Monopile foundations under complex cyclic lateral loading

Iona A. Richards
St. Peter’s College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy
Trinity 2019
Abstract

Monopile foundations under complex cyclic lateral loading
Iona A. Richards
St Peter’s College, University of Oxford
A thesis submitted for the degree of Doctor of Philosophy
Trinity 2019

The vast majority of offshore wind turbines are supported on monopile foundations. These foundations experience lateral loading which is both cyclic and complex: continuously varying in amplitude, direction, frequency and eccentricity with the environmental and turbine operation conditions. The effect of cyclic loading on the accumulated rotation (ratcheting), strength and stiffness of the foundation must be considered, while advanced structural dynamic modelling requires prediction of the cyclic hysteretic response. However, there are currently no commonly accepted design methods for predicting the cyclic response of monopile foundations, particularly under the complex loading to which they are exposed.

This thesis explores the response of monopile foundations to cyclic lateral loading through laboratory-scale physical modelling in dry sand, principally at 1g. The development of novel laboratory apparatus allows the application of complex, continuously varying cyclic loading. Regular, unidirectional tests complement previous studies and explore the impact of load amplitude and asymmetry in detail. Regular, multidirectional tests provide novel insight into the response to loading with multiple direction components. And irregular, multi-amplitude and multidirectional tests reveal the response to realistic loading, highlighting the dominance of large load events. Throughout, the monopile response is characterised in terms of ratcheting, evolution of hysteresis loop shape and the post-cyclic reloading response. Behaviour in very loose and dense sand is found to be qualitatively similar.

A complementary study using centrifuge modelling explores the impact of stress-level on the monopile response, to establish the relevance of 1g modelling and inform comparison of monopile responses observed at different stress-levels. Qualitatively similar behaviour is observed at multiple stress-levels, although the rate of ratcheting and stiffening reduce with increasing stress-level.

Together, the physical modelling results inform the design of monopile foundations under cyclic lateral loading. In particular, the results facilitate demonstration and development of numerical models in the Hyperplastic Accelerated Ratcheting Model (HARM) framework, which can capture ratcheting and evolution of the hysteretic response, and can respond to arbitrary loading. Models in the HARM framework are shown to capture key features of the response to complex — irregular, multi-amplitude and multidirectional — cyclic loading in dry sand of various densities and at multiple stress-levels. The results build confidence in the application of models in the HARM framework for full-scale monopile design.
Acknowledgements

First and foremost, I would like to thank my supervisors Byron Byrne and Guy Houlsby. This thesis would not have been possible without their careful guidance and enthusiasm. In particular, I thank Guy for patiently accommodating many an impromptu meeting, and Byron for the encouragement over many years, from my time at Catz as an undergraduate. Special thanks also go to Clive Baker. From machining bespoke components to advising on the intricacies of lifting equipment, Clive's technical expertise, support and good humour facilitated all aspects of the experimental work at Oxford.

It has been a pleasure to be part of the Civil Engineering Group at Oxford, surrounded by so many cheerful, helpful people. In particular, my gratitude goes to Christelle Abadie, whose support and generous advice was invaluable in the development of this project, and to Toby Balaam for numerous fruitful discussions, particularly regarding our cyclic definitions work. I am also grateful to Tom Adcock and Mark McAllister for facilitating access to wave loading data from the DeRisk project, and providing much-appreciated technical input. For advice and assistance in the lab and beyond, I thank Jonathan White, Russell Mayall, Brian Sheil and Ross McAdam; and for all the help with purchasing, I thank Alison May. Special thanks must also go to the REMS contingent and the ever-evolving Wallis room lunch group, for all the laughs, and to the civil climbing group, for the support on and off the wall.

At UWA, I am very grateful to Fraser Bransby and Christophe Gaudin for supporting my visit in 2018, and for many insightful discussions. The experimental work at UWA would not have been possible without the support of the excellent technical team, led by John Breen; thank you all for going the extra mile. I am also grateful to Manuel Herduin for allowing me to use his laboratory apparatus, and to Juliano Nietiedt for the assistance in the laboratory (as well as all the lifts to the office). I must also thank everyone at UWA who made me so welcome, and especially those who showed me a little of Western Australia.

Beyond the Jenkin building (Oxford) and the IOMRC (Perth), I thank Liz and Nigel for providing a home-from-home during my visits to Cranfield, Em and Freddie for the adventures, and Renée for all the support. Fearghus, thanks for being my (often rather distant) rock. Finally, I thank my parents and Al for, ultimately, making this possible.
Contents

1 Introduction .. 1
 1.1 Application .. 1
 1.1.1 Offshore wind power 1
 1.1.2 Offshore wind turbine support structures 2
 1.2 Design of monopile foundations 4
 1.2.1 Loading .. 4
 1.2.2 Illustrative monopile response 7
 1.2.3 Design requirements 9
 1.2.4 Monotonic design 12
 1.2.5 Cyclic design .. 14
 1.3 Relevant research contributions 16
 1.3.1 Physical modelling 16
 1.3.2 Mechanistic studies 21
 1.3.3 Proposed cyclic design methods 22
 1.4 Thesis structure ... 25
 1.4.1 Outline .. 25
 1.4.2 Chapter summary 26

2 Design of novel laboratory apparatus for 1g monopile testing 29
 2.1 Introduction .. 29
 2.2 Model pile .. 30
 2.3 Loading and pile measurement apparatus 31
 2.3.1 Design overview 31
 2.3.2 Tank .. 34
 2.3.3 Pile cap .. 34
 2.3.4 Actuators and load application 34
 2.3.5 Position measurement 35
 2.4 Data acquisition, kinematics and control software 36
 2.4.1 Software overview 36
 2.4.2 Actuator communication and data acquisition 37
 2.4.3 Kinematics calculations 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4 Adjustment for transducer friction</td>
<td>40</td>
</tr>
<tr>
<td>2.4.5 Load control</td>
<td>41</td>
</tr>
<tr>
<td>2.4.6 Data logging</td>
<td>42</td>
</tr>
<tr>
<td>2.5 Sample preparation apparatus</td>
<td>42</td>
</tr>
<tr>
<td>2.6 Pile installation apparatus</td>
<td>44</td>
</tr>
<tr>
<td>2.7 Summary</td>
<td>45</td>
</tr>
<tr>
<td>3 1g test procedure, monotonic responses and cyclic definitions</td>
<td>46</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Sand sample</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1 Sand properties</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2 Sample preparation</td>
<td>47</td>
</tr>
<tr>
<td>3.2.3 Impact of stress-level</td>
<td>49</td>
</tr>
<tr>
<td>3.2.4 Cone penetration tests</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Set-up and test procedure</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Monotonic response</td>
<td>54</td>
</tr>
<tr>
<td>3.4.1 Moment-rotation response</td>
<td>55</td>
</tr>
<tr>
<td>3.4.2 Maximum stiffness</td>
<td>56</td>
</tr>
<tr>
<td>3.4.3 Normalisation</td>
<td>58</td>
</tr>
<tr>
<td>3.5 Definitions for cyclic loading and the cyclic response</td>
<td>60</td>
</tr>
<tr>
<td>3.5.1 Cycle definition</td>
<td>61</td>
</tr>
<tr>
<td>3.5.2 Cyclic load characterisation</td>
<td>62</td>
</tr>
<tr>
<td>3.5.3 Ratcheting definition</td>
<td>63</td>
</tr>
<tr>
<td>3.5.4 Secant stiffness definition</td>
<td>64</td>
</tr>
<tr>
<td>3.5.5 Energy dissipation definition</td>
<td>64</td>
</tr>
<tr>
<td>3.5.6 Application to multi-amplitude loading</td>
<td>67</td>
</tr>
<tr>
<td>3.6 Summary</td>
<td>68</td>
</tr>
<tr>
<td>4 Regular cyclic loading response at 1g</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Test programme</td>
<td>69</td>
</tr>
<tr>
<td>4.3 Unidirectional hysteretic response</td>
<td>74</td>
</tr>
<tr>
<td>4.4 Unidirectional high cycle response</td>
<td>77</td>
</tr>
<tr>
<td>4.4.1 Ratcheting</td>
<td>77</td>
</tr>
<tr>
<td>4.4.2 Secant stiffness</td>
<td>82</td>
</tr>
<tr>
<td>4.4.3 Energy dissipation</td>
<td>85</td>
</tr>
<tr>
<td>4.4.4 Uplift</td>
<td>89</td>
</tr>
<tr>
<td>4.5 Multidirectional hysteretic response</td>
<td>91</td>
</tr>
<tr>
<td>4.6 Multidirectional high cycle response</td>
<td>92</td>
</tr>
<tr>
<td>4.6.1 Perpendicular cyclic loading</td>
<td>92</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.2 Secant stiffness response</td>
<td>155</td>
</tr>
<tr>
<td>6.6.3 Energy dissipation response</td>
<td>157</td>
</tr>
<tr>
<td>6.6.4 Discussion</td>
<td>158</td>
</tr>
<tr>
<td>6.7 Summary</td>
<td>159</td>
</tr>
<tr>
<td>7 Modelling the response of a monopile to complex cyclic loading</td>
<td>162</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>162</td>
</tr>
<tr>
<td>7.2 Key behaviours observed experimentally</td>
<td>163</td>
</tr>
<tr>
<td>7.3 Modelling basis</td>
<td>164</td>
</tr>
<tr>
<td>7.3.1 Hyperplasticity</td>
<td>164</td>
</tr>
<tr>
<td>7.3.2 Multi-surface kinematic hardening models</td>
<td>165</td>
</tr>
<tr>
<td>7.3.3 HARM framework</td>
<td>166</td>
</tr>
<tr>
<td>7.3.4 Modelling choices</td>
<td>167</td>
</tr>
<tr>
<td>7.4 Capturing the hysteretic response</td>
<td>168</td>
</tr>
<tr>
<td>7.4.1 Unidirectional hyperplastic kinematic hardening model</td>
<td>169</td>
</tr>
<tr>
<td>7.4.2 Bi-directional hyperplastic kinematic hardening model</td>
<td>170</td>
</tr>
<tr>
<td>7.4.3 Calibration of kinematic hardening models</td>
<td>171</td>
</tr>
<tr>
<td>7.4.4 Computation of hysteretic response</td>
<td>175</td>
</tr>
<tr>
<td>7.5 Capturing the high-cycle response</td>
<td>177</td>
</tr>
<tr>
<td>7.5.1 Unidirectional hyperplastic ratcheting model</td>
<td>178</td>
</tr>
<tr>
<td>7.5.2 Bi-directional hyperplastic ratcheting model</td>
<td>179</td>
</tr>
<tr>
<td>7.5.3 Calibration of ratcheting models</td>
<td>181</td>
</tr>
<tr>
<td>7.5.4 Evolution functions</td>
<td>181</td>
</tr>
<tr>
<td>7.5.5 Evolution function parameters</td>
<td>188</td>
</tr>
<tr>
<td>7.5.6 Computation of regular cyclic loading response</td>
<td>192</td>
</tr>
<tr>
<td>7.5.7 Computation of response to storm loading</td>
<td>200</td>
</tr>
<tr>
<td>7.6 Prediction of prototype-scale response to storm loading</td>
<td>202</td>
</tr>
<tr>
<td>7.6.1 Generation of prototype-scale model</td>
<td>203</td>
</tr>
<tr>
<td>7.6.2 Response to storm loading</td>
<td>204</td>
</tr>
<tr>
<td>7.7 Summary</td>
<td>206</td>
</tr>
<tr>
<td>8 Conclusions</td>
<td>209</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>209</td>
</tr>
<tr>
<td>8.2 Key contributions</td>
<td>209</td>
</tr>
<tr>
<td>8.3 Key implications for design</td>
<td>211</td>
</tr>
<tr>
<td>8.4 Future work</td>
<td>212</td>
</tr>
<tr>
<td>8.5 Overview</td>
<td>215</td>
</tr>
</tbody>
</table>

References | 216 |
Nomenclature

Greek alphabet variables

\(\alpha \)
Empirical value in dilatancy expressions (Bolton, 1986; Bolton, 1987)

\(\alpha_r \)
Ratcheting power-law exponent

\(\beta \)
Scalar hardening parameter (HARM)

\(\gamma \)
Secant stiffness power-law exponent

\(\gamma' \)
Energy loss power-law exponent

\(\gamma' \)
Shear strain

\(\varepsilon \)
Soil effective unit weight

\(\varepsilon_a \)
Strain (may represent pile rotation \(\theta \) or pile displacement \(u \) for macro pile response)

\(\varepsilon_a \)
Axial strain

\(\zeta_b \)
Cyclic load magnitude characterisation \(\zeta_b = \sigma_c / \sigma_R \)

\(\zeta_c \)
Cyclic load asymmetry characterisation \(\zeta_c = \sigma_r / \sigma_c \)

\(\eta \)
Energy loss factor

\(\eta \)
Pile aspect ratio

\(\kappa \)
Stress-dependent stiffness exponent

\(\theta \)
Pile rotation

\(\kappa^g \)
Increase in surface strengths \(K_m \) (HARM evolution functions)

\(\kappa^g_m \)
Parameter for evolution of \(K_m \) (HARM evolution functions)

\(\kappa^s_m \)
Parameter for evolution of \(K_m \) (HARM evolution functions)

\(\lambda \)
Plastic multiplier (plasticity)

\(\xi \)
Damping ratio (structural dynamics)

\(\rho_k \)
Parameter for evolution of \(K_m \) (HARM evolution functions)

\(\tau \)
Shear stress

\(\sigma \)
Stress (may represent moment \(M \) or horizontal load \(H \) applied to pile for macro pile response)

\(\sigma' \)
Vertical effective stress

\(\sigma'_c \)
Effective confining stress
σ'_{REF} Reference vertical effective stress $\sigma'_{REF} = 0.7L\gamma'$

ϕ' Angle of friction

ϕ'_c Critical angle of friction

ϕ'_p Peak angle of friction

Φ Half internal spread angle (fan-type loading)

Φ Standard deviation of wrapped normal spreading distribution (wave loading, e.g. Adcock and Taylor, 2009)

χ Generalised stress (hyperplasticity)

$\bar{\chi}$ Dissipative generalised stress (hyperplasticity)

ψ' Angle of dilation

ω Angular velocity (centrifuge)

Latin alphabet variables

a_n Point on cyclic response at mean stress on loading (cyclic definitions)

A Area beneath backbone curve (HARM evolution functions)

b_n Point on cyclic response at mean stress on unloading (cyclic definitions)

B Secant stiffness power-law coefficient

B_L Secant stiffness logarithmic coefficient

c Constraint (hyperplasticity)

c_v Coefficient of consolidation

C Energy loss power-law coefficient

d Dissipation function (hyperplasticity)

D Pile pivot point depth

$d_{10}, d_{30}, d_{50}, d_{60}$ Soil particle sizes

D Parameter for backbone correction (HARM calibration)

D_R Pile outside diameter

D_t Tank diameter

e Error in process variable (control)

e Soil void ratio

$\bar{\varepsilon}$ Dimensionless loading eccentricity

e_n Point on cyclic response at extreme stress (cyclic definitions)

E Parameter for backbone correction (HARM calibration)

E Young's modulus

E_E Elastic energy (per cycle)

E_H Hysteretic energy loss (per cycle)
E_i Initial stiffness (monotonic response)
$E_p I_p$ Pile bending stiffness
E_{SL} Soil's Young's modulus
f Frequency
H Helmholtz free energy function (hyperplasticity)
H_B Ratio of prototype-scale to laboratory-scale parameter
f_0 Natural frequency (structural dynamics)
f_L Data logging frequency
F Friction (in displacement transducers)
$F_{β^*}$ Factor (HARM evolution functions)
F_E Excitation force (structural dynamics)
F_T Transmitted force (structural dynamics)
g Acceleration due to gravity
G_{MAX} Maximum shear modulus
G_S Soil specific gravity
h Drop height (sand raining)
h_t Pile loading eccentricity
H Tank depth
H Horizontal load applied to pile
K Surface modulus (kinematic hardening model)
H_B Horizontal response at pile base (PISA monotonic method)
k Secant stiffness
k_{MAX} Maximum stiffness (not secant)
K_p Gain (control)
K Surface strength (kinematic hardening model)
K_{b}, K_c Empirical functions for secant stiffening
K_R Rankine’s passive earth pressure coefficient
l_i Magnitude of linkage vector L_i (kinematics)
L Pile embedded length
L_i Linkage vector (kinematics)
m Distributed moment soil reaction (PISA monotonic method)
m Pile mass
m Surface index (kinematic hardening model)
m_{kg} Parameter for evolution of K_m (HARM evolution functions)
m_{km} Parameter for evolution of K_m (HARM evolution functions)
m_r Parameter for evolution of R (HARM evolution functions)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_s</td>
<td>Parameter for evolution of R (HARM evolution functions)</td>
</tr>
<tr>
<td>m_σ</td>
<td>Power-law exponent for variation of T_b with ζ_b</td>
</tr>
<tr>
<td>M</td>
<td>Maximum number of surfaces (kinematic hardening model)</td>
</tr>
<tr>
<td>M_B</td>
<td>Moment response at pile base (PISA monotonic method)</td>
</tr>
<tr>
<td>n</td>
<td>Cycle number</td>
</tr>
<tr>
<td>N</td>
<td>Maximum cycle number</td>
</tr>
<tr>
<td>p</td>
<td>Experimental g-level</td>
</tr>
<tr>
<td>N_p</td>
<td>Number of transducers aligned with loading direction</td>
</tr>
<tr>
<td>p_a</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>P</td>
<td>Normalised excess pore pressure (Li et al., 2019)</td>
</tr>
<tr>
<td>P_c</td>
<td>Monotonic conic function parameter</td>
</tr>
<tr>
<td>P_i</td>
<td>Coordinates of pivot point on pile (kinematics)</td>
</tr>
<tr>
<td>P_j</td>
<td>Monotonic Jeanjean parameter</td>
</tr>
<tr>
<td>P_p</td>
<td>Monotonic power-law parameter</td>
</tr>
<tr>
<td>q</td>
<td>Deviator stress</td>
</tr>
<tr>
<td>q_c</td>
<td>CPT cone resistance</td>
</tr>
<tr>
<td>Q</td>
<td>Empirical value in dilatancy expression (Bolton, 1986)</td>
</tr>
<tr>
<td>Q_f</td>
<td>Flow rate (sand raining)</td>
</tr>
<tr>
<td>r_n</td>
<td>Point on cyclic response at reversal stress (cyclic definitions)</td>
</tr>
<tr>
<td>R</td>
<td>Ratcheting parameter (HARM)</td>
</tr>
<tr>
<td>R_0</td>
<td>Parameter for evolution of R (HARM evolution functions)</td>
</tr>
<tr>
<td>R_a</td>
<td>Pile roughness</td>
</tr>
<tr>
<td>R_c</td>
<td>Centrifuge effective radius</td>
</tr>
<tr>
<td>R_n</td>
<td>Normalised roughness (R_a/d_{50})</td>
</tr>
<tr>
<td>R^*_R</td>
<td>Parameter for R (HARM evolution functions)</td>
</tr>
<tr>
<td>s</td>
<td>Pile pose (kinematics)</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_p</td>
<td>Wave loading period</td>
</tr>
<tr>
<td>\hat{T}</td>
<td>Transformation matrix (kinematics)</td>
</tr>
<tr>
<td>T_b, T_c</td>
<td>Empirical functions for ratcheting response</td>
</tr>
<tr>
<td>T_d</td>
<td>Derivative time (control)</td>
</tr>
<tr>
<td>T_i</td>
<td>Integral time (control)</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_i</td>
<td>Coordinates of pivot point on transducer (kinematics)</td>
</tr>
<tr>
<td>T_i^R</td>
<td>Coordinates of pivot point on retracted transducer (kinematics)</td>
</tr>
<tr>
<td>T_p</td>
<td>Normalised wave loading period (Li et al., 2019)</td>
</tr>
<tr>
<td>u</td>
<td>Controller output (control)</td>
</tr>
<tr>
<td>V</td>
<td>Excess pore pressure</td>
</tr>
<tr>
<td>V</td>
<td>Pile displacement (at load application point)</td>
</tr>
<tr>
<td>W</td>
<td>Vertical (axial) force on pile</td>
</tr>
<tr>
<td>V</td>
<td>Vector of linkage lengths (kinematics)</td>
</tr>
<tr>
<td>W</td>
<td>Work done on pile-soil system</td>
</tr>
<tr>
<td>y</td>
<td>Lateral pile displacement (p-y and PISA monotonic methods)</td>
</tr>
<tr>
<td>z</td>
<td>Yield surface (hyperplasticity)</td>
</tr>
<tr>
<td>z</td>
<td>Vertical pile displacement</td>
</tr>
</tbody>
</table>

Common subscripts, superscripts, prefixes and diacritics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{X}</td>
<td>Time derivative of X</td>
</tr>
<tr>
<td>\bar{X}</td>
<td>Mean value of X</td>
</tr>
<tr>
<td>\tilde{X}</td>
<td>Dimensionless parameter (Leblanc et al., 2010a)</td>
</tr>
<tr>
<td>ΔX</td>
<td>Accumulated value of X (ε, u or θ relative to monotonic response)</td>
</tr>
<tr>
<td>X^*</td>
<td>Indication of special case of X</td>
</tr>
<tr>
<td>X^0</td>
<td>Specific value of X (HARM evolution functions)</td>
</tr>
<tr>
<td>X_{AV}</td>
<td>Initial value of X</td>
</tr>
<tr>
<td>X_{AV}</td>
<td>Average value of X</td>
</tr>
<tr>
<td>X_c</td>
<td>Common value of X</td>
</tr>
<tr>
<td>X_{CYC}</td>
<td>Cyclic amplitude of X</td>
</tr>
<tr>
<td>X_e</td>
<td>Error value</td>
</tr>
<tr>
<td>X_e</td>
<td>Experimentally-determined value</td>
</tr>
<tr>
<td>X_e</td>
<td>Extreme value of X (cyclic definitions)</td>
</tr>
<tr>
<td>X_H</td>
<td>Relating to horizontal load H</td>
</tr>
<tr>
<td>X_i</td>
<td>Indicating parameter is defined in both the x- and y-direction</td>
</tr>
<tr>
<td>X_l</td>
<td>General index</td>
</tr>
<tr>
<td>X_l</td>
<td>Value of X on cyclic loading</td>
</tr>
<tr>
<td>X_L</td>
<td>At laboratory-scale</td>
</tr>
<tr>
<td>X_m</td>
<td>Surface index (kinematic hardening model)</td>
</tr>
<tr>
<td>X_{m0}</td>
<td>Value of X at σ_e on cycle $n = 0$</td>
</tr>
<tr>
<td>X_M</td>
<td>Relating to moment M</td>
</tr>
<tr>
<td>X_{MAX}</td>
<td>Maximum value of X</td>
</tr>
<tr>
<td>X_{MIN}</td>
<td>Minimum value of X</td>
</tr>
</tbody>
</table>
\(X_n \) Value of \(X \) at cycle \(n \)

\(X_p \) Peak value of \(X \)

\(X_P \) At prototype-scale

\(X_r \) Parameter corresponding to ratcheting (hyperplasticity)

\(X_{r0} \) Reversal value of \(X \) (cyclic definitions)

\(X_R \) Value of \(X \) at onset of reloading

\(X_R \) Reference value of \(X \)

\(X_u \) Relating to pile displacement \(u \)

\(X_u \) Value of \(X \) on cyclic unloading

\(X_x \) Relating to \(x \) direction

\(X_y \) Relating to \(y \) direction

Test name abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Very loose sand (OU)</td>
</tr>
<tr>
<td>D</td>
<td>Dense sand (OU)</td>
</tr>
<tr>
<td>1G</td>
<td>1g (UWA)</td>
</tr>
<tr>
<td>9G</td>
<td>9g (UWA)</td>
</tr>
<tr>
<td>80G</td>
<td>80g (UWA)</td>
</tr>
<tr>
<td>M</td>
<td>Monotonic loading</td>
</tr>
<tr>
<td>TW</td>
<td>Two-way unidirectional cyclic loading ((\zeta_c = -1))</td>
</tr>
<tr>
<td>OW</td>
<td>One-way unidirectional cyclic loading ((\zeta_c = 0))</td>
</tr>
<tr>
<td>PT</td>
<td>Partial two-way unidirectional cyclic loading ((-1 \leq \zeta_c \leq 0))</td>
</tr>
<tr>
<td>PO</td>
<td>Partial one-way unidirectional cyclic loading ((0 \leq \zeta_c \leq 1))</td>
</tr>
<tr>
<td>SP</td>
<td>Multidirectional spiral loading</td>
</tr>
<tr>
<td>T</td>
<td>T-shaped multidirectional cyclic loading</td>
</tr>
<tr>
<td>L</td>
<td>L-shaped multidirectional cyclic loading</td>
</tr>
<tr>
<td>TH</td>
<td>High amplitude T-shaped cyclic loading</td>
</tr>
<tr>
<td>F</td>
<td>Fan-type multidirectional cyclic loading</td>
</tr>
<tr>
<td>UD</td>
<td>Unidirectional irregular storm loading</td>
</tr>
<tr>
<td>MD</td>
<td>Multidirectional irregular storm loading</td>
</tr>
</tbody>
</table>

Other common abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>Cone Penetration Test</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>FLS</td>
<td>Fatigue Limit State</td>
</tr>
</tbody>
</table>
Publications

HARM Hyperplastic Accelerated Ratcheting Model
OU Oxford University
OWT Offshore Wind Turbine
RNA Rotor Nacelle Assembly
SF Superfine (silica sand)
SLS Serviceability Limit State
ULS Ultimate Limit State
UWA The University of Western Australia
YLB Yellow Leighton Buzzard (sand)
Chapter 1

Introduction

1.1 Application

1.1.1 Offshore wind power

The historic Paris Agreement (United Nations, 2015), signed by 196 countries, has the long-term goal of limiting the global average temperature rise to below 2° above pre-industrial levels, and to pursue efforts to limit the increase to 1.5°. To achieve this goal, countries have pledged to reach “net-zero” emissions by the second half of the century. An urgent, global transition from fossil-fuels to renewable energy is therefore necessary (EWEA, 2015).

Offshore wind power is playing a significant role in this energy transition. Figure 1.1 shows how offshore wind installations in Europe have grown significantly over the last decade. The UK currently has the largest offshore wind capacity with over 8 GW installed (Wind Europe, 2019), supplying almost 10% of the UK electricity demand (Renewable UK, 2019). Growth of the industry is expected to continue worldwide, with 70 GW installed capacity expected in Europe by 2030 (Wind Europe, 2017), and markets in China, Japan, Taiwan and the USA expected to grow rapidly. Indeed, IEA (2017) suggests that offshore wind could represent 4.5% of the global electricity output by 2050.

Compared to onshore wind, offshore wind takes advantage of higher and more consistent wind speeds offshore. With fewer logistical and planning constraints, larger wind farms made up of bigger, more efficient turbines can also be developed. Offshore Wind Turbines (OWTs) have grown in size significantly over the last decade, as shown in
1. Introduction

Figure 1.1: Annual offshore wind installations by country and cumulative capacity (Wind Europe, 2019)

This trend is expected to continue, with a 12 MW capacity turbine with 220 m rotor diameter already in the late stages of development (GE Renewable Energy, 2019). The growth of the offshore wind industry has been coupled with a significant reduction in the cost. Economies of scale have been realised as farms and turbines have increased in size, and greater wind speeds have been exploited by developing further offshore, typically in deeper water (Wind Europe, 2018). Technological advancements, including in foundation design, have also contributed to cost-reduction. In the UK, the cost of offshore wind has reduced by 50% since 2015, and is now cheaper than new gas or nuclear power (Renewable UK, 2019). Meanwhile, in Germany and the Netherlands the latest offshore wind auctions were won at “zero-subsidy” (Windpower, 2019).

1.1.2 Offshore wind turbine support structures

The components of an OWT required for electricity generation and control operations are contained within the Rotor Nacelle Assembly (RNA), which is almost universally supported atop a tubular steel tower. However, there is some variation in the choice of support structure (and foundation) for the RNA and tower beneath the water-level. Figure 1.3 illustrates a number of possible support structures for OWTs: monopiles,
1. Introduction

Figure 1.2: Yearly average of newly installed offshore wind turbine rated capacities in Europe (modified from Wind Europe, 2019)

Figure 1.3: Illustration of possible support structures for OWTs

gavity bases, jacket structures on either piles or caissons, tripods and floating spar-type structures.

The vast majority of OWTs are supported on monopiles — large-diameter open-ended steel piles. In Europe, monopiles represent 81.5% of installed OWT support structures, while jackets, gravity bases, tripod foundations and floating structures represent 8%, 6%, 4% and 0.3% of installed structures respectively (Wind Europe, 2019). With support structures accounting for approximately 20% of capital expenditure for an offshore wind farm (EWEA, 2009), their selection and design is critical.

The current prevalence of monopiles is explained by their simple design, established supply chain and robust installation procedures (typically impact driven). Although
initially considered to be a solution only for shallow water sites, the proven performance of these foundations, coupled with ongoing optimisation of their design, has made monopiles an attractive option for turbines of increased size and farms in deeper water. The dominance of the monopile is expected to continue, although the market-share of alternative grounded support structures may increase as offshore wind expands outside of Europe, where different soil conditions and environmental loading exist. Meanwhile, floating OWTs present an opportunity for development of offshore wind in deeper water (> 50 m) (IRENA, 2017).

Figure 1.4 illustrates a monopile foundation and highlights key dimensions: embedded length L and diameter D. The monopile wall thickness t, which may vary along the pile length, is also a key dimension. Modern monopiles have diameters up to 8 m (Sørensen et al., 2017) with length (L) to diameter (D) ratios (L/D) of 3 – 6 (Sørensen et al., 2017; Schroeder et al., 2015) and wall thicknesses around 100 mm (Schroeder et al., 2015). The next generation of monopiles might be 10 m in diameter. Monopiles are typically connected to the tower with a transition piece located at the water-level, while scour protection is typically installed to minimise erosion at the seabed. Figure 1.5 shows a fabricated monopile before installation.

1.2 Design of monopile foundations

1.2.1 Loading

Lateral loading dominates the design of monopile foundations for OWTs, in contrast with the design of piles for conventional applications (e.g. supporting offshore jacket structures or high-rise buildings onshore), where axial loading is the key concern. A combination of wind, waves, current and turbine operation loads act on the OWT structure. These loads, which also interact with the dynamic response of the structure, result in combined moment (M) and horizontal loading (H) on the monopile foundation, as indicated in Figure 1.6. All load components vary temporally and spatially; waves are usually the dominant cyclic component with a frequency of around 0.1 Hz. The combined loading experienced by the monopile is therefore cyclic and
1. Introduction

Figure 1.4: Schematic of an OWT on a monopile foundation

Figure 1.5: Fabricated monopile for Veja Mate offshore wind farm ($D = 7.8$ m) (Windindustrie in Deutschland, 2016)

Figure 1.6: Schematic indicating lateral loading on an OWT on a monopile foundation
An example distribution of approximate cyclic moment amplitudes experienced by a monopile foundation (relative to the Ultimate Limit State (ULS) design moment M_{ULS}) is presented in Table 1.1 (following Leblanc et al., 2010b). The distribution highlights the variation in load amplitude and the small number of larger-amplitude load cycles experienced over the foundation lifetime. Meanwhile, Figure 1.7 shows the moment loading experienced at the mudline of an OWT monopile (in a single direction) over 30 seconds, in idling conditions (Page et al., 2019). This measured data shows the type of irregular, multi-amplitude cyclic loading monopiles experience in the field.

Figure 1.8 presents the significant spatial variation of wind and waves for an example site offshore the Netherlands. Although the spatial variation of loading is site-specific, all sites are exposed to multidirectional environmental loading. Wind-wave misalignment also occurs as weather systems change direction (Van Vledder, 2013). Figure 1.9 shows, for a site in the Irish Sea, recorded wind-wave misalignment of up to approximately 90°.
1.2.2 Illustrative monopile response

Monopile foundations exhibit a non-linear response under lateral loading. Figure 1.10a illustrates a typical monopile response under continuously increasing (monotonic) loading. From the monotonic response, the initial (maximum) stiffness k_{MAX} and the ultimate response at large loads are of interest. The ultimate response is often defined at a reference rotation or displacement.

Under cyclic loading, monopiles may accumulate pile displacement u and/or pile rotation θ, and the shape of the hysteresis loop may evolve; both behaviours are of concern in monopile design. Figure 1.10b illustrates a typical response of a monopile in sand to simplified (unidirectional, regular) biased cyclic loading to demonstrate ratcheting (the accumulation of u and/or θ) and evolution of the hysteresis loop shape, which may be characterised in terms of stiffness and energy dissipation metrics. As discussed in Section 1.2.1, monopiles in the field are exposed to complex cyclic loading. The response that might be expected under example irregular, multi-amplitude loading is illustrated in Figure 1.10c.

The illustrative responses in Figure 1.10 are presented arbitrarily in terms of either...
1. Introduction

Figure 1.10: Illustration of typical monopile response in sand under various types of unidirectional lateral loading

(a) Monotonic loading

(b) Regular cyclic loading

(c) Irregular multi-amplitude cyclic loading

moment-rotation \((M - \theta)\) or horizontal load-displacement \((H - u)\). Both work-conjugate pairs have been used to present results in previous work, and both pairs are used in this thesis. An approximate relationship between the responses can be obtained by considering the total work rate for a rigid monopile under lateral loading:

\[
\dot{W} = H^* \dot{u}^* = H \dot{u} + M \dot{\theta}
\]

(1.1)

Where Figure 1.11 illustrates the terms. Assuming a small rotation angle, the total work
rate can be expressed in terms of either $H^* - u^*$ or $M - \theta$ as:

$$\dot{W} = H^* \dot{u}^* \approx M \dot{\theta} \left(\frac{d + h}{h} \right)$$ \hspace{1cm} (1.2)

Where h is the loading eccentricity and d is the depth of the point of pile rotation, which is expected to remain approximately constant (Abadie, 2015). With $d \approx 0.7L$ (Abadie, 2015) and e.g. $h = 2.5L$, the total work rate is approximately 28% greater than that suggested by responses presented in $M - \theta$ space.

1.2.3 Design requirements

Rotation criteria

The response to lateral loading is a crucial element of monopile design. The response is typically specified in terms of rotation at the mudline, rather than in terms of pile displacement. The DNVGL-ST-0126 standard *Support structures for wind turbines* specifies the calculation of monopile rotation under both ULS and Serviceability Limit State (SLS) conditions (DNV GL, 2016): the maximum rotation response under ULS conditions shall be determined (7.6.2.5), as well as the permanent (long-term) rotation under SLS conditions (7.6.2.7). DNVGL-ST-0126 also stipulates that the effects of cyclic loading on the strength and stiffness under ULS and SLS conditions should be assessed (7.4.4.4), and that the effects of pore-pressure build-up under cyclic loading should be considered (7.4.4.2).

Monopile rotation under ULS conditions may be estimated with a monotonic design method (discussed in Section 1.2.4) which is able to capture the ultimate response of
1. Introduction

the foundation, as illustrated in Figure 1.10a. The ultimate response may be defined as at yield, or using a rotation (or displacement) criteria if yield is expected at excessively large rotations, as is often the case for piles in sand. A ULS criteria of 2° pile rotation or 0.1D displacement at the mudline appears to be conventional (e.g. Byrne et al., 2017).

To predict permanent accumulated monopile rotation under SLS conditions — where loading is cyclic — and to estimate the effect of cyclic loading on the SLS and ULS response, cyclic design methods are required. DNVGL-ST-0126 suggests that the allowable permanent accumulated rotation of the monopile under SLS conditions might be 0.25°. However, it also states that these tolerances are typically derived from visual requirements or requirements for turbine operation, and are therefore expected to be project-specific.

Dynamic criteria

The monopile's dynamic response is important, as it determines the dynamic response of the combined OWT structure, and hence the structural fatigue damage (e.g. Aasen et al., 2017). Indeed, many monopile designs may be dominated by dynamic considerations. DNVGL-ST-0126 specifies the evaluation of dynamic load effects using an integrated analysis of the OWT structure which includes the response of the foundation (7.4.5.1).

To minimise dynamic load effects, the OWT structure's natural frequencies must avoid excitation at i) wind loading frequencies (although these are typically very low), ii) wave loading frequencies, iii) rotor frequencies (1P), and iv) blade-passing frequencies (3P). Monopile structures are typically designed as soft-stiff structures, with the natural frequency of the first tower bending mode \(f_0 \) in the narrow band between the 1P and 3P excitation frequencies, as indicated in Figure 1.12. As turbines increase in size the rotor frequency (1P) reduces, increasing the intersection of the soft-stiff frequency band and the wave frequency distribution. Non-negligible excitation from wave loading may therefore occur, the effects of which can be minimised with the addition of active damping (e.g. Brodersen et al., 2017).

The dynamic response may be quantified in terms of stiffness and energy dissipation. Monopile stiffness impacts the OWT structure's natural frequencies, while
monopile energy dissipation contributes to the total structural dissipation, which moderates dynamic load amplification and will inform the requirement for any active damping. In an integrated dynamic analysis the monopile response is often represented by a series of non-linear soil reaction curves, which capture an initial stiffness k_{MAX} (employing e.g. the p-y method or PISA method, discussed in Section 1.2.4). However, when implemented directly as non-linear springs, these representations neglect energy dissipation. Single-element (macro) models may also be used to represent the monopile response. Spring models, which include lateral, rotational and potentially cross-coupling components (e.g. Arany et al., 2016), may be employed with or without dissipation. Macro plasticity models have also been developed, which are able to capture the non-linear foundation response including dissipation (Page et al., 2018).

Additional considerations

Pile driveability is an essential design requirement. As monopiles increase in size to support larger turbines in deeper water, larger hydraulic hammers are required and significant noise pollution is generated, often requiring noise-mitigation. Buckling during driving can also be a concern (e.g. Randolph, 2018). Alternative installation methods for so-called XL monopiles include vibratory installation systems (Carbon
1. Introduction

Trust, 2014) and systems which drive the monopile with water rather than steel rams (Carbon Trust, 2019).

The effect of scour is an important design consideration, and the installation of preventative scour protection is now commonplace. The influence of scour and scour protection on the structure's natural frequency and lateral response should be considered (Mayall, 2019).

Another important consideration is the ability of the supply chain to fabricate, handle and transport the monopiles. Indeed, these practical considerations present a very significant challenge as monopiles increase in size.

1.2.4 Monotonic design

Monotonic design methods allow prediction of the rotation (and displacement) response under ULS conditions and are often a pre-requisite for cyclic design methods. Also, the initial stiffness predicted by the monotonic response \(k_{MAX}\) is often a key parameter for assessment of the structure's fatigue life through integrated dynamic analyses.

Monotonic design of piles under lateral loading has conventionally been conducted using the \(p-y\) method, where the monopile is modelled as an elastic beam and the distributed lateral response of the soil is represented by a series of independent non-linear springs, defined by \(p-y\) curves (Reese and Van Impe, 2011). The \(p-y\) curves for cohesionless soil presented in design standards (e.g. DNV GL, 2016; API, 2011) originate from the work of Reese et al. (1974) based on field tests conducted by Cox et al. (1974), and employ a continuously differentiable function proposed by Murchison and O’Neill (1984). However, the standard \(p-y\) method and the conventional \(p-y\) curves — developed for slender, small-diameter piles — have been found to be deficient for the design of large-diameter monopiles with \(L/D < 6\) (Alderlieste et al., 2011; Doherty and Gavin, 2012). Indeed, DNVGL-ST-0126 cautions against the use of the conventional \(p-y\) curves for piles with \(D > 1\) m, without validation by e.g. FE analysis (E.2.4.1).

Recent work as part of the Pile Soil Analysis (PISA) project has developed a new design methodology for monopiles under monotonic lateral loading (e.g. Burd et al., 2019). Like the \(p-y\) method, the PISA design model is a one-dimensional (1D)
1. Introduction

Figure 1.13: Illustration of PISA design model (a) idealisation of the soil reaction components acting on the pile (b) 1D finite element implementation of the model showing soil reactions (Burd et al., 2019)

representation of the pile-soil system with the soil response represented by independent non-linear springs. However, the PISA design model includes distributed moment \(m \) and horizontal \(H_B \) and moment \(M_B \) responses at the pile base, alongside the distributed lateral response \(p \), as indicated in Figure 1.13. These additional soil reaction components \((m, H_B, M_B)\) become increasingly significant as \(L/D \) is reduced (Byrne et al., 2015). Four-parameter conic functions are used to define the soil reactions within the PISA design model. Parameters for an exemplar sand are presented by Burd et al. (2019), but the intention is that the parameters are calibrated to site-specific 3D finite element (FE) analyses for application in different soil conditions.

Although it is practical to perform a limited number of 3D FE computations for
1. Introduction

calibration of a design tool to a site, there is a significant advantage in performing the majority of the design calculations with faster 1D models, particularly when location-specific designs are required across perhaps 100 turbine locations. The PISA design method allows for improved prediction of the monotonic response with a fast 1D model, and has contributed to optimised design and significant capital expenditure savings, as demonstrated by Manceau et al. (2019).

1.2.5 Cyclic design

While monotonic design methods allow prediction of the ULS response and the initial stiffness k_{MAX} for some dynamic calculations, cyclic design methods are necessary to predict the following three aspects of the monopile response:

1. Permanent monopile rotation (ratcheting) under SLS conditions.

2. The effects of cyclic loading on the strength and stiffness under SLS and ULS conditions.

3. The hysteretic response under cyclic loading for advanced dynamic modelling.

Cyclic design methods should be able to perform under realistic (irregular, multi-amplitude and multidirectional) cyclic loading conditions, and similar to monotonic design methods, they should be fast, given the vast number of design calculations necessary across a wind farm.

The conventional $p-y$ curves presented in e.g. DNVGL-ST-0126 include empirical coefficients which reduce the $p-y$ curve capacity under cyclic loading by a constant factor (Reese et al., 1974). Long and Vanneste (1994) also modified static $p-y$ curves to account for cyclic loading, as a function of cycle number n instead. However, both these methods are based on limited tests on slender piles, with relatively few cycles (packets with $N < 100$) of high-amplitude cyclic loading applied (Cox et al., 1974; Little and Briaud, 1988). Moreover, the degraded curves obtained with these cyclic degradation approaches bear no resemblance to the continuous pile response observed under cyclic loading.
Figure 1.14 compares the response of a (model-scale) monopile in (dry) sand to 100 cycles of loading with the type of responses that may be obtained using the cyclic degradation approaches presented by Long and Vanneste (1994) and Reese et al. (1974) (where it is assumed that the macro response of the foundation reflects the constituent p-y responses). Although the cyclic degradation approach of Long and Vanneste (1994) has the ability to predict the rotation response at peak load after n cycles (an idealised prediction is shown in Figure 1.14), neither approach can predict the permanent pile rotation on unloading or the hysteretic response, the evolution of which is indicative of the impact of cyclic loading on the foundation's strength and stiffness. It is also unclear how these methods can be adapted for multi-amplitude and multidirectional loading.

No further guidance is provided for cyclic design in standards such as DNVGL-ST-0126, and indeed no commonly accepted design methods currently exist for predicting the response of monopile foundations to cyclic lateral loading. This disparity between the requirements for design and the available design methods has motivated much research in this area over the last decade, as summarised in Section 1.3. Progress has been made in understanding the monopile response to regular (constant amplitude), unidirectional cyclic lateral loading and a number of design methods have been proposed, principally for predicting the permanent rotation response under SLS conditions. However, few studies have explored the monopile response under irregular, multi-amplitude and multidirectional loading, and few design methods are able to capture all aspects of the cyclic response necessary for design.

Cyclic design becomes increasingly important as conservatism in ULS design is reduced (Manceau et al., 2019) and OWT structures become exposed to greater cyclic wave loading at sites with more demanding environmental conditions. Predicting the permanent rotation under SLS loading and the effect of cyclic loading on the response is also increasingly important as turbines near the end of their design life and lifetime extension is considered.
1. Introduction

1.3 Relevant research contributions

This thesis focuses on the response of monopiles in sand. As such, this summary of relevant research contributions is also generally restricted to sand.

1.3.1 Physical modelling

Many recent studies have explored the response of monopiles in sand to cyclic loading through small-scale physical modelling, to gain insight into the monopile response and ultimately inform cyclic design. The response of rigid piles with low L/D ratios has been explored at both 1g (e.g. Leblanc et al., 2010a) and in the centrifuge at elevated stress-levels (e.g. Klinkvort and Hededal, 2013); Table 1.2 summarises a selection of these studies. All reported studies have explored the cyclic response in dry or drained (water-saturated) sand. Although numerical modelling has demonstrated that partial drainage and accumulation of pore pressure may be expected for large-diameter monopiles, particularly under large-amplitude cyclic loading (Li et al., 2019; Peralta et al., 2017), important insights can be gained from physical modelling which isolates aspects of the full-scale problem. Physical modelling of pore pressure accumulation under representative cyclic loading would be of great value, but would require a viscous pore fluid to capture the drainage response (e.g. Dewoolkar et al., 1999).
Table 1.2: Selection of relevant physical modelling studies in sand

<table>
<thead>
<tr>
<th>Key reference</th>
<th>g-level</th>
<th>Sand properties</th>
<th>Pile L/D</th>
<th>Max. cycles N</th>
<th>ζ_b</th>
<th>ζ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al. (2010)</td>
<td>100g</td>
<td>Dry, dense</td>
<td>5</td>
<td>1000</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>Leblanc et al. (2010)</td>
<td>1g</td>
<td>Dry, loose & dense</td>
<td>4.5</td>
<td>65000</td>
<td>0.2–0.5</td>
<td>−1.0–0.5</td>
</tr>
<tr>
<td>Cuéllar et al. (2012)</td>
<td>1g</td>
<td>Saturatedi, dense</td>
<td>\sim 4</td>
<td>5000000</td>
<td>0.2, 0.3</td>
<td>$< 0, 0$</td>
</tr>
<tr>
<td>Klinkvort and Hededal (2013)</td>
<td>16g–75g</td>
<td>Saturatedi, dense</td>
<td>6</td>
<td>10000</td>
<td>0.08–0.3</td>
<td>−1.0–0.5</td>
</tr>
<tr>
<td>Nicolai and Ibsen (2014)</td>
<td>1g</td>
<td>Saturatedi, dense</td>
<td>5</td>
<td>50000</td>
<td>0.1–0.4</td>
<td>−0.9–0</td>
</tr>
<tr>
<td>Rudolph et al.ii (2014)</td>
<td>1g, 200g</td>
<td>Saturatedi & dry, dense</td>
<td>5</td>
<td>30000</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>Abadie et al. (2019)</td>
<td>1g</td>
<td>Dry, very loose</td>
<td>4.7</td>
<td>100000</td>
<td>0.2–0.7</td>
<td>−0.6–0.5</td>
</tr>
<tr>
<td>Arshad and O’Kelly (2017)</td>
<td>1g</td>
<td>Dry, dense</td>
<td>10</td>
<td>6000</td>
<td>0.3–0.4</td>
<td>−1.0–0.5</td>
</tr>
<tr>
<td>Truong et al. (2019)</td>
<td>60g, 250g</td>
<td>Dry & saturatedi, dense</td>
<td>6, 11.4</td>
<td>1500</td>
<td>0.4–1.0</td>
<td>−1.1–0.7</td>
</tr>
</tbody>
</table>

i Water-saturated.
ii Multidirectional cyclic loading applied, all other studies apply unidirectional loading only.

Regular, unidirectional cyclic loading

The majority of studies have focused on understanding the permanent rotation (or displacement) response of monopiles under regular, unidirectional cyclic loading, as illustrated in Figure 1.10b. Cyclic loading is typically characterised in terms of parameters ζ_b (Leblanc et al., 2010a) and ζ_c (Long and Vanneste, 1994; Leblanc et al., 2010a), which are defined here in terms of maximum and minimum applied moments M_{MAX}, M_{MIN} across a cycle:

$$\zeta_b = \frac{M_{MAX}}{M_R} \quad (1.3)$$

$$\zeta_c = \frac{M_{MIN}}{M_{MAX}} \quad (1.4)$$

These parameters could equally be defined in terms of maximum and minimum horizontal loads H_{MAX}, H_{MIN}. Load asymmetry is defined by parameter ζ_c, with descriptions summarised in Table 1.3, while cyclic load amplitude is together defined...
1. Introduction

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant loading</td>
<td>$\zeta_c = 1$</td>
</tr>
<tr>
<td>1-way loading</td>
<td>$\zeta_c = 0$</td>
</tr>
<tr>
<td>2-way loading</td>
<td>$\zeta_c = -1$</td>
</tr>
<tr>
<td>Partial 2-way loading</td>
<td>$-1 < \zeta_c < 0$</td>
</tr>
<tr>
<td>Partial 1-way loading</td>
<td>$0 < \zeta_c < 1$</td>
</tr>
</tbody>
</table>

Table 1.3: Load asymmetry descriptions

![Figure 1.15: Characterisation of cyclic loading in terms of ζ_b and ζ_c (after Leblanc et al., 2010a)](image)

by ζ_b and ζ_c, as illustrated in Figure 1.15. Definition of an (arbitrary) reference load M_R is also required, which varies between studies, in general.

Permanent rotation (or displacement) has been found to accumulate as a power-law (Leblanc et al., 2010a; Klinkvort and Hededal, 2013; Nicolai and Ibsen, 2014; Abadie et al., 2019b; Truong et al., 2019) or logarithmically (Li et al., 2010) with cycle number. Consistent ratcheting behaviour was also observed during large-scale ($D = 0.762$ m, $D = 2.0$ m) cyclic loading tests performed in dense marine sand as part of the PISA project (Beuckelaers, 2017). Ratcheting increases significantly with load amplitude (characterised by ζ_b for constant ζ_c), while load asymmetry (characterised by ζ_c) has also been found to impact the ratcheting response (Leblanc et al., 2010a; Klinkvort and Hededal, 2013; Nicolai and Ibsen, 2014; Truong et al., 2019). Most studies have focused on understanding the macro rotation (or displacement) response of the monopile, although Truong et al. (2019) was also able to observe evolution of the distribution of pile displacement and variation in residual (locked-in) net lateral stresses during cyclic loading, using strain gauges on the pile surface.
1. Introduction

Some previous studies have also explored the evolution of secant stiffness per cycle, which helps quantify the impact of cyclic loading on the foundation's strength, stiffness and dynamic response. Leblanc et al. (2010a) and Klinkvort and Hededal (2013) found secant stiffness to evolve logarithmically with cycle number under a range of loading conditions, while Abadie et al. (2019b) observed a faster increase in secant stiffness for the first 50 cycles, and a logarithmic trend thereafter. Abadie et al. (2019b) also explored evolution of the initial (maximum) stiffness with cyclic loading, but found no variation over up to 100000 cycles.

The hysteretic response under cyclic loading has been reported in various studies (e.g. Niemann et al., 2018; Beuckelaers, 2017), but Abadie et al. (2019b) and Abadie (2015) specifically explored the symmetric hysteretic response to demonstrate approximate adherence to the extended Masing rules (Masing, 1926; Pyke, 1979), which have important implications for numerical modelling. Abadie et al. (2019b) and Abadie (2015) also report an exponential decrease in per-cycle energy dissipation with cyclic loading (in very loose sand), which is relevant for dynamic design.

Multi-amplitude cyclic loading

A few studies have applied successive packets of regular cyclic loading at different amplitudes, as illustrated in Figure 1.16a, to explore the response to multi-amplitude cyclic loading (Leblanc et al., 2010b; Abadie et al., 2019b). These studies showed behaviour consistent with that observed under constant amplitude cyclic loading and demonstrated a modest impact of packet order. They also emphasised the disproportionately large contribution to ratcheting made by the larger load cycles, given the non-linearity of the monopile response. Exploration of the response to irregular multi-amplitude loading, representative of that experienced by monopiles in the field, would complement these packeted multi-amplitude studies.

Multi-amplitude tests involving regular cycling followed by application of a large monotonic load, as illustrated in Figure 1.16b, have also been conducted to explore the effect of cyclic loading on the ultimate response (Nicolai and Ibsen, 2014; Nicolai et al., 2017b; Abadie et al., 2019b; Truong et al., 2019). In general, the post-cyclic responses were found to re-join or exceed the monotonic response, at odds with the
cyclic degradation approaches. The results also suggest that it may be necessary to consider the interaction of cyclic loading with the ULS response to accurately predict pile rotation at peak load. Nicolai et al. (2017b) were able to quantify the observed increase in monopile capacity in terms of cycle number and loading characteristics, given that their tests reached yield.

Multidirectional cyclic loading

A limited number of studies have explored the response of monopiles to multidirectional cyclic lateral loading. Peralta (2010) applied successive packets of regular cyclic loading at 0°, 90°, 180°, etc. The pile was observed to move in the direction of the applied load regardless of the loading history, and some hardening (reduction of displacement) was observed with application of successive load packets.

The studies of Dührkop and Grabe (2008), Rudolph and Grabe (2013), Rudolph et al. (2014b), and Rudolph et al. (2014a) involved application of more representative loading, with the cyclic loading direction varying continuously in a fan-type shape, across a specific spread angle, as illustrated in Figure 1.16c. These studies reveal the important result that multidirectional cyclic loading can lead to greater ratcheting than equivalent unidirectional loading, although there is inconsistency in the most damaging spread angle observed across the studies (Rudolph et al., 2014a). The impact of multidirectionality on secant stiffness and energy dissipation has not been explored.
1. Introduction

1.3.2 Mechanistic studies

The mechanistic response of monopiles to cyclic lateral loading in sand has been explored variously using Particle Image Velocimetry (PIV) on model-scale centrifuge tests (Nicolai et al., 2017a), using coloured particles to track grain migration around a model pile at 1g (Cuellar et al., 2012), and through Discrete Element Modelling (DEM) simulations (Cui and Bhattacharya, 2016; Duan et al., 2017).
Figure 1.17 shows how Cuéllar et al. (2012) used coloured particles to track sand migration on the soil surface and reveal convective regions within the soil volume, while Figure 1.18 shows the soil velocity vectors after 1000 load cycles determined from an example PIV analysis by Nicolai et al. (2017a). The studies are consistent, and suggest the presence of conical convective regions either side of the pile, in-line with the loading direction and extending to $\sim 1.5D$ depth. The convective particle motion is explained by the cyclic variation of stress in-line with loading and the increasing confining stress with depth (Cuéllar et al., 2012). Local subsidence — inferring local densification — was also observed during the $1g$ tests presented by Cuéllar et al. (2012). Local densification is also supported by DEM simulations (Cui and Bhattacharya, 2016; Duan et al., 2017) and PIV results (Nicolai et al., 2017a). The asymmetry of both the convective regions and the densification was found to mirror the asymmetry of the applied cyclic loading.

Ratcheting behaviour may, therefore, be understood to be driven by particle rearrangement within convective regions, as well as any asymmetry in local densification. Meanwhile, evolution of the foundation's hysteretic response is understood to be related to local densification. These mechanisms are, however, expected to be coupled.

1.3.3 Proposed cyclic design methods

A number of methods for predicting the response of monopile foundations under cyclic lateral loading have been proposed, a selection of which are summarised in Table 1.4. Most methods represent the monopile as a single-element (macro) or 1D model, consistent with the requirement for fast design calculations, and many methods have focused on predicting only the ratcheting response. In general, validation of these cyclic design methods has been limited.

Informed by small-scale physical modelling, Leblanc et al. (2010a) and Klinkvort and Hededal (2013) presented empirical relationships for ratcheting and evolution of secant stiffness as a function of cycle number. The ratcheting relationships have also been shown to approximately predict the response to packets of multi-amplitude loading when coupled with a strain superposition method (Leblanc et al., 2010b) Abadie...
1. Introduction

<table>
<thead>
<tr>
<th>Method</th>
<th>Key reference(s)</th>
<th>Behaviour captured</th>
<th>Modelling details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical relationships</td>
<td>Leblanc et al. (2010),</td>
<td>Ratcheting, evolution of secant</td>
<td>Empirical relationships for macro-response, informed by physical modelling</td>
</tr>
<tr>
<td></td>
<td>Klinkvort and Hededal (2013)</td>
<td>stiffness</td>
<td></td>
</tr>
<tr>
<td>Degradation Stiffness</td>
<td>Achmus et al. (2009)</td>
<td>Ratcheting</td>
<td>Degradation of backbone modulus within 3D FE model, informed by element testing and</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td>3D FE modelling</td>
</tr>
<tr>
<td>High Cycle Accumulation</td>
<td>Niemunis et al. (2005)</td>
<td>Ratcheting</td>
<td>Accumulation of strain within 3D FE or 1D model, informed by element testing</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic contour diagrams</td>
<td>Andersen (2015), Zhang et al.</td>
<td>Ratcheting</td>
<td>Methods for interpreting cyclic response from measured element testing or physical</td>
</tr>
<tr>
<td></td>
<td>(2016), Bayton et al. (2018)</td>
<td></td>
<td>moulding data</td>
</tr>
<tr>
<td>HARM</td>
<td>Houlby et al. (2017)</td>
<td>Ratcheting, hysteretic response,</td>
<td>Hyperplastic model based on MSKH model with ratcheting element, implemented as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>evolution of loop shape</td>
<td>macro- or 1D-model, informed by physical modelling</td>
</tr>
</tbody>
</table>

Table 1.4: Selection of proposed design methods for monopiles under cyclic lateral loading

et al., 2015). However, these simple relationships are not adaptable for complex cyclic loading and calibration for full-scale design has not been explored.

Achmus et al. (2009) incorporated an empirical expression for degradation of the backbone secant modulus into an elasto-plastic soil model implemented as an FE model. The resulting Degradation Stiffness Model (DSM) has been shown to predict ratcheting responses under regular, 1-way cyclic loading reported by Leblanc et al. (2010a) with reasonable accuracy (Achmus et al., 2011). This approach has the advantage of being based on element testing results, which may facilitate calibration. However, it is not clear how multi-amplitude loading can be accounted for.

The High Cycle Accumulation (HCA) model was developed to capture the general response of coarse sand (Niemunis et al., 2005), and has been applied in 1D models for application to monopile foundations (Wichtmann et al., 2017). The HCA model uses a hypoplastic model (Niemunis and Herle, 1997) or elastic model (Wichtmann
et al., 2017) to capture the continuous response for the first cycles and an empirical model to capture the ratcheting response under many cycles. The model has not been validated against measured monopile responses, but — like the DSM model — has the advantage of being derived from element testing results.

Cyclic contour diagrams, which compile the measured cyclic responses from a number of element tests (Andersen, 2015), have been used for cyclic design of other offshore structures (e.g. gravity bases) for many years, principally in soft clays. For application to piles in clay, Zhang et al. (2016) obtained degraded cyclic p-y curves by scaling the DSS response inferred from Direct Simple Shear (DSS) cyclic contour diagrams. Meanwhile Bayton et al. (2018) generated contour diagrams to capture the macro response of a model monopile in dry sand. These approaches do not depend on empirical relationships, but do require extensive element testing or model testing to generate the contour diagrams, which may be prohibitively expensive for design.

A cyclic pile design method has also been proposed as part of the SOLCYP joint industry project, although this project focused on the response of flexible piles with $L/D \approx 16$ (Garnier, 2013). Similarly to the approach of Long and Vanneste (1994), the SOLCYP approach degrades p-y curves with empirical expressions in terms of cycle number and cyclic amplitude. Although based on more extensive testing to higher cycle numbers, this approach — like the cyclic degradation method of Long and Vanneste (1994) — is only able to capture pile rotation at peak load.

While the models presented so far have focused on predicting the ratcheting response, the multi-surface kinematic hardening (MSKH) macro model implemented by Page et al. (2018) is able to capture the foundation’s hysteretic response and can respond to any arbitrary load history, but cannot capture ratcheting. This model has been validated against the hysteretic response observed in field-sale tests as part of the PISA project (Byrne et al., 2017).

Models in the Hyperplastic Accelerated Ratcheting Model (HARM) framework (Houlsby et al., 2017) are also based on MSKH models, and therefore also capture a hysteretic response and respond to any arbitrary loading. Importantly, these models are also able to capture ratcheting and evolution of hysteresis loop shape with loading.
history, through the inclusion of a ratcheting element and the selection of empirical evolution functions (Houlsby et al., 2017). This combination of features allows these models to capture all three cyclic design aspects detailed in Section 1.2.5 and makes them very attractive for use in design. Models in the HARM framework have been implemented as macro models (Abadie, 2015) and 1D models (Beuckelaers, 2017) and have been shown to predict the ratcheting and hysteretic response under regular, unidirectional cyclic loading at model-scale in sand (Abadie et al., 2019a) and field-scale in sand and clay (Beuckelaers, 2017).

1.4 Thesis structure

1.4.1 Outline

Section 1.2.5 outlined the need for cyclic design methods for monopile foundations to predict the accumulation of permanent rotation under SLS conditions, the effects of cyclic loading on the strength and stiffness of the foundation response, and the hysteretic response. Given the complex cyclic loading to which monopiles are exposed, design methods should perform under irregular, multi-amplitude and multidirectional cyclic loading conditions.

Much insight into the response of monopiles to cyclic lateral loading has been gained through physical modelling studies, the majority of which have focused on understanding the response to regular, unidirectional cyclic loading (Section 1.3.1). In parallel, a number of design methods have been (and continue to be) developed to capture the response to cyclic loading, in particular the permanent rotation under SLS conditions (Section 1.3.3). Models in the HARM framework show particular promise: able to predict both ratcheting and the hysteretic response, as well as respond to any arbitrary loading. Demonstration of the performance of models in the HARM framework under irregular, multi-amplitude and multidirectional cyclic loading is now necessary to build confidence in their application for full-scale design.

This thesis employs laboratory-scale physical modelling to i) provide fundamental insight into the foundation response and ii) facilitate demonstration and inform development of models in the HARM framework. Regular, unidirectional cyclic tests
complement previous experimental studies (Section 1.3.1), explore the impact of cyclic load amplitude and load asymmetry in detail, and facilitate the interpretation of more complex tests. Next, regular multidirectional tests systematically explore the response to cyclic loading with multiple direction components. The response to realistic, irregular, multi-amplitude and multidirectional storm loading is then explored, and parallels are drawn between these novel responses and those observed under regular cyclic loading.

The majority of the testing was performed at 1g at Oxford University (OU), with complementary centrifuge testing performed at The University of Western Australia (UWA) to explore the effect of stress-level on the cyclic response. The results from UWA help to establish the relevance of 1g physical modelling and inform comparison of monopile responses observed at various stress-levels.

This thesis forms part of a wider coordinated programme of research at Oxford University, the overall aim of which is to understand monopile performance and develop practical design methods for full-scale monopile foundations under cyclic lateral loading. Related research activities include cyclic element testing, theoretical and numerical model development, and large-scale field testing.

1.4.2 Chapter summary

Figure 1.19 presents the structure of this thesis, highlighting the testing performed and the key interactions between Chapters. Each Chapter is briefly summarised below:

Chapter 1 provides context and motivation for exploration of the response of monopiles to complex cyclic lateral loading. Previous work, on which this thesis builds, is also summarised.

Chapter 2 describes the design of novel computer-controlled experimental apparatus which allows application of continuously-varying, multi-amplitude and multidirectional cyclic loading, at constant eccentricity, to a model monopile under load control. Ancillary apparatus for sample preparation and pile installation is also described. This laboratory apparatus is used to carry out the 1g tests at OU, presented in Chapters 3, 4 and 5.
Chapter 1 Introduction

Chapter 2 Design of novel apparatus for 1g monopile testing

Chapter 3 1g test procedure, monotonic responses and cyclic definitions (9 tests at OU)

Chapter 4 Regular cyclic loading response at 1g (41 tests at OU)

Chapter 5 Application of realistic storm loading at 1g (10 tests at OU)

Chapter 6 Investigating the effect of stress-level (21 tests at UWA)

Chapter 7 Modelling the response of a monopile to complex cyclic loading

Chapter 8 Conclusions

Figure 1.19: Thesis structure
Chapter 3 lays the groundwork for the cyclic results presented in later Chapters. The test procedure for the 1g tests at OU is outlined, followed by presentation of the monotonic responses, which underpin the cyclic responses on which this thesis is focused. Normalisation approaches are discussed and consistent definitions for cyclic loading and the cyclic response are presented.

The response of the monopile to regular cyclic loading is explored in detail in Chapter 4 with tests in both very loose and dense sand. The impact of cyclic load amplitude, load asymmetry and load directionality is examined, with the cyclic response characterised in terms of ratcheting and evolution of secant stiffness and energy dissipation per cycle. The post-cyclic reloading response is also explored.

Chapter 5 explores the monopile response to realistic multi-amplitude and multidirectional storm loading by application of loading derived from independent model-scale wave basin tests. Parallels are drawn between the responses observed during regular cyclic loading in Chapter 4 and those observed under storm loading.

A key limitation of 1g physical modelling is the inability to simulate prototype-scale stress-levels. Chapter 6 presents the results of a study conducted at UWA to isolate and investigate the effect of stress-level on the response of a monopile in dense sand to cyclic lateral loading. Tests were conducted with an identical set-up at 1g and in the centrifuge at 9g and 80g.

Chapter 7 draws on the experimental observations from Chapters 3, 4, 5 and 6 to demonstrate and inform development of numerical models, formulated in the HARM framework (Houlsby et al., 2017), to capture key features of the cyclic response of monopile foundations. Computations are conducted for each of the five datasets presented in this thesis (OU very loose, OU dense, UWA 1g, UWA 9g and UWA 80g).

Finally, Chapter 8 summarises the key contributions of this thesis and provides suggestions for future work which have arisen from the research presented herein.
Chapter 2

Design of novel laboratory apparatus for 1g monopile testing

2.1 Introduction

This Chapter describes the design of laboratory apparatus to explore the response of a model monopile to regular and complex cyclic lateral loading at OU at 1g, as reported in Chapters 3 and 4. 1g laboratory testing requires significantly less resource than centrifuge testing or large-scale field testing, and therefore allows a greater number of tests to be performed. More complex systems can also be developed at 1g, without the size and acceleration-level constraints of centrifuge testing or the practical and environmental constraints of field testing.

Many previous studies have used mechanical loading systems to apply cyclic loading to model monopiles (e.g., Leblanc et al., 2010a; Nicolai and Ibsen, 2014; Aradie, 2015; Arshad and O’Kelly, 2017). Mechanical systems are reliable, but are generally limited to application of unidirectional loading at a constant amplitude and frequency, at least within individual load packets. A computer-controlled loading system is developed here, in order to apply more complex loading. Computer-controlled loading systems have also been used by e.g., Dührkop and Grabe (2008), Rudolph et al. (2014b), and Su et al. (2014).

This Chapter first describes the design of the model foundation, before describing in detail the loading apparatus and associated software, which is capable of applying continuously varying, multidirectional and multi-amplitude cyclic loading under
2. Design of novel laboratory apparatus for 1g monopile testing

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>External diameter D</td>
<td>80 mm</td>
</tr>
<tr>
<td>Embedded length L</td>
<td>320 mm</td>
</tr>
<tr>
<td>Aspect ratio η</td>
<td>4</td>
</tr>
<tr>
<td>Wall thickness t</td>
<td>5 mm</td>
</tr>
<tr>
<td>Loading eccentricity h</td>
<td>800 mm</td>
</tr>
<tr>
<td>Dimensionless loading eccentricity \tilde{e}</td>
<td>2.5</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Young's modulus E</td>
<td>70 GPa</td>
</tr>
<tr>
<td>Mass m</td>
<td>3.53 kg</td>
</tr>
</tbody>
</table>

Table 2.1: Model pile properties

accurate load control. Sample preparation and pile installation apparatus are also presented.

2.2 Model pile

The model pile foundation was first defined, as this controls the size of the tank, loading apparatus and actuator capacity. Table 2.1 summarises the chosen model monopile properties; the diameter $D = 80$ mm scales approximately $1 : 100$ relative to current full-scale monopiles (Sørensen et al., 2017). This size of pile is small enough to enable experiments to be easily managed by one person, but large enough to avoid grain size effects (Klinkvort et al., 2013; Abadie, 2015) with Yellow Leighton Buzzard 14/25 sand (properties in Table 3.1, Section 3.2.1).

The choices of pile length L and loading eccentricity $h = M/H$ were informed by the dimensionless framework derived by Leblanc et al. (2010a) for laterally loaded monopiles. The dimensionless load eccentricity \tilde{e} and dimensionless pile aspect ratio η (Equations 2.1 and 2.2 Leblanc et al., 2010a) were chosen to represent full-scale monopiles.

\[
\tilde{e} = \frac{h}{L} = \frac{M}{HL} \quad (2.1)
\]

\[
\eta = \frac{L}{D} \quad (2.2)
\]

In the field, \tilde{e} varies continuously with environmental conditions, but the impact of variable loading eccentricity was not explored in this work. A constant eccentricity $\tilde{e} = 2.5$ was therefore chosen, giving $h = 800$ mm. This eccentricity may represent
conditions where thrust loading at the rotor (with eccentricity e.g. $4.4L$) is 80% of wave loading (with eccentricity e.g. L); this eccentricity may occur during operational conditions, but lower eccentricities are likely during storm loading, when the rotor is parked. A pile aspect ratio $\eta = 4$ was chosen, in-line with aspect ratios for modern full-scale monopiles (Sørensen et al., 2017; Schroeder et al., 2015), giving $L = 320$ mm.

Pile rigidity is also an important consideration for the model monopile. The pile relative stiffness K_R and thresholds derived by Poulos and Hull (1989) are often used to classify pile rigidity:

$$K_R = \frac{E_p I_p}{L^4 E_{SL}}$$

Where E_{SL} is the soil's Young's modulus at the pile tip and $E_p I_p$ is the pile bending stiffness. Abadie (2015) demonstrated that most monopiles installed at sand sites pre-2015 have an intermediate rigidity, but future monopiles are expected to behave rigidly. An aluminium model pile with wall thickness $t = 5$ mm was chosen. This pile is classified as fully rigid (Poulos and Hull, 1989) in loose sand, where $E_{SL} < 27$ MPa. In dense sand, where e.g. $E_{SL} = 60$ MPa (Geotechdata, 2013) the pile is close-to-rigid ($K_R = 0.093$). Although the pile rigidity is representative, the ratio of pile diameter to wall thickness $D/t = 15.9$, is smaller than for typical full-scale monopiles, where $D/t \approx 100$ (University of Strathclyde, 2015); this is likely to affect installation effects, but not the lateral response directly.

The pile has a normalised mean roughness $R_n = R_a/d_{50} \approx 0.001$ (relative to Yellow Leighton Buzzard 14/25 sand) measured using a hand-held stylus profilometer (Uesugi and Kishida, 1986). The pile is therefore classified as smooth, in contrast to full-scale monopiles which are typically rough. However, surface roughness has been shown to have only a small impact on the monopile's lateral response (Klinkvort, 2012).

2.3 Loading and pile measurement apparatus

2.3.1 Design overview

Figure 2.1 shows the Computer Aided Design (CAD) model of the loading and pile measurement apparatus, and Figure 2.2 shows the apparatus in the laboratory. The
apparatus centres on a rigid cylindrical steel tank with upper and lower flanges, which holds the soil sample and doubles as the reaction frame. A steel base plate bolts to the top flange of the tank, on which removable steel brackets are attached to support installation apparatus, actuators and displacement measurement transducers. The modular design ensures that the apparatus is flexible.

Biaxial loading is applied to the pile with two perpendicular computer-controlled actuators, while six displacement measurement transducers track the pile’s position in space. A six Degree of Freedom (DoF) pile measurement system is necessary as the pile is not restrained in any direction. A global coordinate system is defined with x- and y-axes aligned with the line of action of the actuators and displacement transducers (see Figure 2.2a). The z-axis is vertical, and the origin is at the sample surface.
Figure 2.2: Photographs of laboratory apparatus (electrical and communication connections omitted for clarity)
2.3.2 Tank

The internal tank dimensions were chosen to balance minimising boundary effects and the volume of soil required. Numerical investigations by e.g. Achmus et al. (2007) state that lateral boundary effects are avoided with a soil volume of diameter $12D$, while previous experimental work has used soil samples with (effective) diameter $e.g. 7D$ (Leblanc et al., 2010a; Abadie, 2015) and $10D$ (Albiker et al., 2017). Here, a cylindrical tank with diameter $D_t = 10D = 800$ mm was chosen. Little work has investigated the impact of the bottom boundary, however, $2D$ to $3D$ space beneath the pile tip is typical. A tank depth $h_t = 800$ mm ensures sufficient space for piles up to 480 mm long ($L/D = 6$). The design assumes that the soil surface is located 100 mm below the tank top flange, which helps avoid sample disturbance during set-up. The tank was mounted on four soft rubber feet to isolate the system from external vibrations.

2.3.3 Pile cap

A pile cap was designed to transfer load to the pile and allow straightforward connection of the upper displacement transducers to the pile. The cap sits on top of the pile, secured by grub screws, and is attached following pile installation. The steel pile cap weighs 1.49 kg and includes a vertical shaft to hold 1 kg $– 5$ kg ring-shaped masses to apply additional static vertical loading if required.

2.3.4 Actuators and load application

The actuators were sized to achieve 2° pile rotation in dense sand. Basic monotonic analyses were performed (following the $p-y$ approach described in Section 1.2.4) and the model-scale results of Abadie (2015) and Leblanc et al. (2010a) were consulted. Zaber BAR-E200 linear actuators were chosen, with specification summarised in Table 2.2. High resolution of motion is essential for accurate control at low load amplitudes.

The actuators are supported on brackets at $h = 800$ mm above the sample surface. Figure 2.3 shows the components in-line with each actuator. Fatigue-resistant, HUCO polymer couplings provide a relatively flexible link between each actuator and the pile which masks any changes in the stiffness of the pile-soil system during loading and improves actuator control, while low backlash universal joints allow the pile to
Table 2.2: Zaber BAR-E200 linear actuator specification summary

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel</td>
<td>203 mm</td>
</tr>
<tr>
<td>Maximum thrust</td>
<td>540 N</td>
</tr>
<tr>
<td>Motor type</td>
<td>Stepper</td>
</tr>
<tr>
<td>Resolution of motion</td>
<td>0.248 µm</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>65 mm/s</td>
</tr>
</tbody>
</table>

Figure 2.3: Components in-line with actuator (configuration used for testing presented herein)

rotate and settle without applying moment. 200 N capacity S-beam load cells were chosen to measure the in-line load applied to the pile. The load cells and associated data acquisition system (described in Section 2.4.2) have a noise amplitude of around 0.07 N.

2.3.5 Position measurement

Temposonic ER-type magnetostrictive displacement transducers were chosen for measurement of the pile position. Compared to standard linear variable differential transformers (LVDTs) these sensors do not require signal processing or regular recalibration. 50 mm travel was chosen to capture the pile’s response up to 2° rotation, without compromising on accuracy during low-amplitude cyclic loading. The transducers and associated data acquisition system (described in Section 2.4.2) have a noise amplitude of around 1.5 µm.

Figure 2.4: Components in-line with displacement transducer
Six transducers are supported on three rigid brackets, appropriately orientated to ensure resolution of the six degrees of freedom. Typically, one transducer is located vertically above the pile; three transducers are located on the bracket aligned with the x-direction, at two levels (800 and 400 mm above the sample surface); and two transducers are located on the bracket aligned with the y-direction, at the same two levels. The transducers attach to the brackets with sliding clamps, which allow the transducer position in-line with the measurement direction to be varied.

Rigid aluminium rods link the transducers to the pile, with low-backlash universal joints at either end to accommodate pile movement, as shown in Figure 2.4. Magnetic connectors provide a simple and secure connection between the rigid rods and either the pile cap (upper transducers) or small bosses on the pile wall (lower transducers).

2.4 Data acquisition, kinematics and control software

2.4.1 Software overview

Software was developed in the National Instruments Labview environment to perform the data acquisition, kinematics calculations and control processes necessary to set-up and run tests with the apparatus described in Section 2.3. The software runs on a standard PC and includes a user interface to accept commands and display key data.

The software operates in one of two modes: Manual or Testing, between Initialise and Close operations, as indicated in Figure 2.5. The Manual mode acquires and displays load and displacement measurements and actuator positions, enables manual commands to be sent to the actuators and records transducer zeroes before testing. This simple mode is primarily used for test set-up, and its operation is not described further.
The Testing mode is designed for running tests: performing data acquisition, kinematics calculations, load demand adjustments, actuator load control and data logging, as summarised in Figure 2.6. Sections 2.4.2 to 2.4.6 describe the key operations performed within the Testing mode, which loops continuously at 50 Hz.

2.4.2 Actuator communication and data acquisition

Communication with the actuators is through a Zaber X-MCB2 dual-axis controller which connects to the PC via USB. The Binary communication protocol was chosen, as this increases communication speed by around 10 times, compared to default ASCII communication. Fast actuator communication is essential for successful load control.

A CompactDAQ system from National Instruments is used for data acquisition and signal conditioning. This modular system consists of a chassis with Ethernet communication and two data acquisition modules. A 16-bit analogue input module (NI 9205) acquires data from the displacement transducers, while a 24-bit bridge-specific module (NI 9237) provides voltage excitation, signal conditioning and analogue input for the load cells.

2.4.3 Kinematics calculations

Kinematics calculations are necessary to i) calculate the pile's position in space (pose) from the six displacement measurements and ii) calculate the position of the load cells and resolve measured in-line loads to x- and y-components. To calculate the pile pose
from transducer measurements an iterative forward kinematics scheme is necessary; the method described by Byrne and Houlsby (2005) and Byrne and Houlsby (2010) for pivoting transducers is adapted here for fixed transducers with pivoting linkages. The load cell positions and resolved loads can then be found directly using more straightforward inverse kinematics calculations. The forward and inverse terminology comes from robotics, where forward calculations find the pose of the end piece (here the pile) from joint (here the transducer or load cell) positions, while inverse calculations do the reverse (Kucuk and Bingul, 2006).

The pile’s pose is defined by the vector \(\mathbf{s} = [u \ v \ w \ \alpha \ \beta \ \gamma]^T \) where \(u,v,w \) are pile displacements in the \(x,y,z \) directions and \(\alpha,\beta,\gamma \) are rotations about the \(x,y,z \) axes respectively. The global coordinate system is defined in Section 2.3.1 and the pile is treated as a rigid body. For each transducer \(i = 1,2,..6 \) the coordinates of the associated pivot point on the pile or pile cap \(\mathbf{P}_i = [x_i \ y_i \ z_i \ 1]^T \), pivot point on the transducer \(\mathbf{T}_i = [x_i \ y_i \ z_i \ 1]^T \) and the linkage vector \(\mathbf{L}_i = [x_i \ y_i \ z_i \ 0]^T \), with magnitude \(l_i = |\mathbf{L}_i| \), are defined. Figure 2.7 indicates \(\mathbf{P}_i, \mathbf{T}_i, l_i \) schematically for transducer \(i \). In this set-up the linkage vector magnitude is fixed, \(l_i = 150.5 \) mm.

The transformation matrix \(\hat{T} \) translates between global and local coordinate systems, identified with subscripts \(G \) and \(L \), respectively. For example:

\[
\mathbf{P}_{iG} = \hat{T}\mathbf{P}_{iL} \tag{2.4}
\]

The transformation matrix adopted here follows Byrne and Houlsby (2010):

\[
\hat{T} = \begin{bmatrix}
\cos \beta \cos \gamma & \sin \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma & \cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma & x \\
\cos \beta \sin \gamma & \sin \alpha \sin \beta \sin \gamma - \cos \alpha \cos \gamma & \cos \alpha \sin \beta \sin \gamma + \sin \alpha \cos \gamma & y \\
-\sin \beta & \sin \alpha \cos \beta & \cos \alpha \cos \beta & z \\
0 & 0 & 0 & 1
\end{bmatrix} \tag{2.5}
\]
As matrix multiplication is not commutative, the transformation matrix is not uniquely defined, but depends on the order in which transformations are considered to be applied. However, for small displacements the impact of the choice of any transformation matrix is negligible (Byrne and Houlsby, 2010).

The iterative forward calculation requires global transducer pivot coordinates T_{iG}, local pile pivot coordinates P_{iL} and linkage lengths l_i — which make up a vector of linkage lengths $V = [l_1, l_2, ..., l_6]^T$ — as inputs. T_{iG} are determined from the coordinates of the transducer pivot points when fully retracted T_{iG}^R and the transducer measurements ΔT_i. For a transducer parallel to the x-axis:

$$T_{iG} = T_{iG}^R + [\Delta T_i 0 0 0]^T \quad (2.6)$$

Both T_{iG}^R and P_{iL} were determined with the use of a CNC (Computer Numerical Controlled) coordinate measuring machine. Coordinates of etched points on the base plate and brackets were (CNC) measured relative to the global coordinate system, with nine points measured close to each transducer location. The coordinates of T_{iG}^R were then determined (with a spreadsheet) from these coordinates and calliper measurements between these points and the transducers, following transducer positioning (which may vary between tests). Local coordinates on the pile and pile cap were (CNC) measured at the magnetic connection points, which are straightforwardly related to the pile pivot points P_{iL} by the length of the connector pieces. The pile’s local coordinate system was defined to be aligned with the global coordinate system for a perfectly vertical pile installation to 320 mm embedment.

The iterative calculation is set up in terms of a change in vector of linkage lengths $\Delta V = [\Delta l_1, \Delta l_2, ..., \Delta l_6]^T$. As the linkage lengths are fixed in this set-up, a solution is obtained when $\Delta V \rightarrow 0$. It is assumed that the linkage lengths l_i can be linearised with respect to the pile pose following Lazarevic (1997). This is expressed as:

$$\Delta V = \frac{dl_i}{ds_j} = R_{i,j} \Delta s \quad (2.7)$$
The chain rule can be used to express the matrix components as \(R_{i,j} = \frac{dL_i}{dL_i} \cdot \frac{dL_i}{ds_j} \). Noting that \(L_i = P_{iG} - T_{iG} = \hat{T}P_{iL} - T_{iG} \) and \(\frac{dL_i}{ds_j} = \frac{1}{l_i} L_i \), the matrix components \(R_{i,j} \) become:

\[
R_{i,j} = \frac{L_i}{l_i} \cdot \frac{d(\hat{T}P_{iL} - T_{iG})}{ds_j} = \frac{L_i}{l_i} \cdot d\hat{T}_{ds_j}P_{iL}
\]

(2.8)

Having obtained \(R \), the change in pile pose \(\Delta s \) can then be calculated as:

\[
\Delta s = R^{-1} \Delta V
\]

(2.9)

Starting with an initial guess for \(s \), the pose is updated iteratively using the solution from the previous iteration. The scheme converges within a few iterations, although 10 iterations are used in the software, as the kinematics calculations do not limit the loop speed in Testing mode (actuator communication speed does).

Calculation of the pile pose allows the position of the universal joints on the pile cap (UJ-P, Figure 2.3) to be determined. The positions of the universal joints attached to the actuators (UJ-A, Figure 2.3) are found independently using encoders in each actuator. With the position of each universal joint known, the load cell angles and resultant loads in the \(x \)- and \(y \)-direction are found using standard geometry (inverse kinematics), which is not discussed further.

After e.g. loading the pile in the \(y \)-direction by \(1^\circ \) rotation, the resolved load in the \(x \)-direction is approximately 83% of that measured in-line by the corresponding load cell, highlighting the need to adjust for load cell angle. This discrepancy is dependent on the length of the loading linkage, which is 125 mm for this set-up, when unloaded (as indicated in Figure 2.3). Both the forward and inverse kinematics calculations are embedded within the Testing loop and performed on-line at a rate of 50 Hz.

2.4.4 Adjustment for transducer friction

The displacement transducers (described in Section 2.3.5) have sliding frictional resistance \(\hat{F} \approx 0.22 \) N. The net force required to overcome the transducer friction is therefore non-negligible when very low amplitude cyclic loading (e.g. < 10 N) is applied to the pile. Approximate load adjustment is included in the Testing mode, as
indicated in Figure 2.6, to reduce conflation of the frictional response of the transducers with the pile response.

The net friction magnitude is \(n\bar{F} \), where \(n \) is the number of transducers aligned with the load direction. Typically \(n = 3 \) in the \(x \)-direction and \(n = 2 \) in the \(y \)-direction. Assuming load demand is being accurately tracked, the friction force \(F_i \) depends on the rate of change of load demand \(\frac{dH_{Di}}{dt} \) in the \(i \)-direction as:

\[
F_i = \begin{cases}
 n\bar{F} & \frac{dH_{Di}}{dt} > 0 \\
 -n\bar{F} & \frac{dH_{Di}}{dt} < 0 \\
 0 & \frac{dH_{Di}}{dt} = 0
\end{cases}
\]

(2.10)

To account for transducer friction the load demands \(H_{Di} \) are adjusted to \(H'_{Di} = H_{Di} + F_i \), while the loads recorded as applied to the pile \(H_{Ri} \) are adjusted from the measured loads \(H_{Mi} \) as \(H_{Ri} = H_{Mi} - F_i \). To smooth abrupt changes in load demand and improve load control performance, a moving average filter is also applied to \(F_i \), which would otherwise be a square wave for constant amplitude cyclic loading. Although this method reduces the effect of transducer friction, it is not perfect, as \(\bar{F} \) is not constant and there is always some error in load demand tracking.

2.4.5 Load control

Accurate load control is central to the operation of the Labview software in Testing mode. Two PID (Proportional Integral Derivative) controllers (inbuilt Labview subroutine) perform load control; Figure 2.6 shows how the controllers integrate into the Testing structure. The controllers compare the measured \(x \)- and \(y \)-direction loads \(H_{Mi} \) to the (adjusted) load demands \(H'_{Di} \), and output velocities \(v_i \) for actuator 1 and 2, respectively. Load demands \(H'_{Di} \) are specified in a text file with \(x \)- and \(y \)-component loads defined at the loop frequency (50 Hz). Actuator 1 and actuator 2 are initially aligned with the \(x \)- and \(y \)-axes, but as the pile moves the load application axes become misaligned and (e.g.) actuator 1 may apply some \(y \)-direction load. However, with a fast loop rate and relatively small displacements, this coupling does not generate control issues.
PID controllers determine their output $u(t)$ from the error in the Process Variable (PV) $e(t)$ as (Cannon, 2012):

$$u(t) = K \left(e(t) + \frac{1}{T_i} \int_0^t e(t') \, dt' + T_d \frac{de}{dt} \right)$$

(2.11)

Where the controller variables are gain K, integral time T_i and derivative time T_d. In this case the output is actuator velocity $u(t) = v_i(t)$ and the PV is measured load $H_{Mi}(t)$; the error in the PV is therefore $e(t) = H_{Mi}(t) - H'_{Di}(t)$ for axis i. A second order low-pass Butterworth filter (inbuilt Labview subroutine, cut-off frequency 15 Hz) is applied to the PV to remove high frequency components and reduce actuator wear, although this does introduce a small phase lag.

The controllers are tuned manually to achieve a fast response, without overshoot, to a step-change in load applied to the pile-soil system. The flexible couplings (described in Section 2.3.4) introduce a near-constant system compliance which leads to good control performance with a constant gain and no integral and derivative components ($K \approx 5000$, $T_i = \infty$, $T_d = 0$, effectively a simple Proportional controller) in both loose and dense sand, and at variable loading rate. Gain amplification is also included to increase K by factor 1.6 close to zero load ($-1 < H < 1$ N). Small but finite backlash in the universal joints in-line with the actuators introduces additional system compliance close to zero load, and increasing K here improves controller performance.

The control system has been tested under sinusoidal cyclic loading with maximum loading rates up to $2\pi H_{CYC}f = 11$ N/s, where H_{CYC} is the cyclic load amplitude and f is the cyclic frequency. At these loading rates $|e(t)| < 1$ N, although this instantaneous error is mostly due to the phase lag introduced by filtering.

2.4.6 Data logging

Throughout testing raw measurement data, pile pose, resolved loads and load demand are logged to text files at a frequency f_L suitable for the test, where ($f_L < 50$ Hz).

2.5 Sample preparation apparatus

Apparatus was developed to prepare dense, dry sand samples in the tank described in Section 2.3.2 (very loose samples were prepared manually, and both sample preparation
procedures are described in Section 3.2.2. Vibratory methods and air pluviation (sand raining) methods have been used previously to prepare dense samples. Air pluviation was chosen here as it may simulate a soil fabric similar to that found in natural deposits formed by sedimentation (Rad and Tumay, 1987); is also known to be difficult to achieve repeatable samples with vibratory methods. Air pluviation typically involves pouring sand from a hopper at height \(h \) above the sand sample through a flow control mechanism to achieve an effective unit weight \(\gamma' \). The flow rate \(Q \) controls the ability of particles to settle to a close-packed state and \(\gamma' \) reduces with increasing \(Q \). Drop height controls the particle velocity and \(\gamma' \) increases with increasing \(h \), although only to the point at which the sand particles reach terminal velocity (Rad and Tumay, 1987).

Various sand raining devices have been developed. For example, Schnaid (1990) used a large fixed hopper at a high drop height and prepared samples in a single pour, while Peralta (2010) maintained a constant drop height by pouring locally from a flexible hose. Flexible, robotic sand rainers have also been developed by e.g. Zhao et al. (2006) and Gaudin et al. (2018). A simple fixed device was developed here, as shown in Figure 2.8. A hopper, capable of holding around 0.3 m\(^3\) sand, is supported 750 mm above the maximum soil sample height. The resulting minimum drop height \(h \) is assumed to be large enough for most particles to reach terminal velocity, following the approach of Schnaid (1990). The hopper is supported on a flanged cylinder, which contains any dust generated by the raining process, but is also likely to introduce boundary effects. Two shutter plates with matching hole patterns are positioned beneath the hopper. The plates are initially misaligned, but moving the lower plate (by impact with a rubber mallet) aligns the holes and allows sand to flow. A diffuser mesh is positioned 150 mm beneath the shutter plates.

The shutter plate and diffuser mesh together control the sand flow rate \(Q \) and therefore effective unit weight \(\gamma' \). 20 mm diameter shutter plate holes on a 80 mm equilateral triangular grid with a 2.54 mm square wemesh diffuser sieve were found to generate repeatable samples with Yellow Leighton Buzzard 14/25 sand (properties in Table 3.1, Section 3.2.1) with average \(\gamma' = 16.2 \text{kN/m}^3 \) and relative density \(D_R = 60\% \). Changing the diffuser mesh to a 1.27 mm square wemesh and 5 mm diameter circular
perforated plate with 6 mm pitch generated $D_R \approx 70\%$ and $D_R \approx 80\%$, respectively. However, sand accumulated on these meshes during raining, and so preparation of $D_R = 60\%$ samples was preferred. The shutter grid pattern is highlighted by the residual sand in the hopper in Figure 2.9.

2.6 Pile installation apparatus

Apparatus was designed to install the model pile by driving. Figure 2.10 shows the apparatus in the laboratory, with the actuator and transducer brackets omitted for clarity. The pile is installed manually by raising and dropping the hammer mass (1.4 kg or 2.8 kg for very loose and dense sand respectively) onto the pile. The Perspex hammer guide ensures the mass drops squarely onto the pile sleeve from a constant height (≈ 240 mm). The hammer mass and drop height were chosen to ensure pile installation is controlled but not overly slow. Approximately 120 blows and 200 blows were required for installation of the pile in very loose and dense sand respectively. The pile guide holds the pile vertically at the tank centre during installation. It is designed to be easily removed after installation without disturbing the pile.
2.7 Summary

This Chapter has described the design of novel apparatus to explore the response of a model pile with diameter $D = 80$ mm to cyclic lateral loading under load control. The loading apparatus facilitates the application of complex — multidirectional, multi-amplitude, continuously varying — cyclic loading, which would not have been possible with the mechanical systems used in many previous studies. The accompanying Labview software, which performs data acquisition, load control and kinematics calculations, is integral to the performance of this loading apparatus and has been described in detail. Development of ancillary apparatus for sample preparation and pile installation have also been discussed.
Chapter 3

1g test procedure, monotonic responses and cyclic definitions

3.1 Introduction

This Chapter describes the sample preparation and test procedures adopted for the tests at OU (presented in this Chapter and Chapters 4 and 5). The monotonic responses, which underpin the cyclic responses on which this thesis focuses, are presented. The effect of loading rate and direction is explored, and normalisation approaches are discussed. Consistent definitions for cyclic loading and the cyclic response are also presented.

3.2 Sand sample

3.2.1 Sand properties

Yellow Leighton Buzzard (YLB) 14/25 sand was used for the tests conducted at OU. This sand has been previously used for physical modelling in the geotechnical group at OU (e.g. Villalobos, 2006; Leblanc et al., 2010a; Abadie et al., 2015). In parallel with the work presented in this thesis, White (2020) has conducted extensive laboratory testing to explore the response of this sand at low confining stresses.

Yellow Leighton Buzzard 14/25 sand is a coarse, uniformly graded silica sand. Figure 3.1 presents the measured particle size distribution, which approximately corresponds to the lower bound of Fraction B, as defined in BS 1377 : Part 4 (British Standard, 1998). The 0.6 – 1.18 mm sieve fractions (where the majority of this sand lies) correspond
Specific gravity (Schnaid, 1990) $G_s = 2.65$

Particle size

- $d_{10}, d_{50}, d_{60} = 0.56, 0.69, 0.81, 0.87$ mm

Minimum dry unit weight

- $\gamma_{MIN} = 14.43$ kN/m3

Maximum dry unit weight

- $\gamma_{MAX} = 17.64$ kN/m3

Maximum void ratio

- $e_{MAX} = 0.80$

Minimum void ratio

- $e_{MIN} = 0.47$

Critical friction angle (Schnaid, 1990) $\phi'_c = 34.3$°

Table 3.1: Yellow Leighton Buzzard 14/25 sand properties

to British Standard Sieve Series Mesh No. 14-25, hence common reference to this sand as Yellow Leighton Buzzard 14/25.

