Journal article icon

Journal article

Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction

Abstract:
We report the presence of clear annual cycles in trace-element (Mg/Ca, Sr/Ca, Ba/Ca, and U/Ca) and stable-isotope (δ18O and δ13C) composition in an annually banded stalagmite from Heshang Cave, Hubei Province, China (30.44°N, 110.42°E). Through a combination of micromilling and in situ analysis (LA-MC-CPMS), we measured geochemical variations across 16 annual growth bands, to assess their potential as seasonal resolution paleomonsoon proxies. To facilitate comparison with modern climatic and environmental data we created composite annual cycles for each proxy by stacking 6 well-defined years. Speleothem δ18O variations (- 10.8‰ to - 8.5‰) are controlled by seasonal variations in temperature and drip-water δ18O which lead to maximum values during May, around the time of summer monsoon onset. This provides a chronological marker which can be used to constrain the timing of the other geochemical cycles. The composite cycles reveal a strong positive correlation between Mg/Ca, Sr/Ca, Ba/Ca, and δ13C values in the micromilled section (R2 = 0.65-0.98), with minimum values occurring around May. Maximum U/Ca values occur at the same time. We present simple models which show that these correlations, as well as the observed ranges of Mg/Ca (14.1 to 22.4 mmol/mol), Sr/Ca (0.2 to 0.4 mmol/mol), and δ13C (- 12.5 ‰ to - 10.7-), may be fully explained by progressive CO2 degassing and calcite precipitation from an initially saturated solution. Using realistic initial conditions for Heshang Cave (T = 18 °C, Mg/Casolution = 0.84 mol/mol, Sr/Casolution = 0.69 mmol/mol, δ13CTDIC = - 16.75‰), we find that the observed relationships can be produced by using DMg = 0.016 and DSr = 0.30, within the range of expected values. The model suggests that the fraction of Ca removed from the solution ranges from 0 to 30% to produce the observed seasonal cycles. This variation may be due to two related processes which occur during drier periods: (1) increased prior precipitation of calcite in the epikarst or on the cave ceiling, and/or (2) a greater degree of CO2 degassing and calcite precipitation on stalagmite surfaces when drip-rates are lower. Both mechanisms would have the effect of enriching speleothem Mg/Ca, Sr/Ca, Ba/Ca, and δ13C values during drier periods. Past variations in Heshang carbonate chemistry may therefore be useful as seasonal resolution proxies for past rainfall. © 2006 Elsevier B.V. All rights reserved.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1016/j.epsl.2006.01.064

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Earth Sciences
Role:
Author


Journal:
EARTH AND PLANETARY SCIENCE LETTERS More from this journal
Volume:
244
Issue:
1-2
Pages:
394-407
Publication date:
2006-04-15
DOI:
ISSN:
0012-821X


Language:
English
Keywords:
Pubs id:
pubs:82594
UUID:
uuid:bcfc7e43-3915-4fd4-8736-9eb7074947aa
Local pid:
pubs:82594
Source identifiers:
82594
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP