X1 · · · Xjγi

Z · · · Z X1 · · · Xjδi
←

A · · · A Y1 A · · · A Y1 · · · Y1 A · · · A
...

...
...

...
...

... · · ·
...

...
...

A · · · A Yj′δ′i
A · · · A Yj′δ′i

· · · Yj′δ′i
A · · · A

Each
A ··· A
...

...
A ··· A

except for the ones furthest to the right and those furthest to

the bottom consists of γij × γ
′
ij

′ blocks of A. There are βi × β
′
i of such

blocks (separated by columns and rows of Y s and Xs). The ones right of the

rightmost column of Y s (marked with ↓) but not below the lowest row of Xs

(marked with ←) consist of δi × γ
′
i blocks of A, those below the lowest row

of Xs but not right of the rightmost column of Y s consist of γi × δ
′
i blocks

of A and the one in the bottom right corner consists of δi × δ
′
i blocks of A.

The Yis represent a column (height m) of 2s when i is not divisible by

j′ and a column (height m) of 3s if it is. The Xis similarly represent a row

(length k) of 2s when i is not divisible by j and a row (length k) of 3s if it

is. The Zs are just single 2s.

This turns Bi into a

βi (γijk + 1) + δijk × β
′
i (γ

′
ij

′m+ 1) + δ′ij
′m = ki ×mi

block of symbols from F .
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Since γi > δi > 0 and γ′i > δ′i > 0 it is clear that the element of F Z2
,

Ci =

...
...

...
· · · Bi Bi Bi · · ·
· · · Bi Bi Bi · · ·
· · · Bi Bi Bi · · ·

...
...

...

,

has stabilizer
〈

Ski , Tmi
〉

.

Consider now the closure of
⋃

i∈ω 〈S, T 〉Ci. Clearly, since ki,mi →∞,

we also have γi, γ
′
i →∞. Hence, apart from

⋃

i∈ω 〈S, T 〉Ci the closure also

contains the following elements and their orbits under G:

•

D0 =

...
...

...
· · · A A A · · ·
· · · A A A · · ·
· · · A A A · · ·

...
...

...

(stay unboundedly far away from any X and any Y ) with stabilizer
〈

Sk, Tm
〉

,

•

D1 =

...
...

...
...

...
· · · A A Y A A · · ·
· · · A A Y A A · · ·
· · · A A Y A A · · ·
· · · A A Y A A · · ·
· · · A A Y A A · · ·

...
...

...
...

...

,

where each Y is a column of 2s except that every j′th Y is a column

of 3s (stay close to a column of Y s but unboundedly far from a row of

Xs), having stabilizer
〈

T j′m
〉

= 〈T n〉,

• a similar element D2 for with a row of Xs instead of a column of Y s

with stabilizer
〈

Sjk
〉

=
〈

Sk
〉

,
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• and

D3 =

...
...

...
...

...
· · · A A Y−2 A A · · ·
· · · A A Y−1 A A · · ·
· · · X−2 X−1 2 X1 X2 · · ·
· · · A A Y1 A A · · ·
· · · A A Y2 A A · · ·

...
...

...
...

...

,

where X−1−nj and Xnj are rows of 3s for n ∈ N whereas the other Xi

are rows of 2s, and Y−1−nj′ and Ynj′ are columns of 3s for n ∈ N whereas

the other Yi are columns of 2s. Clearly D3 has trivial stabilizer.

On this compact Hausdorff space the maps S and T act continuously with

the desired orbit spectrum.

We can apply the results from chapter 4 to the last construction to obtain

the following.

Theorem 5.32. Suppose that (X,Z2) is a fundamental abstract group action

with orbit spectrum

{

{e} ,
〈

Sl
〉

, 〈T n〉 , H
}

∪ {Hi : i ∈ N}

where Z2/H is finite, Sl, T n ∈ H and Hi =
〈

Ski , SliTmi
〉

with gcd(ki, li)→∞,

mi →∞.

Then (X,G) is compactifiable.

In the above it is important (and implied by the non-existence of essential

forced-compact proper subsets) that mi →∞. If this is not the case, a

different construction is possible.

Lemma 5.33. Suppose that (X,Z2) is a fundamental abstract group action

with orbit spectrum
{〈

Sk0
〉

, {e}
}

∪ {Hi : i ∈ N}

where Hi =
〈

Ski , SliTm
〉

with 0 ≤ li < ki, 0 < m are minimal orbit types

If SliTm ∈ H0 for each i then (X,Z2) is compactifiable.



CHAPTER 5. DISCRETE GROUPS 57

Proof. Let A be the k0 ×m block

A =

0 1 · · · 1
1 1 · · · 1
...

...
1 · · · 1

.

Write ki = αik0 + βi, αi = γiβi + δi where 0 < βi ≤ k0, 0 < δi ≤ βi.

Let Bi be the element

...
...

...
...

...
...

...
...

...
S−2li(· · · A · · · A X A · · · A X · · · · · · X A · · · A · · · )
S−li (· · · A · · · A X A · · · A X · · · · · · X A · · · A · · · )
S0 (· · · A · · · A X A · · · A X · · · · · · X A · · · A · · · )
Sli (· · · A · · · A X A · · · A X · · · · · · X A · · · A · · · )
S2li (· · · A · · · A X A · · · A X · · · · · · X A · · · A · · · )

...
...

...
...

...
...

...
...

...

of {0, 1, 2}Z
2

, where X is a 1×m block of 2s and each line is the repetition of

βi copies of A · · ·AX followed by δi copies of A. Clearly Bi has stabilizer Hi.

We now consider the limit points of
⋃

i∈ω 〈S, T 〉Bi. Here and in the following

we write Sr(· · · ) to mean that this row is shifted by r symbols to the right.

Note that since the group action does not contain essential forced-compact

proper subsets we must have ki →∞ and li →∞. Also, for every sequence

ηi ∈ Z and every ξ ∈ Z we must have ηiki + ξli →∞, for if ηiki + ξli = L ∈ Z

infinitely often, then SLT ξm will be in infinitely many Hi. However, this

means that the distance between any to Xs in Bi tends to ∞ as i→∞.

Also, note that li ≡ l0( (mod k)0) as SliTm ∈ H0. Thus, we only get the

following limit points:

•
...

...
...

S−2l (· · · A A A · · · )
S−l (· · · A A A · · · )
S0 (· · · A A A · · · )
Sl (· · · A A A · · · )
S2l (· · · A A A · · · )

...
...

...

with stabilizer H0;
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•
...

...
...

S−2l+1 (· · · A A A · · · )
S−l+1 (· · · A A A · · · )
S0 (· · · A A A · · · )
Sl (· · · A A A · · · )
S2l (· · · A A A · · · )

...
...

...

with stabilizer
〈

Sk0
〉

;

•
...

...
...

...
...

S−2l+1 (· · · A A A A A · · · )
S−l+1 (· · · A A A A A · · · )
S0 (· · · A A X A A · · · )
Sl (· · · A A A A A · · · )
S2l (· · · A A A A A · · · )

...
...

...
...

...

with stabilizer {e}.

Finally we give a construction which picks up on the second claim of

Theorem 5.5.

Lemma 5.34. Suppose (X,Z2) is a fundamental abstract group action with

orbits of type Hi =
〈

Ski , Tmi
〉

, ki,mi > 0 and one orbit of type H∞ =
〈

SK
〉

such that k0|K and K|ki for i > 0.

Then (X,Z2) is compactifiable.

Proof. Again, let A be the k0 ×m0 block

0 1 · · · 1
1 · · · 1
...

...
1 · · · 1

and write mi = αim0 + βi with 0 < βi ≤ m0, αi = γiβi + δi with 0 < δi ≤ βi.
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Then define a ki ×mi-block

Bi =

A A · · · A
...

...
...

A A · · · A
X1 X2 · · · Xki

A A · · · A
...

...
...

A A · · · A
X1 X2 · · · Xki

...
...

...
...

...
...

X1 X2 · · · Xki

A A · · · A
...

...
...

A A · · · A

where all but the last
A A ··· A
...

...
...

A A ··· A

block has ki/k0 × γi As and the last block

has ki/k0 × δi As and Xi is a k0 × 1 block consisting of 2s if i ∈ KZ and 3s

otherwise.

Ci is then the element of {0, 1, 2, 3}Z
2

that consists entirely of Bs, i.e.

Ci =

...
...

...
· · · Bi Bi Bi · · ·
· · · Bi Bi Bi · · ·
· · · Bi Bi Bi · · ·

...
...

...

.

The limit points of
⋃

i>0 〈S, T 〉Ci are then

• in the orbit corresponding to H0, i.e.

...
...

...
· · · A A A · · ·
· · · A A A · · ·
· · · A A A · · ·

...
...

...

;
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• in the orbit corresponding to H∞, i.e.

...
...

...
· · · A A A · · ·
· · · X X X · · ·
· · · A A A · · ·

...
...

...

,

where every Kth X consists of 2s and all other Xs of 3s;

Note, however, that the stabilizer of each Ci, i > 0 is in fact
〈

SK , Tmi
〉

⊃ Hi

so that we use Lemma 4.7 to replace them with orbits of type Hi.

5.3 Large Phase Spaces

Having examined Z2-actions for which the phase space has cardinality less

than c, we will now turn to actions where the phase space is large, i.e. its

cardinality is at least c. Whereas before we had a variety of restrictions

regarding the number and type of minimal orbits, we will show that in the

case of fundamental group actions with large orbit spaces, none of these

restrictions apply.

5.3.1 Constructions

When the phase space is large, we have a new method of construction at our

disposal, namely the torus. For small phase spaces, the orbit in the top layer

of the scattered space could be regarded as a discrete torus. Most of the

other orbits had to wind about this and because of the discrete nature, we

were able to separate its elements cleanly. The constructions which follow

have a similar feel to them, since we also have a ‘base torus’ about which

the other orbits wind. However, since this time the base torus is solid, we

can ‘slip’ from one orbit in it to another while converging to it. This makes

constructions a lot easier. We outline the general method of construction by

the observation below.
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Theorem 5.35. Suppose that Y is a compact Hausdorff space and that

α : Y → Rn is a continuous map. Let X = Tn × Y . Then the map from

X to itself given by

(θ1, . . . , θn, x) 7→ (θ1 + α1(x), . . . , θn + αn(x), x)

is continuous on X.

Typically Y will be homeomorphic to a convergent sequence, ω + 1. In

this case we may think of this construction as a sequence of tori shrinking to

the base torus at ω and the map restricted to each Tn × {β} as a rotation

of this torus. Continuity means that these rotations approach the rotation

on the base torus, as the tori shrink to it. Also note that if Xβ is a closed

subset of Tn × {β} for β < ω then Tn × {ω} ∪
⋃

β>0Xβ is a closed subset of

X.

5.3.1.1 Technical results

Showing that the conditions in Theorem 5.35 can be satisfied in certain sit-

uations is rather technical. In this section we provide the lemmas required.

The reader is encouraged to think about the ηi, ζi, ξi mentioned below as

ki, li,mi that occur during compactification of a Z2-action with orbits of

type Hi =
〈

Ski , SliTmi
〉

.

The first lemma will be applied in situations without essential forced-

compact sets with non-trivial stabilizer, where most of the orbits are finite.

Lemma 5.36. Suppose (ηi, ζi, ξi) ∈ Z3 with 0 ≤ ζi < ηi and ξi 6= 0 for all

i ∈ ω are all distinct. Suppose also that r, r′ ∈ I.

If for all Θ,Θ′ ∈ Z the set

{i ∈ ω : ∃αi, βi ∈ Z s.t. αiηi + βiζi = Θ and βiξi = Θ′} (5.2)

is finite, then there are φi, ψi ∈ Z such that

φi

ηi

→ r

ψiηi − φiζi
ξiηi

→ r′.
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It is easy to see that such choices can be made if both |ηi| and |ξi| converge

to∞. Since the assumption implies that |ηi| → ∞ the problematic situation

is that ξi takes some value infinitely often. We solve this special case first

via an auxiliary lemma.

Lemma 5.37. Suppose (ηi, ζi, ξi) ∈ Z3 for i ∈ N ⊂ N are distinct where N

is infinite, ηi diverging to ∞, 0 ≤ ζi < ηi, ξi 6= 0 and ξi = ξ for all i ∈ N .

Suppose that for every q ∈ Q and every M ∈ ω there is δ > 0 such that

for all but finitely many i ∈ N , |ζi − qηi| > M .

Given r, r′ ∈ I and ǫ > 0 there are φi, ψi ∈ Z with

∣

∣

∣

∣

φi

ηi

− r

∣

∣

∣

∣

< ǫ

and
∣

∣

∣

∣

ψiηi − φiζi
ξiηi

− r′
∣

∣

∣

∣

< ǫ

for all but finitely many i ∈ N .

The strategy in this proof and the one of Lemma 5.39 is the same. We

guess a potential φi and a corresponding ψi. We then add a correction

term ∆φi which is small compared to ηi for large i. With a corresponding

correction term ∆ψi both inequalities can then be satisfied simultaneously,

since ηi →∞.

Proof. Without loss of generality we may assume that N = N by choosing a

bijection between them.

Write

δi (φ) =

∣

∣

∣

∣

φ

ηi

− r

∣

∣

∣

∣

=

∣

∣

∣

∣

φ− rηi

ηi

∣

∣

∣

∣

ǫi (φ, ψ) =

∣

∣

∣

∣

ψηi − φζi
ξiηi

− r′
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ψ − φζi

ηi
− r′ξi

ξi

∣

∣

∣

∣

∣
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Let

A = {x ∈ R : ∀δ > 0 |{i ∈ N : ζi/ηi ∈ Bδ (x)}| = ℵ0} .

For each element α of A we will find an ǫα > 0 and an Nα ∈ N such

that for all i > Nα with ζi/ηi ∈ Bǫα
(α), there are φi, ψi ∈ Z such that we

have δi (φi) , ǫi (φi, ψi) < ǫ. Since A is compact, there are then finitely many

α1, . . . , αn ∈ A such that
⋃n

i=1Bǫαi
(αi) covers A. For all but finitely many i

we then have ζi/ηi ∈
⋃n

i=1Bǫαi
(αi) so there is N ′ ∈ N such that

i > N ′ =⇒ ζi/ηi ∈
n

⋃

i=1

Bǫαi
(αi) .

By considering Nǫ = max {N ′, Nα1 , . . . , Nαn
} the result then follows.

Case α ∈ A \Q: Suppose that α ∈ A \Q. Since α, 2α, 3α, . . . is dense in

T, there is a K ∈ N such that

α, 2α, . . . ,Kα

is ǫ/4-dense in T.

Let ν = min {iα, 1− iα : i = 1, . . . ,K} (all arithmetic taking place in T,

i.e. mod 1). Note that since α is irrational we have ν > 0. Let ǫα = min{ǫ/4,ν}
K

.

If ζi/ηi ∈ Bǫα
(α) then

ζi/ηi, . . . ,Kζi/ηi

is ǫ/2-dense in T (by the choice of ǫα < ν/K it is guaranteed that in R kζi/ηi

is not further from kα than ν for k = 1, . . . ,K, so that for some n ∈ Z, both

kζi/ηi and kα are in [n, n+ 1]).

Let φ0
i ∈ Z be such that δi (φ

0
i ) is minimal. Choose ψ0

i ∈ Z such that

ǫi (φ
0
i , ψ

0
i ) is minimal.

Now choose ∆φi ∈ {0, . . . ,K}, ∆ψi ∈ Z such that ǫ (φ0
i + ∆φi, ψ

0
i + ∆ψi)

is minimal. Since ζi/ηi, . . . ,Kζi/ηi is ǫ/2-dense we have

|ξi| ǫ
(

φ0
i + ∆φi, ψ

0
i + ∆ψi

)

< ǫ

as long as ζi/ηi ∈ Bǫα
(α).
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On the other hand, since ηi →∞ we can find Nα ∈ N such that if i > Nα

then |(1 +K) /ηi| < ǫ. Noting that

δi
(

φ0
i + ∆φi

)

≤ δi
(

φ0
i

)

+K/ηi

≤ (1 +K) /ηi

< ǫ

we may conclude that i > Nα and ζi/ηi ∈ Bǫα
(α) imply that there are

φi = φ0
i + ∆φi, ψi = ψ0

i + ∆ψi such that δi (φi) < ǫ and ǫi (φi, ψi) < ǫ.

Case α ∈ A ∩Q: Now suppose that α ∈ A ∩Q. Write α = p/q in lowest

terms with p, q ∈ N, 0 ≤ p < q. For every i > 0 write ζi/ηi = α+ µi/ηi for

some µi ∈ Q. By the assumption that |ζi − αηi| → ∞ as i→∞, we must

have |µi| → ∞ as well. Choose N ′
α ∈ N such that i > N ′

α =⇒ |µi| > 4/ǫ and

assume i > N ′
α in the following. Then

qζi/ηi, . . . , ⌊ηi/µi⌋qζi/ηi

is just

qµi/ηi, . . . ⌊ηi/µi⌋qµi/ηi

in T (i.e. mod 1) and hence |qµi/ηi|-dense in T. Choose ǫα > 0 such that

if ζi/ηi ∈ Bǫα
(α) then |qµi/ηi| < ǫ/2.

Choose φ0
i ∈ Z such that δi (φ

0
i ) is minimal and ψ0

i ∈ Z such that ǫi (φ
0
i , ψ

0
i )

is minimal. We can then find ∆φi,∆ψi ∈ Z with 0 ≤ ∆φi ≤ ηi/µi such that

ǫi (φ
0
i + ∆φi, ψ

0
i + ∆ψi) < ǫ. Since ηi →∞ we can choose N ′′

α ∈ N such that

if i > N ′′
α then δi (φ

0
i ) < ǫ/4.

By the choice of N ′
α, if i > N ′

α then |1/µi| < ǫ/4. Moreover we have

|∆φi/ηi| ≤ |1/µi| < ǫ/4 and hence δi (φ
0
i + ∆φi) < ǫ.

Let Nα = max {N ′
α, N

′′
α}. If i > Nα and ζi/ηi ∈ Bǫα

(α) then for

φi = φ0
i + ∆φi, ψi = ψ0

i + ∆ψi we have δi (φi) < ǫ and ǫi (φi, ψi) < ǫ as de-

sired.

Proof of Lemma 5.36. Note that the assumptions imply that ηi →∞. In

fact, if ηi takes the value η infinitely often, then for Θ = η and Θ′ = 0 the

assumption 5.2 is violated.
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We will show that for every ǫ > 0 there are φi, ψi ∈ Z such that for all

but finitely many i ∈ ω we have

∣

∣

∣

∣

φi

ηi

− r

∣

∣

∣

∣

< ǫ

∣

∣

∣

∣

ψiηi − φiζi
ξiηi

− r′
∣

∣

∣

∣

< ǫ.

(5.3)

Clearly this implies the lemma.

Fix ǫ > 0. Choose Θ,Ξ ∈ N with 1/Θ < ǫ and 1/Ξ < ǫ.

If |ηi| ≥ Θ and |ξi| ≥ Ξ then with

φi = ⌊ηir⌋ and ψi = ⌊
φiζi
ηi

+ ξir
′⌋

the conditions 5.3 are satisfied.

For each ξ with |ξ| ≤ Ξ let Nξ = {i ∈ ω : ξi = ξ}. For every q ∈ Q, M ∈ ω

there are only finitely many i ∈ Nξ with |ζi − qηi| ≤M . Otherwise, writing

q = α/β in lowest terms with α, β ∈ Z we would have |βζi − αηi| ≤ |β|M for

infinitely many i ∈ ω contradicting 5.2 by the pigeon-hole principle.

If Nξ is infinite we may hence apply Lemma 5.37 with N = Nξ, to see that

for all but finitely many i ∈ Nξ we can choose φi and ψi satisfying condition

5.3.

We now prove a similar lemma for the case when there is an essential

forced-compact set with non-trivial stabilizer.

Lemma 5.38. Suppose (ηi, ζi, ξi) ∈ Z3 with 0 ≤ ζi < ηi and ξi 6= 0 for all

i ∈ ω are all distinct.

Suppose also that r, r′ ∈ I and Θ,Θ′ ∈ Z with Θ,Θ′ not both zero and

Θr + Θ′r′ ∈ Z are given.

If

1. for all i ∈ ω there exist αi, βi ∈ Z such that

αiηi+ βiζi = Θ

βiξi = Θ′;
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2. for infinitely many i ∈ ω there exist αi, βi ∈ Z such that

αiηi+ βiζi = Θ2

βiξi = Θ′
2

implies that there is P ∈ Z with PΘ = Θ2 and PΘ′ = Θ′
2;

then there are φi, ψi ∈ Z such that

φi

ηi

→ r

ψiηi − φiζi
ξiηi

→ r′.

As before an auxiliary lemma for the special case where ξi is fixed needs

to be proven first.

Lemma 5.39. Suppose (ηi, ζi, ξi) ∈ Z3 with i ∈ N ⊂ N are distinct, where ηi

diverging to ∞, 0 ≤ ζi < ηi, ξi 6= 0 and ξi = ξ for i ∈ N .

(⋆) Suppose further that there are Θ,Θ′ such that for each i ∈ N there

are αi, βi ∈ Z with αiηi + βiζi = Θ, βiξi = Θ′.

(†) Suppose also that for any infinite N ′ ⊂ N if there are Θ2,Θ
′
2 ∈ Z such

that for each i ∈ N ′ there are α′
i, β

′
i ∈ Z with α′

iηi + β′
iζi = Θ2, β

′
iξi = Θ′

2 then

there is P ∈ Z with PΘ = Θ2, PΘ′ = Θ′
2.

Given r, r′ ∈ I with Θr + Θ′r′ ∈ Z and ǫ > 0 there are φi, ψi ∈ Z with

|φi/ηi − r| < ǫ

|(ψiηi − φiζi) / (ξiηi)| < ǫ

for all but finitely many i ∈ N .

Proof. Without loss of generality we may assume that N = N.

Note that βi = β = Θ′/ξ is constant for i > 0.

Also, if gcd (αi, β) 6= 1 for infinitely many i > 0 then by the pigeon-

hole principle there is some infinite N1 ⊂ N such that for i ∈ N1 we have

gcd (αi, β) = γ > 1. But for this N1 we then have (αi/γ) ηi + (β/γ) ζi = Θ/γ

a contradiction to the assumptions. Thus we may assume that there is some

N ′ ∈ N such that for i > N ′ gcd (αi, β) = 1. In the following we assume

i > N ′.
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LetA = {x ∈ R : ∀δ > 0 |{i ∈ N : ζi/ηi ∈ Bδ (x)}| = ℵ0}. ClearlyA is closed

and bounded, hence compact. Now the argument is similar as in Lemma 5.37.

We will show that for every x ∈ A there is an ǫx > 0 and an Nx ∈ N such that

for all i > Nx we have that ζi/ηi ∈ Bǫx
(x) implies the existence of φi, ψi ∈ Z

satisfying the required conditions. By compactness of A the conclusion of

the theorem follows as in Lemma 5.37.

For x ∈ A let δ < min {βx− ⌊βx⌋, ⌈βx⌉ − βx} and write αi = Θ/ηi − βζi/ηi

(i > 0), so that if Θ/ηi < δ/4 and ζi/ηi ∈ Bδ/4β (x) then |αi + βx| < δ/2 and

hence for all such i, αi must have the same integer value, αx say. By the

condition x ∈ A and ηi →∞, there are in fact infinitely many such i. But

since δ can be arbitrarily small we actually have x = −αx/β ∈ Q.

We may conclude that for every x ∈ A we have x = −αx/β for some

αx ∈ Z coprime to β and that there is an ǫ′x > 0 and an N ′
x ∈ N such that for

all i > N ′
x (namely if ηi is sufficiently large), ζi/ηi ∈ Bǫ′x (x) =⇒ αi = αx

Write

δi (φ) =

∣

∣

∣

∣

φ

ηi

− r

∣

∣

∣

∣

=

∣

∣

∣

∣

φ− ηir

ηi

∣

∣

∣

∣

ǫi (φ, ψ) =

∣

∣

∣

∣

ψηi − φζi
ξiηi

− r′
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ψ − φζi

ηi
− r′ξi

ξi

∣

∣

∣

∣

∣

Fix x ∈ A. For all the i in this paragraph we will assume that i > N ′
x and

αxηi + βζi = Θ (i.e. that ζi/ηi is close enough to x and ηi is large enough).

