Journal article
Directed functional connectivity using dynamic graphical models
- Abstract:
- There are a growing number of neuroimaging methods that model spatio-temporal patterns of brain activity to allow more meaningful characterizations of brain networks. This paper proposes dynamic graphical models (DGMs) for dynamic, directed functional connectivity. DGMs are a multivariate graphical model with time-varying coefficients that describe instantaneous directed relationships between nodes. A further benefit of DGMs is that networks may contain loops and that large networks can be estimated. We use network simulations and human resting-state fMRI (N = 500) to investigate the validity and reliability of the estimated networks. We simulate systematic lags of the hemodynamic response at different brain regions to investigate how these lags potentially bias directionality estimates. In the presence of such lag confounds (0.4-0.8 s offset between connected nodes), our method has a sensitivity of 72%-77% to detect the true direction. Stronger lag confounds have reduced sensitivity, but do not increase false positives (i.e., directionality estimates of the opposite direction). In human resting-state fMRI, the default mode network has consistent influence on the cerebellar, the limbic and the auditory/temporal networks. We also show a consistent reciprocal relationship between the visual medial and visual lateral network. Finally, we apply the method in a small mouse fMRI sample and discover a highly plausible relationship between areas in the hippocampus feeding into the cingulate cortex. We provide a computationally efficient implementation of DGM as a free software package for R.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, pdf, 3.6MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.neuroimage.2018.03.074
Authors
+ Wellcome Trust
More from this funder
- Funding agency for:
- Nichols, T
- Grant:
- 100309/Z/12/Z
- 106183/Z/14/Z
- Publisher:
- Elsevier
- Journal:
- NeuroImage More from this journal
- Volume:
- 175
- Pages:
- 340-353
- Publication date:
- 2018-04-03
- Acceptance date:
- 2018-03-30
- DOI:
- EISSN:
-
1095-9572
- ISSN:
-
1053-8119
- Pmid:
-
29625233
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:836593
- UUID:
-
uuid:c0292ffd-d241-4c50-99ef-9248fcea9d01
- Local pid:
-
pubs:836593
- Deposit date:
-
2018-10-08
Terms of use
- Copyright holder:
- Schwab et al
- Copyright date:
- 2018
- Notes:
- © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record