Minimum and maximum dry unit weights ($\gamma'_{MIN}, \gamma'_{MAX}$) were obtained following the methods described in BS 1377 : Part 4 (Sections 4.4 and 4.2) (British Standard, 1990), and are reported in Table 3.1. However, methods for obtaining γ'_{MIN} and γ'_{MAX} differ between standards and organisations. Blaker et al. (2015) explored method dependency for five different sands (including Yellow Leighton Buzzard 14/25), determining γ'_{MIN} and γ'_{MAX} following four different standards and using in-house methods from three organisations. Vibrating hammer, discrete hammer and mould vibration methods were used to determine γ'_{MAX}, while methods for γ'_{MIN} included placement with funnels, tubes and scoops, and agitation by inversion of a cylinder. Significant variation in both γ'_{MIN} and γ'_{MAX} was observed; for Yellow Leighton Buzzard 14/25, $14.12 \leq \gamma'_{MIN} \leq 15.13$ kN/m3 and $16.45 \leq \gamma'_{MAX} \leq 17.85$ kN/m3 (Blaker et al., 2015).

Variation in values of γ'_{MIN} and γ'_{MAX} leads to variation in reported relative density D_R values. Figure 3.2 plots lower and upper bounds for relative density D_R as a function of unit weight γ', using the ranges of γ'_{MIN} and γ'_{MAX} reported by Blaker et al. (2015). In this work, D_R is obtained using the measured values of γ'_{MIN} and γ'_{MAX}, but Figure 3.2 highlights how comparisons to other data sets should be made with caution, considering the significant method dependency reported (Blaker et al., 2015).

3.2.2 Sample preparation

The tests at OU were conducted at two densities: very loose and dense. The very loose samples were built up in three layers by repeated manual pouring from a very low
drop height (< 70 mm) using a shovel with approximate volume 0.0015 m³. A constant sample depth was achieved by careful pouring to the required depth, indicated by a guide. The average unit weight across 80 samples (determined from global mass and volume measurements) was $\gamma_{AV}' = 14.46 \pm 0.08$ kN/m³, corresponding to an average relative density at model-scale of $D_R = 1\%$. These samples were straightforward to prepare and are aligned with the very loose samples used by Leblanc et al. (2010a) and Abadie et al. (2015), but do not represent field conditions.

The dense samples were prepared using the sand raining device described in Section 2.5. Due to lifting restrictions, the sample was prepared in two stages (rains). A constant sample depth was achieved by vacuuming down to the required level with the vacuum nozzle positioned in a jig. An average unit weight of $\gamma_{AV}' = 16.20 \pm 0.06$ kN/m³ was achieved across 10 samples (the unit weight was not recorded for all dense samples, given the confidence in the sample preparation technique), corresponding to an average relative density at model-scale of $D_R = 60\%$. These samples are more representative of conditions off the UK coast, where sand deposits have relative densities up to $D_R = 100\%$ (e.g. Lunne, 2012).

Pile installation did not cause visible grain crushing, but did cause sample densification close to the pile in both the very loose and dense samples. The reported
densities must therefore be considered as pre-installation values.

All tests were performed in dry sand to simulate fully drained conditions. Drained conditions may be representative for small diameter monopiles in high permeability sands, but they are less representative for silty sands and large diameter monopiles. Li et al. (2019) proposed a preliminary criterion for assessment of the drainage conditions around a monopile under cyclic loading, derived from a 2D finite element model with isotropic linear elastic soil (only modelling horizontal drainage). The variation of normalised excess pore pressure \(P = u/p \) (where \(u \) is excess pore pressure and \(p \) is the average bearing pressure on the pile) with normalised loading period \(T_p = t_p c_v / D^2 \) (where \(t_p \) is the cyclic loading period and \(c_v \) is the coefficient of consolidation) and distance from the pile was explored, and the results are presented in Figure 3.3.

An 8 m diameter monopile in coarse clean sand (\(c_v \approx 10 \text{ m}^2/\text{s} \)) exposed to wave loading with period \(t_p = 10 \text{ s} \) gives \(T_p = 1.56 \), with the response predicted to be partially drained. This is in agreement with the work of Peralta et al. (2017), who used analytical solutions for consolidation around a laterally loaded pile from Osman and Randolph (2012) to show that soil close to the monopile (in the same system) would behave as partially drained. The magnitude of pore pressure accumulation also depends on the load amplitude, as indicated by the pore pressure normalisation chosen by Li et al. (2019), and so the effects will be more pronounced under large amplitude storm loading.

Partial drainage and the effect of pore pressure build-up during cyclic loading is an important area of research. However, the response of monopiles to cyclic loading is compound, and there is a need to isolate behaviour to properly understand the response mechanisms. Understanding the drained response facilitates assessment of more complex partially drained behaviour.

3.2.3 Impact of stress-level

The behaviour of sand is inherently stress-level dependent: typically peak friction angle \(\phi'_p \) increases logarithmically with decreasing stress-level (Bolton, 1986), while maximum shear modulus \(G_{\text{MAX}} \) increases approximately with the square root of stress-level (Hardin, 1965). To understand what soil state the low-stress laboratory sample may represent at full-scale, either stiffness, friction angle or state parameter (Altaee and
Fellenius (1994) may be matched (it is not possible to match all these parameters with laboratory-scale testing). Here, expressions for peak friction angle ϕ'_p at laboratory-scale and full-scale were equated to determine the full-scale relative density simulated in the laboratory, consistent with previous work (e.g. Leblanc et al., 2010a; Zhu et al., 2017).

Bolton (1986) collated data on the strength and dilatancy of 17 sands, measured in triaxial and plane strain conditions, and proposed empirical relationships to relate peak friction angle ϕ'_p with stress-level and relative density. The relationships can be combined into the following expression for ϕ'_p:

$$\phi'_p = \phi'_c + \alpha (D_R (Q - \ln p') - 1)$$

(3.1)

Where p' is the mean effective stress and α, Q and R are empirical values ($\alpha = 3$ for triaxial strain and $\alpha = 5$ for plane strain, $Q = 10$ and $R = 1$). Limited data were available at low stress levels and a dilation limit was therefore proposed, equivalent to constraining $\phi'_p - \phi'_c \leq 12^\circ$ in triaxial strain (Bolton, 1986). In a discussion on this work, Tatsuoka (1987) presented additional data at low confining stresses $5 \leq \sigma'_c \leq 50$ kPa which led to a revision of the empirical relations to limit dilation more strongly (Bolton, 1986).
3.1g test procedure, monotonic responses and cyclic definitions

Figure 3.4: Graphical representation of Equation 3.2 (Bolton, 1987), with approximate representative stress-levels at laboratory (3 kPa) and full-scale (220 kPa) indicated.

\[
\phi_p' = \begin{cases}
\phi_c' + \alpha \left(D_R \left(5 - \ln \left(\frac{p'}{150} \right) \right) - 1 \right) & \text{for } p' > 150 \text{ kPa} \\
\phi_c' + \alpha \left(5D_R - 1 \right) & \text{for } p' < 150 \text{ kPa}
\end{cases}
\] (3.2)

Chakraborty and Salgado (2010) also analysed data for Toyoura sand at confining stresses \(2 \leq \sigma_c' \leq 197\) kPa and proposed varying empirical factor \(Q\) with stress level.

The experimental investigations of White (2020), which explore the behaviour of Yellow Leighton Buzzard 14/25 sand at low confining stresses, show a reduction in dilation at low stress levels and support the use of Equation 3.2. Figure 3.4 presents Equation 3.2 graphically (for triaxial conditions), and indicates approximate representative stress-levels \(\sigma_{REF}'\) at laboratory and full-scale (\(\sigma_{REF}' \approx 3\) kPa, \(\sigma_{REF}' \approx 220\) kPa, respectively). \(\sigma_{REF}'\) is defined here as the vertical effective stress at 70% pile embedment \((\sigma_{REF}' = 0.7L\gamma')\), and is used as a proxy for mean effective stress. Using Equation 3.2 and matching \(\phi_p'\) at laboratory- and full-scale suggests that the very loose and dense samples represent relative densities of \(D_R = 1.1\%\) and \(D_R = 65\%\) at full-scale, respectively. Classification of the samples as very loose and dense is therefore not affected by stress-level.

3.2.4 Cone penetration tests

Cone penetration tests (CPTs) were performed on samples of Yellow Leighton Buzzard 14/25 sand prepared to various densities to calibrate a new laboratory CPT device for
the experimental studies of Mayall (2019), as described in Mayall et al. (2019). The CPT has cone diameter 8 mm and angle 60°, with resistance measured locally at the pile tip. As part of the CPT calibration work, three CPTs were performed on very loose and dense samples prepared as described in Section 3.2.2 in the test tank described in Section 2.3.2. All CPTs were performed at the centre of the sample – the sample’s radial homogeneity was therefore not explored. However, monotonic tests in various loading directions (presented in Section 3.4.1) demonstrate invariance to loading direction.

Figure 3.5 shows the measured cone resistance q_c, while Figure 3.6 shows the associated relative density D_R profiles, obtained by application of the relationships presented by Mayall (2019) for Yellow Leighton Buzzard 14/25 sand. Data is presented for one very loose sample and two dense samples.

The CPT device was sized for dense sand, and so there is significant noise in the very loose q_c and associated D_R profiles. Nevertheless, two regions of locally higher resistance/density are observable at around -500 mm and around -260 mm. These regions approximately correspond to the intersections of the three sand layers deposited; similar layer depths were used to ensure repeatability. A region of higher resistance/density can also be observed in the dense sand at around -400 mm, corresponding to the intersection of the two rained layers. In this case, the layer was positioned around $1D$ beneath the pile tip to minimise the impact on the pile response.

The dense samples exhibit an increase in D_R with depth. The significant increase in the first 80 mm embedment is attributable to the change in CPT bearing behaviour (Gui et al., 1998), but the continued increase beyond 80 mm is likely to be an artefact of the sample preparation technique. However, the consistency of the two profiles — obtained from virgin samples — gives confidence in the repeatability of the dense samples, particularly when coupled with the consistency in global unit weight measurements (see Section 3.2.2).

3.3 Set-up and test procedure

The following procedure was adopted for the tests at OU. All tests were conducted under load control using the apparatus described in Chapter 2.
1. Preparation of sample. Either very loose or dense samples were prepared following the methods described in Section 3.2.2. Sample preparation was performed with the base plate and brackets unattached.

2. Location of base plate and brackets. The base plate — with brackets, displacement transducers and actuators attached — was then located on the tank and secured with bolts, before making the necessary power and data communication connections.

3. Installation of pile. The pile installation apparatus described in Section 2.6 was
then attached to the base plate and the pile was installed to the target embedment depth (320 mm) by manual hammering. Following pile installation, the pile hammer and hammer frame were removed to create space for the remaining test set-up.

4. **Location of displacement transducers.** The vertical displacement transducer bracket was positioned above the pile and the displacement transducers were located in positions appropriate for the particular test. The positions of the transducers relative to the brackets were measured and used to determine the coordinates of \(T_R^{h_i} \) (defined in Section 2.4.3) using a spreadsheet. These values were input to the *Labview* software to allow determination of the pile pose during testing.

5. **Attachment of transducers and load lines.** Next, the pile cap was positioned on the pile and secured with grub screws, four transducers were connected to the pile cap and two were connected to bosses on the pile wall, and the actuators were jogged carefully into an initial position to minimise load applied to the pile upon connection. The loading lines were then connected using grub screws at the join between the flexible coupling and universal joint. The pile pose was recorded throughout this process and care was taken to avoid disturbing the pile.

6. **Running test.** Before running the test, transducer zero readings were taken using the *Manual* mode within the *Labview* software (Section 2.4), the load demand text file was loaded, and an appropriate data logging rate \(f_L \) was chosen. When running the test, software operation moved to the *Testing* mode, where load control, kinematics calculations and data logging were performed.

3.4 Monotonic response

Table 3.2 summarises the monotonic tests reported in this thesis. Tests were performed in very loose and dense sand samples, in various loading directions and at various loading rates. The test names indicate sequentially: sand density, test type (Monotonic), loading rate, loading direction and repeat number (where relevant).
Table 3.2: Monotonic test programme

<table>
<thead>
<tr>
<th>Test name</th>
<th>Loading direction</th>
<th>Loading rate [N/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very loose sand samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.M.01.x</td>
<td>x</td>
<td>0.1</td>
</tr>
<tr>
<td>L.M.01.y</td>
<td>y</td>
<td>0.1</td>
</tr>
<tr>
<td>L.M.01.45</td>
<td>45° to x</td>
<td>0.1</td>
</tr>
<tr>
<td>L.M.1.x</td>
<td>x</td>
<td>1.0</td>
</tr>
<tr>
<td>L.M.001.x</td>
<td>y</td>
<td>0.01</td>
</tr>
<tr>
<td>L.M.Var.x</td>
<td>y</td>
<td>1 & 0.01</td>
</tr>
<tr>
<td>Dense sand samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.M.02.x.1</td>
<td>x</td>
<td>0.2</td>
</tr>
<tr>
<td>D.M.02.x.2</td>
<td>x</td>
<td>0.2</td>
</tr>
<tr>
<td>D.M.02.x.3</td>
<td>x</td>
<td>0.2</td>
</tr>
</tbody>
</table>

3.4.1 Moment-rotation response

Figure 3.7 presents the monotonic response of the model monopile. As monopile design criteria are typically defined in terms of foundation rotation (e.g. 3.10.2.2 DNVGL-ST-0126 (DNV GL, 2016)), the OU responses are presented in this thesis in moment-rotation \((M - \theta)\) space. The upper plots in Figure 3.7 present the full monotonic response, while the lower plots focus on the low amplitude region relevant for cyclic loading.

Monotonic tests were conducted in three different directions in very loose sand, following the \(x\)- and \(y\)-axes of the apparatus, and at 45° to the axes (L.M.01.x, L.M.01.y, L.M.01.45). The consistency of these responses demonstrates invariance of the apparatus, software and sand sample to load direction, which is essential for investigation of the pile's multidirectional response. The impact of loading rate was also explored in the very loose samples, with tests at 0.01, 0.1 and 1.0 N/s, and with rate changing between 0.01 and 1 N/s four times within a test (L.M.1.x, L.M.01.x, L.M.001.x, L.M.Var.x). No discernible rate dependency was observed, as expected in fully drained or dry sand. In general, the monotonic responses demonstrate excellent repeatability at both densities.

Mean monotonic responses are determined from the tests summarised in Table 3.2. These mean monotonic responses or mean backbone curves provide a baseline
3.1g test procedure, monotonic responses and cyclic definitions

Figure 3.7: Monotonic response (lower plots show low amplitude region relevant for cyclic testing, note different scales)

for interpretation of the response to cyclic loading, and are included in various plots in Chapters 4 and 5. The initial monotonic loading responses for the unidirectional cyclic loading tests summarised in Tables 4.1 and 4.2 (Section 4.2) are also presented in Figure 3.7 and exhibit behaviour consistent with the monotonic tests.

3.4.2 Maximum stiffness

The maximum stiffness of the monopile \(k_{MAX} \) is an important parameter in monopile design as it controls the foundation’s (initial) dynamic response, and is a key input for integrated dynamic analyses. In this work, \(k_{MAX} \) is used as a reference value for presentation of stiffness data (e.g. Section 4.4.2) and as an input parameter for numerical modelling (Section 7.4.3). The maximum stiffness \(k_{MAX} \) is most straightforwardly estimated from the initial portion of the monotonic response, but can also be obtained from the first unloading portion during cyclic tests. The initial
maximum stiffness is undisturbed, but may be subject to bedding-in effects which would not be expected to affect the first unloading maximum stiffness.

Figure 3.8 presents the initial portion of the $M - \theta$ response for the monotonic tests summarised in Table 3.2 alongside reflected unloading responses for the unidirectional cyclic loading tests summarised in Tables 4.1 and 4.2 (Section 4.2). The monotonic responses are zeroed from the onset of pile movement, while the cyclic tests are zeroed from the point of maximum load on the 0^{th} cycle (see Section 3.5.1). At very low rotations ($\theta < 0.003^\circ$) there is little variation in the initial and unloading responses in very loose sand, but in dense sand the unloading responses are a little stiffer than the initial responses. No purely elastic region is observed at either sand density, i.e. the response is non-linear even at very small rotations. Upper, lower and mean estimates for k_{MAX} are obtained by manual fitting to both the initial and unloading data at $\theta < 0.003^\circ$, and are summarised in Table 3.3.

The mean maximum stiffness values (936 N m/° and 979 N m/° for very loose and dense sand respectively) are less than 1/6 of the equivalent stiffness of the monopile stick-up (modelled as a cantilever beam), confirming that it is appropriate to treat the monopile as rigid.
3. Normalisation

To facilitate comparison of experimental data, it is typical to present foundation responses in a normalised form. Normalisations can either be conducted using reference values or using dimensionless groups, which should capture the physics of the system.

Leblanc et al. (2010a) and Kelly et al. (2006) develop dimensionless frameworks for monopiles and caissons, respectively, which aim to capture the key behaviour of the foundation-soil system and allow translation between scales. Both frameworks incorporate stress-level dependent stiffness, with shear modulus $G \propto p^\eta$. The exponent is chosen as $\eta = 0.5$, which is generally accepted at small strains ($G_{MAX} \propto p^{0.5}$), but at larger strains $\eta \to 1$ (Oztoprak and Bolton, 2013). Kelly et al. (2006) used this framework to successfully compare tests on caissons conducted in the laboratory and field. The results presented in Section 6.4.1 show that the similar framework of Leblanc et al. (2010a) is able to account for stress-level effects under monotonic loading at load amplitudes of interest. The dimensionless parameters for vertical load, horizontal load, moment and rotation presented by Leblanc et al. (2010a), and the displacement parameter presented by Abadie et al. (2015), are summarised in Table 3.4.

The dimensionless framework (Table 3.4) is used to discuss realistic cyclic load amplitudes in Section 4.2, to scale between model and prototype-scale in Sections 5.3.4 and 7.6 and to interpret stress-level effects in Section 6.4.1. However, for standard comparisons of the monopile response, data in this thesis is generally normalised using reference values, rather than the dimensionless framework, as this is deemed to be more intuitive.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Max. stiffness k_{MAX}</th>
<th>Reference rotation θ_R [°]</th>
<th>Reference moment M_R [N m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean [N m/°]</td>
<td>Range [N m/°]</td>
<td></td>
</tr>
<tr>
<td>Very loose</td>
<td>936</td>
<td>557–1315</td>
<td>2</td>
</tr>
<tr>
<td>Dense</td>
<td>979</td>
<td>548–1410</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3.3: Reference values for monopile response
Monopiles in sand do not typically reach well-defined failure, and instead show continued hardening to large rotations. It is therefore necessary to arbitrarily define a reference rotation (or displacement) value, from which a reference moment (or horizontal load) can be determined. A variety of different reference values have been used by previous researchers in this area. For example, Leblanc et al. (2010a) used a dimensionless reference rotation of 4°, Abadie et al. (2015) used a ground level displacement of 0.1 D at model-scale, Arshad and O’Kelly (2017) used a rotation of 1.5° at model-scale, while Bayton et al. (2018) defined a reference rotation of 0.25° on unloading corresponding to the SLS criteria suggested by DNV GL (2016). A reference rotation of \(\theta_R = 2^\circ \) at model-scale was defined for this work, broadly consistent with Abadie et al. (2015) and Arshad and O’Kelly (2017). It is emphasised that the reference rotation is arbitrary and is not intended to represent a design rotation.

Table 3.3 presents reference moment \(M_R \) values for each sand density, approximately corresponding to \(\theta_R = 2^\circ \), while Figure 3.9 presents the normalised mean monotonic responses in very loose and dense sand. Employing this normalisation, the response in dense sand has a lower rate of change of normalised
tangent stiffness – and therefore appears more linear – than the response in very loose sand.

3.5 Definitions for cyclic loading and the cyclic response

The definitions presented in this Section were developed in collaboration with T. D. Balaam. Various definitions for cyclic loading and the cyclic response have been used in previous physical modelling studies (see Table 1.2, Section 1.3.1), which hinders the comparison of behaviour between studies. Cyclic definitions used in physical modelling studies also differ from those used in cyclic element testing, which complicates the comparison of behaviour observed at element and macro level; such comparisons might inform numerical model calibration (Balaam, 2020). This Section presents a consistent and rigorous framework, which brings together approaches from previous studies, and proposes new definitions where inconsistencies arise. This framework is adopted in the following Chapters.

The framework is presented generally in terms of stress \(\sigma \) and strain \(\varepsilon \) to emphasise that the framework may be applied to both physical modelling of pile-soil systems and to cyclic element testing. When considering the macro-response of a monopile \(\sigma \) and \(\varepsilon \) may correspond to either applied moment \(M \) and pile rotation \(\theta \) or applied load \(H \) and
pile displacement \(u \) (as discussed in Section 1.2.2). For element testing, \(\sigma \) and \(\varepsilon \) may correspond to deviator stress \(q \) and axial strain \(\varepsilon_a \) or shear stress \(\tau \) and shear strain \(\gamma \).

The cyclic response is characterised in terms of ratcheting, secant stiffness and energy dissipation, following previous studies (e.g. Leblanc et al., 2010a; Klinkvort, 2012; Abadie et al., 2019b) and in-line with the cyclic design considerations for monopiles discussed in Section 1.2.5. Focus is primarily placed on definitions for regular, unidirectional cyclic loading, although definitions for multi-amplitude, unidirectional cyclic loading are briefly discussed. Extension of this framework for multidirectional loading is discussed in later Chapters, as required.

3.5.1 Cycle definition

A loading cycle is defined as a load-unload loop from the reversal stress \(\sigma_r \) to the extreme stress \(\sigma_e \) and back to the reversal stress \(\sigma_r \) (points \(r_n \rightarrow e_n \rightarrow r_{n+1} \) in Figure 3.10). This definition is consistent with typical definitions used in physical modelling studies (e.g. Klinkvort, 2012), but in element testing, cycles are typically defined as starting and finishing at the average stress. The physical modelling approach is preferred as it allows straightforward extension to half cycles for multi-amplitude loading.

The stress bounds \((\sigma_e, \sigma_r) \) are rigorously defined to account for loading in either
“positive” or “negative” stress directions (as may occur for element tests in extension):

\[
\sigma_e = \begin{cases}
\sigma_{AV} + \sigma_{CYC} & \text{if } \sigma_{AV} \geq 0 \\
\sigma_{AV} - \sigma_{CYC} & \text{if } \sigma_{AV} < 0
\end{cases}
\]
(3.3)

\[
\sigma_r = \begin{cases}
\sigma_{AV} - \sigma_{CYC} & \text{if } \sigma_{AV} \geq 0 \\
\sigma_{AV} + \sigma_{CYC} & \text{if } \sigma_{AV} < 0
\end{cases}
\]
(3.4)

Note, however, that for applications such as lateral loading of piles, the definition of a “positive” or “negative” stress direction is arbitrary. In this case \(\sigma_e\) and \(\sigma_r\) correspond to the more commonly used values \(\sigma_{MAX}\) and \(\sigma_{MIN}\), respectively.

Cycle 1 is defined as the second load-unload loop to pass through \(\sigma_e\). Cycle 0 is defined as all loading that occurs before Cycle 1, as indicated in Figure 3.10. The cyclic response is typically presented for cycles \(1 \leq n \leq N\).

3.5.2 Cyclic load characterisation

In physical modelling, cyclic loading is typically characterised by parameters \(\zeta_b\) (Leblanc et al., 2010a) and \(\zeta_c\) (Long and Vanneste, 1994; Leblanc et al., 2010a), as presented in Section 1.3.1. These parameters are defined here in terms of \(\sigma_e\) and \(\sigma_r\):

\[
\zeta_b = \frac{\sigma_e}{\sigma_R}
\]
(3.5)

\[
\zeta_c = \frac{\sigma_r}{\sigma_e}
\]
(3.6)

Load asymmetry is defined by \(\zeta_c\), while load amplitude is together defined by \(\zeta_b\) and \(\zeta_c\). Definition of an (arbitrary) reference stress \(\sigma_R\) is also required, for example, as discussed in Section 3.4.3.

In contrast, in element testing (e.g. Andersen, 2015), cyclic loading is typically characterised by parameters \(\sigma_{CYC}\) and \(\sigma_{AV}\):

\[
\sigma_{CYC} = \frac{\sigma_e - \sigma_r}{2}
\]
(3.7)

\[
\sigma_{AV} = \frac{\sigma_e + \sigma_r}{2}
\]
(3.8)

Parameter \(\sigma_{CYC}\) defines the cyclic amplitude while \(\sigma_{AV}\) defines the mean cyclic load or load bias. These parameters may also be normalised by \(\sigma_R\) for consistency with parameters \(\zeta_b\) and \(\zeta_c\).
All four parameters (ζ_b, ζ_c, σ_{AV}, σ_{CYC}) are useful in characterising the cyclic load, but parameters ζ_b and ζ_c are principally used in this thesis, for consistency with previous physical modelling studies. Equations 3.9 and 3.10 express ζ_b and ζ_c in terms of σ_{CYC} and σ_{AV}, while Figure 3.11 presents the relationship between these parameters graphically for $\sigma_{AV} > 0$.

$$
\zeta_b = \frac{\sigma_{AV} + \sigma_{CYC}}{\sigma_R} \tag{3.9}
$$

$$
\zeta_c = 1 - \frac{2\sigma_{CYC}}{\sigma_{AV} + \sigma_{CYC}} \tag{3.10}
$$

3.5.3 Ratcheting definition

Ratcheting is the accumulation of permanent strain during cyclic loading, and therefore requires a measure of strain per cycle ε_n. In physical modelling studies, ε_n has typically been defined at the point of extreme load e_n (e.g. Leblanc et al., 2010a; Abadie, 2015; Klinkvort and Hededal, 2013; Truong et al., 2019). However, this definition is at odds with ratcheting being a measure of permanent strain, and conflates changes in stiffness with ratcheting behaviour. In element testing, ε_n is typically defined as the mean of strains at points e_n and r_n (e.g. Andersen, 2015).

In physical modelling studies, it is typical to report permanent strain as an accumulated strain per cycle $\Delta\varepsilon_n$, relative to the equivalent monotonic strain component (at $n = 0$); this helps to decouple ratcheting behaviour from the monotonic response. Although the element testing definition for ε_n is more aligned with our understanding of ratcheting as a permanent strain, and minimises conflation with stiffness change, it does not have a well-defined equivalent monotonic strain, given that r_0 does not necessarily exist.

A new definition for permanent strain per cycle ε_n is therefore proposed, as the mean value of strain at σ_{AV} on loading (at point a_n) and at σ_{AV} on unloading (at point b_n), as indicated in Figure 3.12. This definition is aligned with the element testing definition, but also allows straightforward definition of accumulated strain. Equation 3.11 and Equation 3.12 define ε_n and $\Delta\varepsilon_n$, in terms of points a_n and b_n, respectively.

$$
\varepsilon_n = \frac{1}{2} (\varepsilon(a_n) + \varepsilon(b_n)) \tag{3.11}
$$
3.5.4 Secant stiffness definition

Secant stiffness per cycle k_n has previously been defined in physical modelling studies as a loading stiffness between r_n and e_n (Klinkvort and Hededal, 2013; Abadie, 2015) and as an unloading stiffness between e_n and r_{n+1} (Leblanc et al., 2010a). However, both these definitions conflate stiffness change with ratcheting behaviour.

A new definition for k_n is proposed which minimises conflation of stiffness change with ratcheting. Visually, this stiffness is at the cycle centre, as indicated in Figure 3.13. It is defined by Equation 3.13 in terms of points e_n and r_n, and is the inverse of the average of the loading and unloading flexibilities.

$$k_n = \frac{\sigma(e_n) - \sigma(r_n)}{\varepsilon(e_n) - \frac{1}{2} (\varepsilon(r_{n+1}) + \varepsilon(r_n))}$$ \hspace{0.5cm} (3.13)

3.5.5 Energy dissipation definition

Cyclic energy dissipation is generally quantified for a symmetric closed hysteresis loop by a metric proportional to the ratio of hysteretic energy loss E_H to maximum stored elastic energy E_E. The areas representing these energies are shown in Figure 3.14.

Løvholt et al. (2020) and Inman (2014) use an energy loss factor η equal to the energy lost per radian divided by the elastic energy (Equation 3.14). However, Kramer (1996),
Abadie (2015) and Taborda et al. (2016) use a factor equal to half this value. Equation 3.14 is preferred as it is consistent with the quality factor often used to describe resonant systems (Green, 1955). This energy dissipation measure is referred to as an energy loss factor rather than a damping ratio to avoid confusion with the structural dynamics term for the ratio of viscous damping to critical damping for a single degree of freedom system (ξ). For a closed loop, η is bounded: $0 \leq \eta \leq 4/\pi$.

$$\eta = \frac{1}{2\pi} \left(\frac{E_H}{E_E} \right)$$ (3.14)

E_H and E_E are straightforwardly defined for a symmetric closed loop with Equations 3.15 and 3.16, respectively. However, adaptation is needed for non-closing loops, which
occur when ratcheting occurs or multi-amplitude loading is applied.

\[E_E = \frac{1}{2} (\sigma_e \dot{\varepsilon_e}) = \frac{\sigma_e^2}{2k} \] (3.15)

\[E_H = \int \sigma(\varepsilon) d\varepsilon \] (3.16)

Taborda et al. (2016) propose a method to calculate energy loss factor (presented as “damping”) for non-closing loops caused by multi-amplitude loading, where the energy loss is calculated incrementally from the previous load reversal to the current strain (Figure 3.15a,b); this method is aimed at application to half-cycles. Meanwhile, Abadie (2015) proposes an energy loss factor (also presented as “damping”) to account for open loops due to ratcheting behaviour. The energy loss is equal to the area enclosed by the hysteresis loop (closed at the load reversal), while the elastic energy is calculated using a stiffness equivalent to \(k_n \) (Figure 3.15c). This method was also used by Beuckelaers (2017). However, this geometric definition of energy loss is only appropriate for 1-way loading.

The hysteretic energy loss \(E_H \) can be more generally defined by Equation 3.17.

This definition is equivalent to the approach of Abadie (2015) for 1-way loading, but is also applicable to partial 2-way and partial 1-way loading, where the net energy loss will not equate to the loop area.

Equation 3.18 defines the elastic energy \(E_E \), which follows the approach of Abadie (2015) and is consistent with the definition for closed loops (Taborda et al., 2016). The proposed energy loss factor per cycle \(\eta_n \) is then defined by Equation 3.19 following Equation 3.14, where \(\eta_n \) is bounded as \(0 \leq \eta_n \leq 4/\pi \) for closed loops. Figure 3.16 visualises the calculation of \(\eta_n \) for an example partial 2-way loading case.

\[E_H = \int_{\varepsilon_n}^{\varepsilon_{n+1}} \sigma(\varepsilon) d\varepsilon + \int_{\varepsilon_{n+1}}^{\varepsilon_{n+2}} \sigma(\varepsilon) d\varepsilon \] (3.17)

\[E_E = \frac{(\sigma_e - \sigma_r)^2}{8k_n} \] (3.18)

\[\eta_n = \frac{4k_n}{\pi(\sigma_e - \sigma_r)^2} \left(\int_{\varepsilon_n}^{\varepsilon_{n+1}} \sigma(\varepsilon) d\varepsilon + \int_{\varepsilon_{n+1}}^{\varepsilon_{n+2}} \sigma(\varepsilon) d\varepsilon \right) \] (3.19)

This definition of \(\eta_n \) is equivalent to Method 0 presented by Løvholt et al. (2020). Løvholt et al. (2020) also present more complex methods for calculation of \(\eta \) which i)
attempt to remove the contribution of ratcheting to damping, and ii) relate the energy loss factor to the phase angle between stress and strain in the frequency domain.