Choose φ0
i ∈ Z minimizing δi (φ

0
i ) and ψ0

i ∈ Z minimizing ǫi (φ
0
i , ψ

0
i ). From

the equations αxηi + βζi = Θ, βξi = Ξ and Θr + Θ′r′ = Θ′′ ∈ Z we can rewrite

|ξi| ǫi (φ, ψ) =

∣

∣

∣

∣

ψ −
φΘ

βηi

+
φαx

β
− ξir

′

∣

∣

∣

∣

=

∣

∣

∣

∣

ψ −
Θ

β

(

φ

ηi

− r

)

+
αxφ−Θ′′

β

∣

∣

∣

∣

.

Since β and αx are coprime, there is ∆φi ∈ {0, . . . , β − 1} such that

αx (φ0
i + ∆φi)−Θ′′

β
∈ Z.
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For some ∆ψi ∈ Z we then have

|ξi| ǫi
(

φ0
i + ∆φi, ψ

0
i + ∆ψi

)

=

∣

∣

∣

∣

(

φ0
i + ∆φi

ηi

− r

)

Θ

β

∣

∣

∣

∣

= δi
(

φ0
i + ∆φi

)

∣

∣

∣

∣

Θ

β

∣

∣

∣

∣

.

Since ∆φi is bounded by β we can conclude that if ηi is large enough

and thus since ηi →∞ if i > N ′′
x for some N ′′

x ∈ N (in particular we need

(1 + β) Θ/βηi ≤ 2Θ/ηi < ǫ), then there are φi = φ0
i + ∆φi, ψi = ψ0

i + ∆ψi ∈ Z

such that δi (φi) < ǫ, ǫi (ψi, ni) < ǫ for i > Nx = max {N ′
x, N

′′
x}. As x was ar-

bitrary in A this concludes the proof.

Proof of Lemma 5.38. As before, we will show that for every ǫ > 0 there are

φi, ψi ∈ Z such that for all but finitely many i ∈ ω we have
∣

∣

∣

∣

φi

ηi

− r

∣

∣

∣

∣

< ǫ

∣

∣

∣

∣

ψiηi − φiζi
ξiηi

− r′
∣

∣

∣

∣

< ǫ.

(5.4)

Fix ǫ > 0. There are two cases to consider.

Case Θ′ 6= 0: Note that Θ′ 6= 0 implies that ξi ≤ Θ′.

For every ξ ≤ Θ′ let Nξ = {i ∈ ω : ξi = ξ}. Note that on every infinite

Nξ we must have ηi →∞ since the (ηi, ζi, ξi) are all distinct and 0 ≤ ζi < ηi.

Apply Lemma 5.39 with N = Nξ to see that for all but finitely many i ∈ Nξ

a choice of φi, ψi satisfying 5.4 is possible.

Case Θ′ = 0: Since ξi 6= 0 we must have βi = 0 for all i ∈ ω. By the as-

sumptions we then have ηi = Θ for all but finitely many i ∈ ω. Exclude all

those for which ηi 6= Θ from consideration. Θr = Θr + Θ′r′ ∈ Z implies that

for all i we may choose φi ∈ Z such that actually we have |φi/ηi − r| = 0.

Choose ψi = ⌊φiζi/ηi + ξir
′⌋. The conditions 5.4 are then met for suffi-

ciently large |ξi|. But since (ηi, ζi, ξi) are all distinct and ηi and hence ζi are

bounded, we must actually have |ξi| → ∞. Thus 5.4 can be met for all but

finitely many i ∈ ω.
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Finally we prove a similar lemma about choices of irrational numbers.

This will be applied when considering group actions which consist of infinite

orbits.

Lemma 5.40. Suppose α, β ∈ R \Q and k,m ∈ Z coprime.

Let N = max {|k| , |m|}. There exist α′, β′ ∈ R \Q such that |α− α′| < 1/N ,

|β − β′| < 1/N and kα′ +mβ′ ∈ Z.

Furthermore if N = |m| then k′α′ +mm′β′ ∈ Z =⇒ k′ = m′k for k′,m′ ∈ Z.

If N = |k| > |m| then k′kα′ +m′β′ ∈ Z =⇒ m′ = k′m for k′,m′ ∈ Z.

Proof. Suppose without loss of generality that N = |m|. Since k and m are

coprime the set {r − k (α + s) /m : s, r ∈ Z} is |1/m|-dense in R. Choose

s, r ∈ Z such that

∣

∣

∣

∣

β −

(

r −
k (α+ s)

m

)
∣

∣

∣

∣

<

∣

∣

∣

∣

1

m

∣

∣

∣

∣

=
1

N
.

Let

α′ = α, β′ = r −
k (α + s)

m
.

Clearly |α− α′| < 1/N and |β − β′| < 1/N . Further

kα′ +mβ′ = kα− kα− ks+ rm = rm− ks ∈ Z

as required. Note as well that if k′α′ +m′mβ′ ∈ Z for m′ ∈ Z then k′ = m′k

since by irrationality of α′ we must have k′ − kmm′/m = 0

5.3.1.2 Concrete Constructions

Using the lemmas from the previous section we now give concrete construc-

tions for fundamental abstract group actions with large phase spaces. Note

that since there are only countably many different orbit types and every orbit

is countable, |X| ≥ c implies that at least one orbit type must occur at least

c often.

The most fundamental constructions consists just of a single torus con-

sisting of c many orbits with the same stabilizer.
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Lemma 5.41. Suppose (X,Z2) is an abstract group action in which all orbits

have type H =
〈

SK , SLTM
〉

and that there are c many of them. Then (X,Z2)

is compact-realizable.

Proof. There are three cases to consider.

Firstly Z2/H could be finite. Then we have without loss of general-

ity K > 0, 0 ≤ L < K and M > 0. We therefore choose r1 = 1/K, r2 = 0,

r′1 = −L/(KM), r′2 = 1/M .

Secondly we could have H = {e}, i.e. K = S = M = 0. We then let

r1, r
′
2 ∈ I \Q and r2 = r′1 = 0.

Thirdly we might have H =
〈

SLTM
〉

6= {e}. We can then assume by

Lemma 5.4 thatM = 0, L > 0 and choose r1 = 1/L, r2 = r′1 = 0 and r′2 ∈ I \Q.

In any case we consider the set T2 with maps

S(θ, θ′) = (θ + r1, θ
′ + r2) (5.5)

T (θ, θ′) = (θ + r′1, θ
′ + r′2), (5.6)

observe that these are continuous and that every point in T2 has indeed

stabilizer H.

Since we only consider fundamental group action for the moment we can

assume that the intersection of infinitely many different minimal orbit types

will be constant.

Theorem 5.42. Let (X,Z2) be a fundamental abstract group action with

orbits of type Hi =
〈

Ski , SliTmi
〉

(0 ≤ li < ki, mi 6= 0) for i ∈ ω, all of which

are ≤ot-minimal. Assume further that there are c many orbits of type

H∞ =
〈

SK , SLTM
〉

.

Then (X,Z2) is compact-realizable.

Proof. Since the group action is fundamental, there is H ⊂ H∞ with
⋂

i∈N Hi = H for every infinite N ⊂ ω.

If there are only finitely many different Hi then (X,Z2) is compactifiable

by Lemma 5.2 and Lemma 5.41. We may thus assume in the following that

all the Hi are different.

We will use Theorem 5.35 with n = 2 and Y = {1/i : i > 0} ∪ {0}. Our

proceeding will vary depending on both H∞ and H.
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Case H∞ = {e}: Let r1 = r′2 ∈ I \Q and r2 = r′1 = 0.

Case H∞ =
〈

SK
〉

for someK > 0: Let r1 = 1/K, r2 = 0, r′1 = 0 and r′2 ∈ I \Q.

Case H∞ =
〈

SLTM
〉

with M 6= 0: Adjust S, T .

Case H∞ =
〈

SK , SLTM
〉

for 0 ≤ L < K, 0 < M : Let r1 = 1/K, r2 = 0,

r′1 = −L/(KM), r′2 = 1/M .

Write
〈

Ski , SliTmi
〉

=
〈

Sm′
iT l′i , T k′

i

〉

for m′
i = gcd (ki, li) = piki + qili,

k′i = miki/m
′
i and l′i ≡ qimi (mod k′i). We then define

S(θ, θ′, 0) = (θ + r1, θ
′ + r2, 0) (5.7)

T (θ, θ′, 0) = (θ + r′1, θ
′ + r′2, 0) (5.8)

and

S

(

θ, θ′,
1

i

)

=

(

θ +
si

ki

, θ′ +
n′

ik
′
i − s

′
il
′
i

m′
ik

′
i

,
1

i

)

(5.9)

T

(

θ, θ′,
1

i

)

=

(

θ +
niki − sili
miki

, θ′ +
s′i
k′i
,
1

i

)

(5.10)

for i < ω where si, s
′
i, ni, n

′
i will be chosen below such that both S and T are

continuous.

Case H = {e}: Apply Lemma 5.36 once with r = r1, r
′ = r′1, ηi = ki, ζi = li,

ξi = mi to obtain si = φi and ni = ψi and a second time with r = r2, r
′ = r′2,

ηi = k′i, ζi = l′i, ξi = m′
i to obtain s′i = φi and n′

i = ψi. Since for every infi-

nite set N ⊂ ω we have
⋂

i∈ω Hi = {e} the conditions for Lemma 5.36 are

satisfied.

Case H =
〈

SATB
〉

for A,B not both zero: Apply Lemma 5.38 with

r = r1, r
′ = r′1, ηi = ki, ζi = li, ξi = mi, Θ = A, Θ′ = B to obtain si = φi

and ni = ψi. The condition H∞ ∩
⋂

i∈N Hi =
〈

SKTM
〉

for all infinite N ⊂ ω

ensures that the conditions of Lemma 5.38 are satisfied.

Similarly, apply Lemma 5.38 a second time, this time with r = r2, r
′ = r′2,

ηi = k′i, ζi = l′i, ξi = m′
i, Θ = B, Θ′ = A to obtain s′i = φi and n′

i = ψi.
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In either case, Theorem 5.35 with these choices shows that both S and T

are continuous. For each i > 0 we only consider the closed subset 〈S, T 〉 (0, 0, 1/i)

of the torus T2 × {1/i}.

Note that for each i > 0 we indeed have Hi ⊂ stab((0, 0, 1/i)) and since

these orbits are isolated we can apply Lemma 4.7 to insure that they have in

fact stabilizer Hi.

The continuum many orbits in T2 × {0} on the other hand have stabilizer

precisely H0. For suppose x ∈ T2 × {0} and SmT nx = x. Then

mr1 + nr′1 =
m

k0

−
nl0
m0k0

∈ Z

and mr2 + nr′2 = n/m0 ∈ Z. Write beta = n/m0 ∈ Z and observe that this

implies m− βl0 = αk0 for some α ∈ Z. But then SmT n = Sαk0+βl0T βm0 ∈ H0

so that stab(x) ⊂ H0. Conversely it is easily seen that x is fixed by each

element of H0 proving that stab(x) = H0 as desired.

Previously the orbits whose types occur c often were finite. We now prove

a similar theorem where these orbits are infinite. There are three cases to

consider.

Theorem 5.43. Suppose the orbits of the fundamental group action (X,Z2)

have stabilizers
〈

Ski
〉

for some ki ∈ Z+, all of which are minimal. Suppose

further that each such orbit type occurs c often.

Then (X,Z2) is compact-realizable.

Proof. Suppose first that there are infinitely many different minimal orbit

types. Choose some irrational α and si ∈ ω, i > 0 such that |si/ki − 1/k0| is

minimal. Let ji = gcd (si, ki) 6= 0. For i > 0 define

Si

(

θ, θ′,
1

i

)

=

(

θ +
si

ki

, θ′ +
1

2iji
,
1

i

)

(5.11)

Ti

(

θ, θ′,
1

i

)

=

(

θ + α, θ′,
1

i

)

(5.12)

on Xi = T× R/2−iZ× {1/i} (i.e. the radius of the second circle converges

to 0 as i→∞). For i = 0 define

S0 (θ, 0, 0) = (θ + 1/k0, 0, 1/i)
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and

T0 (θ, 0, 0) = (θ + α, 0, 0)

on X0 = T× {0} × {0}. Let S =
⋃

i∈ω Si and T =
⋃

i∈ω Ti. By Theorem

5.35, S and T are auto-homeomorphisms on
⋃

i∈ω Xi when seen as a subspace

of Euclidean n-space.

If there are only finitely many different orbit types, say i = 1, . . . , n then

define Si (θ, θ
′, 1/i) = (θ + 1/ki, θ

′, 1/i) and T (θ, θ′, 1/i) = (θ, θ′ + α, 1/i) on

T× T× {1, . . . , n} for α ∈ R \Q. This clearly realizes (X,G) as a compact

Hausdorff group action.

As Iwanik did in his paper, one could define the two rotations S and

T on T× {0} ∪ {1/i : i > 0} by carefully choosing the si to be coprime to

the ki. This is possible due to the prime number theorem: There are

approximately 2ǫλn/ log (λn) primes between (1− ǫ)λn and (1 + ǫ)λn for

0 < ǫ, λ < 1. However, there are at most log2 n prime divisors of n, so for

large enough n we can find a prime very close (compared to n) to n/k0 which

does not divide n. Choosing prime pi for n = ki we then have pi/ki → 1/k0

and pi is coprime to ki. So using pi instead of our ‘ideal’ si immediately gives

orbits of the correct type.

Theorem 5.44. Suppose the orbits of the fundamental group action (X,Z2)

have stabilizer
〈

SjikiT jimi
〉

with ki,mi coprime and ji non-zero. Suppose

further there are c many orbits of each such type and these are ≤ot-minimal.

Then (X,Z2) is compact-realizable.

Here [8] ignores the possibility that ji 6= 1. As in the previous case, we

will take care of this by working on T× T× I instead of T× I.

Proof. Suppose that there are infinitely many different orbit types. Choose

some α0 ∈ R \Q. Let

β0 =
1

m0j0
−

k0

m0
α0.

Clearly j0k0α0 + j0m0β0 ∈ Z. Further, if

kα0 +mβ0 =
m

m0j0
+

(

k −
mk0

m0

)

α0 ∈ Z
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for k,m ∈ Z then k −mk0/m0 = 0 since α0 is irrational. Thusm/ (m0j0) ∈ Z

giving m = rm0j0 for some r ∈ Z. Hence k = rk0j0, i.e. (k,m) is an integer

multiple of (j0k0, j0m0).

For i > 0 use Lemma 5.40 with k = ki,m = mi and α = α0, β = β0 to

obtain a αi, βi ∈ R \Q. If |ki| > |mi| let qi = 1/ (jiki) , ri = 0, otherwise let

qi = 0, ri = 1/ (jimi). Define Si, Ti on T× T× T× {1/i} by

Si

(

θ, θ′, θ′′,
1

i

)

=

(

θ + αi, θ
′ + qi, θ

′′,
1

i

)

(5.13)

Ti

(

θ, θ′, θ′′,
1

i

)

=

(

θ + βi, θ
′, θ′′ + ri,

1

i

)

(5.14)

and S0 (θ, θ′, θ′′, 0) = (θ + α0, θ
′, θ′′, 0), T0 (θ, θ′, θ′′, 0) = (θ + β0, θ

′, θ′′, 0).

Note that since max {|ki| , |mi|} → ∞ as i→∞, we have αi → α, βi → β,

qi → 0 and ri → 0 as i→∞.

Thus S =
⋃

i∈ω Si, T =
⋃

i∈ω Ti are continuous as explained in Theorem

5.35.

Note as well that the orbit spectrum of the thus constructed group action

is correct.

If there are only finitely many minimal orbit types, say i = 1, . . . , n then

define

Si (θ, θ
′, 1/i) = (θ + α, θ′ + 1/(jiki), 1/i)

and

Ti (θ, θ
′, 1/i) = (θ − kiα/mi, θ

′, 1/i)

for some α ∈ R \Q. on T× T× {1/i : i = 1, . . . , n}.

Theorem 5.45. Suppose all orbits of the abstract group action (X,Z2) have

trivial stabilizer and that there are c many of them. Then (X,Z2) is compact-

realizable.

Proof. Choose any two (possibly equal) irrationals α, β. On T× T define

S (θ, θ′) = (θ + α, θ′) , T (θ, θ′) = (θ, θ′ + β). Clearly S, T are auto-homeomor-

phisms of the compact Hausdorff space T× T. Since α, β are irrational each

orbit is of the required type.
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Note that the less intuitive definition on T with S (θ) = θ + α, T (θ) = θ + β

would have worked as well, if one requires α and β to be independent over

Q.

5.4 Summary

In this section we have given some necessary conditions and some sufficient

conditions on the (weighted) orbit spectrum of compact Z2-action. The tech-

niques for deriving the necessary conditions can give further insight into spe-

cific actions. Similarly, the techniques for constructing group actions can

sometimes be modified for (weighted) orbit spectra not explicitly covered by

the theorems and lemmas.

Especially when there is little or no ‘interaction’between the two generat-

ing maps S and T (i.e. most finite orbits have type
〈

Sk, Tm
〉

) the sufficient

conditions are close to the necessary conditions. In fact, the only significant

gap remaining there is how to piece together infinitely many, possibly over-

lapping fundamental group actions. This seems possible by ad hoc methods

in most cases, but a general formulation in the form of a theorem still eludes

the author.

In the more general case with plenty of interaction between the generat-

ing maps, the constructions for small phase spaces become decidedly more

difficult. It seems that the method of construction using symbolic dynamics

reaches its limitations in these cases. Whether this is an artefact of this par-

ticular method, or whether there are further genuine necessary conditions in

this case is unclear.



Chapter 6

Compact Groups

Before looking at the supremely important group R in the next chapter, it is

useful to sharpen our understanding of the techniques involved in the easier

setting of compact groups. This is especially true since we may consider an

R-action under which every point is fixed by the same element of R, as a

T-action instead. We will see below that a T-action is compact-realizable if

and only if there are finitely many minimal orbit types, implying that either

there is a fixed point, or there are only finitely many orbit types.

One of the chief difficulty compared to discrete groups is that we not

only have to ensure that every map x 7→ gx is continuous for g ∈ G, but that

joint continuity G×X → X occurs. This joint continuity finds its expression

already in Corollary 3.12. We will see that at least for compact Abelian

Lie groups compactness of the orbit spectrum in the co-compact topology

is sufficient to guarantee compactifiability. The case for general compact

Abelian groups is more difficult but turns out to be covered by Theorem

3.11.

6.1 A characterization of compact-realizable

group actions by compact Abelian groups

The main result of this chapter can be summarized as follows:

Theorem 6.1. Suppose G is a compact Abelian Hausdorff group, and that

(X,G) is an admissable G-action. Then (X,G) is compact-realizable if and

76
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only if the stabilizer of every point is a closed subgroup of G and there is

a compact Hausdorff topology on the weighted orbit spectrum regarded as
⋃

H∈G≤ κH × {H} such that the map (β,H) 7→ H ∈ G≤ is continuous.

The proof of this theorem comes in two steps. We have already assembled

all the ingredients for the necessity in chapter 3.

Proof of necessity. From Lemma 2.6 we have that the stabilizer of every point

must be a closed subgroup of G.

Let us note that if G is a compact Hausdorff group and (X,G) a com-

pact group action, then every orbit Gx is compact, as it is the continuous

image of the compact set G× {x}. Thus the orbit relation on X is closed

and the orbit space is in fact a compact Hausdorff space. By Theorem 3.11

and the fact that stab is constant on orbits, we can deduce that the map

stab: O(X)→ G≤ is continuous. Identifying
⋃

H∈G≤ κH × {H} with the or-

bit space in the obvious manner (i.e. an orbit with stabilizer H is identified

with a point (β,H), β < κH) we see that the condition is in fact necessary.

To show that the condition is in fact sufficient we have to work slightly

harder.

Theorem 6.2. If G is a compact Abelian Hausdorff group, Y a compact

Hausdorff space and S : Y → G≤ a continuous function then there is a com-

pact group action (X,G) such that O(X) = Y and S is induced by the stab-map.

Proof. LetX ′ = Y ×G with ρ′ : G×X ′ → X ′ given by ρ′(g, (y, h)) = (y, gh).

Then (X ′, G, ρ′) is clearly a compact group action. Let

X =
⋃

y∈Y

{y} ×G/S(y)

be the quotient space of X ′ under the equivalence relation (y, g) ∼ (y′, h) if

and only if y = y′ and gh−1 ∈ S(y). X is clearly compact and the map ρ′

factors through the equivalence relation to the continuous map

ρ(g, (y, hS(y))) = (y, ghS(y)).
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It is easy to see that indeed Y = X/ ∼G and S is induced by stab. To

complete the proof we will show that X is Hausdorff in the quotient topology.

If y 6= y′ then Hausdorffness of Y immediately implies that (y, gS(y)) and

(y′, g′S(y′)) can be separated by open sets for any g, g′ ∈ G.

On the other hand, if (y, gS(y)) 6= (y, g′S(y)) then gS(y) ∩ g′S(y) = ∅.

Both gS(y) and g′S(y) are closed subsets of the normal space G so that they

may be separated by disjoint open sets U ′, V ′. Then U = g−1U ′ ∩ g′−1V ′ ⊃ S(y)

is open and gU ∩ g′U = ∅.

Now consider the two sets

U1 =
⋃

z∈S−1Û

{(z, hS(z)) : hS(z) ⊂ gU}

U2 =
⋃

z∈S−1Û

{(z, hS(z)) : hS(z) ⊂ g′U} .

Clearly U1 and U2 are disjoint since gU and g′U are. Further (y, gS(y)) ∈ U1

and (y, g′S(y)) ∈ U2. We claim that the Ui are open. To see this, let π be the

quotient map and consider (z, h) ∈ π−1U1. Then hS(z) ⊂ gU , so continuity

of the multiplication and compactness of S(z) gives open V ′ ∋ h, V ⊃ S(z)

such that V ′V ⊂ gU . If (z′, h′) ∈ S−1V̂ × V ′ then h′S(z′) ⊂ V ′V ⊂ gU . Hence

(z, h) ∈ S−1V̂ × V ′ ⊂ π−1U1 and continuity of S implies that S−1V̂ × V ′ is

open in X ′. As (z, h) was an arbitrary element of π−1U1 this shows that

the latter is open. Therefore by the definition of the quotient topology U1 is

open. Similarly U2 is open which completes the proof.

This finishes the proof of Theorem 6.1.

6.2 Further investigation

Having achieved our initial aim of giving a characterization of the compact-

realizable group actions of a compact Abelian group, we will examine the

meaning of this characterization a bit more closely. In the previous chapters

we were mainly concerned with compactifiability. In this setting we obtain

the following beautiful result.
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Theorem 6.3. If G is a compact Abelian Hausdorff group then every compact

subset of G≤ which has a finer compact Hausdorff topology is the orbit of some

compact group action (X,G) such that every orbit type occurs at most once.

Proof. This follows immediately from the previous theorem, since we may

take Y to be the orbit spectrum with the finer compact Hausdorff topology

and S the identity.

A slight uneasiness in the last two theorems is the reliance on an ‘exter-

nal’ characterization of compact group actions which are compact-realizable

(resp. compactifiable). We refer to an unknown compact Hausdorff space

and a continuous map (resp. a ‘finer compact Hausdorff’ topology). Really

we would like to look at any orbit spectrum of a compact group and decide

whether it is compactifiable without too much effort.

Therefore we would now like a characterization of those compact subsets

of G≤ that have a finer compact Hausdorff topology. Also, it would be

interesting to have an internal characterization of all those compact spaces

which are images of compact Hausdorff spaces. Unfortunately these seem

to be a hard open problems as shown in the next section. However, for Lie

groups we may apply a theorem from [10] which clarifies what the co-compact

topology on G≤ looks like.

Theorem 6.4. If G is a compact Abelian Lie group and F is a closed sub-

group of G, then there is an open set U ⊃ F such that if H is a closed

subgroup of G contained in U then H is conjugate to a subgroup of F .

This last theorem allows us to transform our previous result into an in-

ternal characterization.

Theorem 6.5. If G is a compact Abelian Lie group, then every compact

subset of G≤ is the orbit spectrum of some compact group action (X,G) such

that every orbit type occurs at most once.

Proof. Let C be the orbit spectrum we are trying to realize. Note that the

previous theorem implies that the co-compact topology on G≤ is generated
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by sets of the form
{

H ∈ G≤ : H ≤ H0

}

where H0 ∈ G
≤. Thus compact sub-

sets are of G≤ are precisely those which have finitely many maximal elements

under the ⊂-relation. Therefore we may partition C into finitely many sets

C1, . . . , Cn each of which has a unique maximal element H1, . . . , Hn. Define

a topology τi on Ci by isolating all non-maximal points and letting the neigh-

bourhoods of Hi be the co-finite subsets of Ci. Each τi is compact Hausdorff

and since there are only finitely many Ci, the direct sum, τ , is a compact

Hausdorff topology on C. Clearly τ is finer than τCo. Thus by Theorem 6.3

the result follows.

Using all of the above we may now present a simple, complete character-

ization of those abstract group actions of compact Abelian Lie groups which

are realizable as compact Hausdorff dynamical systems.

Theorem 6.6. Given an admissable group action (X,G) of a compact Abelian

Lie group, there is a compact Hausdorff topology on X making the group ac-

tion continuous if and only if the orbit spectrum is a compact subset of the

co-compact topology on G≤, i.e. the orbit spectrum has finitely many maximal

elements under the ⊂-relation.

For compact Abelian Lie groups we have presented a complete, easy to

use solution to our original question above. This depended crucially on the

fact that the co-compact topology on compact Lie groups is particularly

simple. In general compact Abelian topological groups the situation is less

clear. In fact, we will show that every T0 compact space of weight α is a

subspace of Tα≤. Thus the problem of giving an internal characterization of

the compactifiable orbit spectra for compact Abelian group is as least as hard

as characterizing all compact spaces which have a finer compact Hausdorff

topology.

Recall that the Sierpinski space S is the set S = {0, 1} with topology

{∅, {0} , S}. Also recall that every T0 space of weight α can be embedded in

Sα. We will now embed Sα in Tα≤.

Lemma 6.7. For every cardinal α, Sα can be embedded into Tα≤ with the

co-compact topology. Hence every compact space of weight at most α can be

embedded into Tα≤.
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Proof. Let G0 = {e} ⊂ T, G1 = T and define e : Sα → Tα≤ by

f((xβ)β<α) =
∏

β<α

Gxβ
.

Clearly f is injective and thus a bijection onto its image. We need to show

that f is continuous and open onto its image.

First consider a basic open set U =
∏

β<α Uβ ⊂ Tα with Uβ = T for co-

finitely many β, say β /∈ {β0, . . . , βn}. Then

f−1Û =
{

x ∈ Sα : ∀β < α. Gxβ
⊂ Uβ

}

= {x ∈ Sα : ∀i = 0, . . . , n. xβ = 0}

=
n

⋂

i=0

π−1
βi
{0}

and the latter is open. Hence, if V is any set containing U then

f−1V̂ =
⋂

i∈F

π−1
βi
{0}

for some F ⊂ {0, . . . , n} and therefore open. But every non-empty open set

contains some basic open set. Thus f is continuous.

Now consider a non-empty basic open set U =
⋂

β∈F π
−1
β {0} ⊂ Sα where

F is a finite subset of α. For each β ∈ F let Vβ 6= T be a neighbourhood

of e ∈ T and let Vβ = T if β /∈ F . Then f(U) = f(Sα) ∩
∏

β<α V̂β and hence

f(U) is open in f(Sα) as required.

This last lemma enables us to give compact subsets of G≤ which cannot

occur as orbit spectra of a compact G-action for some compact group G.

Corollary 6.8. There is a compact Hausdorff group G and a compact subset

of G≤ which is not the orbit spectrum of any compact group action (X,G)

such that every orbit type occurs at most once.

Proof. It is enough to show the existence of a compact space without finer

compact Hausdorff topology. In [12] a second countable compact topological

space without finer compact Hausdorff topology is constructed.
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As remarked above, an internal solution to our question for compact

Hausdorff Abelian groups could be given, once the following two questions

are answered.

Question. Which compact spaces have a finer compact Hausdorff topology?

Question. Which compact spaces are continuous images of compact Haus-

dorff spaces?

However both these questions seem to defy a solution. In fact, until

recently the related, but easier problem of showing that all compact spaces

have a finer, maximally compact topology was open as well.



Chapter 7

The Additive Reals

The results from the previous chapter gave a first idea of what kind of tech-

niques can be used with non-discrete groups. The most important of these

is undoubtedly the group of additive reals. Its non-compact nature however,

makes constructions of compact group actions far more difficult then sim-

ply finding a finer compact Hausdorff topology on the orbit spectrum (or a

continuous compact Hausdorff pre-image which acts as the orbit space).

The main result of this chapter is a proof that what can naturally be called

‘bounded, Euclidean nowhere dense’ orbit spectra of abstract R-actions are

compactifiable. The technique of the concrete construction presented, as

well as examples why a more general, easy-to-understand sufficient condition

is impossible, give a thorough understanding of the issues in these group

actions. Once these are understood, some further important classes of orbit

spectra are investigated.

We need to introduce some notation specific to this section. There are

at least two notions of the boundary of a subset of a topological space.

Engelking [6] defines the boundary to be its closure minus its interior. Some-

times the boundary is taken to be the set itself minus the interior. We are

interested in the non-interior limit points of a set. Therefore we define the

following. Given a subset A of R in this section we will write A for the

Euclidean closure of A. We will also write ess (A) = A \ A as these point

turn out to be the essential obstacles to finding a finer compact Hausdorff

topology.

83
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7.1 The co-compact Topology

From Theorem 3.11 and Corollary 3.12 we can see that the co-compact topol-

ogy is of major importance in the understanding of the orbit spectra of com-

pact R-actions. For R there is a particularly nice representation of (R≤, τCo)

which we shall exhibit now. Recall that the closed subgroups of R are pre-

cisely {0} ,R and tZ for t ∈ R+.

Theorem 7.1. Under the identification

R≤ → R+
0 ∪ {∞} ;H 7→

{

inf(H ∩ R+); if H 6= {0}

∞; if H = {0}

the co-compact topology on R≤ maps to the topology consisting of sets of the

form ZU ∪ {∞} where U is an open subset of R and ∅.

Moreover, under this identification a subset T of R≤ is compact if and

only if T ∩ R+ ⊂ N(T ∩ R+) or 0 ∈ T .

Proof. First note that for every Euclidean open set U there is a u ∈ R+ such

that (−∞,−u) ∪ (u,∞) ⊂ ZU . For suppose (a, b) ⊂ U with 0 < a < b. Then

there is n ∈ N with (n+ 1)a < nb < (n+ 1)b and therefore

(m+ 1)a < mb < (m+ 1)b for m ≥ n. Hence

ZU ⊃ Z(a, b) ⊃
⋃

m≥n

(ma,mb) ⊃ (na,∞).

Similarly ZU ⊃ (−∞,−ma) for some m ∈ N as required. If no such a, b

exist then, as U is Euclidean open we have (a, b) ⊂ U with a < b ≤ 0 and an

analogous argument gives the claim.

As ZU is also Euclidean open it is a co-compact subset of R. Finally

note that H ⊂ ZU implies that infH ∩ R+ ∈ ZU for a closed, non-trivial

subgroup H of R. Thus ZU ∪ {∞} corresponds to an open set under the

identification.

Conversely suppose U is a co-compact proper subset of R. Consider the

set U ′ =
⋃

{

H ∈ R≤ : H ⊂ U
}

\ {0}. If r ∈ ZU ′ then r ∈ ZH = H for some

H ∈ R≤ so rZ ⊂ H ⊂ U and thus rZ is in the open set Û ⊂ R≤. Finally
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U ′ is an open subset of R. For suppose r ∈ U ′, i.e. rZ ⊂ U . Since U is

co-compact, there is n ∈ N with (−∞,−nr) ∪ (nr,∞) ⊂ U . Then

B = (nr/(n+ 1),∞) ∩
n

⋂

k=−n

U/n

is a Euclidean neighbourhood of r and thus if s ∈ B then sZ ⊂ U .

Hence the open subset Û of R≤ is either empty or corresponds to the set

ZU ′ ∪ {∞} under the identification.

For the characterization of the compact subsets of R≤ under the iden-

tification, first note that the only open set containing 0 is the whole space

R+
0 ∪ {∞}. Thus any set containing 0 will be compact.

Next, consider a compact subset T 6∋ 0 of R+
0 ∪ {∞}. If ∞ 6= r ∈ T

then we can choose a sequence rn from T which converges to r in the

Euclidean sense. As {0} ∪ r/N is a Euclidean closed subset of R for any

t ∈ R+ \ r/N there is a Euclidean open U ⊂ R+ containing t which is dis-

joint from {0} ∪ r/N. Hence ZU does not contain r but is a (co-compact)

open neighbourhood of t. Thus rn cannot have t as a limit point in the co-

compact topology. However, since compactness of T implies that rn has a

limit point, {0} ∪ r/N must meet T . As 0 /∈ T that implies that r ∈ NT as

required.

Conversely suppose T ⊂ R+
0 ∪ {∞} satisfies T ∩ R ⊂ N(T ∩ R). If T ⊂ {∞}

then T is clearly compact. Otherwise let U be a (co-compact) open cover of

T and choose some t0 ∈ T \ {0} and some U0 ∈ U with t0 ∈ U0. Note that

U0 contains a set of the form (a,∞) ∩ T . On the other hand since every

U ∈ U is invariant under multiplication by N, U also covers N(T ∩ R) and

therefore in particular T ∩ R. Since T ∩ R \ U0 is a Euclidean closed and

bounded subset of R it is Euclidean compact. As the co-compact topology

on R+
0 is a coarser topology than the Euclidean one, it is therefore compact

in the co-compact topology. Thus there is a finite subcover V ⊂ U of T ∩ R.

Hence {U0} ∪ V is a finite subcover of T , i.e. T is compact.
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7.2 A Method of Construction

Now that we have a good description of the co-compact topology on R≤

the next obvious step is to ask which of the compact sets does have a finer

compact Hausdorff topology, and which of them is the continuous image of

a compact Hausdorff space. We will focus on the first problem, as it seems

the more fundamental as an independent question in general topology.

Let us first give an informal outline of our strategy constructing a finer

compact Hausdorff topology. We will then give examples of the two typical

problems we have to overcome.

It is helpful to recast the general problem of when a compact topology on

a set can be refined to a compact Hausdorff topology in the context of con-

vergence structures. A convergence is compact if every ultrafilter converges

somewhere and Hausdorff if every filter converges to at most one point. Note

that if → is a relation between the ultrafilters of X and points of X such

that for every ultrafilter U there is a unique point x ∈ X with U → x we

can extend → to a compact Hausdorff convergence on X. In fact there is a

unique maximal (with respect to inclusion) extension of → to a convergence

on X given by U → x if and only if every ultrafilter finer than U converges

to x. Note also that every topological convergence → has the property that

U → x if and only if every ultrafilter finer than U converges to x.

Thus, given a compact topological convergence→ on X, for each ultrafil-

ter U on X we choose some xU with U → xU and set U →′ x ⇐⇒ x = xU .

Then →′ finer than → on the ultrafilters and by the above →′ extends to a

compact Hausdorff convergence on X. It is now easy to check that the ex-

tension of →′ is finer than →. Thus every compact topological convergence

has a finer compact Hausdorff convergence.

However, although→′ is a perfectly good compact Hausdorff convergence,

it is not necessarily topological. In particular, the topology that is induced

by →′ is not necessarily Hausdorff, although it will always be compact. The

problem is that in a topological space, as opposed to a convergence space,
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the convergence of two ultrafilters is in general not independent. We can

illustrate this with the following example.

Example 7.2. The compact subset

T = {2, 3} ∪ {2 + 1/(3n) : n even}

∪ {3 + 1/(2n) : n odd}

∪ (6, 7] \ {6 + 1/n : n ∈ N}

of R≤ (under the identification) has no finer compact Hausdorff topology.

However, it is the continuous image of a compact Hausdorff space.

Proof. Clearly T is compact in the co-compact topology. First note that

{2 + 1/(3n), 3 + 1/(2(n+ 1))} ∪ (6 + 1/(n+ 1), 6 + 1/n)

for n even, and

{2 + 1/(3(n+ 1)), 2 + 1/(3n)} ∪ (6 + 1/(n+ 1), 6 + 1/n)

for n odd are both compact Hausdorff subsets of T .

Suppose now that τ is a finer compact Hausdorff topology. Clearly

every U ∈ τ that contains 2 (3 resp.) must contain all but finitely many

2 + 1/(3n), n odd (3 + 1/(2n), n even resp.). So let U2, U3 be disjoint ele-

ments of τ containing 2 and 3 respectively and let N ∈ N such that

n ≥ N =⇒ 2 + 1/(3n) ∈ U2 (n even), 3 + 1/(2n) ∈ U3 (n odd). By the first

remark (6 + 1/(n+ 1), 6 + 1/n) \ U2 ∪ U3 must be non-empty for n ≥ N and

will have the usual Euclidean topology as a subspace. Let

Vn = (6 + 1/(2n+ 1), 6 + 1/(2n)),

a co-compact and hence τ -open set. Let

V = {2 + 1/(3n) : n < N, n even}

∪ {3 + 1/(2n) : n < N, n odd}

∪ (6 + 1/N, 7] ∩ T,
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again co-compact open and hence τ -open. Then {U2, U3, V } ∪ {Vn : n ≥ N}

is a τ -open cover of T which has no finite subcover, since each Vn contains

an element xn not contained in any other element of the cover. Thus no finer

compact Hausdorff topology can exists.

This counterexample exhibits one type of problem that may occur in a

compact subset of R≤. We may say that we cannot decide which of the points

2 and 3 should represent or ‘cover’ the ‘missing’ 6 ∈ T . The impossibility of

this decision can be traced back to the connectedness properties of T . In

fact, below we show that provided T is Euclidean nowhere dense this type of

problem cannot occur. Intuitively, we can then pull T apart and deal with

the individual parts separately.

Theorem 7.3. If T is a compact subset of R≤ \ {∞}, T is Euclidean nowhere

dense and bounded, then there is a finer compact Hausdorff topology on T .

We will prove this theorem in a series of lemmas. However, since the proof

is fairly intricate, we will first describe it informally. First, let us observe that

if T has arbitrarily small elements, then it must contain 0 and we let 0 be

the one point at infinity in the compactification of T \ {0} with the discrete

topology, an application of Theorem 4.4. Also, by using Lemma 4.1 we may

restrict our attention to the a T1 subset T ′ = T \
⋃

2<k kT . We have argued

above that the problematic points are those of ess (T ′). We will show that we

can choose one such point x, together with a Euclidean neighbourhood U of x

such that U ∩ T ′ ⊂ T ′ ∪ nT ′ for some n > 1, i.e. that all problematic points

in a small neighbourhood around x can be covered with the same factor n.

Provided we find a finer compact Hausdorff topology on T ′ \ U we can then

add points of T ′ ∩ U later by taking the disjoint union of T ′ \ U and T ′ ∩ U

and identify the point x ∈ ess (T ′ ∩ U) with the point representing x/n. Note

that x/n itself may not be in T ′ \ U but only in T ′ \ U , so the identification

requires some care. If U ⊂ (supT ′/2,∞) then T ′ \ U will still be compact

(in the co-compact topology), so we will do this construction recursively. To

succeed, however, it is important that at each step of the recursion we will

decrease the number of problematic points, i.e. that ess (T ′ \ U) ( ess (T ′).
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Here the fact that T ′ is Euclidean nowhere dense allows us to choose U

such that ess (U) ∩ T ′ = ∅, i.e. that taking away U does not add any new

problematic points.

As we will see now, some care and technical detail is needed to execute

the above plan. The first step in the proof of the theorem has to be the

identification of a point x and a Euclidean open neighbourhood U of x which

we may remove now and add back in at a later stage. Since the remainder

of T will be split into parts, we also have to make sure that U respects this

split, which is guaranteed by the second part of the Lemma.

Lemma 7.4. Suppose T satisfies the conditions of the theorem and that it is

also T1 and bounded away from 0.

If ess (T ) 6= ∅, y ∈ ess (T ) and V a Euclidean open set containing y then

there is x ∈ ess (T ) ∩ V , a Euclidean open U ∋ x, and an integer n > 1 such

that ess (U) ∩ T = ∅, ess (T ∩ U) ⊂ nT and x/n ∈ T .

Moreover, if U1, . . . , UN is a finite partition of T , we may choose x, U and

n such that ess (T ∩ U) ⊂ nUi.

Proof. First note that supT/ inf T < N for someN ∈ N, so that T ⊂
⋃

i≤N iT .

Now suppose that the Lemma is not true for T . Choose witnesses y ∈ ess (T ),

V ∋ y for this.

We will define xk ∈ Uk, 1 < nk ≤ N such that for every k,

(i) xk ∈ ess (T ∩ Uk),

(ii) Uk ⊂ Uk ⊂ V ,

(iii) ess (Uk) ∩ T = ∅,

(iv) ess (T ∩ Uk+1) ∩ nkT = ∅,

(v) nk 6= ni for i < k.

Let x1 = y. Since T ⊂
⋃

i≤N iT there is 1 < n1 ≤ N with x1/n1 ∈ T . As

T is Euclidean nowhere dense, we can find Euclidean open U1 ∋ x1 such that

U1 ⊂ V and ess (U1) ∩ T = ∅.
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Having defined xk, Uk, nk for k ≤ K consider T ∩ UK . Since xK ∈ V ,

xK/nK ∈ T , ess (UK) ∩ T = ∅ and y, V witness the failure of the Lemma,

there must be xK+1 ∈ ess (T ∩ UK) \ nKT . As R is regular, nKT Euclid-

ean closed, and T Euclidean nowhere dense, we can find Euclidean open

UK+1 with ess (UK+1) disjoint from T such that ess (T ∩ UK+1) ∩ nKT = ∅

and xK+1 ∈ UK+1 ⊂ UK+1 ⊂ UK . Finally note that since

xK+1 ∈ ess (T ∩ UK+1) ⊂ ess (T ∩ Uk)

for k ≤ K we have xK+1 /∈ nkT for k ≤ K. But xK+1 ∈
⋃

i≤N iT so there is

nK+1 6= nk for k ≤ K with xK+1/nK+1 ∈ T, 1 < nK+1 ≤ N .

However, there are only finitely many possible nk, namely 2, . . . , N , so

eventually we will arrive at a contradiction.

The proof of the second part works similarly. Suppose it were not true.

We choose witnesses y, V and apply the first part. We then have x ∈ U ,

ess (U) ⊂ nT =
⋃

i≤N nUi, x/n ∈ Ui for some i, so there must be x′ ∈ ess (U)

with x′ /∈ nUi. The latter is closed so we can separate x′ from nUi and proceed

by induction as above. Again only finitely many Uis have to be considered

so we will eventually arrive at a contradiction.

As described before, we may now iterate this construction.

Lemma 7.5. Suppose T satisfies the conditions of the theorem and that it is

also T1 and bounded away from 0.

Then there is a finite partition Uk of T , integers nk, pk (k = 0, . . . , N)

such that

(i) U0 is Euclidean closed in R,

(ii) ni > 1 and pi < i for i > 0

(iii) ess (Ui) ⊂ niUpi
for i ≥ 0.

Proof. Let t0 = inf T > 0 and note that compactness of T implies that

T ∩ [0, 3t0/2] is Euclidean closed. As T is Euclidean nowhere dense, there is

t > t0, t /∈ T such that a partition as required exists for T ∩ [0, t].
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We will now show that if such a partition exists for T ∩ [0, t] with t /∈ T

then there is t′ > 5/4t, t′ /∈ T such that a partition as required exists for

T ∩ [0, t′]. Boundedness of T then implies that a partition as required exists

for T .

So let U0, . . . , UN , n0, . . . , nN , p0, . . . , pn be as described for T ∩ [0, t]. Since

T is Euclidean nowhere dense, we may choose t′ ∈ [5t/4, 3t/2] \ T . Note that

if V ⊂ (t,∞) is Euclidean open then and T ′ ⊂ T ∩ [0, t′] is compact (in the

co-compact topology), then T ′ \ V is compact (in the co-compact topology)

as well.

Fix a basis B of R such that for every ǫ > 0 all but finitely many basic

open sets have diameter less than ǫ with ess (U) ∩ T = ∅ for every U ∈ B.

By induction we will define Tα ⊂ T ∩ [0, t′], Euclidean open Vα ⊂ (t,∞)

with Vα ∈ B, integers nα > 1, iα ≤ N

(i) Tα is compact in the co-compact topology,

(ii) Vα ∩ ess (Tα) 6= ∅,

(iii) β < α =⇒ ess (Tβ) ( ess (Tα),

(iv) ess (Vα ∩ Tα) ⊂ nαUiα .

Let Tα = T ∩ [0, t′] \
⋃

β<α Vβ. Since the Vα are Euclidean open and meet

ess (Tα) the first two conditions are satisfied.

If there is y ∈ ess (Tα ∩ (t,∞)) 6= ∅ apply Lemma 7.4 with Tα ∩ (t,∞),

y and V = (t, t′) to obtain U, x, n. Shrink U to an element Vα of B still

containing x and note that the conclusions of Lemma 7.4 still hold.

If on the other hand ess (Tα ∩ (t,∞)) = ∅, we set α0 = α and stop.

Since ess (Tα) is strictly decreasing as α increases the process must even-

tually stop. We then define

Un,p =
⋃

α:nα=n,iα=p

Vα ∩ Tα

and claim that ess (Un,p) ⊂ nUp. For suppose x ∈ ess (Un,p) and let xm be

a sequence in Un,p converging to x. If there is a subsequence of xm which
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is contained in some Vα ∩ Tα for some α then x ∈ ess (Vα ∩ Tα) ⊂ nUp as

claimed. Otherwise we may pick a subsequence such that each Vα ∩ Tα con-

tains at most one xm. If xm ∈ Vα ∩ Tα then by the construction there is some

ym ∈ Vα such that ym/n ∈ Up. By the choice of the basis the diameter of the

Vα converges to 0 so ym must converge to x as well. But then x/n ∈ Up so

x ∈ nUp as desired.

Finally note that Tα0 ∩ (t,∞) is closed, so that if we relabel Un,p, Tα0 ∩ (t,∞)

by UN+1, . . . , UM and set the nk, pk accordingly (i.e. if Un,p = Uk then nk = n,

pk = p and otherwise arbitrarily subject to nk > 1, pk < k if Tα0 ∩ (t,∞) = Uk)

we have in fact extended the partition to T ∩ [0, t′] as required.

The above lemma essentially constructs a tree where the nodes Uk are

disjoint subsets of T and the edge between Uk and Upk
is labelled by nk.

Starting from the root, U0 of this tree, we may now construct a finer compact

Hausdorff topology on T .

Lemma 7.6. Suppose T satisfies the conditions of the theorem and that it is

also T1 and bounded away from 0.

Then there is a finer compact Hausdorff topology on T .

Proof. First construct a partition Uk, k = 0, . . . , N by using Lemma 7.5.

Let Y =
∑

k≤N Uk be the disjoint union of the Uk each of which is equipped

with its Euclidean topology. Let R be the reflexive, symmetric, transitive

closure of x ∼ y ⇐⇒ y ∈ Uk, x = y/nk ∈ Upk
. Note that

R =
⋃

n∈ω

(id∪ ∼ ∪ ∼−1)n.

Also observe that since T is bounded and there are only finitely many Uk

there must in fact be some N ∈ ω with R =
⋃

n≤N(id∪ ∼ ∪ ∼−1)n. Since ∼

is closed by the conditions on the Uk and T1-ness of T we can conclude that

R is a closed relation. Thus X = Y/R is a compact Hausdorff space. We will

show that the identification [x] ∈ X → min[x] ∈ T is a continuous bijection,

thereby completing the proof.

First observe that since T is bounded away from 0 every equivalence class

[x] under R has a least element. Thus the map S : Y → T ; y → min[y] is well
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defined and constant on equivalence classes. Since the Uk partition T the map

S is surjective and S/R = ([x] 7→ min[x]) is injective as T is T1. It remains

to show that S is continuous. So let I be an open interval in R and consider

a point y ∈ S−1(NI ∩ T ) with y ∈ Uk, k ≤ N . Since y/min[y] ∈ N for each

y ∈ Y and y ∈ Uk ⊂ T , this means that y ∈ NI ∩ T . But then NI ∩ Uk is a

Uk-open neighbourhood of y and S(NI ∩ Uk) ⊂ NI. Therefore S−1(NI ∩ T )

is indeed open and since the NI ∩ T form a basis for T , S will be continuous.

Proof of Theorem 7.3. If 0 ∈ T then 0 ∈ T and we isolate every point of

T \ {0} and let 0 be the point at infinity of the one-point compactification

of T \ 0.

Otherwise consider the T1-space T ′ = T \
⋃

k≥2 kT . We can apply Lemma

7.6 to T ′ and obtain a finer compact Hausdorff topology τ . Similarly to

Lemma 4.1 we may now add the points of T \ T ′. More precisely, for each

x ∈ T \ T ′ we choose R(x) ∈ T ′ such that x/R(x) ∈ N and extend R to T

by letting R|T ′ = id. The topology on T is then generated by {x} for x /∈ T ′

and R−1(U) \ F where U ∈ τ and F is a finite subset of T \ T ′. It is easily

checked that this topology is in fact a finer compact Hausdorff topology on

T .