3.5.6 Application to multi-amplitude loading

For extension of the cyclic response definitions to multi-amplitude loading, cycles are divided into alternate loading and unloading half-cycles between alternate extreme and reversal points. The extreme points are defined as having greater mean stress across the signal than the reversal points. Extreme and reversal points (e_n, r_n) and extreme, reversal and average stresses ($\sigma_e, \sigma_r, \sigma_{AV}$) are defined for each loading half-cycle in Figure 3.17.

Strain per cycle can be defined at the half-cycle average stress on either loading (at point a_n, ε_{na}), or unloading (at point b_n, ε_{nb}) as indicated in Figure 3.17. For multi-amplitude loading, evolution of strain is generally presented in terms of strain per cycle (ε_{na} or ε_{nb}) rather than an accumulated strain per cycle ($\Delta \varepsilon_n$), as the equivalent monotonic strain component necessary to obtain $\Delta \varepsilon_n$ is poorly defined under multi-amplitude loading.

Stiffness may be calculated for each half-cycle following Abadie (2015) on loading (k_{nl}, Equation 3.20) and Leblanc et al. (2010a) on unloading (k_{nu}, Equation 3.21),
although these definitions conflate ratcheting with stiffness change.

\[
k_{nl} = \frac{\sigma(e_n) - \sigma(r_n)}{\varepsilon(e_n) - \varepsilon(r_n)}
\]

\[
k_{nu} = \frac{\sigma(e_n) - \sigma(r_{n+1})}{\varepsilon(e_n) - \varepsilon(r_{n+1})}
\]

The energy loss factor may also be calculated per half-cycle, using the definitions for \(E_E\) and \(E_H\) proposed by Taborda et al. \(2016\) (see Figure 3.15a,b); however, this approach is not entirely consistent with the approach presented in Section 3.5.5 which includes dissipation due to ratcheting.

3.6 Summary

This Chapter has laid the groundwork for exploration of the cyclic response of monopile foundations in the following Chapters. The sample preparation and test procedures used for testing at OU were described and the monotonic responses at \(1g\) in very loose and dense sand were presented. Normalisation approaches were discussed and consistent definitions for cyclic loading and the cyclic response were proposed; these definitions are adopted in the following Chapters.
Chapter 4

Regular cyclic loading response at 1g

4.1 Introduction

This Chapter presents the response of a model monopile to regular, unidirectional and multidirectional cyclic lateral loading in very loose and dense dry sand at 1g. All tests were conducted using the apparatus presented in Chapter 2 following the test procedures outlined in Chapter 3. The tests build in complexity: from unidirectional, symmetric tests with a few cycles to multidirectional tests with continuously varying loading direction and 1000 cycles. The tests provide fundamental insight into the response of a monopile to cyclic lateral loading and inform development of models within the HARM framework (Houlsby et al., 2017), as described in Chapter 7.

4.2 Test programme

Figure 4.1 illustrates the six test types which constitute the regular cyclic loading test programme. These six test types allow exploration of the hysteretic (few cycle) response and high cycle response, under unidirectional and multidirectional loading. The hysteretic responses reveal fundamental behaviour and adherence to Masing rules (Masing, 1926), while the high cycle responses show evolution of pile rotation (ratcheting), secant stiffness and energy dissipation with cycle number. Unidirectional, 1-way tests were conducted to 10000 cycles but many other tests were conducted to 1000 cycles given the diminishing returns associated with performing longer-term tests. The unidirectional tests complement previous test campaigns (e.g. Leblanc et al.,
Hysteretic response

Unidirectional, symmetric 2-way tests

Unidirectional, 1-way tests

Unidirectional, partial 1 & 2-way tests

Multidirectional, spiral tests

Multidirectional, perpendicular tests

Multidirectional, fan-type tests

Figure 4.1: Illustration and categorisation of regular cyclic loading test types

2010a; Abadie et al., 2015; Truong et al., 2019) and exhibit behaviour consistent with previous observations, while the multidirectional tests are more novel. Tests of each type are performed in both very loose and dense sand, and the results are presented side-by-side, although the test programmes are not identical. The very loose and dense test programmes are summarised in Tables 4.1 and 4.2 respectively.

The test names indicate sequentially: sand density, load type (2-way (TW), 1-way (OW), partial 2-way (PT), partial 1-way (PO), spiral (SP), T-shape (T), L-shape (L), high mean T-shape (TH), fan-type (F)), and load amplitude or direction. The cyclic loading was applied using sinusoidal waveforms, and post-cyclic reloading to 0.8MR was conducted as part of many tests to explore the impact of cyclic loading on the response under large loads. To ensure accurate load control, tests were conducted at a range of frequencies 0.025 ≤ f ≤ 0.2 Hz depending on the cyclic amplitude. As shown in Section 3.4.1 rate effects are not observed.
The cyclic amplitudes (and corresponding \(\zeta_b \) values) were selected considering a) experimental limitations, and b) representative cyclic loading. The minimum cyclic amplitude was set by the amplitude of transducer friction (\(n\bar{F} = 0.44 \) or 0.66 N, Section 2.4.4). Given the approximations made in adjusting for the transducer friction, it was not deemed sensible to run tests where the moment caused by transducer friction was greater than around 15\% of the cyclic amplitude. This restricted cyclic amplitudes to \(M_{CYC} > 3.5 \) N m or \(\zeta_b > 0.13 \) and \(\zeta_b > 0.04 \) for 1-way cyclic loading in very loose and dense sand, respectively.

Representative SLS cyclic load amplitudes may be estimated following the dimensionless framework of Leblanc et al. (2010a) (Table 3.4, Section 3.4.3), by equating \(\theta \) at laboratory- and prototype-scale. For a prototype-scale monopile with diameter \(D = 8 \) m and \(L/D = 4 \) in dense, saturated sand with \(\gamma' = 10 \) kN/m\(^3\), the ratio of prototype-scale rotation (\(\theta_P \)) to laboratory-scale rotation (\(\theta_L \)) \(f_\theta = \theta_P / \theta_L \approx 8.3 \). Prototype-scale rotation under SLS conditions of 0.25\° (DNV GL, 2016) therefore corresponds to approximately 0.03\° rotation at laboratory-scale in both very loose and dense sand. The associated moments under monotonic loading are 7.3 N m and 8.5 N m in very loose and dense sand respectively. This analysis suggests that cyclic loading with \(\zeta_b > 0.28 \) in very loose sand and \(\zeta_b > 0.085 \) in dense sand may not represent SLS conditions, as it would lead, upon initial monotonic loading, to \(\theta > 0.25\° \) at prototype-scale.

To best represent SLS conditions, tests were conducted at cyclic amplitudes which were as low as possible, while satisfying the restriction due to transducer friction. For the unidirectional, 1-way tests – where the effect of cyclic amplitude was explored – tests were conducted at \(\zeta_b = 0.2, 0.3, 0.4 \) in very loose sand and \(\zeta_b = 0.05, 0.1, 0.2, 0.3 \) in dense sand. Other test types were conducted at fewer, but often corresponding, cyclic amplitudes. While many of the tests were conducted at amplitudes which may be greater than those expected under SLS conditions, given the non-linear monotonic response (Figure 3.7, Section 3.4.1) there is no reason to expect a step-change in the behaviour at lower cyclic load amplitudes. Exploration of the response under realistic loading is considered in Chapter 5.
4. Regular cyclic loading response at 1g

Table 4.1: Regular cyclic test programme in very loose sand

<table>
<thead>
<tr>
<th>Test name</th>
<th>Loading direction</th>
<th>ζ_b</th>
<th>ζ_c</th>
<th>Cycle Number N</th>
<th>Reload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidirectional, symmetric 2-way tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.TW.Var</td>
<td>x</td>
<td>0.2, 0.4, 0.6</td>
<td>-1</td>
<td>3.5</td>
<td>No</td>
</tr>
<tr>
<td>L.TW.04</td>
<td>x</td>
<td>0.4</td>
<td>-1</td>
<td>2000</td>
<td>Yes</td>
</tr>
<tr>
<td>Unidirectional, 1-way tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.OV.02</td>
<td>x</td>
<td>0.2</td>
<td>0</td>
<td>10000</td>
<td>No</td>
</tr>
<tr>
<td>L.OV.03</td>
<td>x</td>
<td>0.3</td>
<td>0</td>
<td>10000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.OV.04</td>
<td>x</td>
<td>0.4</td>
<td>0</td>
<td>10000</td>
<td>Yes</td>
</tr>
<tr>
<td>Unidirectional, partial 1-way and 2-way tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.PT.260</td>
<td>x</td>
<td>0.2</td>
<td>-0.60</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.PT.460</td>
<td>x</td>
<td>0.4</td>
<td>-0.60</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.P0.633</td>
<td>x</td>
<td>0.6</td>
<td>0.33</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td>Multidirectional, spiral test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.SP.1</td>
<td>Spiral ($x - y$)</td>
<td><0.60</td>
<td>-</td>
<td>5</td>
<td>No</td>
</tr>
<tr>
<td>Multidirectional, perpendicular tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.T.02</td>
<td>x</td>
<td>0.2</td>
<td>1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>0.2</td>
<td>-1</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>L.L.04</td>
<td>x</td>
<td>0.2</td>
<td>1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>0.4</td>
<td>0</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>L.TH.04</td>
<td>x</td>
<td>0.4</td>
<td>1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>0.2</td>
<td>-1</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Multidirectional, fan-type tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.F.15</td>
<td>$\pm 15^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.F.30</td>
<td>$\pm 30^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.F.45</td>
<td>$\pm 45^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.F.60</td>
<td>$\pm 60^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.F.90</td>
<td>$\pm 90^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.F.120</td>
<td>$\pm 120^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>L.F.150</td>
<td>$\pm 150^\circ$ fan</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
</tbody>
</table>
4. Regular cyclic loading response at 1g

<table>
<thead>
<tr>
<th>Test name</th>
<th>Loading direction</th>
<th>ζ_b</th>
<th>ζ_c</th>
<th>Cycle Number N</th>
<th>Reload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidirectional, symmetric 2-way tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.TW.Var</td>
<td>x</td>
<td>0.08, 0.16, 0.24, 0.32, 0.40</td>
<td>-1</td>
<td>5.5</td>
<td>No</td>
</tr>
<tr>
<td>D.TW.008</td>
<td>x</td>
<td>0.08</td>
<td>-1</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.TW.016</td>
<td>x</td>
<td>0.16</td>
<td>-1</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.TW.032</td>
<td>x</td>
<td>0.32</td>
<td>-1</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.TW.04.W0</td>
<td>x</td>
<td>0.4</td>
<td>-1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td>D.TW.04.W2</td>
<td>x</td>
<td>0.4</td>
<td>-1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td>D.TW.04.W5</td>
<td>x</td>
<td>0.4</td>
<td>-1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td>Unidirectional, 1-way tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.OW.005</td>
<td>x</td>
<td>0.05</td>
<td>0</td>
<td>10000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.OW.01</td>
<td>x</td>
<td>0.1</td>
<td>0</td>
<td>10000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.OW.02</td>
<td>x</td>
<td>0.2</td>
<td>0</td>
<td>10000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.OW.03</td>
<td>x</td>
<td>0.3</td>
<td>0</td>
<td>10000</td>
<td>Yes</td>
</tr>
<tr>
<td>Unidirectional, partial 1-way and 2-way tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.PT.160</td>
<td>x</td>
<td>0.1</td>
<td>-0.60</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.PT.260</td>
<td>x</td>
<td>0.2</td>
<td>-0.60</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.PT.245</td>
<td>x</td>
<td>0.2</td>
<td>-0.45</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.PT.275</td>
<td>x</td>
<td>0.2</td>
<td>-0.75</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.PO.333</td>
<td>x</td>
<td>0.3</td>
<td>0.33</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td>Multidirectional spiral test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.SP.1</td>
<td>Spiral ($x - y$)</td>
<td><0.45</td>
<td>-</td>
<td>4</td>
<td>No</td>
</tr>
<tr>
<td>Multidirectional, perpendicular tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.T.01</td>
<td>x</td>
<td>0.1</td>
<td>1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>0.1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.L.02</td>
<td>x</td>
<td>0.1</td>
<td>1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>0.2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.TH.02</td>
<td>x</td>
<td>0.2</td>
<td>1</td>
<td>1000</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>0.1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidirectional, fan-type tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.F.30</td>
<td>$\pm 30^\circ$ fan</td>
<td>0.2</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>D.F.90</td>
<td>$\pm 90^\circ$ fan</td>
<td>0.2</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4.2: Regular cyclic test programme in dense sand
4. Regular cyclic loading response at 1g

Figure 4.2: Response to first four cycles of unidirectional 2-way cyclic loading (mean monotonic response shown in grey)

<table>
<thead>
<tr>
<th>Test</th>
<th>Mean η_n value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.TW.04</td>
<td>0.56</td>
</tr>
<tr>
<td>D.TW.008</td>
<td>0.36</td>
</tr>
<tr>
<td>D.TW.016</td>
<td>0.38</td>
</tr>
<tr>
<td>D.TW.032</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 4.3: Mean energy loss factors η_n for first four cycles

4.3 Unidirectional hysteretic response

Figure 4.2 presents the response of the model monopile to constant amplitude, 2-way (TW) cyclic loading. These symmetric tests minimise ratcheting and allow focus to be placed on the underlying hysteretic response. Only the first four loading cycles are presented in Figure 4.2; evolution of secant stiffness and energy dissipation under many cycles of 2-way loading is discussed in Section 4.4.

The shape of the hysteretic response is related to the foundation’s energy dissipation, which is quantified by the energy loss factor η_n (defined in Section 3.5.5). Table 4.3 summarises the mean η_n values for the data presented in Figure 4.2. The mean energy loss factor η_n increases with cyclic amplitude M_{CYC} (or ζ_b) and is greater for the test in very loose sand, which exhibits a more convex response and no gapping-type behaviour.

In Figure 4.2b, the inflexion in the response around zero load for the dense sand
tests, observed most clearly for test D.TW.032, is indicative of gapping-type behaviour: the tangent stiffness reduces as the pile traverses a gap or region of low-stress. Figure 4.3 highlights the increase in gapping-type behaviour with cyclic amplitude M_{CYC} (or ζ_b), by presenting the hysteretic response at $n = 4$ normalised by maximum moment and rotation values ($M_{\text{MAX}}, \theta_{\text{MAX}}$) for each test (note that θ_{MAX} occurs at $n = 1$). As no physical gap was observed during these tests, it cannot be determined whether either a very small gap or a region of low stress was the cause of the gapping-type response. Gapping-type behaviour is not generally expected in dry sand, however, electrostatic forces, ambient moisture or particle interlocking may provide enough effective cohesion to generate a gap or low-stress region under cyclic loading.

Gapping-type behaviour is not observed in the very loose sand responses, perhaps due to a reduced tendency for particle interlocking or reduced electrostatic forces given the different sample preparation method. In the tests at UWA, gapping-type behaviour is also observed under symmetric 2-way loading in dense sand at 1g and 9g (reported in Section 6.5.1). In field tests as part of the PISA project, gapping-type responses were recorded in both sand and clay, and gapping was also observed on site (Beuckelaers, 2017).
The hysteretic responses also allow exploration of adherence of the system to Masing rules (Masing, 1926). The Masing rules allow definition of the cyclic response given definition of an initial loading (backbone) curve $\varepsilon = f(\sigma)$, as shown in Figure 4.4, and describe behaviour which complies with kinematic hardening models (Pyke, 1979).

Masing (1926) proposed the following rules, which were initially concerned with modelling the behaviour of brass:

- The shape of the unloading or reloading curves is the same as that of the backbone curve, with the scale enlarged by a factor of 2.
- The initial tangent modulus on each loading reversal is the same as the initial tangent modulus on the backbone curve.

Pyke (1979) later extended the Masing rules for application to irregular cyclic loading:

- The unloading and reloading curves should follow the backbone curve if the previous maximum stress is exceeded.
- If the current loading or unloading curve intersects the curve described by a previous loading or unloading curve, the stress-strain response follows that of the previous curve.

The extended Masing rules have been found to capture the key behaviour of many materials and systems, including: soil behaviour in cyclic element tests (e.g. Puzrin and Shiran, 2000), the lateral response of laboratory-scale caissons in dense sand at 1g (Byrne, 2000; Villalobos, 2006), and the first few cycles of the lateral response of a laboratory-scale monopile in very loose sand at 1g (Abadie, 2015). The extended Masing rules also provided a basis for modelling the response of large-scale monopile tests in sand and clay, as part of the PISA project (Beuckelaers, 2017).

Figure 4.5 presents the response of the monopile to 2-way loading with ζ_b increasing on each successive cycle. These tests are similar to those conducted by Byrne (2000) and Abadie (2015), and explore adherence to the extended Masing rules. The upper plots show the experimental response and the lower plots show the response predicted by the extended Masing rules. In very loose sand, the response is
4. Regular cyclic loading response at 1g

Figure 4.5: Response to 2-way cyclic loading with increasing amplitude alongside prediction of the response following extended Masing rules (mean monotonic response shown in grey in upper plots)

(a) Very loose sand
(b) Dense sand

captured by the extended Masing rules with good accuracy. In dense sand, the response broadly adheres to the extended Masing rules but exhibits some hardening, and the aforementioned gapping-type behaviour, which are not captured by Masing rules. The greater number of cycles in dense sand may contribute to the increased hardening (or increase in secant stiffness) observed.

4.4 Unidirectional high cycle response

This Section explores the response of the monopile to at least 1000 regular, unidirectional loading cycles. The response is characterised by accumulation of pile rotation (ratcheting) and evolution of stiffness and energy dissipation.

4.4.1 Ratcheting

Although the monopile response approximately adheres to the extended Masing rules under symmetric 2-way loading, accumulation of rotation (ratcheting) occurs under biased loading. Figure 4.6 shows an example of the response to four cycles of 1-way
loading in dense sand. Rotation accumulates in the direction of the load bias, as evidenced by the non-closing hysteresis loops.

Figure 4.7 presents the accumulated rotation per cycle $\Delta \theta_n$ (defined in Section 3.5.3) for the 1-way (OW), partial 1-way (PO) and partial 2-way (PT) tests summarised in Tables 4.1 and 4.2 (the ratcheting response under 2-way loading is not of interest). The magnitude and rate of ratcheting increases with cyclic amplitude M_{CYC} (or ζ_b, given constant ζ_c), while ζ_c impacts the shape of evolution of ratcheting. Ratcheting continually slows with cycle number but does not stop accumulating, at least for the cycle numbers tested here. Similar behaviour is observed at both densities, although the response of test D.PT.275 is anomalous, with no data plotted at $n = 1$. For this test, the combination of a slower initial ratcheting rate due to the loading asymmetry and the development of a concave (gapping-type) hysteretic response between $n = 1$ and $n = 2$ (like seen in e.g. Figure 4.2b) led to a negative value of $\Delta \theta_n$ at $n = 1$.

To assess the impact of ζ_b and ζ_c on the ratcheting response, a power-law is fitted to the evolution of accumulated rotation $\Delta \theta_n$ with cycle number n:

$$\frac{\Delta \theta_n}{\theta_R} = An^\alpha$$ \hspace{1cm} (4.1)

The coefficient A controls the initial magnitude of $\Delta \theta_n$ while the exponent α controls the evolution of $\Delta \theta_n$ with n. Power-laws capture the reduction in ratcheting rate with
4. Regular cyclic loading response at 1g

Figure 4.7: Unidirectional ratcheting response with power-law fit (Equation 4.1) using common exponent $\alpha_c = 0.25$ shown dashed.

First, the empirical approach of Leblanc et al. (2010a) is followed. The dashed lines in Figure 4.7 show the result of fitting Equation 4.1 to the data in Figure 4.7 with a common (fitted) exponent α_c. With $\alpha_c = 0.25$, a very good fit is obtained to the 1-way and partial 1-way data, and a reasonable fit is obtained to the partial 2-way data for $n > 100$. The reported exponent α depends on the chosen strain variable. For example, with accumulated rotation at cycle extreme as the strain variable instead, $\alpha_c = 0.30$, aligned with the results of Leblanc et al. (2010a) and Abadie (2015), with total rotation
at cycle extreme as the strain variable, $\alpha_c = 0.17$.

Figure 4.8 presents the variation of T_b with ζ_b and D_R obtained from power-law fits to the 1-way data with common exponent α_c. T_b increases with D_R and varies with ζ_b as a power-law (shown dashed) with exponent $m_\sigma = 3.1$ for very loose sand and $m_\sigma = 2.3$ for dense sand. This behaviour is similar to that reported by Leblanc et al. (2010a) and Abadie (2015), although Abadie (2015) found T_b to vary with ζ_b as a power-law with exponent $m_\sigma = 4$.

Figure 4.9 plots the variation of T_c with ζ_c obtained from power-law fits with common exponent α_c. Figure 4.9 also presents data from other studies (Leblanc et al., 2010a; Nicolai and Ibsen, 2014; Albiker et al., 2017), where tests were conducted to a range of cycle numbers $1000 \leq N \leq 100000$. Despite some scatter, there is a clear trend across the datasets for greatest T_c values under partial 2-way loading at $\zeta_c \approx -0.6$, with T_c reducing as $\zeta_c \to -1$ and $\zeta_c \to 1$. The impact of ζ_c is significant, with $1.3 \leq T_c \leq 4$ at $\zeta_c \approx -0.6$, and with the highest T_c values occurring in looser sand samples. Like for α, the choice of strain variable impacts the T_c values, and the choice of accumulated or total strain is particularly significant (Albiker et al., 2017). All studies presented in Figure 4.9 use an accumulated rotation value ($\Delta \theta$) as the strain variable, and are therefore approximately comparable.

Alternatively, the effect of ζ_c on the ratcheting response can be explored by letting α vary with ζ_c and D_R, following the approach of Truong et al. (2019). Equation 4.1 is fitted independently to each test shown in Figure 4.7, which leads to better fits, particularly for the partial 2-way and 2-way tests. The α values obtained are plotted in Figure 4.10 against ζ_c, and with distinction between sand densities. There is a trend for decreasing α with increasing ζ_c for $-0.75 \leq \zeta_c \leq 0$, but for $0 \leq \zeta_c \leq 0.33$ there is no clear variation in α. The impact of sand density is not strong, although there is a weak tendency for greater α values in the looser sample. The impact of density is therefore less pronounced than that observed by Truong et al. (2019), although the impact of ζ_c is broadly consistent with Truong et al. (2019).

Both empirical approaches demonstrate the importance of load asymmetry (ζ_c) in controlling ratcheting: the approach of Leblanc et al. (2010a) allows the impact of ζ_c
on the initial magnitude of ratcheting to be assessed (Figure 4.9), while the separate approach of Truong et al. (2019) assesses the impact of ζ_c on ratcheting evolution (Figure 4.10). The empirical approach of Leblanc et al. (2010a) also provides insight into the impact of ζ_b, and indicates that the initial magnitude of ratcheting increases as a power-law (exponent $2.3 - 3.1$) with ζ_b (Figure 4.8).

Qualitatively, the impact of ζ_c on ratcheting may be understood as a competition between (a) an increasing cyclic amplitude M_{CYC} with increasingly negative ζ_c, which increases pile movement and therefore the potential for soil particle rearrangement and (b) a decreasing mean load M_{AV} with increasingly negative ζ_c. Greater particle rearrangement is likely to lead to greater ratcheting, which is understood to occur through a combination of densification and convective mechanisms (Cuéllar et al., 2012; Nicolai, 2017, Section 1.3.2), while a reduction in mean load will reduce ratcheting behaviour as the mechanism becomes more symmetric. There is no such competition when considering the impact of ζ_b on ratcheting, as both the cyclic amplitude M_{CYC} and mean load M_{AV} increase with increasing ζ_b. This interpretation supports the
use of parameters M_{CYC} and M_{AV} to describe cyclic loading, as is commonplace in element testing (e.g. Andersen, 2015).

4.4.2 Secant stiffness

During cyclic loading in dry sand, an increase in secant stiffness k_n (defined in Section 3.5.4) tends to be observed. Figure 4.11 highlights how k_n changes between cycle $n = 1$ and $n = 10$ for example 1-way cyclic loading in dense sand. Figure 4.12 presents the evolution of secant stiffness k_n with cycle number n under 2-way (TW), 1-way (OW), partial 1-way (PO) and partial 2-way (PT) loading. An increase in k_n is observed during all tests, with a mean ratio of secant stiffness at $n = 1000$ ($k_{n=1000}$) to initial stiffness $k_{n=1}$ ($k_{n=1000}/k_{n=1}$) of approximately 3. However, the shape of evolution varies significantly with the loading asymmetry (ζ_c). The stiffness response of test D.OW.005 appears to be anomalous, with stiffness plateauing for $100 \leq n \leq 1000$ and increasing again for $n \geq 1000$.

Leblanc et al. (2010a) and Klinkvort and Hededal (2013) both proposed logarithmic relationships to capture the evolution of secant stiffness k_n with cycle number n under cyclic loading in dry sand. The expressions used by Leblanc et al. (2010a) and Klinkvort and Hededal (2013) differ slightly, but have the same general form, which is expressed here as:

$$\frac{k_n}{k_{MAX}} = \frac{k_{n=1}}{k_{MAX}} + B_L \ln(n)$$ \hspace{1cm} (4.2)
4. Regular cyclic loading response at 1g

Figure 4.11: Example response to 1-way loading in dense sand highlighting secant stiffness at cycles $n = 1$ and $n = 10$ (test D.O.W.03)

(a) Very loose sand
(b) Dense sand

Figure 4.12: Secant stiffness evolution under unidirectional cyclic loading with individual logarithmic fits (Equation 4.2) shown dashed and range of fits to 1-way and partial 1-way data with common coefficient B_{Lc} indicated by blue shaded region
Coefficient B_L controls the rate of change of k_n. Leblanc et al. (2010a) found B_L to be independent of D_R and loading type (ζ_b, ζ_c) within the tested range, while Klinkvort and Hededal (2013) let B_L vary with ζ_b and ζ_c. Both authors let the initial stiffness $k_{n=1}$ vary with the loading characteristics with an expression of the form $k_{n=1}/k_{MAX} = K_b(\zeta_b)K_c(\zeta_c)$, with $K_c = 1$ at $\zeta_c = 0$.

Figures 4.13 and 4.14 plot the variation of K_b and K_c with ζ_b and ζ_c respectively, obtained from the initial stiffness values $k_{n=1}$. Despite some scatter, there is a clear trend for increasing K_b with reducing ζ_b and increasing K_c with increasing ζ_c. The variation of $k_{n=1}$, and therefore K_b and K_c, can also be approximated analytically by application of the extended Masing rules (Section 4.3). Given a function for the backbone curve $\varepsilon = f(\sigma)$, $k_{n=1}$ may be approximated as:

$$k_{n=1} = K_b(\zeta_b)K_c(\zeta_c)k_{MAX} \approx \frac{M_R\zeta_b(1 - \zeta_c)}{2f\left(\frac{M_R}{2}\zeta_b(1 - \zeta_c)\right)}$$ \hspace{1cm} (4.3)

This analytical approximation is presented in terms of K_b and K_c in Figures 4.13 and 4.14 for very loose sand, where the backbone curve is approximated with a Ramburg-Osgood (Ramberg and Osgood, 1943) or power-law expression with exponent 3.4 (see Section 7.4.3). The approximate analytical expression does not account for the stiffness reduction due to ratcheting in the first cycle, but nevertheless captures the variation of K_b and K_c for very loose sand with good accuracy.

Leblanc et al. (2010a) and Abadie (2015) both used a constant coefficient B_L to approximate the evolution of stiffness under various cyclic loading conditions. A constant coefficient ($B_{Lc} = 0.037$) is able to approximately fit the evolution of k_n for the 1-way and partial 1-way tests presented here, as indicated by the blue shaded areas in Figure 4.12, but cannot adequately capture the response to partial 2-way and particularly 2-way cyclic loading. Following the approach of Klinkvort and Hededal (2013) Equation 4.2 is fitted to each test independently to obtain the fits shown dashed in Figure 4.12. However, even with independent fitting, the logarithmic expression is unable to adequately capture the shape of evolution of k_n under partial 2-way and 2-way loading. A power-law of the form:

$$\frac{k_n}{k_{MAX}} = Bn^\beta$$ \hspace{1cm} (4.4)
4. Regular cyclic loading response at 1g

Figure 4.13: Variation of K_b with ζ_b for 1-way data following empirical approach of Klinkvort and Hededal (2013) and Leblanc et al. (2010a)

Figure 4.14: Variation of K_c with ζ_c following empirical approach of Klinkvort and Hededal (2013) and Leblanc et al. (2010a)

is able to capture a faster rate of change of stiffness at higher cycles and provides a better fit to the 2-way and partial 2-way data, at least for $n > 10$, as shown in Figure 4.15.

Secant stiffness change is understood to be caused by local densification (discussed in Section 1.3.2), which relies on particle rearrangement. It is conceivable that 2-way and partial 2-way loading (which passes through zero load, $\zeta_c < 0$) leads to greater particle rearrangement, and therefore a greater rate of stiffening, than 1-way and partial 1-way loading ($\zeta_c \geq 0$). Greater particle movement is certainly likely to accompany the gapping-type behaviour which was observed under larger amplitude 2-way loading in dense sand (Section 4.3).

4.4.3 Energy dissipation

Figure 4.16 highlights how the hysteretic response of the monopile changes under 1-way cyclic loading in dense sand, with the loop area (representing the hysteretic energy loss E_H, defined in Section 3.5.5) shaded at cycle $n = 1$ and $n = 10$. Figure 4.17 presents the evolution of hysteretic energy loss E_H with cycle number n under 1-way (OW), partial 1-way (PO), 2-way (TW) and partial 2-way (PT) cyclic loading. Hysteretic energy loss E_H generally reduces with cycle number n in-line with the increase in secant stiffness k_n with n; indeed, Abadie (2015) showed that E_H can be approximated.
Figure 4.15: Secant stiffness evolution under partial 2-way and 2-way loading with individual power-law fits (Equation 4.4) shown dashed

Figure 4.16: Example response to 1-way loading in dense sand highlighting energy dissipation with shaded areas equal to hysteretic energy loss E_H at cycles $n = 1$ and $n = 10$ (test D.OW.03)

as a linear function of $1/k_n$. E_H will also decrease with reducing ratcheting rate, which is, in general, aligned with increasing secant stiffness.

The evolution of hysteretic energy loss E_H with n at high cycle numbers is greater under 2-way and partial 2-way loading than under 1-way and partial 1-way loading, consistent with secant stiffness observations. However, for many of the 1-way tests E_H plateaus at high cycle number, which is not consistent with the observed increase in secant stiffness and decrease in ratcheting rate with cycle number. This behaviour is understood to be caused by the contribution from transducer friction, which is
4. Regular cyclic loading response at 1g

Reduced but not eradicated by the control system (Section 2.4.4). Figure 4.18 presents an example hysteresis loop for test D.OW.01 at $n = 1000$, to highlight the square response at load reversals — and systematic increase in recorded hysteretic energy loss E_H — caused by the transducer friction.