We have shown that the construction of a finer compact Hausdorff conver-

gence can be modified to yield a construction of a finer compact Hausdorff

topology, provided the original orbit spectrum T is bounded and Euclid-

ean nowhere dense. The reason for the nowhere dense requirement has al-

ready been exhibited. If we turn our attention to unbounded subspaces T

of R≤ \ {∞} we can first note that unless T is nowhere dense, no new prob-

lems arise. For, if T contains some interval, then the T1-core, i.e. the set

T \
⋃

2<k kT , will be bounded. If T however is nowhere dense, and hence no

obstacles to a finer compact Hausdorff topology will occur in any bounded

part of T , we encounter a new problem in the unbounded part.

This arises from the fact that every co-compact open set in R+
0 contains a

tail of R+
0 . Thus if we consider any ultrafilter U finer than

{

(r,∞) ∩ T : r ∈ R+
0

}

then U will converge to every point of T . Now, one might hope that we can
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just choose any x ∈ T and simply define all these ultrafilters to converge to

this particular x, as one would in the context of convergence spaces. Unfor-

tunately, the following example shows that this is, in general, impossible.

Example 7.7. Let X0 = {1}. Inductively construct well ordered sets Xn

such that Xn+1 \Xn+1 = 2Xn and each Xn+1 is isolated in R.

Having constructed Xn we will build Xn+1 as follows. For each x ∈ Xn let

x′ = min {y ∈ Xn : x < y} if this exists and 2n+1 otherwise. Let yx
n be a

decreasing sequence in (2x, 2x′) that converges to 2x. Now set

Xn+1 =
⋃

x∈Xn

{yx
n : n ∈ N} .

Finally let X =
⋃

n∈N
Xn and observe that X is a compact subset of R≤

but is Euclidean discrete. Note that every bounded part ofX has a finer com-

pact Hausdorff topology. X on the other hand cannot have a finer compact

Hausdorff topology.

Proof. X is countable, so if X had a finer compact Hausdorff topology it

would be a scattered space, thus there would be isolated points. But isolating

any point x ∈ X clearly leads to non-compactness and is therefore impossible.

What we can prove is that if T is eventually Euclidean closed then the

unboundedness does not introduce any new problems.

Theorem 7.8. Suppose T is a compact, Euclidean nowhere dense subset of

R≤. If there is r ∈ R with T ∩ [r,∞) Euclidean closed and T ∩ [0, r] has

a finer compact Hausdorff topology, then T has a finer compact Hausdorff

topology.

Proof. Let τ be the finer topology on Tr = T ∩ [0, r]. If T ⊂ [0, r] we are

done. Otherwise equip T ∩ (r,∞) with its Euclidean topology and let T ⋆ be

its one point compactification. Identify the point at infinity of T ⋆ with any

x ∈ T ⋆ \ {∞} to obtain T∞, a compact Hausdorff space. Thus the disjoint

sum of (Tr, τ) and T∞ is a compact Hausdorff space. Finally, identify r ∈ Tr

with r ∈ T∞ if both exist.
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We now return to our original aim, namely to construct the actual R-action.

The finer compact Hausdorff topologies constructed above will serve as the

orbit space. To obtain an R-action from an orbit space we apply the following

theorem. Apart from the induced stabilizer from the orbit space to R≤, we

also need a ‘winding’ number n. Given two orbits represented by elements

x, y of the orbit space, n(x, y) describes how often the orbit corresponding

to y is wound around the orbit corresponding to x.

Theorem 7.9. Suppose T is a compact Hausdorff space, S : T → R+ a con-

tinuous map (where R+ is regarded as a subspace of R≤) and there is a

function n : T 2 → N such that

(i) given ǫ > 0, x ∈ T there is a τ -open U ∋ x such that

y ∈ U =⇒

∣

∣

∣

∣

S(y)

n(x, y)S(x)
− 1

∣

∣

∣

∣

< ǫ;

(ii) given x ∈ T there is a τ -open Vx ∋ x such that for every y ∈ Vx there

is a τ -open Wx,y ∋ y with Wx,y ⊂ Vx and

z ∈Wx,y =⇒ n(x, z) = n(x, y)n(y, z).

Then there is a compact Hausdorff space X with a continuous R action such

that T is the orbit space and S the induced stab-map.

Proof. In the proof we will use various quotients of R. Elements of Tx = R/S(x)Z

are subsets of R of the form r + S(x)Z. If U is an open subset of §x and πx

the projection map from R to Tx then π−1
x (U) is an open subset of R such

that π−1
x (U) + S(x)Z = π−1

x (U). Conversely any such open subset U of R

such that U + S(x)Z is the inverse image of an open subset of Tx under πx.

We will therefore identify open subsets of Tx with those open subsets U of R

such that U + S(x)Z = U . Note then that if U is an open subset of Tx and

n ∈ N then US(y)
S(x)n

is an open subset of Ty since it is invariant under adding

S(y)Z.
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Let X =
⋃

x∈T {x} × Tx. A point (x, t+ S(x)Z) has a neighbourhood

basis consisting of sets of the form

Wx,U,V =
⋃

y∈U

{y} ×
V S(y)

S(x)n(x, y)

where U ⊂ Vx is an open neighbourhood of x ∈ T , V is an subset of R such

that t ∈ V and V + S(x)Z = V . Note that if y ∈ U then

W
y,U∩Wx,y∩Vy ,

V S(y)
S(x)n(x,y)

⊂ Wx,U,V

using the fact that z ∈Wx,y, y ∈ Vx =⇒ n(x, y)n(y, z) = n(x, z). Hence every

Wx,U,V is in fact open as claimed.

Since rV ∩ rV ′ = ∅ ⇐⇒ V ∩ V ′ = ∅ for subsets V of R and r ∈ R and

since both T and Tx for each x ∈ T are Hausdorff, X is Hausdorff.

Similarly if the Ui, i ∈ I cover Tx then UiS(y)
S(x)n(x,y)

, i ∈ I cover Ty. Thus if

Wx,Ui,Vi
covers {x} × Tx then in fact it covers

⋃

y∈
T

Vi
{y} × Ty. Therefore

compactness of T implies compactness of X.

Finally we need to check continuity of the action. Let t0 ∈ R,

(x0, s0 + S(x0)Z) ∈ X and let W (x0, U0, V0) ∋ t(x0, s0 + S(x0)Z). Choose

open V ∋ s0 + S(x0) and δ > 0 such that t0 +Bδ(V ) ⊂ V0. Next choose

U ⊂ U0 such that

x, y ∈ U =⇒ |S(x)n(x, y)/S(y)− 1| < δ/(2 |t0|+ δ)

and observe that for t ∈ Bδ/2(t0) we have

Bδ/2(t0)W (x0, U, V ) =
⋃

y∈U

{y} ×
V S(y)

S(x0)n(x0, y)
+Bδ/2(t0)

=
⋃

y∈U

{y} ×

(

V +
Bδ/2(t0)S(x0)n(x0, y)

S(y)

)

S(y)

S(x0)n(x0, y)

=
⋃

y∈U

{y} ×
(V +Bδ/2(t0) + ǫ(x0, y)t)S(y)

S(x0)n(x0, y)

where |ǫ(x0, y)| < δ/(2 |t0|+ δ). Thus V +Bδ/2(t0) + ǫ(x, y)t ⊂ t0 +Bδ(V ) ⊂ V0

for every y ∈ U . Therefore Bδ/2(t0)W (x0, U, V ) ⊂ W(x0, U0, V0), t0 ∈ Bδ/2(t0)

and (x0, s0 + S(x0)Z) ∈W (x0, U, V ) giving continuity of the action.
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To use this theorem, we not only need the orbit space, but also the wind-

ing numbers n(x, y). Out constructions of finer compact Hausdorff topologies

already gave an idea of the winding numbers n. However, provided S(T ) is

bounded, we can reconstruct appropriate winding numbers.

Lemma 7.10. If T is a compact Hausdorff space and S : T → R≤ continuous

such that S(T ) ⊂ R+
0 is bounded and bounded away from 0, then there is a

map n : T 2 → N as required in Theorem 7.9.

Proof. Continuity of S implies that a function n : T 2 → N exists which sat-

isfies the first condition, namely as y tends to x, S(y)/n(x, y)S(x) tends to

1. If S(T ) is bounded this automatically gives the second condition: write

S(y)/S(x)n(x, y) = 1 + ǫx,y and note that

|ǫx,z| =

∣

∣

∣

∣

S(z)

S(x)n(x, z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

S(z)

S(y)n(y, z)

S(y)

S(x)n(x, y)

n(x, y)n(y, z)

n(x, z
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

(1 + ǫy,z)(1 + (ǫx,y)
n(x, y)n(y, z)

n(x, z)
− 1

∣

∣

∣

∣

Thus as z tends to y and y tends to x all of |ǫx,z| , |ǫx,y| , |ǫy,z| become small,

so that n(x, y)n(y, z)/n(x, z) tends to 1, noting that n will be bounded by

the bounds on S(T ). Thus n(x, y)n(y, z) must tend to n(x, z) (again since n

is bounded) and therefore eventually they must be equal, as required.

Theorem 7.11. If T is an orbit spectrum of an abstract R-action which has

a bounded, Euclidean nowhere dense T1-core, then T is compactifiable.

Proof. This follows from Theorem 7.3, Theorem 7.9 and Lemma 7.10.

7.2.1 Examples

We will illustrate the results from above by example constructions.

Example 7.12. The most basic case is where the orbit spectrum (in R+
0 ∪

{∞}) is a closed interval, i.e. [r1, r2] with 0 < r1 < r2 < 2r1. In this case, we

can see that the identity from [r1, r2] with the Euclidean topology into the

co-compact topology is continuous. We let T = [r1, r2] with the Euclidean
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topology, S = id in Lemma 7.10 to obtain the winding numbers n(x, y). The

only possible choice of n is simply n(x, y) = 1 (due to connectedness of T ).

We can then apply Theorem 7.9 to obtain the required compact group action.

Geometrically, the phase space consists of an annulus in the plane. The

group action is a rotation of this which has the same speed everywhere.

Prof Haydon calls this construction the horse-racing track. Each ‘horse’

has to stay on its lane and races around the circle and each horse has the

same speed (so the horses on the outer circle take longer).

Example 7.13. Let us modify the previous example slightly by replacing

r1 from the orbit spectrum by r1/2, i.e. the orbit spectrum will be {r1/2} ∪

(r1, r2] again with 0 < r1 < r2 < 2r1. This time, the continuous map will

have range [r1, r2] with the Euclidean topology and map r1 to r1/2 and r to

itself for r 6= r1. Note that the induced finer topology on the orbit spectrum

is not the usual Euclidean topology! We can then use the same process to

obtain a compact group action. This time, n(r1, y) will have to be 2 if y is

very close to r1.

Geometrically we again obtain an annulus where the speed of rotation

is proportional to the distance from the center, but where opposite points

on the innermost circle are identified, illustrating the concept of the winding

number: all other circles wind twice around the circle at r1.

In the pictorial terminology of the horse-racing track, we can picture this

as two indistinguishable horses racing on the innermost track on opposite

sides. To the observer the horses on the innermost track seem to take only

half as long to run once around the circle.

Example 7.14. Let us modify the example again by adding the interval

(3r1/2, r3], so that we have an orbit spectrum {r1/2} ∪ (r1, r2] ∪ (3r1/2, r3]

where 0 < r1 < r2 < 3r1/2 < r3 < 2r1. The orbit space will be the union

of the two intervals [r1, r2] and [3r1/2, r3] with r1 and 2r1 identified. The

continuous map is the identity except that the equivalence class {r1, 2r1} is

mapped to r1/2. We obtain winding numbers n(x, y) where n({r1, 2r1} , y) =

2 when y is close to r1 and n({r1, 2r1} , z) = 3 when z is close to 2r1.
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Geometrically, the orbits corresponding to y ∈ (r1, r2] wind twice around

the orbit corresponding to {r1, 2r1} whereay the orbits corresponding to z ∈

(3r1/2, r3] wind three times around it.

If we want to give the horse-racing track analogy, we now have a mid-

dle circle which has either two indistinguishable horses if looking from the

outside, or three indistinguishable horses if looking from the inside.