Energy dissipation is quantified by the energy loss factor per cycle η_n (defined in Section 3.5.5), which is proportional to the hysteretic energy loss per cycle E_H normalised by the elastic energy per cycle E_E, which varies with secant stiffness k_n. Figure 4.19 presents the evolution of energy loss factor η_n with cycle number n. Under 2-way and partial 2-way loading, and for 1-way and partial 1-way loading for $n \leq 100$, η_n tends to reduce with cycle number as E_H does. However, where E_H plateaus due to transducer friction contributions, η_n increases: as the secant stiffness k_n increases and therefore E_E decreases. In general, Figure 4.19 shows the significant impact cyclic loading can have on energy dissipation. For example, during tests L.OW.04 and
4. Regular cyclic loading response at 1g

Figure 4.18: Hysteresis loop for test D.OW.01 at $n = 1000$ to highlight the impact of transducer friction on the hysteresis loop shape (squared response at load reversals)

Figure 4.19: Evolution of energy loss factor η_n with cycle number n under unidirectional cyclic loading

(a) Very loose sand

(b) Dense sand
D.O.W.03 η_n reduces by a factor of 3 over 1000 cycles.

Abadie (2015) explored the evolution of energy loss factor (referred to as “damping”, but proportional to η_n here for 1-way loading) with cycle number n and fitted a power-law with constant exponent to its evolution under 1-way and partial 1-way loading. A power-law would also approximately capture the evolution of η_n reported here under 2-way and partial 2-way loading, but it would not be appropriate to fit a power-law to the 1-way data distorted by contributions from transducer friction. Empirical expressions for the evolution of η_n with n are not considered further here, in part due to the distortion of the 1-way data by transducer friction, and in part because η_n is considered to be a secondary parameter that is largely dependent on secant stiffness and ratcheting magnitude, the evolution of which have been explored in previous Sections.

4.4.4 Uplift

Significant vertical uplift was observed during test D.TW.04.W0, which was conducted in dense sand with large amplitude ($\zeta_b = 0.4$) 2-way loading. Similar uplift behaviour was observed by Niemann et al. (2018), however, minimal vertical pile movement ($|z| < 1$ mm) was observed for the other tests presented here, in very loose sand or at smaller cyclic amplitudes. Observation of uplift prompted the performance of tests D.TW.04.W2 and D.TW.04.W5 with the same loading, but with additional 1.7 kg and 4.8 kg vertical mass applied, respectively. Figure 4.20a shows the vertical displacement of the monopile during these three tests. More than 25 mm vertical uplift is observed at $n = 1000$ without additional vertical load applied, but as expected, increasing the vertical load suppresses the uplift, and with 4.8 kg additional mass 1.6 mm downward settlement is observed. Figure 4.20b shows the impact of uplift on the secant stiffness k_n. For $n \leq 100$, k_n is comparable across the three tests but k_n reduces rapidly for test D.TW.04.W0 as the cycles progress and the pile moves upwards — reducing pile embedment and increasing the loading eccentricity. Two potential mechanisms which may have driven the uplift behaviour are discussed below and shown schematically in Figure 4.21.

Climbing mechanism As the pile rotates, the horizontal stresses on the pile’s passive side will be greater than on the active side. This could cause the pile’s rotation
point to move laterally away from the pile centreline, allowing an upwards climbing motion to develop during cycling. A similar mechanism was suggested by Villalobos (2006) for uplift observed in tests on laboratory-scale caissons. Unfortunately, noise levels in the measured pile pose were too large to determine and track the pile’s instantaneous rotation point with confidence.

Sand migration Migration of sand particles beneath the pile tip could also force the pile upwards. A low-stress region is likely to be generated beneath the pile base on the active side as the pile rotates. Particles may migrate to this low-stress region, incrementally increasing the soil volume beneath the pile and forcing it upwards. Cuéllar et al. (2012) and Nicolai et al. (2017a) both observe sand particles moving downwards at the pile face, but neither focus on particle migration at the pile base.

The vertical load applied during test D.TW.04.W0 (and all other tests at OU except D.TW.04.W2 and D.TW.04.W5) was equal to the weight of the pile and pile cap: 49.2 N (5.02 kg). However, the weight of these components was largely incidental to other design considerations. It is therefore worth considering what vertical load may be representative for a monopile in the field. Assuming a prototype-scale RNA weight of 4.7 MN (Wind Turbine Models, 2015), a tower weight of 5.6 MN (6 m mean diameter, 40
Section 4.5 Multidirectional hysteretic response

Figure 4.22 presents the load path and monopile response under multidirectional spiral loading centred on zero load (L.SP1, D.SP1). Under spiral loading, the load magnitude
\[|M| = \sqrt{M_x^2 + M_y^2} \]

increases at a constant rate while the resultant loading direction moves around 360° per cycle. In very loose sand 5 cycles were applied up to \(\zeta_b = 0.60 \), while in dense sand 4 cycles were applied up to \(\zeta_b = 0.45 \). These tests are not intended to represent loading experienced by a monopile, but instead present a challenge for multidirectional numerical modelling.

Qualitatively, the response is very similar at both sand densities, with the rotation responses also tracing spiral shapes, as expected. The response in the dense sample is slightly elongated in the \(x \)-direction, indicating the presence of some sample inhomogeneity. The moment-rotation responses in the \(x \)- and \(y \)-directions resemble those under unidirectional 2-way loading with increasing load amplitude, which broadly adhere to the extended Masing rules (Figure 4.5). However, the interaction between load components here generates a smooth response at the load reversals in both the \(x \)- and \(y \)-directions.

4.6 Multidirectional high cycle response

This Section explores the response of the monopile to regular, multidirectional loading cycles. Novel perpendicular loading tests provide fundamental insight into the monopile response, while fan-type tests allow systematic investigation of the impact of the spread of cyclic loading direction. The tests were chosen to elucidate multidirectional behaviour rather than represent realistic loading, although the fan-type loading may represent a simplified storm with varying direction and the perpendicular tests may represent misaligned (approximately constant) wind and (cyclic) wave loading.

4.6.1 Perpendicular cyclic loading

Figure 4.23 describes the \textit{T-shape} and \textit{L-shape} perpendicular loading applied, relative to corresponding unidirectional loading. T-shape tests have mean load perpendicular to the cyclic loading direction, while L-shape tests have equal mean load applied both perpendicular to and aligned with the cyclic loading direction. Load is first increased in the \(x \)-direction before cyclic loading is applied in the \(y \)-direction.
4. Regular cyclic loading response at 1g

Figure 4.22: Multidirectional spiral loading and response (backbone curve shown in grey)

(a) Very loose sand

(b) Dense sand
4. Regular cyclic loading response at 1g

![Figure 4.23: Description of perpendicular cyclic loading](image)

<table>
<thead>
<tr>
<th>Sand density</th>
<th>Description</th>
<th>M_{AV}/M_R</th>
<th>M_{CYC}/M_R</th>
<th>Unidirectional test</th>
<th>T-shape test</th>
<th>L-shape test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very loose</td>
<td>Standard mean (SM)</td>
<td>0.2</td>
<td>0.4</td>
<td>L.OW.04</td>
<td>L.T.02</td>
<td>L.L.04</td>
</tr>
<tr>
<td>Very loose</td>
<td>High mean (HM)</td>
<td>0.4</td>
<td>0.4</td>
<td>L.PO.0.633</td>
<td>L.TH.04</td>
<td>-</td>
</tr>
<tr>
<td>Dense</td>
<td>Standard mean (SM)</td>
<td>0.1</td>
<td>0.2</td>
<td>D.OV.02</td>
<td>D.T.01</td>
<td>D.L.02</td>
</tr>
<tr>
<td>Dense</td>
<td>High mean (HM)</td>
<td>0.2</td>
<td>0.2</td>
<td>D.PO.0.333</td>
<td>D.TH.02</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4.4: Summary of unidirectional and perpendicular tests designed for comparison

Exploration of the impact of ζ_b and ζ_c on the unidirectional ratcheting response and consideration of the mechanisms driving ratcheting in Section 4.4.1 suggest that the cyclic amplitude M_{CYC} and mean amplitude M_{AV} play an important role in controlling the cyclic response. To explore this further, tests at the same M_{CYC} and M_{AV} are compared here. The impact of mean load M_{AV} is also explored with unidirectional and T-shape tests conducted at two different M_{AV} values at each density: high mean (HM) and standard mean (SM). Table 4.4 summarises the sets of relevant tests. The responses to unidirectional loading (L.OW.04, L.PO.0.633, D.OV.02, D.PO.0.333) are presented throughout this Section for comparison, but were previously presented in Section 4.4.

Figure 4.24 presents the continuous rotation responses for the unidirectional and perpendicular tests summarised in Table 4.4. The pile rotates broadly in the direction of M_{AV} regardless of the cyclic loading direction: the unidirectional tests move in the
4. Regular cyclic loading response at 1g

Figure 4.24: Total rotation response under unidirectional and perpendicular cyclic loading (note different scales; response to first 1000 cycles shown)

In the y-direction, the T-shape tests move in the x-direction and the L-shape tests move at approximately 45° to the axes. The impact of load bias is also clear in Figure 4.24, with the HM tests accumulating significantly more rotation than the SM tests.

Ratcheting

Figure 4.25 presents the ratcheting response of the monopile in the x-direction for the T-shape tests and in both the x- and y-directions for the L-shape tests. The corresponding unidirectional responses are also plotted. The ratcheting magnitude and evolution for the L-shape and T-shape tests is similar to that for the corresponding unidirectional tests, suggesting that — to a first approximation — ratcheting is independent of the cyclic loading direction for a given M_{CYC} and M_{AV}. More subtle variation in the ratcheting response is explored in Figures 4.26 and 4.27.

Following the approach of Truong et al. (2019), power-laws (Equation 4.1) are fitted to the evolution of $\Delta \theta_n$ for each individual test, as shown dashed in Figure 4.25. The power-law expression captures the ratcheting response accurately under L-shape loading in both directions and for T-shape loading for $n > 10$. The shape of ratcheting evolution under T-shape loading is similar to that under partial 2-way loading (Figure 4.7); these loadings both pass through zero load ($\zeta_c < 0$).
The variation of power-law exponent α with load type is presented in Figure 4.26 with α normalised by the power-law exponent for the corresponding unidirectional test α_{UD}. The exponents obtained in very loose sand ($1.04 \leq \alpha / \alpha_{UD} \leq 1.47$) are a little higher than those in dense sand ($0.90 \leq \alpha / \alpha_{UD} \leq 1.24$). It is also significant that the exponents under L-shape loading in the x-direction are smaller than the exponents in the y-direction. Figure 4.27 provides complementary information on the impact of load type on ratcheting, with accumulated rotation $\Delta \theta_n$ normalised by accumulated rotation for the corresponding unidirectional test $\Delta \theta_{n,UD}$. The smaller accumulated rotation observed in the x-direction (perpendicular to cycling) under L-shape loading, coupled with the observation of smaller α values in this direction, is indicative of non-linear dependency of ratcheting on load magnitude (although the mean loads are the same in the x- and y-directions, the peak load in the y-direction is twice that in the x-direction). This observation is in-line with the observed power-law variation of ratcheting magnitude coefficient T_b with cyclic amplitude for unidirectional, 1-way loading ζ_b (Figure 4.8).

Figure 4.24 highlighted the significant impact of M_{AV} on the rotation response. To further assess the impact of M_{AV}, a ratio of accumulated rotation for the HM tests $\Delta \theta_{n,HM}$ to that for the SM tests $\Delta \theta_{n,SM}$ is plotted in Figure 4.28. Given that $M_{AV,HM} = \ldots$
4. Regular cyclic loading response at 1g

Figure 4.26: Variation of power-law exponent α with perpendicular load type

Figure 4.27: Accumulated rotation under perpendicular cyclic loading normalised by accumulated rotation for corresponding unidirectional tests

$2M_{AV,SM}$, values of $\Delta \theta_{n, HM}/2\Delta \theta_{n, SM}$ may be expected to equal unity if ratcheting is proportional to M_{AV}. Figure 4.28 shows how ratcheting may be proportional to M_{AV} in very loose sand at high cycle numbers, but in dense sand the impact of M_{AV} is less significant. The variation with density might be explained by the difference in linearity of the backbone curves: the ratio of rotation generated under monotonic loading up to M_{AV} under HM loading to that under SM loading ($\theta_{AV, HM}/\theta_{AV, SM}$) is around 6 in very loose sand but only around 3 in dense sand. As previously discussed, greater rotations lead to a greater likelihood of particle rearrangement and therefore
ratcheting. To provide further insight, these tests could be repeated with a constant ratio of \(\theta_{AV,HM}/\theta_{AV,SM} \). It should be noted that the comparisons of unidirectional tests L.OW.04 & L.PO.633 and D.OW.02 & D.PO.333 are included in Figure 4.28 given the focus on the impact of \(M_{AV} \) and \(M_{CYC} \) in this Section.

Secant stiffness

The evolution of secant stiffness \(k_n/k_{MAX} \) with cycle number \(n \) under perpendicular loading is plotted in Figure 4.29 (stiffness is only relevant in the cycling direction, \(y \)). Stiffness evolves approximately logarithmically (following Equation 4.2) under T-shape and L-shape loading, as shown by the dashed logarithmic fits in Figure 4.29. The addition of mean load \(M_{AV} \) perpendicular to the cyclic loading direction appears to have little impact on the stiffness: the L-shape secant stiffness follows the corresponding unidirectional stiffness closely at both densities, while the stiffness for the HM T-shape tests is similar to that for the SM tests. It is interesting that the stiffness under T-shape loading evolves logarithmically, as a power-law better captured the evolution of \(k_n \) under 2-way unidirectional loading, which is equivalent to T-shape loading in the \(y \)-direction.
Energy dissipation

The evolution of energy loss factor η_n with cycle number n is shown for the perpendicular tests in Figure 4.30 (η_n is only relevant in the cycling direction, y). The values of η_n for $n > 20$ are remarkably similar for the L-shape and T-shape tests at both mean load M_{AV} amplitudes, consistent with the similarity of secant stiffness k_n values. For $n > 20$, η_n for the perpendicular tests is greater than for the equivalent unidirectional tests, despite similar values for ratcheting and secant stiffness. For example, $\eta_{n=1000}$ for the perpendicular tests is at least 1.6 times larger than $\eta_{n=1000}$ for the corresponding unidirectional tests. Figure 4.31 shows the hysteretic response at $n = 1000$ for an example unidirectional test and an equivalent L-shape test; the loop area, equivalent to hysteretic energy loss E_H, is evidently larger for the L-shape test. The increase in E_H and therefore η_n under perpendicular cyclic loading may be explained by the additional soil volume disturbed, which would increase dissipation.

Overview

The broad similarity in the cyclic response under unidirectional, T-shape and L-shape loading at a given M_{CYC} and M_{AV} demonstrates the insensitivity of the response to the direction of cyclic loading (relative to mean load direction), whilst also highlighting the
importance of M_{CYC} and M_{AV} in controlling the cyclic response. Although characterisation of cyclic loading in terms of ζ_b and ζ_c is useful, using these parameters alone does not reveal the full picture. For example, using ζ_b and ζ_c does not reveal the similarities in loading between a T-shape test ($\zeta_{c,y} = -1$) and a corresponding unidirectional test ($\zeta_c = 0$). Comparison of SM and HM tests reveals that M_{AV} affects the magnitude of ratcheting, but does not significantly affect stiffness or energy dissipation.
4. Regular cyclic loading response at 1g

4.6.2 Fan-type cyclic loading

Figure 4.32 describes the fan-type loading applied in $M_x - M_y$ space, which allows exploration of the impact of the spread of cyclic loading direction. The loading traces the sector of a circle with radius $\zeta_b M_R$ and half internal spread angle Φ. 1-way cyclic loading is applied within this sector at a frequency f, while the loading direction changes sinusoidally at a frequency $f/100$, so that 1000 cycles corresponds to 10 complete sweeps of the sector. Loading starts and finishes in the x-direction. Equations 4.5 and 4.6 define $M_x(t)$ and $M_y(t)$ for a maximum load $\zeta_b M_R$ and cyclic loading frequency f. This loading closely follows the multidirectional loading applied by Dührkop and Grabe (2008), Rudolph et al. (2014b), and in other related work.

\[
M_x(t) = \frac{\zeta_b M_R}{2} (1 + \sin(2\pi ft)) \cos \left(\Phi \sin \left(\frac{2\pi ft}{100} \right) \right)
\]
\[
M_y(t) = \frac{\zeta_b M_R}{2} (1 + \sin(2\pi ft)) \sin \left(\Phi \sin \left(\frac{2\pi ft}{100} \right) \right)
\]

Seven fan-type tests were performed in very loose sand with $15^\circ \leq \Phi \leq 150^\circ$, while two tests were performed in dense sand with $\Phi = 30^\circ$ and $\Phi = 90^\circ$ (as summarised in Tables 4.1 and 4.2). In practice, loading directionality is site-specific and depends on the time-scale considered. For a single storm with a following sea state, a spreading angle of around 25° may be typical. However, loading direction will vary more significantly over the structure’s lifetime, as shown for an example site offshore the Netherlands in Figure 1.8 (Chapter 1).

All loose tests were conducted at $\zeta_b = 0.4$ and all dense tests at $\zeta_b = 0.2$; the fan-type tests are therefore comparable to unidirectional tests LOW.04 and D.OW.02 respectively. Figure 4.33 shows the rotation response for an example fan-type test in very loose sand with $\Phi = 60^\circ$. Rotation accumulates in the x-direction, but significant transient rotation also occurs in the y-direction as the loading direction changes over each sweep of the sector.
4. Regular cyclic loading response at 1g

Figure 4.32: Description of fan-type loading

Figure 4.33: Example rotation response under fan-type loading (test L.F60)

Figure 4.34: Ratcheting response under fan-type cyclic loading with individual power-law fits (Equation 4.1) shown dashed

(a) Very loose sand

(b) Dense sand
4. Regular cyclic loading response at 1g

Ratcheting

Figure 4.34 presents the accumulated rotation $\Delta|\theta|_n$ response under fan-type loading alongside the response to corresponding unidirectional loading. The modulus notation indicates that the data presented has been obtained from the absolute moment-rotation response ($|M| = \sqrt{M_x^2 + M_y^2}$, $|\theta| = \sqrt{\theta_x^2 + \theta_y^2}$), which is appropriate given that the absolute load $|M|$ has constant amplitude throughout the tests. The secant stiffness $|k|_n$ and the energy loss factor $|\eta|_n$ are also determined from the absolute response.

As the loading direction changes, the rate of evolution of ratcheting varies — seen as ripples in Figure 4.34. The magnitude of these ripples increases with increasing spread angle Φ, and for $\Phi \geq 90^\circ$ significant negative ratcheting is observed transiently where the load in the x-direction goes negative ($\sigma_{AV,x} < 0$). The spread angle also impacts the overall ratcheting evolution, and is assessed by fitting power-law expressions (Equation 4.1) to each fan-type test, as shown dashed in Figure 4.34. The coefficients A are set equal to the values for the corresponding unidirectional tests as the initial loading cycle is unidirectional. The variation of exponent α is plotted in Figure 4.35 normalised by the corresponding unidirectional exponent α_{UD}. For $0^\circ \leq \Phi \leq 90^\circ$, α increases with spread angle Φ and in very loose sand at $\Phi = 90^\circ$, $\alpha/\alpha_{UD} = 1.46$. However, α decreases at larger Φ values (observed in very loose sand only).
4. Regular cyclic loading response at 1g

<table>
<thead>
<tr>
<th>Study</th>
<th>Test conditions</th>
<th>Cycle No. N</th>
<th>Strain metric ε</th>
<th>Worst angle Φ^*</th>
<th>Multidirectional factor $\varepsilon_{N,F}/\varepsilon_{N,UD}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dührkop and Grabe (2008)</td>
<td>$1g$, medium-dense sand</td>
<td>50000</td>
<td>Pile head displacement</td>
<td>45°</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>$1g$, dense sand</td>
<td>50000</td>
<td></td>
<td>45°</td>
<td>2 – 3</td>
</tr>
<tr>
<td>Rudolph et al. (2014a)</td>
<td>$1g$, medium-dense sand</td>
<td>10000</td>
<td>Displacement at lowest LVDT</td>
<td>90°</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>$1g$, dense sand</td>
<td>10000</td>
<td></td>
<td>120°</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>$200g$, medium-dense sand</td>
<td>3000</td>
<td>Accumulated pile rotation</td>
<td>90°</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>$200g$, dense sand</td>
<td>3000</td>
<td></td>
<td>90°</td>
<td>1.5</td>
</tr>
<tr>
<td>This study</td>
<td>$1g$, very loose sand</td>
<td>1000</td>
<td>Accumulated pile rotation</td>
<td>90°</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>$1g$, dense sand</td>
<td>1000</td>
<td></td>
<td>90°</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 4.5: Comparison of worst-case spread angles and multidirectional factors for ratcheting response under fan-type loading (this study and similar studies)

The impact of spread angle Φ on ratcheting can also be assessed with the ratio of strain at cycle N under fan-type loading $\varepsilon_{N,F}$ to that under corresponding unidirectional loading $\varepsilon_{N,UD}$. This multidirectional factor is summarised for this study and similar studies by Dührkop and Grabe (2008) and Rudolph et al. (2014a) in Table 4.5. Whilst an increase in strain under fan-type loading relative to unidirectional loading is observed in all cases, there is significant variation in both the spread angle which causes the greatest ratcheting (Φ^*) and the multidirectional factor ($\varepsilon_{N,F}/\varepsilon_{N,UD}$). Ratcheting behaviour is likely to vary with the specific load regime (e.g. rate of change of load direction), as reported by Rudolph et al. (2014b). Application of a blanket multidirectional factor on ratcheting is therefore not recommended, but these results together highlight the need to account for changing cyclic loading direction to ensure that ratcheting is not underestimated.

In a similar way to the impact of ζ_c on ratcheting under unidirectional cyclic loading, the impact of spread angle Φ on ratcheting may be understood as a competition between (a) increasing pile and therefore soil movement with increasing Φ, and (b) decreasing mean load in the dominant loading direction with increasing Φ.
Secant stiffness

The evolution of secant stiffness of the absolute response $|k|_n$ is plotted in Figure 4.36 for the fan-type and corresponding unidirectional cyclic tests. Secant stiffness varies with the loading direction, causing ripples similar to those observed in the ratcheting response. These ripples become very large for $\Phi \geq 90^\circ$, as $|k|_n$ passes through theoretically infinite stiffness and becomes negative when the direction of ratcheting accumulation reverses. The responses for $\Phi \geq 90^\circ$ therefore cannot be presented on the axes used in Figure 4.36.

Logarithmic fits (Equation 4.2) approximately capture the overall evolution of secant stiffness for $\Phi < 90^\circ$, as shown in Figure 4.36. The impact of spread angle Φ is assessed by plotting the variation of coefficient B_L (which controls the rate of change of stiffness, see Equation 4.2), normalised by the unidirectional coefficient $B_{L,UD}$, against Φ in Figure 4.37. There is a clear trend for increasing B_L, and therefore rate of stiffening, with spread angle Φ. This trend may be expected: as Φ increases, the volume of soil likely to densify under cyclic loading also increases.

Energy dissipation

The energy dissipation under fan-type loading is presented in Figure 4.38 with the energy loss factor of the absolute response $|\eta|_n$ plotted against cycle number n. Data
4. Regular cyclic loading response at 1g

Figure 4.37: Variation of B_L with spread angle Φ under fan-type loading

Figure 4.38: Evolution of energy loss factor under fan-type cyclic loading

for $\Phi \geq 90^\circ$ is not presented, given that $|\eta|_n \to 0$ for these tests when the direction of ratcheting accumulation reverses. Again, ripples in the $|\eta|_n$ response are observed as the loading direction changes. The overall energy dissipation follows a similar trend to that for the corresponding unidirectional tests, although $|\eta|_n$ is consistently larger at given cycle number n for tests with larger spread angles. This trend is explained by the increase in soil volume disturbed as spread angle Φ increases, which is likely to increase dissipation. A similar observation on energy dissipation was made for perpendicular loading.
4.7 Post-cyclic reloading response

Post-cyclic reloading was performed as part of many of the cyclic tests, as identified in Tables 4.1 and 4.2. The post-cyclic response is analogous to the response which might be expected during the ULS event, and can also inform interpretation of irregular multi-amplitude loading. Figure 4.39 presents the reloading responses with the cyclic responses omitted for clarity. In many cases the reloading responses exceed the mean monotonic response (backbone curve), indicating an increase in capacity. In other cases the reloading responses approach the backbone curve. The greatest exceedance of the backbone curve occurs for large amplitude 2-way tests (L.TW.04, D.TW.032), where significant secant stiffening but relatively little ratcheting occurred. The reloading responses are also plotted in Figure 4.40 for $M/M_R < 0.5$, with the rotation zeroed from the onset of reloading (at $\theta = \theta_{r0}$). This plot highlights the increase in stiffness relative to the backbone curve, particularly for $M/M_R < \zeta_b$, which is consistent with
the observed increase in secant stiffness under cyclic loading.

As discussed throughout this Chapter, ratcheting and secant stiffening often occur in parallel under cyclic loading in dry sand. Ratcheting moves the reloading responses beneath the backbone curve and increases pile rotation on reloading, while the densification driving secant stiffening also increases stiffness beyond the region strained under cyclic loading, leading to a decrease in pile rotation on reloading. These processes are therefore in competition, as discussed by Abadie et al. (2019b). Under some conditions, the balance of ratcheting and stiffening processes may lead to no significant change in the response at large loads, as observed by Abadie et al. (2019b) and for many of the 1-way tests presented here. Where stiffening processes dominate, such as for the large amplitude 2-way tests presented here, an increase in post-cyclic monotonic capacity can be observed. Truong et al. (2019) and Nicolai et al. (2017b) also report an increase in post-cyclic monotonic capacity, and Nicolai et al. (2017b) are
further able to quantify the increase in capacity in terms of cycle number, ζ_c and ζ_b, given that their reloading tests reach clear yield.

The conventional cyclic degradation approaches apply reduction factors to $p-y$ curves to reduce the pile's lateral capacity (Section 1.2.5), consistent with the idea that cyclic loading is an intrinsically damaging process. Whilst this may be true for clays, the current experimental evidence does not support a decrease in post-cyclic capacity in (fully drained) sands, and under some conditions an increase in capacity is observed which may be exploited to optimise monopile design.

4.8 Summary

This Chapter has explored the response of a model monopile foundation to regular, unidirectional and multidirectional cyclic lateral loading in dry sand at $1g$. The following points summarise the key observations, which are, in general, applicable to both very loose and dense sand.

Unidirectional hysteretic response (Section 4.3)

- The hysteretic response under 2-way loading broadly adheres to the extended Masing rules for the first few ($n < 4$) loading cycles.
- Behaviour indicative of gapping is observed under high amplitude 2-way loading in dense sand.

Unidirectional high cycle response (Section 4.4)

- Accumulation of pile rotation (ratcheting) occurs under biased cyclic loading and tends to evolve as a power-law with cycle number.
- The magnitude of ratcheting increases as a power-law with cyclic amplitude (characterised by ζ_b for constant ζ_c).
- The ratcheting shape, rate and therefore magnitude is impacted by load asymmetry. Ratcheting increases under partial 2-way loading where loading passes through zero load ($\zeta_c < 0$).
• Secant stiffness increases under cyclic loading. A logarithmic relationship captures the evolution of stiffness under 1-way and partial 1-way loading, but a power-law captures the behaviour better under 2-way and partial 2-way loading, where loading passes through zero load ($\zeta_c < 0$).

• Energy dissipation varies significantly with cyclic loading as the secant stiffness and ratcheting rate change.

• Uplift is possible under large amplitude cyclic loading, even with larger than representative vertical loading.

Multidirectional hysteretic response (Section 4.5)

• The hysteretic response under multidirectional spiral loading in either the x- or y-direction resembles that under equivalent unidirectional loading (which adheres to the extended Masing rules) although some interaction between loading components is observed.

Multidirectional high cycle response (Section 4.6)

• The response to unidirectional, T-shape and L-shape cyclic loading at a given cyclic amplitude M_{CYC} and mean load M_{AV} is similar, demonstrating insensitivity of the response to the cyclic loading direction (relative to the mean load direction) and highlighting the importance of parameters M_{AV} and M_{CYC} in controlling the cyclic response.

• Ratcheting occurs in the direction of the mean load, regardless of the cyclic loading direction.

• The spread of loading directions has a significant impact on the evolution of ratcheting and stiffening under fan-type loading. For the most damaging spread angle, accumulated pile rotation at $n = 1000$ is 2.3 and 1.8 times larger than the rotation under corresponding unidirectional loading, in very loose and dense sand respectively.

• Energy dissipation under perpendicular loading and fan-type loading is greater than under corresponding unidirectional loading.
Post-cyclic reloading response (Section 4.7)

- The reloading response is understood to be controlled by the ratcheting and stiffening processes which occur under cyclic loading in dry sand and have opposing effects on the reloading response.

- The inferred post-cyclic capacity is equal to or greater than the monotonic capacity for all applied load cases, at odds with the cyclic degradation approach (see Section 1.2.5).

- The reloading response tends to the backbone curve following 1-way cyclic loading.

In summary, the monopile response adheres to the extended Masing rules for the first few cycles, but evolution of secant stiffness and associated energy dissipation are observed under many cycles. Ratcheting also occurs under many cycles of biased loading. The behaviour observed under unidirectional loading is generally consistent with observations from previous studies (e.g. Abadie et al. [2019b], Truong et al. [2019]), while multidirectional tests provide new insights. Fan-type tests highlight the significant impact of the spread of loading direction on both ratcheting and stiffening behaviour, while perpendicular tests reveal the insensitivity of the cyclic response to cyclic load direction (relative to the mean load direction) and confirm that ratcheting occurs in the direction of the mean load.

The energy dissipation evolution and reloading responses are mostly explicable in terms of ratcheting and stiffening behaviour, and are therefore considered to be secondary, but no less important, phenomena. The observation that the post-cyclic capacity is equal to or greater than the monotonic capacity has important implications for ULS design, and contrasts with the conventional cyclic degradation approach.

Throughout, the observed behaviour was interpreted in terms of the densification and convective mechanisms understood to be driving stiffening and ratcheting at the macro scale, as discussed in Section 1.3.2. In general, increased ratcheting (magnitude and evolution) and stiffening (rate) coincided with an increased potential for soil particle rearrangement, which is necessary for both densification and convective mechanisms. Increased soil particle rearrangement is likely with increased cyclic load
amplitude, increased loading multidirectionality, and where loading passes through zero load.

As well as providing fundamental insight into the response of a monopile to cyclic lateral loading, the observations in this Chapter i) provide a basis for interpretation of the response of the monopile to realistic multi-amplitude, multidirectional storm loading in Chapter 5 and ii) inform development and calibration of models in the HARM framework in Chapter 7.
Chapter 5

Application of realistic storm loading at 1g

5.1 Introduction

Regular cyclic loading tests, such as those presented in Chapter 4, allow systematic investigation of the cyclic response of monopile foundations. But in reality, monopiles supporting OWTs are exposed to continuously varying cyclic loading. This Chapter explores the response to more realistic, multi-amplitude and multidirectional, storm loading. The results provide novel insight into the response of monopiles and allow parallels to be drawn with the regular cyclic loading response. The results also provide valuable data for validation of numerical models, such as presented in Chapter 7.

The tests were conducted in dry sand at 1g using the apparatus described in Chapter 2 with the test procedures outlined in Chapter 3. The applied loads were derived from wave basin tests performed as part of the DeRisk project (Bredmose et al., 2016). The processing steps required for appropriate application of these loads to the geotechnical model monopile are discussed in detail. Understanding the characteristics of realistic storm loading is also an important aspect of this work.