It is straightforward to modify the above examples so that instead of

intervals with open endpoints r1 and 2r1, we had converging sequences with

limit r1 and 2r1 respectively. The winding number is then still uniquely

determined when the two arguments are sufficiently close, but not anymore

when the arguments are far apart. We can also provide an example where

we have various choices of the winding number which lead to different group

actions:

Example 7.15. Consider the orbit spectrum {r1/2, r1/3}∪(r1, r2]∪(3r1/2, r3]

with 0 < r1 < r2 < 3r1/2 < r3 < 2r1. Now the following choices of orbit

space and map S are all possible:

• [r1, r2] ∪ [3r1/2, r3] (Euclidean topology) with S(r) = r for r 6= r1, 2r2

and S(r1) = r1/2, S(3r1/2) = r1/3. The resulting group action is the

disjoint sum of two annuli as given in example 7.13.

• [3r1/2− r3, r2 − r1] ∪ {p} (Euclidean topology, p > r2 − r1) with

S(r) =



















r + r1 r > 0

r1/2 r = 0

r1/3 r = p

−r + 3r1/2 r < 0

.

We obtain the group action of example 7.14 plus a single circle (far

away at p) representing the orbit of type r1/3.

Finally we look at unbounded orbit spectra.

Example 7.16. Let Sn = {n+ 1/m : m ∈ N} for n ∈ N, i.e. a sequence

converging to n. Consider the orbit spectrum T = {1} ∪
⋃

n∈N
Sn. One way
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to construct a compact R-action with this orbit spectrum is as follows: let

T n = {αn : α < ω + 1} be homeomorphic to ω + 1 and consider the quotient

space T ′ of
⋃

n∈N
T n where all the limit points ωn, n ∈ N are identified to a

single point ⋆. Let S : T ′ → T be defined by S(αn) = n+ 1/α for α 6= ω and

S(⋆) = 1. Clearly S is continuous into the orbit spectrum. We can define

the winding numbers n(⋆, αn) = n for α 6= ω, n(x, x) = 1 for x ∈ T ′ and

extend n arbitrarily to T ′ × T ′ and apply Theorem 7.9.

Note however, that this is not the only way of constructing an appropriate

R-action. An alternative can look as follows: Use the same notation as

above but this time, let T ′ be the quotient of
⋃

n∈N
T n where all ωn with

n > 1 will be identified to the point ⋆. Define S(αn) = n + 1/(α + 1) for

α 6= ω, n > 1. Let S(⋆) = 1 and let S(α1) = α−1+1/2 for α 6= ω and define

S(ω1) arbitrarily. Now the winding numbers are defined by n(⋆, αn) = n for

n > 1, α 6= ω and n(ω1, αn) = round(S(αn)/S(ω1)). Again n(x, x) = 1 for

x ∈ T ′ and every other value of n is arbitrary. Finally apply Theorem 7.9 to

obtain a very different R-action from the one above.

These example show that the winding number can usually be defined in

a natural way. However, the author is unable to prove the existence of the

winding number satisfying the condition in Theorem 7.9 from the assumption

that a compact R-action with the appropriate orbit space and induced map

from the orbit space to the orbit spectrum exists. On the other hand, no

example of a compact subset of R≤ which has a finer compact Hausdorff

topology but for which no winding numbers can be defined is known.

7.3 Non-periodic Orbits

In the previous section we have concerned ourselves mainly with R-actions

where all orbits are periodic, i.e. compact. In this section we take a closer

look at R-actions without periodic orbits. Fortunately, most of the work has

already been done in previous chapters.

Theorem 7.17. Every non-periodic orbit of a continuous R-actionis non-

compact.
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Proof. This follows directly from Theorem 3.2 since R is a locally compact,

Lindelöf, non-compact Hausdorff group and every non-periodic R-orbit must

have stabilizer {e}.

Together with Theorem 3.13 we now have a clear picture of what hap-

pens for continuous R-actions on compact Hausdorff spaces that do not have

periodic orbits.

Corollary 7.18. If R acts continuously on a compact Hausdorff space X

such that no orbit is periodic, then there are at least c many orbits.

Theorem 7.19. An abstract R-action consisting of κ many non-periodic

orbits is compact realizable if and only if κ ≥ c.

Proof. Necessity follows from the previous Corollary. For sufficiency of the

condition we give an explicit construction of a compact R-action with c many

non-periodic orbits. Using the Adding Lemma (4.1) this gives the result.

So let X = T× T and choose an irrational α ∈ R \Q. Then define the

map R×X → X by (t, (φ, ψ)) 7→ (φ+ t, ψ + αt) where T = R/Z. Clearly

this is a continuous R-action on the compact Hausdorff spaceX. Furthermore

if (t, (φ, ψ)) 7→ (φ, ψ) then we must have t, αt ∈ Z which implies t = 0 as

α /∈ Q. Thus every point has stabilizer {e} as required.



Chapter 8

Conclusion

We have shown that the apparently simple demand of continuity of a group

action on a compact Hausdorff space gives rise to surprising restrictions on

its structure as an abstract group action. Using a wide variety of tech-

niques we were able to prove these results in a geometrically meaningful way.

On the other hand, for large classes of abstract group actions we gave con-

structions of compact Hausdorff topologies making them continuous. For

compact Abelian groups the necessary and sufficient conditions for the ex-

istence of these compact Hausdorff topologies coincide. Thus a complete

characterization of the compact group actions of these groups was obtained.

Furthermore, if the groups in question are Lie groups, then a particularly

simple statement of the characterization is possible. Unfortunately both for

Z2-actions and for R-actions some open questions remain. Where possible we

have tried to describe these questions by giving concrete examples, exhibiting

the limitations of our current results. Below we summarize the main open

questions and briefly speculate about possible approaches to solve these.

8.1 Open questions

8.1.1 Zn-actions

We have seen that a straight generalization from Z-actions to Z2-actions, let

alone general Zn-actions, is impossible. This is primarily due to the multi-

dimensional nature of the orbits of most Zn-actions for n > 1.

102
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A refinement of the techniques using scattered spaces presented in section

5.2.1, in particular the construction of even better open partitions, seems

possible in principle, although complicated to execute in practice. In the

same vein, the applications of these techniques to Zn actions should produce

necessary conditions for continuity of the actions.

The different approach used in section 5.2.2 on the other hand is com-

paratively simple, but does not produce as strong results. However, we have

already noted that the two approaches might in fact be equivalent or could

at least be generalized to produce identical results. If this were the case,

then the connection of even continuity to the Ascoli theorem and thereby

to the theory of function spaces, could be a large advantage. This seems a

promising field for further investigations.

When comparing the results for Z-actions and for Z2-actions there are

two striking differences. Firstly in Z-actions, a combination of finite and

infinite orbits is always compact-realizable which does definitely not hold for

Z2-actions, although the existence of infinite orbits definitely helps. Secondly,

it just so happens that the precise number of orbits of a particular type is

not important for Z-actions - only the distinction between less than c and at

least c many orbits is important. However, this is just a corollary from the

theorem characterizing all compact-realizable Z-actions and is not explained

by the proof of this result. Preliminary results indicate however, that in

Z2-actions the precise number of orbits of a particular type is important in

deciding whether the action is compact-realizable. Thirdly and lastly we have

observed that Z2-actions can have infinitely many non-trivial forced-compact

subsystems. Even if each of these subsytems is compact-realizable it remains

unclear how to piece them together.

8.1.2 Finer compact Hausdorff topologies

Our discoveries have shown that compact non-Hausdorff topologies are cru-

cial in determining whether an abstract group action is compact-realizable.

In particular, the question of whether these topologies have finer compact
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Hausdorff topologies or more generally continuous compact Hausdorff preim-

ages is of great importance. In fact, at least for compact Abelian groups

we were able to show that the existence of certain the continuous preim-

ages of compact topologies is equivalent to the question of their compact-

realizability.

8.1.3 R-actions

Apart from the question of the existence of finer compact Hausdorff topolo-

gies mentioned in the previous section, we encounter the problem of ‘winding’

numbers when asking whether an abstract R-action is compact-realizable.

The existence of compatible winding numbers could turn out to be an extra

necessary condition for an R-action to be compact-realizable. On the other

hand, no compact subset of R≤ with finer compact Hausdorff topology is

known that is not the orbit spectrum of a compact R-action.

When discussing the existence of finer compact Hausdorff topologies, we

gave two examples of compact subsets of R≤ that do have such a finer com-

pact Hausdorff topology. One of these examples was ‘bounded’ whereas the

other was unbounded and Euclidean nowhere-dense. Since we could not find

fundamentally different examples of compact subsets of R≤ without finer

compact Hausdorff topologies, we conjecture that these two exhibit all the

problems one might possibly encounter when trying to find finer compact

Hausdorff topologies to compact subsets of R≤.

8.1.4 Outlook

Apart from the fairly specific questions mentioned above, a wide field of more

broad research directions remains.

We have seen that a diverse range of categories, all related to the cate-

gory of topological spaces, was used in the proofs in this thesis. In some of

these, for example convergence spaces, the problem seems to become easier

(every compact convergence structure has a finer compact Hausdorff conver-

gence structure). In others, for example metric spaces, our question becomes

harder and in fact undecidable in ZFC as mentioned in the introduction. I
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am convinced, however, that investigating this or similar questions for these

categories would produce interesting results. Particularly if one starts to

consider the problem on topological or differentiable manifolds, direct appli-

cations in the field of theoretical physics might be possible.

Closely related, sometimes indistinguishable, is the variation on the prop-

erties we require the phase spaces to have. We argued in the introduction why

compact Hausdorff seems a good choice, but other properties are certainly

interesting as well. In view of Theorem 3.11 properties which are invariants

of continuous maps suggest themselves. Among these are weaker forms of

compactness (e.g. Lindelöfness) but also completely different properties like

connectedness. Combinations, for example requiring the phase space to be a

continuum, i.e. a compact, connected Hausdorff space, are further possibili-

ties.

Finally, it is possible to not only impose further restrictions on the phase

space, but also on the group action. Apart from requiring it to be uniformly

continuous when working in the category of uniform spaces or differentiable

when working on differentiable manifolds, we can impose restrictions from

the theory of dynamical systems on the action. Examples of such restrictions

are the existence or absence of attractors, whether the action is topologically

mixing, and so on. This would require the development of new and different

techniques, among them a generalization the results to semi-group actions

(e.g. R+-actions) which brings with it completely new problems.



Bibliography

[1] J de Groot and H de Vries. Metrization of a set which is mapped

ionto itself. Quart. J. Math. Oxford (2), 9:144–148, 1958.

[2] H de Vries. Compactification of a set which is mapped onto itself.

Bull. Acad. Polonaise des Sci. Cl. III, 5:943–945, 1957.

[3] S Dolecki. An initiation into convergence theory. http://math.u-

bourgogne.fr/topo/dolecki/Page/convergence.html.

[4] S Dolecki, G H Greco, and A Lechicki. When do the upper

Kuratowski topology (homeomorphically, Scott topology) and the co-

compact topology coincide? Trans. Amer. Math. Soc., 347(8):2869–

2884, 1995.

[5] D Ellis. Orbital topologies. Quart. J. Math. Oxford (2), 4:117–119,

1953.

[6] R Engelking. General Topology, 6 of Sigma series in pure mathe-

matics. Heldermann Verlag Berlin, 1989.

[7] C Good, S Greenwood, R W Knight, D W McIntyre, and

S Watson. Characterizing continuous functions on compact spaces.

Adv. Math. in press.

[8] A Iwanik. How restrictive is topological dynamics? Comment. Math.

Univ. Carolin., 38:563–569, 1997.

[9] Ralph Kopperman. Asymmetry and duality in topology. Topology

Appl., 66(1):1–39, 1995.

106



BIBLIOGRAPHY 107

[10] D Montgomery and L Zippin. Topological transformation groups.

Interscience Publishers, New York-London, 1955.

[11] M Powderly and H Tong. On orbital topologies. Quart. J. Math.

Oxford (2), 7:1–2, 1956.

[12] A H Stone. Compact and compact Hausdorff. In Aspects of topology,

93 of London Math. Soc. Lecture Note Ser., pages 315–324. Cambridge

Univ. Press, Cambridge, 1985.



Index

=s, 33

C(X), 17

Iα(X), 33

Fix, 14

ht , 33

≤os, 8

≤ot, 8

≤s, 33

≤wos, 7

(X,G), 6
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