5.2 DeRisk wave tank tests (Bredmose et al., 2016)

The DeRisk project aimed to reduce the risk associated with predicting ULS wave loads on OWT structures (Bredmose et al., 2016). The multi-centre project was funded by Innovation Fund Denmark and conducted over the period 2015 to 2019. As part of the
5. Application of realistic storm loading at 1g

![High speed photograph from DeRisk wave basin testing showing model monopile and wave (Bredmose et al., 2016)](image)

Figure 5.1: High speed photograph from DeRisk wave basin testing showing model monopile and wave (Bredmose et al., 2016)

Project, wave loading tests were performed on model monopiles in a shallow water basin at the Danish Hydraulic Institute (DHI), as shown in Figure 5.1.

An approximately rigid cylinder with diameter 140 mm was used to represent a 7 m diameter prototype monopile structure in the water column (1 : 50 scale). The cylinder was instrumented with (amongst other instruments) four load cells for resolution of the applied horizontal and moment load in two orthogonal directions (x, y). Various sea states were generated, representing medium to severe storms in the North Sea. The sea states chosen for deriving loading for the geotechnical model monopile were in a prototype water depth of 33 m, with peak spectral period 15 s and significant wave height 9.5 m, approximately corresponding to a 100-year return period. Loads were derived from both a unidirectional (UD) and multidirectional (MD) sea state. The waves in the unidirectional sea state were all aligned with the x-direction. Meanwhile, the waves in the multidirectional sea state varied in direction (around x) with spreading angle $\Phi = 22^\circ$, where Φ is the standard deviation of a wrapped normal spreading distribution (e.g. Adcock and Taylor, 2009). This spreading angle may be typical for a following sea state, where one weather system is present.

Deriving loading from measured wave data introduces non-Gaussian skewness in loads that is representative of loading in the field. Wave skewness affects the mean and peak wave loads, both of which play an important role in determining the monopile
response. This compares to the use of simplified wave models which underestimate wave skewness (e.g. Wang, 2018), and linear wave models which predict symmetric waves with zero mean load.

5.3 Wave load processing and test programme

The wave loads were provided by the DeRisk team at prototype-scale with moment M and horizontal load H components in the x-direction for the UD sea state and in the x- and y-directions for the MD sea state. Storms of up to 70 hours in length (at prototype scale) were generated in the wave basin, but only the first 6 hours of data were used here. A number of processing steps were necessary before application of the wave loads to the geotechnical model:

1. Application of a transfer function (TF) to approximate the dynamic response of an OWT structure.
2. Addition of constant wind loading in the x-direction to better model combined environmental loading.
3. Projection of loads to a constant loading eccentricity to allow application with the apparatus described in Chapter 2.
4. Scaling of the prototype loads for application to the laboratory-scale geotechnical model.

Figure 5.2 shows the effect of processing steps 1-3 on the first 6 hours of prototype wave loads for the MD sea state.

5.3.1 Application of transfer function

Offshore wind turbine structures on monopile foundations typically have first natural frequencies close to the frequency content of waves (Bachynski et al., 2017), whereas the natural frequency of the approximately rigid cylinder used in the wave basin experiments was much higher ($f_0 \approx 5.7$ Hz). Dynamic amplification of loads will therefore be significant for the real structure but negligible for the rigid cylinder. To account for dynamic amplification of loads, the OWT structure was approximated as a single degree of freedom system with a natural frequency f_0 and damping ratio ξ. The
5. Application of realistic storm loading at 1g

Figure 5.2: Impact of wave processing steps 1) to 3) on prototype-scale loads for the MD sea state (upper plots show first six hours of the sea state, lower plots highlight arbitrary 100 s of loading indicated by grey shaded region in upper plots)

The ratio of transmitted force F_T to excitation force F_E can then be found with the transfer function (TF):

$$\frac{F_T}{F_E} = \frac{1}{\sqrt{\left(1 - \left(\frac{f}{f_0}\right)^2\right)^2 + \left(2 \xi \frac{f}{f_0}\right)^2}}$$ \hspace{1cm} (5.1)

Dynamic amplification of loads will also occur at higher frequency modes (e.g. second tower bending mode and blade bending modes) but this simple transfer function captures the key dynamic behaviour of the OWT structure, and has been used by e.g. Arany et al. (2017).

The first natural frequency of the prototype structure was estimated as $f_0 = 0.26$ Hz, between the 1P and 3P blade passing excitation frequencies for a Vestas V164-8.0MW turbine (University of Strathclyde, 2015). Given that the sea states used represent extreme storm conditions, the turbine is assumed to be parked. In parked conditions,
where aerodynamic damping is negligible, the total damping is estimated as $\xi = 0.65\%$, in-line with Kementzetzidis et al. (2019) for dense sand.

The transfer function was approximated as an arbitrary magnitude filter and applied to loads in both directions in the frequency domain. Figure 5.3 demonstrates the impact of the transfer function on the frequency content of the MD moment loads in the x-direction, showing clearly the amplification of the signal around the natural frequency of the structure. Figure 5.4 shows the impact of the transfer function on the MD moment loads in the time domain. The close proximity of the structure’s natural frequency f_0 to the frequency content of the waves, coupled with the low damping ratio ξ, leads to significant dynamic amplification of wave loads. The peak moment amplitudes approximately double and the number of cycles increases by around 50\% (for both the UD and MD cases). The impact of this transfer function is consistent with the experimental observations of Bachynski et al. (2017), who used an appropriately flexible monopile to explore dynamic amplification of wave loads.

5.3.2 Addition of wind loading

Wind loading may be added to the prototype wave loads to better represent combined environmental loading. A wind load of 1.4 MN acting at a height 85.5 m above the mudline was estimated by assuming appropriate prototype OWT dimensions (water
5. Application of realistic storm loading at 1g

depth 33 m, tower height 105 m, mean tower diameter 6 m), with the turbine parked and
blades feathered, and employing a 50-year design wind speed of 50 m/s, consistent with
the extreme storm conditions represented by the waves. The relatively low-frequency
fluctuations in wind amplitude were neglected, with the wind load approximated as a
constant load. Wind loading was aligned with the dominant wave loading direction \((x)\).

Figure 5.2(2) shows how the addition of wind loading adds a constant load bias
in the \(x\)-direction and increases the overall mean load \(\bar{M}\) and peak moment load \(M_p\).
Throughout, the monopile response is explored with and without wind loading.

5.3.3 Projection of loads to constant eccentricity

The measured wave loads have a variable eccentricity \((\bar{e} = M/HL)\). However, for
loads to be applied using the loading system described in Chapter 2, the loads must be
projected to a constant eccentricity. Loads were projected to a load line in \(M – H\) space,
with a gradient representative of that applied by the laboratory apparatus \((\bar{e} = 2.50)\), in
a direction parallel to an approximate monopile yield surface. The \(x\)- and \(y\)-direction
loads were projected independently.

By assuming a distributed lateral load per unit pile length of \(DK\gamma'z\), assuming
\(K = 3K_p\) (Broms, 1964) and linearising the yield surface in the region of interest (where
\(M/H\) is positive), an approximate yield surface can be defined by:

\[
\frac{M}{L^3D\gamma'} + 0.75\frac{H}{L^2D\gamma'} = 0.29K_p
\]

(5.2)

Figure 5.4 illustrates the process of projecting the \(x\)-direction loads for the MD sea state
(assuming example prototype parameters \(D = 7\) m, \(L = 28\) m, \(\gamma' = 10\) kN/m\(^3\), \(\phi' = 40^\circ\))
while Figure 5.2(3) shows the impact on the moment loads for the MD case. The
eccentricity of the measured wave loads is smaller than the eccentricity applied by the
laboratory apparatus, thus the amplitude of moment loads increases upon projection.

5.3.4 Scaling wave loads

Lastly, the prototype-scale wave loads were scaled down to model-scale using the
dimensionless framework of Leblanc et al. (2010a) (Table 3.4, Section 3.4.3), by
equating expressions for \(\tilde{H}\) and \(\bar{M}\) at laboratory- and prototype-scale. Parameters \(L, D\)
and γ' therefore required specification at prototype-scale. Although the wave basin model represented a prototype monopile with diameter 7 m in the water column, from a geotechnical design perspective the monopile size would vary with sand density. Therefore, a prototype pile diameter of 6.9 m was chosen for tests in dense sand and a prototype pile diameter of 9.7 m was chosen for tests in very loose sand; the aspect ratio $\eta = 4$ at both densities.

The dimensionless framework accounts for the effect of stress-level on stiffness, but does not account for the variation of friction angle with stress-level and density. Peak friction angle ϕ'_p is therefore matched between prototype- and laboratory-scale using the empirical relations presented by Bolton (1987) (discussed in Section 3.2.3) to determine D_R and hence γ' at prototype-scale for each density. Table 5.1 summarises the prototype parameters used to scale the wave loads at each density and the resulting ratio of prototype-scale moment to laboratory-scale moment ($f_M = M_P/M_L$). The sand is assumed to be saturated at prototype-scale.

<table>
<thead>
<tr>
<th>Density</th>
<th>Pile diameter D [m]</th>
<th>Pile length L [m]</th>
<th>Unit weight γ' [kN/m3]</th>
<th>f_M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very loose</td>
<td>9.7</td>
<td>38.8</td>
<td>4.7</td>
<td>69.7×10^6</td>
</tr>
<tr>
<td>Dense</td>
<td>6.9</td>
<td>27.6</td>
<td>6.5</td>
<td>22.2×10^6</td>
</tr>
</tbody>
</table>

Table 5.1: Prototype-scale parameters used for scaling wave loads

5.3.5 Test programme

Table 5.2 summarises the realistic storm loading tests performed. The loading is summarised in terms of the peak moment M_p and overall mean moment \bar{M} across the test, in the x- and y-directions. The test names indicate sequentially: sand density, source sea state, addition of wind loading, and loading direction details where necessary. To obtain the cycle number N, extreme and reversal points were defined where the peak prominence of M exceeds $M_R/100$; cycles were then defined between these points following Section 3.5.6.

The loading frequency was reduced relative to prototype-scale to ensure accurate load control, and a greater reduction was necessary for the tests in dense sand, where the load amplitudes were greater. To avoid tests running for an excessively long time
5. Application of realistic storm loading at 1g

<table>
<thead>
<tr>
<th>Test name</th>
<th>Source sea state and details</th>
<th>Wind</th>
<th>Cycle No.</th>
<th>Loads ([/M_R])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(M_{p,x} \bar{M}_x)</td>
</tr>
<tr>
<td>Very loose sand samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.UD.0</td>
<td>UD</td>
<td>No</td>
<td>5400</td>
<td>0.40</td>
</tr>
<tr>
<td>L.UD.W</td>
<td>UD</td>
<td>Yes</td>
<td>5400</td>
<td>0.46</td>
</tr>
<tr>
<td>L.MD.0</td>
<td>MD</td>
<td>No</td>
<td>5400</td>
<td>0.49</td>
</tr>
<tr>
<td>L.MD.W.x</td>
<td>MD, applied twice in (x)-direction.</td>
<td>Yes</td>
<td>10400</td>
<td>0.55</td>
</tr>
<tr>
<td>L.MD.W.45</td>
<td>MD, applied in (x)-direction then at 45° to (x) (italic loads)</td>
<td>Yes</td>
<td>10400</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
</tr>
<tr>
<td>L.MD.0.I</td>
<td>MD, only (x)-direction component applied</td>
<td>No</td>
<td>5400</td>
<td>0.49</td>
</tr>
<tr>
<td>L.MD.W.I</td>
<td>MD, only (x)-direction component applied</td>
<td>Yes</td>
<td>5400</td>
<td>0.55</td>
</tr>
<tr>
<td>Dense sand samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.MD.0</td>
<td>MD</td>
<td>No</td>
<td>2000</td>
<td>0.42</td>
</tr>
<tr>
<td>D.MD.W</td>
<td>MD</td>
<td>Yes</td>
<td>2000</td>
<td>0.48</td>
</tr>
<tr>
<td>D.MD.W.I</td>
<td>MD, only (x)-direction component applied</td>
<td>Yes</td>
<td>2000</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Table 5.2: Realistic storm loading test programme at 1g

 (> 18 hr), the first 6 prototype hours of sea state data were used for the very loose tests and the first 3.4 prototype hours of data were used for the dense tests. Changing the loading frequency was not expected to impact the results, given that significant rate effects were not observed in the monotonic tests (Section 3.4.1).

Tests were conducted with (.W) and without (.0) wind loading to explore the effect of the increase in load bias (see variations in \(\bar{M}\) and \(M_p\)) caused by the wind load. Tests identified with .I were derived from MD sea states, but applied loading in only the \(x\)-direction; comparison of these tests with the equivalent multidirectional tests therefore allows exploration of multidirectionality effects. Moment loading for example tests L.MD.0 and L.MD.0.I is shown in Figure 5.5. Tests L.MD.W.x and L.MD.W.45 involve application of the MD sea state aligned with the \(x\)-direction, followed by application of the same loading either aligned with (.x) or at 45° to (.45) the \(x\)-direction. These tests allow exploration of the impact of consecutive storms and the impact of changing storm direction.
5. Application of realistic storm loading at 1g

Figure 5.5: Applied loading for multidirectional test L.MD.0 compared with loading for corresponding unidirectional test L.MD.0.I

Figure 5.6 presents the distribution of applied M_{CYC}/M_R and M_{AV}/M_R (and equivalently ζ_b and ζ_c, as shown in Figure 3.11, Section 3.5.1) in the x-direction for key tests presented in Table 5.2. The distributions are presented in terms of the sum of number of half-cycles ($\sum n_{0.5}$) in a given bin (size $0.01M/M_R$), on a logarithmic scale. The figure shows how the addition of wind loading shifts the distribution on the M_{AV}/M_R axis, increasing \bar{M} and leading to more 1-way and partial 1-way loading. The largest half-cycles tend to be partial 2-way. Across the tests, the vast majority of loading occurs at $\zeta_b < 0.25$ and much of the loading occurs at $\zeta_b < 0.15$, despite these tests representing extreme storm conditions. Presentation of realistic multi-amplitude loading in this way can help inform the design of focused physical modelling programmes.

5.4 Storm loading response

5.4.1 General observations

The response of the monopile to multi-amplitude storm loading is presented in moment-rotation space in the left and mid plots in Figures 5.7, 5.8 and 5.9. The continuous responses show the shape of the hysteretic loops and may be compared to the backbone curve (shown in grey in the plots). In general, the hysteretic responses are consistent with those observed for regular cyclic loading (in Section 4.3), with some
gapping-type behaviour (inflexion in the moment-rotation responses around zero load) observed under large amplitude loading in dense sand (Figures 5.7c and 5.8c). Upon applying loads greater than those previously applied, the responses approximately follow the backbone curve. This behaviour is consistent with one of the two Masing rules extensions proposed by Pyke (1979) and with many of the reloading responses observed following regular 1-way cycling, as shown in Section 4.7.

The evolution of pile rotation with cycle number is presented in the right-most plots in Figures 5.7, 5.8 and 5.9. As described in Section 3.5.6, pile rotation per cycle may be defined for multi-amplitude loading on either the loading or unloading
half-cycles, at the half-cycle average load. The rotation per cycle on loading (θ_{na}) is used here, although the observed behaviour is not affected by the choice of either parameter. The rotation on loading θ_{na} responses are dominated by rotation accumulated during the large load events, in agreement with observations from Leblanc et al. (2010b) and Abadie et al. (2019b) under regular multi-amplitude cyclic loading. However, rotation also accumulates between the large load events. This behaviour is consistent with the ratcheting observations in Chapter 4: ratcheting occurs under biased cyclic loading at all explored amplitudes, but its magnitude and evolution is rather dependent on the loading characteristics.

Accumulated rotation ($\Delta \theta_n$) is not presented here, as the rotation during Cycle 0 depends on the (variable) amplitude of Cycle 0. It should also be noted that pile rotation is plotted on linear scales in this Chapter, in contrast to the logarithmic scales used in Chapters 4 and 6. The evolution of secant stiffness and energy loss factor are not presented for these tests, as any changes in these parameters with cyclic loading are conflated with the more significant impact of cyclic load amplitude on them, which varies from cycle to cycle. However, the application of consecutive storms does provide some insight into the evolution of secant stiffness and energy dissipation.

5.4.2 Impact of wind loading

Figure 5.7 specifically explores the impact of additional wind loading on the x-direction response. Wind load increases \bar{M} and M_p but leaves M_{CYC} unchanged. As M_p increases, the peak rotations increase to an even greater degree, given the non-linearity of the backbone curve. The ratcheting rate between large load events also increases, given the increase in \bar{M}, and consistent with observations under regular cyclic loading. For the tests presented, pile rotation on loading at cycle N (θ_{Na}) increases by between 2.5 and 3.5 times with the addition of wind loading.

5.4.3 Impact of storm multidirectionality

Figure 5.8 highlights the impact of storm multidirectionality by presenting the response to multidirectional tests derived from MD sea states with spreading angle 22° alongside the response to corresponding unidirectional tests (indicated by .I). Slightly greater pile
Figure 5.7: Impact of additional wind loading on the x-direction response (mean monotonic response shown in grey)
* First half of test L.MD.W.x presented
rotations are observed in the x-direction under multidirectional loading, compared to under corresponding unidirectional loading. However, the difference in pile rotation is small, particularly in the dense sand, and could be attributed to experimental variability. Minimal pile rotation is observed in the y-direction.

The observations made here are consistent with the results from regular fan-type loading tests (Section 4.6.2). The fan-type results suggest that for half internal spread angles $< 30^\circ$ (where the vast majority of this multidirectional loading occurs) a small increase in ratcheting rate may be observed, with the ratio of multidirectional ratcheting exponent to unidirectional ratcheting exponent expected to be $1 < \alpha/\alpha_{UD} < 1.24$ (see Figure 4.34, Section 4.6.2).

5.4.4 Application of consecutive storms

Figure 5.9 presents the response to tests L.MD.W.x and L.MD.W.45, where two consecutive storms were applied. The second storm was either aligned (.x) or misaligned at 45° (.45) to the first. The small difference in response for $n < 5200$, where identical loading was applied, is attributed to experimental variability.

The black loops in the moment-rotation plot for test L.MD.W.x highlight the response during application of the same large amplitude cycle in each of the two storms ($n = 2050, 7250$). This cycle occurs after the peak cyclic load M_p and therefore allows the change in secant stiffness and energy loss factor to be explored without conflation with Masing behaviour. The loading secant stiffness k_{nl} increases by a factor of 1.23 (from $k_{nl}/k_{MAX} = 0.26$ to $k_{nl}/k_{MAX} = 0.31$), while the energy loss factor on loading η_{nl} decreases very slightly (from $\eta_{nl} = 0.52$ to $\eta_{nl} = 0.51$) over 5200 multi-amplitude cycles. The factor of increase in stiffness is less pronounced than across the same number of regular cycles (Section 4.4.2), which may be explained by the low average cyclic amplitude for these tests (mean $M_{CYC}/M_R = 0.046$) compared to the regular cyclic tests ($M_{CYC}/M_R \geq 0.2$ in very loose sand for 1-way loading). The minimal change in energy loss factor is consistent with observations under 1-way regular cyclic loading beyond $n = 100$.

The pile begins to rotate in the y-direction when the storm is applied at 45° to the axes during the second half of test L.MD.W.45. The y-direction hysteretic response
Figure 5.8: Impact of multidirectionality on the response (mean monotonic response shown in grey)
* First half of test L.MD.W.x presented
follows the backbone curve on reloading, similarly to in the x-direction. The rotation accumulated in the y-direction exceeds that accumulated in the x-direction during the second half of the test, despite the loading in the x- and y-directions being very similar. The smaller rotation accumulated in the x-direction in the second half of test L.MD.W.45 may be explained by greater densification caused by previous cycling in this direction. Densification is expected to vary spatially with the loading direction, as also indicated by the ripples in the secant stiffness response under fan-type loading (Section 4.6.2).

The magnitude of pile rotation accumulated during the second storm is approximately 30% of the rotation accumulated during the first storm, in both the aligned and misaligned case.
5. Application of realistic storm loading at 1g

5.5 Summary

The experimental results presented in this Chapter reveal the response of monopile foundations to realistic multi-amplitude and multidirectional storm loading in dry sand. The preliminary load processing also highlighted the importance of the structural dynamic response in determining the cyclic load amplitude and number of load cycles experienced by monopile foundations. The list below summarises the key experimental observations, which are valid for both very loose and dense sand unless stated otherwise:

- Upon applying loads greater than those previously applied, the response approximately follows the backbone curve.

- Pile rotation is dominated by large load events, although ratcheting is also observed during application of smaller-amplitude cyclic loading between the large load events.

- The addition of wind loading, and the associated increase in load bias, significantly increases the magnitude of pile rotation.

- Typical storm multidirectionality (spreading angle 22°) does not have a significant impact on pile rotation in the dominant loading direction.

- Storm misalignment has no significant impact on the magnitude of pile rotation, for a misalignment angle of 45°.

- There is evidence of an increase in equivalent secant stiffness under multi-amplitude loading (in very loose sand).

In general, the response to multi-amplitude and multidirectional storm loading is consistent with many of the observations for regular cyclic loading in Chapter 4: ratcheting occurs under biased loading and increases with load bias and load amplitude, and secant stiffness increases under general cyclic loading. The effects of multidirectionality are small or negligible for the realistic spreading angle and storm misalignment angle explored here. Importantly, the tendency for the backbone curve to be followed when applying loads greater than those previously applied suggests that
the maximum rotation during a short storm may be approximated by the monotonic response. As well as providing novel insight into the response of monopiles to realistic cyclic loading, these results constitute a valuable set of validation data for use in model development.
Chapter 6

Investigating the effect of stress-level

6.1 Introduction

As it is not practical to test monopiles at full-scale, given their large size (e.g. $D = 8$ m, Sørensen et al., 2017), the response may be explored through physical modelling at reduced-scale. Various physical modelling approaches exist:

1. Laboratory-scale testing at $1g$, as employed in Chapters 3, 4 and 5 and in many previous similar studies (see Section 1.3.1);

2. Laboratory-scale testing at elevated stress-level using a centrifuge, as conducted by e.g. Klinkvort and Hededal (2013);

3. Medium- to large-scale testing in natural deposits in field conditions, as performed as part of the PISA project (Byrne et al., 2015) and by e.g. Cox et al. (1974) for the development of conventional $p-y$ curves.

Laboratory-scale testing at $1g$ allows the development of complex systems and requires less resource than the other two physical modelling approaches, facilitating more extensive and longer-term testing. However, full-scale stress-levels cannot be simulated with $1g$ laboratory testing, and it is difficult to simulate natural soil deposits. Centrifuge testing involves subjecting a geotechnical model to accelerations n times Earth’s gravity (ng) to simulate effective unit weights and therefore stress-levels n times larger than would be experienced on the laboratory floor. With the geotechnical model spun in a centrifuge at angular velocity ω, the acceleration experienced at effective radius R_e is
Centrifuge testing allows full-scale stress-levels to be simulated, but the high acceleration levels and space restrictions can constrain the model geometry and complexity, compared to 1g testing (Byrne, 2014). Medium- and large-scale field testing allows exploration of the response in natural deposits, and approximates the ratio of foundation to soil grain size better than in 1g or centrifuge laboratory-scale testing. However, field testing is costly and logistically challenging.

In practice, a combination of these modelling approaches might be used to most efficiently explore the response of monopile foundations, but stress-level varies significantly between them, with only centrifuge testing able to simulate full-scale stresses. Understanding the impact of stress-level on the response of monopile foundations is therefore an important step to i) inform comparison of observations at 1g, in the centrifuge and at medium to large-scale in the field, and ii) establish the relevance of physical modelling at low stress-levels.

The fundamental behaviour of sand depends on the stress-level. For example, dilatancy and peak friction angle ϕ_p increase approximately logarithmically with reducing stress-level (at least at relatively high stress-levels (Bolton, 1987)), while the maximum shear modulus G_{MAX} increases as a power function of stress-level, with the exponent typically 0.5 (Hardin, 1965; Oztoprak and Bolton, 2013). This fundamental stress-level dependent behaviour is reflected in the global foundation response, as observed by e.g. Ovesen (1975) for footings, Kelly et al. (2006) for caissons, and Klinkvort (2012) for monotonically laterally loaded monopiles.

Very few studies have explored the impact of stress-level on the response of monopiles to cyclic lateral loading. Rudolph et al. (2014b) and Rudolph and Grabe (2013) report a decrease in accumulated displacement for centrifuge tests compared to 1g tests, while Nicolai et al. (2017b) compare post-cyclic behaviour between 1g and centrifuge tests. However, the set-up and sand type varied between 1g and centrifuge tests in these studies, and so stress-level effects were not completely isolated.

To specifically explore issues relating to stress-level, this Chapter presents a series of monotonic, unidirectional cyclic and multidirectional cyclic tests, performed at three different stress-levels using the 5 m radius beam centrifuge at UWA (Figure 6.1). By
6. Investigating the effect of stress-level

![Image](https://via.placeholder.com/150)

Figure 6.1: 5 m radius beam centrifuge at UWA

![Graph](https://via.placeholder.com/150)

Figure 6.2: Location of model tests at ng, simulated prototypes at $1g$ and current full-scale monopiles

varying the centrifuge velocity ω, and therefore g-level, stress-level can be controlled; and with an identical set-up at each g-level, stress-level effects can be isolated.

g-levels of $1g$, $9g$ and $80g$ were chosen, corresponding to normalised reference stress-levels (defined as the vertical effective stress at 70% pile embedment, $\sigma'_{REF}/p_a = 0.7L\gamma'/p_a$) of 0.02, 0.18 and 1.60 for a 42 mm diameter pile with $L/D = 4$, in dense, dry sand ($\gamma'_L = 17 \text{ kN/m}^3$). These tests simulate monopiles with diameters between 71 mm and 5.7 m in dense, saturated sand ($\gamma'_P = 10 \text{ kN/m}^3$), as shown in Figure 6.2. Although real monopiles are typically even larger, this range of stress levels is deemed sufficiently large to observe relevant stress-level effects. The logarithmic variation of g-level was chosen to be in-line with the expected logarithmic variation of dilatancy and friction angle with stress-level.

So-called *modelling of models* test campaigns are more common than investigations
6. Investigating the effect of stress-level

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>External diameter</td>
<td>$D = 42$ mm</td>
</tr>
<tr>
<td>Target embedded length</td>
<td>$L = 170$ mm</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>$\eta = 4$ -</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>$t = 3.2$ mm</td>
</tr>
<tr>
<td>Loading eccentricity</td>
<td>$h = 424$ mm</td>
</tr>
<tr>
<td>Dimensionless loading eccentricity</td>
<td>$\tilde{c} = 2.5$ -</td>
</tr>
<tr>
<td>Material</td>
<td>Mild steel</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>$E = 200$ GPa</td>
</tr>
<tr>
<td>Mass</td>
<td>$m = 1.69$ kg</td>
</tr>
</tbody>
</table>

Table 6.1: Model pile properties

into stress-level effects (e.g. Ovesen, 1975; Dewoolkar *et al.*, 1999; Klinkvort *et al.*, 2013), and typically involve tests at different g-levels and model sizes which all simulate the same stress-level and prototype. Modelling of models tests lie along diagonal lines in Figure 6.2, as illustrated with the example tests of Klinkvort *et al.* (2013). Modelling of models campaigns can help identify scale effects specific to centrifuge testing (e.g. grain-size effects) and provide verification of centrifuge modelling techniques, but do not provide independent information on stress-level effects.

6.2 Experimental set-up

6.2.1 Model pile, loading and instrumentation

Tests were performed on sandblasted mild steel piles with properties summarised in Table 6.1. The L/D ratio, h/L ratio and smooth surface ($R_n = R_a/d_{50} \approx 0.016$, measured using a stylus profilometer) are consistent with the pile used for $1g$ testing at OU. The pile has a closed-end (appropriate given the wished in place installation method) and is assumed to behave rigidly.

Figure 6.3 shows the loading and instrumentation apparatus, which is modified from that designed by Herduin (2019) for multidirectional loading of anchors for wave energy devices. Actuators sit perpendicular to platform A and apply load to the pile via cables which travel around pulleys on platform C and attach to 1 kN capacity inline load cells at the base of the pile stick-up. Pile displacements are measured with six string potentiometers. Three are positioned on platform B (253 mm above the load application point) and three are positioned on platform C (30 mm above the load application point).
Each triplet of string potentiometers is arranged in a 120° star to minimise the net load applied to the pile by these sensors, as each applies a tensile load of around 1 N.

The pile stick-up allows straightforward connection of the string potentiometers and load lines to the pile. The stick-up comprises an insert, which is fixed inside the pile head with two bolts and two grub screws, and a threaded rod to which the potentiometers and load lines are attached.

The set-up shown in Figure 6.3 is for multidirectional loading, with three actuators and associated load lines positioned 120° apart. For unidirectional loading two actuators are used, positioned 180° apart, to simplify the set-up.
6. Investigating the effect of stress-level

Table 6.2: UWA SF sand properties (Chow et al., 2018)

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>G_s</td>
<td>2.67 -</td>
</tr>
<tr>
<td>Particle size</td>
<td>d_{10}, d_{50}, d_{60}</td>
<td>0.12, 0.18, 0.19 mm</td>
</tr>
<tr>
<td>Minimum effective unit weight</td>
<td>γ'_{MIN}</td>
<td>14.69 kN/m3</td>
</tr>
<tr>
<td>Maximum effective unit weight</td>
<td>γ'_{MAX}</td>
<td>17.40 kN/m3</td>
</tr>
<tr>
<td>Maximum void ratio</td>
<td>e_{MAX}</td>
<td>0.78 -</td>
</tr>
<tr>
<td>Minimum void ratio</td>
<td>e_{MIN}</td>
<td>0.51 -</td>
</tr>
<tr>
<td>Critical friction angle</td>
<td>ϕ'_c</td>
<td>31.9 °</td>
</tr>
</tbody>
</table>

6.2.2 Sample preparation

UWA superfine (SF) silica sand was used for these tests, with properties summarised in Table 6.2. Soil samples were prepared by air pluviation using an automatic sand raining device into a square strongbox with base 996×996 mm and height 500 mm. Three dense samples were prepared to an average unit weight $\gamma'_{\text{AV}} = 17.00 \pm 0.20$ kN/m3 ($D_{R,AV} = 87.4 \pm 5\%$). The samples were prepared dry to simulate a fully-drained response. Figures 6.4 and 6.5 show the sand raining procedure and prepared sample. To avoid the introduction of complex stress-fields and local density changes through in-flight (or 1_g) installation, the piles were wished-in-place during the sand raining process. Sand was first rained to the depth of the pile tip, before hanging the piles in position and raining further sand around them. The sand surface was then vacuumed to achieve an average installed pile embedment $L_{AV} = 167 \pm 3$ mm ($L/D \approx 4$). Nine piles were installed per strongbox, with a minimum centre-to-centre spacing of 7.4D.

Cone penetration tests (CPTs) were performed using a 7 mm diameter 60° cone to characterise each soil sample. For sample S1, used for 1_g testing, two CPTs were performed at each stage: a) pre-testing and b) post-testing. For samples S2 and S3, used for testing at 9_g and 80_g respectively, one CPT was performed at each stage: a) at 1_g pre-spinning, b) at ng pre-testing, c) at ng post-testing, and d) at 1_g post-spinning. Figure 6.6 presents the CPT cone resistance q_c profiles measured at each g-level. At 1_g, the S1 CPTs and the pre-spinning S2 and S3 CPTs show good consistency, in-line with the small variation in global unit weight measured across the samples. The consistency of the pre- and post-testing S2 and S3 CPTs also gives confidence in...
6. Investigating the effect of stress-level

![Image](image.png)

Figure 6.4: Sample preparation with sand raining device

Figure 6.5: Prepared sample with nine piles wished in place

Figure 6.6: CPT profiles in SF sand ($D_{R,AV} = 87.4\%$, note different q_c scales, T=testing, Sp=spinning)

the homogeneity of the sample and insensitivity to repeated centrifuge spin cycles (the centrifuge was spun down after each test).

The $1g$ post-spinning S2 and S3 CPTs show increased CPT resistance, although bulk mass and volume measurements imply a minimal increase in density post-spinning (a 0.45% and 0.57% increase in γ' following $9g$ and $80g$ testing respectively). This result is therefore attributable to overconsolidation effects, also observed by e.g. Gui et al. (1998) and Roy et al. (2019). However, no monopile tests were performed on these overconsolidated samples.
6. Investigating the effect of stress-level

6.2.3 Test procedure

9g and 80g tests were performed in the 5 m radius, 240g-tonne capacity beam centrifuge at UWA (Gaudin et al., 2018), while the 1g tests were conducted with the same set-up on the laboratory floor. For the centrifuge tests the effective radius R_e, at which the nominal g-level is achieved, was chosen to be at 1/3 pile embedment ($R_e \approx 4.66$ m). Given the size of the centrifuge relative to the model, the variation of acceleration in the radial direction and associated stress error is negligible (Schofield, 1980).

Monotonic tests were performed under displacement control with a single load line, whereas cyclic tests were performed under load control with sinusoidal waveforms, using either two or three load lines. Actuator control and data-acquisition was performed using UWA’s in-house software (PACS and DigiDac).

To ensure accurate load control with the (flexible) load lines, the lines were kept in tension during cyclic testing, with one or two load lines holding constant load. Appropriate choice of load demands for each line allows application of cyclic loading, including symmetric 2-way and multidirectional cyclic loading. Before application of cyclic loading, loads in the lines were increased simultaneously to an appropriate pre-tension. Data was not re-zeroed following this procedure, as negligible net load was applied to the pile and negligible pile movement was recorded.

To ensure accurate load control, a cyclic frequency of $0.15 - 0.20$ Hz was used for the 9g and 80g tests. To achieve accurate load control at 1g, where the load cells were significantly over-sized, the cyclic frequency was reduced (to $0.01 - 0.05$ Hz). The pile response is not expected to be rate dependent, given the tests were performed in dry sand (see also Section 3.4).

6.2.4 Resolution of pile displacement and applied loads

Time limitations did not allow development of software to perform kinematics calculations (resolution of pile pose and load line angles) on-line, as described for the OU apparatus in Section 2.4. Instead, the pile displacement and applied loads were resolved during post-processing. The actual applied loads therefore differ slightly from
the nominal load demands under multidirectional loading, where the load line angles change as the pile moves. This is discussed further in Section 6.6.

To resolve pile position, vertical displacements were neglected and the planar position of the pile at the level of each triplet of string potentiometers was calculated. Under unidirectional loading, pile displacement was obtained directly from the string potentiometer aligned with the loading direction and net loads were obtained directly from the load measurements aligned with loading. Under multidirectional loading, measurements from all three potentiometers were used to calculate pile displacement, and to account for measurement redundancy the error between actual and measured length was assumed to be equal for all three string potentiometers. The net loads were then resolved, accounting for the instantaneous pile position and load line angle.

6.3 Test programme

Tables 6.3 and 6.4 summarise the tests completed as part of this investigation into stress-level effects. The test programme was informed by testing conducted at 1g at OU. Monotonic tests provide a baseline for interpretation of cyclic tests; unidirectional, symmetric 2-way cyclic tests explore the hysteretic response; unidirectional 1-way cyclic tests explore ratcheting, stiffening and evolution of dissipation at various load amplitudes; and multidirectional, perpendicular cyclic tests explore the impact of cyclic loading direction, following the T- and L-shaped loading described in Section 4.6.1. The cyclic tests were conducted at values of ζ_b comparable to those used at OU, with the minimum cyclic amplitude dictated by the accuracy of the control system at 1g.

The results presented in Chapter 4 show how key cyclic behaviour is observable within 1000 cycles. As such, tests were conducted to 1000 cycles here, except where load application issues occurred. The post-cyclic response was also explored with reloading to $0.8H_R$ following many unidirectional cyclic tests. Figure 6.7 shows the sequence of testing within each sample; the loading directions are also indicated.

Results are presented in terms of both g-level n and normalised reference stress-level σ'_{REF}/p_a. Table 6.5 expedites translation between these two measures of stress-level, and presents the (prototype) monopile diameter D_P simulated at each g-level.
6. Investigating the effect of stress-level

<table>
<thead>
<tr>
<th>Test name</th>
<th>g-level</th>
<th>ζ_b</th>
<th>ζ_c</th>
<th>No. of cycles N</th>
<th>Reload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotonic tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1G.M.1</td>
<td>1g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9G.M.1</td>
<td>9g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9G.M.2</td>
<td>9g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>80G.M.1</td>
<td>80g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Symmetric 2-way cyclic tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1G.TW.04</td>
<td>1g</td>
<td>0.4</td>
<td>-1</td>
<td>500</td>
<td>No</td>
</tr>
<tr>
<td>9G.TW.04</td>
<td>9g</td>
<td>0.4</td>
<td>-1</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>80G.TW.04</td>
<td>80g</td>
<td>0.4</td>
<td>-1</td>
<td>1000</td>
<td>Partial</td>
</tr>
<tr>
<td>1-way cyclic tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1G.OW.02</td>
<td>1g</td>
<td>0.2</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>1G.OW.03</td>
<td>1g</td>
<td>0.3</td>
<td>0</td>
<td>770</td>
<td>Yes</td>
</tr>
<tr>
<td>1G.OW.04</td>
<td>1g</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>9G.OW.02</td>
<td>9g</td>
<td>0.2</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>9G.OW.03</td>
<td>9g</td>
<td>0.3</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>9G.OW.04</td>
<td>9g</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>80G.OW.02</td>
<td>80g</td>
<td>0.2</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
<tr>
<td>80G.OW.04</td>
<td>80g</td>
<td>0.4</td>
<td>0</td>
<td>1000</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 6.3: Unidirectional test programme investigating stress-level effects

<table>
<thead>
<tr>
<th>Test name</th>
<th>g-level</th>
<th>Loading direction</th>
<th>ζ_b</th>
<th>ζ_c</th>
<th>No. of cycles N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G.T.02</td>
<td>1g</td>
<td>x</td>
<td>0.35</td>
<td>0.37–0.39</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.2</td>
<td>0.19–0.22</td>
<td>-1</td>
</tr>
<tr>
<td>1G.L.04</td>
<td>1g</td>
<td>x</td>
<td>0.35</td>
<td>0.36–0.39</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.4</td>
<td>0.37–0.38</td>
<td>0</td>
</tr>
<tr>
<td>9G.T.02</td>
<td>9g</td>
<td>x</td>
<td>0.2</td>
<td>0.20–0.23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.2</td>
<td>0.19–0.20</td>
<td>-1</td>
</tr>
<tr>
<td>9G.L.04</td>
<td>9g</td>
<td>x</td>
<td>0.2</td>
<td>0.21–0.24</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.4</td>
<td>0.38–0.39</td>
<td>0</td>
</tr>
<tr>
<td>80G.T.02</td>
<td>80g</td>
<td>x</td>
<td>0.2</td>
<td>0.20–0.22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.2</td>
<td>0.20–0.20</td>
<td>-1</td>
</tr>
<tr>
<td>80G.L.04</td>
<td>80g</td>
<td>x</td>
<td>0.2</td>
<td>0.20–0.22</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y</td>
<td>0.4</td>
<td>0.39–0.39</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.4: Multidirectional test programme investigating stress-level effects
6. Investigating the effect of stress-level

Figure 6.7: Sequence of testing within each sample, with arrows indicating loading direction

<table>
<thead>
<tr>
<th>g-level, n</th>
<th>1</th>
<th>9</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ'_{REF}/p_a</td>
<td>0.02</td>
<td>0.18</td>
<td>1.60</td>
</tr>
<tr>
<td>D_P [m]</td>
<td>0.071</td>
<td>0.64</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Table 6.5: Corresponding g-levels, normalised stress levels and simulated prototype monopile diameters
6. Investigating the effect of stress-level

6.4 Monotonic response

Figure 6.8 presents the response for the monotonic tests alongside the responses for the initial loading portion of the unidirectional cyclic tests. At 9g, where two monotonic tests were performed, the average monotonic response is presented. Figure 6.8 highlights the significant variation in load amplitude with stress-level, as well as consistency of behaviour at each stress-level.

Data is presented in terms of applied horizontal load H and pile displacement at the load application point u (both at model-scale). The imperfectly rigid connection between the pile and pile stick-up introduced error into the resolved pile rotation and prevents presentation of the response in terms of applied moment M and pile rotation θ, as used in previous Chapters. However, conclusions on stress-level effects are not expected to be affected by the choice of either work-conjugate pair.

6.4.1 Normalisation approaches

Casting the monotonic response in a dimensionless form facilitates comparison between tests and helps provide insight into stress-level effects. Three different normalisation approaches are considered: i) Klinkvort et al. (2013), ii) Klinkvort (2012), and iii) Leblanc et al. (2010a), as summarised in Table 6.6. The approach of Leblanc et al. (2010a) was also presented in Table 3.4, Section 3.4.3.
6. Investigating the effect of stress-level

<table>
<thead>
<tr>
<th>Load normalisation</th>
<th>Displacement normalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{H}{D^3 \gamma'})</td>
<td>(\frac{u}{D})</td>
</tr>
<tr>
<td>(\frac{H}{K_p D^3 \gamma'})</td>
<td>(\frac{u}{D})</td>
</tr>
<tr>
<td>(\frac{H}{L^2 D \gamma'})</td>
<td>(\frac{u}{D} \left(\frac{p_a}{L \gamma'} \right)^{\eta-1}) ((\eta = 0.5))</td>
</tr>
</tbody>
</table>

Table 6.6: Comparison of normalisation approaches

Figure 6.9: Normalisation of monotonic responses; (a) following (i) Klinkvort et al. (2013), (b) following (iii) Leblanc et al. (2010a) (lower plots show low amplitude region highlighted by grey box in upper plots)

Figure 6.9a shows the result of applying normalisation (i), which accounts for variation of \(\gamma' \), to the monotonic responses. This normalisation does not collapse the responses to one curve, but rather highlights stress-level effects: the decrease in normalised initial stiffness and inferred normalised capacity with increasing stress-level are indicative of stress-dependent stiffness and dilatant behaviour.

While exploring stress-level effects Klinkvort (2012) proposed a normalisation method (ii) which introduces Rankine’s passive earth pressure coefficient \(K_p \) to account for stress-dependent dilatancy. Klinkvort (2012) used this normalisation to successfully collapse the response of a model monopile at stress-levels from around
70 kPa to around 350 kPa, with ϕ_p' values obtained from complementary triaxial testing.

Complementary triaxial tests are not available for this study, and moreover, obtaining definitive ϕ_p' values at stress-levels corresponding to the 1_g tests is likely to be very challenging. There are a few approaches for estimating ϕ_p' at low stress-levels (as discussed in Section 3.2.3), although recent work by White (2020) supports the use of relationships proposed by Bolton (1987). If the framework of Bolton (1987) is employed to estimate ϕ_p' for normalisation (ii), then K_p changes negligibly and the plot resembles that in Figure 6.9a.

In contrast to the approach of Klinkvort (2012), Leblanc et al. (2010a) incorporate stress-dependent stiffness into normalisation (iii), but do not consider dilatancy (see Section 3.4.3). Figure 6.9b shows the result of normalising with approach (iii). The normalisation does a good job of collapsing the results to a single curve, particularly at small displacements, where the cyclic tests are conducted.

The normalisation proposed by Klinkvort et al. (2013) indicates the presence of stress-level dependent stiffness and dilatant behaviour. However, it is not possible to decouple these phenomena and draw stronger conclusions, particularly without measured ϕ_p' values at the stress-levels of interest. However, the normalisation approach of Leblanc et al. (2010a), which does not account for stress-dependent dilatancy, collapses the monotonic responses well, building confidence in the use of this normalisation framework for translation between scales.

6.4.2 Maximum stiffness

The monopile’s maximum stiffness k_{MAX} is expected to vary with stress-level in the same way as the soil’s maximum shear modulus G_{MAX} does; indeed, this assumption is incorporated into the normalisation approach presented by Leblanc et al. (2010a).

As discussed in Section 3.4.2, k_{MAX} can be obtained from the initial loading or first unloading response. There is more variability in the initial loading response for these tests than for the 1_g tests at OU, probably due to more significant bedding-in effects given the wished-in-place installation method. Therefore, only the stiffness on first unloading are used to estimate the maximum stiffness of the monopile k_{MAX}.
6. Investigating the effect of stress-level

6.5 Unidirectional cyclic response

6.5.1 Load-displacement response

Figure 6.10 presents the first unloading portion for all relevant tests, with the response re-zeroed from the point of maximum load on the 0th cycle (subscript m0). Upper and lower estimates of k_{MAX} are obtained by manual fitting to the initial loading portion $(u_{m0} - u < 0.05 \text{ mm})$, and the maximum stiffness bounds are indicated by the grey shaded regions in Figure 6.10.

Figure 6.11 presents the variation of k_{MAX} with stress-level, with the range and mean values of k_{MAX} indicated. An exponential function fits the data well, as shown by the dashed line in Figure 6.11. However, the exponent obtained from least-squares fitting is $\eta = 0.31$, somewhat lower than $\eta = 0.5$ implicit in the Leblanc et al. (2010a) normalisation and also obtained for UWA SF sand from triaxial testing (Chow et al., 2018). This discrepancy may be explained by experimental variability, the impact of stiffening during the initial loading portion, or three-dimensional effects when considering the monopile system. Interestingly, however, using $\eta = 0.31$ in place of $\eta = 0.5$ in the normalisation approach of Leblanc et al. (2010a) generates a poorer result.

Figure 6.12 presents the load-displacement $(H - u)$ responses for the unidirectional tests summarised in Table 6.3, alongside the corresponding monotonic responses (nG.M). The full response is shown for the 1-way tests, while only the first five cycles of the 2-way
6. Investigating the effect of stress-level

![Graph showing variation of maximum stiffness k_{MAX} with stress-level](image)

Figure 6.11: Variation of maximum stiffness k_{MAX} with stress-level

<table>
<thead>
<tr>
<th>Stress Level</th>
<th>Reference Displacement u_R [mm]</th>
<th>Reference Horizontal Load H_R [N]</th>
<th>Mean Max. Stiffness k_{MAX} [N/mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1g</td>
<td>17.8</td>
<td>15.7</td>
<td>57.3</td>
</tr>
<tr>
<td>9g</td>
<td>17.8</td>
<td>99.5</td>
<td>127.8</td>
</tr>
<tr>
<td>80g</td>
<td>17.8</td>
<td>597</td>
<td>220.8</td>
</tr>
</tbody>
</table>

Table 6.7: Reference values for monopile response

The results show good repeatability at each stress-level and qualitatively similar behaviour across the three stress-levels. The responses are normalised by load and displacement reference values (H_R, u_R) as summarised in Table 6.7, where u_R was chosen to approximately correspond to $\theta_R = 2^\circ$ (as used in previous Chapters). This normalisation approach allows data at all three stress-levels to be presented on comparable axes, but is not directly intended to elucidate stress-level effects.

Figure 6.12 shows how the backbone linearity (or dominance of elastic behaviour) increases with stress-level. This variation in linearity is linked to stress-dependent stiffness and dilatant behaviour, as previously discussed, but also depends on the load amplitude. To better match the linearity of the cyclic responses across the stress-levels, the reference pile displacement u_R – which determines H_R and therefore the cyclic amplitudes through ζ_b – may be adjusted with stress-level, perhaps employing the dimensionless framework of Leblanc et al. (2010a) (Table 3.4, Section 3.4.3). However,
the variation in backbone linearity is a stress-level effect, and it is not clear whether it is appropriate to minimise or eliminate this effect by modifying u_R.

Figure 6.12 also reveals gapping-type behaviour in the 2-way tests at $1g$ and $9g$, consistent with the observations in dense sand at $1g$ in Section 4.3. The inflexion in the load-displacement response around zero load is indicative of gapping, as the pile’s tangent stiffness reduces while traversing a gap or region of low-stress. These tests show gapping-type behaviour increasing with reducing stress-level, which may be explained by a reduction in the tendency for sand particles to move into a gap as stress-level reduces. For gapping to occur at all, some cohesion is required, which may be caused by particle interlocking, ambient moisture or electrostatic effects, as discussed in Section 4.3. The wished-in-place installation method will lead to lower horizontal stresses adjacent to the pile, increasing the likelihood of gap formation.
6. Investigating the effect of stress-level

6.5.2 Ratcheting response

Figure 6.13 presents the evolution of normalised accumulated displacement $\Delta u_n/u_R$ with cycle number n for the 1-way unidirectional cyclic tests. A power-law (Equation 6.1) is fitted to each test and shown dashed. Various studies have shown ratcheting to evolve as a power-law with cycle number n (Leblanc et al., 2010a; Klinkvort, 2012; Abadie et al., 2019b; Albiker et al., 2017; Truong et al., 2019), and it was also found to provide a good fit to the g results in Section 4.4.1.

$$ \frac{\Delta u_n}{u_R} = A n^\alpha $$

(6.1)

No dependence of the power-law coefficient A on stress-level is observed, although Figure 6.14 shows how A varies with ζ_b as a power-law with exponent $m_\sigma = 3.4$ (fit shown dashed in Figure 6.14), consistent with the observed variation of equivalent parameter T_b in Figure 4.8 Section 4.4.1 and with the results of Abadie (2015). Conversely, no dependence of α on ζ_b is observed (in-line with previous studies), but there is a trend for decreasing α with increasing stress-level, as shown in Figure 6.15. To facilitate prediction of behaviour at other stress-levels, the ratcheting exponent α is presented in Figure 6.15 against normalised reference stress-level σ'_{REF}/p_a, rather than g-level.

To quantify the variation of α with stress-level, a logarithmic trend line is fitted to the data by least squares regression, and shown dashed in Figure 6.15. The line is defined by Equation 6.2.

$$ \alpha = 0.127 - 0.022 \ln \left(\frac{\sigma'_{REF}}{p_a} \right) $$

(6.2)

This trend line can be used to inform comparison of behaviour at different stress-levels. For example, it suggests that the ratcheting exponent for an equivalent full size monopile in dense, saturated (fully drained) sand ($D = 8$ m, $\gamma' = 10$ kN/m3, $\sigma'_{REF}/p_a = 2.2$) may be as low as $\alpha = 0.11$, or approximately half of the value in the g model tests. This very important observation highlights how ratcheting may be less pronounced at full-scale than observed in g laboratory-scale physical modelling.

The value of α varies with the chosen strain variable (as discussed in Section 4.4.1) and it is therefore difficult to compare α values from independent test campaigns to
build confidence in this conclusion on stress-dependency. However, the results presented here are consistent with the increase in normalised pile displacement for 1\(g\) tests compared to centrifuge tests reported by Rudolph \textit{et al.} (2014b) and Rudolph \textit{et al.} (2014a).

6.5.3 Secant stiffness response

Figure 6.16 presents evolution of the secant stiffness of the monopile \(k_n\) with cycle number \(n\) for all unidirectional cyclic tests. Stiffness is normalised by the mean maximum stiffness, \(k_{MAX}\) (defined in Section 6.4.2). An increase in secant stiffness is
observed for all tests, with k_n/k_{MAX} plateauing at high cycle number in all tests except nG.TW.04.

Evolution of secant stiffness with cycle number has previously been described by logarithmic functions (Klinkvort and Hededal, 2013; Leblanc et al., 2010a; Abadie, 2015). For the OU tests in Section 4.4.2 logarithmic fits were found to be appropriate for 1-way and partial 1-way loading, but power-laws fitted the response to 2-way and partial 2-way loading better. Here, a power-law function (Equation 6.3) is preferred and fitted to all data for consistency of interpretation with ratcheting. However, neither a power-law nor a logarithmic function captures the response particularly well for $n < 10$. Power-law fits are shown dashed in Figure 6.16.

$$\frac{k_n}{k_{MAX}} = Bn^\beta$$

The normalised secant stiffness for the first cycle ($k_{n=1}/k_{MAX}$) is plotted in Figure 6.17. There is no strong dependence of first cycle secant stiffness values on stress-level, however, the spread of stiffness values decreases with increasing stress-level, consistent with the increasing linearity of the responses. At each g-level, the first cycle stiffness values generally decrease with cyclic amplitude H_{CYC}, as expected, given the non-linear load-displacement response. Plotting the power-law coefficient (or y-axis intercept) B instead would have produced a very similar plot.

The impact of stress-level on the evolution of stiffness is assessed by plotting the power-law exponent β against stress-level in Figure 6.18. The exponents for tests 1G.TW.04 ($\beta = 0.304$) and 9G.TW.04 ($\beta = 0.110$) are not presented on this plot, being considerably greater than the other exponents. These high values of β are thought to be linked to the gapping-type behaviour observed for these tests. If a gap is opening, the possibility of grain migration, and therefore densification close to the pile, will be increased.

A logarithmic trend line is fitted to the variation of β with stress-level, neglecting the 2-way tests, and shown dashed in Figure 6.18. The trend line is described by Equation 6.4 and can be used to inform comparison of monopile behaviour at different stress-levels. For example, it suggests that for an equivalent full size monopile the...
6. Investigating the effect of stress-level

Figure 6.16: Change in secant stiffness k_n with unidirectional cyclic loading

Figure 6.17: Variation of normalised stiffness for the first cycle $k_{n=1}/k_{MAX}$ with stress-level for unidirectional cyclic loading

Figure 6.18: Variation of stiffness power-law exponent β with stress-level for unidirectional cyclic loading

1-way stiffness exponent may be as low as $\beta = 0.011$, or 25% of the stiffness exponent value in the $1g$ model tests.

$$\beta = 0.017 - 0.0076 \ln \left(\frac{\sigma'_{REF}}{p_a} \right)$$

(6.4)

6.5.4 Energy dissipation response

Figure 6.19 shows the evolution of unidirectional energy loss factor η_n with cycle number n. Although an empirical fit was not made to the OU $1g$ data in Section 4.4.2, a power-law fit (Equation 6.5) is used here to quantify the impact of stress-level on η_n.

6. Investigating the effect of stress-level

The power-law provides a reasonable fit to all data, at least for $n > 10$, with the resulting fits shown dashed in Figure 6.19.

\[\eta_n = C n^\gamma \] \hspace{1cm} (6.5)

As for ratcheting and stiffness evolution, the variation of the energy loss factor power-law exponent γ with stress-level is plotted in Figure 6.21. However, no dependence of γ on stress-level is observed. Instead, the energy loss factor for the first cycle $\eta_{n=1}$ is found to decrease with increasing stress-level, as shown in Figure 6.20. A similar result would be obtained if the power-law coefficient (or y-axis intercept) C had been plotted instead. The anomalously low value of initial energy loss factor for test nG.TW.04 is probably linked to the significant gapping-type behaviour observed, which reduces the hysteretic energy loss E_H, compared to no gapping.

A logarithmic function is fitted to the variation of first cycle energy loss factor $\eta_{n=1}$ with stress-level. The trend line, shown dashed in Figure 6.20, is defined by Equation 6.6.

\[\eta_{n=1} = 0.228 - 0.134 \ln \left(\frac{\sigma'_{\text{REF}}}{p_0} \right) \] \hspace{1cm} (6.6)

This trend line suggests that an equivalent full size monopile may have an energy loss factor for the first cycle of around $\eta_{n=1} = 0.12$, which is 16% of the value for the model tests at 1g.

6.5.5 Reloading response

Post-cyclic reloading was performed after 1000 loading cycles for the majority of the unidirectional cyclic tests. The upper row of Figure 6.22 shows the reloading responses with the cyclic responses omitted, while the lower row shows the reloading responses re-zeroed from the onset of reloading (at $u = u_{r0}$). Qualitatively similar behaviour is observed at all stress-levels.

The reloading responses following 1-way cyclic loading tend to re-join or exceed the backbone curve at all stress-levels, while a significant increase in capacity is observed under 2-way loading at 9g, where little ratcheting or drift occurred. These observations are consistent with those made in Section 4.7 and support the interpretation of the reloading response as a competition between ratcheting and stiffening processes.
6. Investigating the effect of stress-level

6.5.6 Discussion

Qualitatively, the unidirectional cyclic responses are similar across the three stress-levels investigated, with similar reloading responses and with power-law expressions approximately capturing the evolution of ratcheting, stiffness and energy loss factor. But, quantitatively, the results reveal some important stress-level effects.
The decrease of first cycle energy loss factor $\eta_{n=1}$ with stress-level (Figure 6.20) can be directly linked to the linearity of the load-displacement response. The response linearity increases with stress-level, and is linked to stress-dependent stiffness and dilatant behaviour, but also depends on the load amplitude. However, the logarithmic decrease in ratcheting and stiffness exponent with stress-level (Figure 6.15 and Figure 6.18) appears to be independent of load amplitude and therefore linearity of the load-displacement response.

The various studies from Cuéllar *et al.* (2012), Nicolai (2017) and Cui and Bhattacharya (2016) revealed the presence of both convection and densification mechanisms under cyclic loading in dry sand (see Section 1.3.2). The increase in secant stiffness is probably driven by a local densification mechanism, while the ratcheting behaviour is probably caused by both a convection mechanism and any asymmetry in local densification. Given that both mechanisms require particle rearrangement, it is explicable that the associated ratcheting and stiffening behaviour
will be affected by increasing stress-level, where (as highlighted by Cui and Bhattacharya (2016)) there is increasing constraint on particle rearrangement.

6.6 Multidirectional cyclic response

Table 6.4 characterises the multidirectional tests in terms of nominal and applied ζ_b and ζ_c load values in the x- and y-directions. The nominal values were those demanded of the control system during testing, and do not account for pile movement. The actual applied values were computed post-testing, accounting for the instantaneous pile position and load line angle. Pile movement has a non-negligible effect on the applied loads: the peak cyclic loads vary by up to 10% and the load biases vary by up to 20% from the nominal values. However, the phenomenological observations made in this Section are not expected to be affected by these load variations.

The multidirectional T- and L-shaped tests at 9g and 80g correspond to unidirectional tests nG.OW.04 – having the same cyclic load amplitude H_{CYC} and average load amplitude H_{AV}. However, the multidirectional 1g tests have a load bias in the x-direction 75% larger than 1G.OW.04 and so comparisons at 1g are made with caution.

6.6.1 Displacement and ratcheting response

Figure 6.23 presents the displacement responses for the multidirectional tests nG.T.02 and nG.L.04, alongside the corresponding unidirectional tests nG.OW.04. The displacements at cycles 1, 10, 100, (1000) are marked. Figure 6.23 shows how the monopile moves broadly in the direction of the load bias at all stress-levels, although there is some deviation in tests 9G.T.02 and 80G.T.02. The deviation may be caused by systematic error in experimental set-up or boundary effects (test 9G.T.02 deviates towards the strongbox wall while test 80G.T.02 deviates towards the strongbox corner, see Figure 6.7). Figure 6.23 also highlights the increase in amplitude of displacement across each cycle with increasing stress-level, consistent with a decrease in secant stiffness k_n normalised by $H_R/u_R (k_n u_R / H_R)$ with increasing stress-level.

Figure 6.24 presents the accumulated rotation responses for the multidirectional tests alongside the corresponding unidirectional tests. For the T-shaped tests significant
6. Investigating the effect of stress-level

ratcheting only occurs, and is only reported, in the x-direction. For the L-shaped tests ratcheting is reported in both the x- and y-directions. A power-law (Equation 6.1) is fitted to the evolution of $\Delta u_n / u_R$ with cycle number n and shown dashed in Figure 6.24. The power-law generally captures the evolution of ratcheting well, but tends to over-predict ratcheting for $n < 10$ for the T-shaped tests. The response of test 80G.L.04(x), particularly for $n > 100$, may be anomalous.

Figure 6.25 presents the variation of ratcheting power-law coefficient A with test type and stress-level. No clear dependence of A on either test type or stress-level is observed. The ratcheting power-law exponent α does vary with stress-level, and is plotted in Figure 6.26, accompanied by the dashed trend line obtained for the unidirectional tests (Equation 6.2). This trend line also fits the multidirectional data well. In general, there is no clear dependency of ratcheting behaviour on test type (at least for $n > 10$).

6.6.2 Secant stiffness response

Figure 6.27 presents the evolution of secant stiffness k_n for the multidirectional tests and corresponding unidirectional cyclic tests. For multidirectional loading, evolution of secant stiffness is only relevant in the direction of cycling. For $n > 10$, the response is described well with a power-law (Equation 6.3), which is fitted and shown dashed in Figure 6.27.
6. Investigating the effect of stress-level

The variation of normalised secant stiffness for the first cycle \((k_{n=1}/k_{MAX}) \) is shown in Figure 6.28. As for the unidirectional tests, there is no clear dependence on stress-level; there is also no dependence on test type. The variation in power-law stiffness exponent \(\beta \) is plotted in Figure 6.29, with the trend line obtained for unidirectional loading (Equation 6.4) shown dashed. The values of \(\beta \) for the multidirectional tests at 1g depart from the trend line, though there is inconsistency in applied mean load. The multidirectional tests at 9g and 80g are aligned with the unidirectional trend.
6. Investigating the effect of stress-level

6.6.3 Energy dissipation response

The evolution of energy loss factor η_n with cycle number n is shown in Figure 6.30 with a power-law (Equation 6.5) fitted and shown dashed. The multidirectional behaviour is consistent with that observed for the unidirectional tests: there is no clear dependence of the energy loss factor power-law exponent γ on stress-level (Figure 6.32), but the energy loss factor for the first cycle $\eta_{n=1}$ decreases logarithmically with stress-level, as shown in Figure 6.31. The trend line obtained for unidirectional loading (Equation 6.6) also fits this data well, as shown by the dashed line in Figure 6.31. Values of
6. Investigating the effect of stress-level

Figure 6.30: Change in energy loss factor η_n with multidirectional cyclic loading

Figure 6.31: Variation of energy loss factor for the first cycle $\eta_{n=1}$ with stress-level for multidirectional cyclic loading

Figure 6.32: Variation of energy loss factor power-law exponent γ with stress-level for multidirectional cyclic loading

$\eta_{n=1}$ and γ are similar for unidirectional and L-shaped tests, but there is a tendency for the T-shaped tests tend to have lower $\eta_{n=1}$ values and higher γ values. This is probably associated with the variation in response linearity over the cyclic loading region with test type, at a given stress-level.

6.6.4 Discussion

In general there is little variation in the magnitude and evolution of ratcheting, stiffness and energy loss factor with multidirectional test type, at all stress-levels. This implies that, for a given mean load H_{AV} and cyclic load amplitude H_{CYC}, the direction of cyclic loading (relative to the mean load) has an insignificant impact on the cyclic response.
Ratcheting also occurs in the direction of the mean load at all stress-levels, regardless of the cyclic loading direction. These observations are in line with those reported for $1g$ testing at OU in Chapter 4 and have important implications for modelling the multidirectional response. Ratcheting in the direction of the applied load is a key feature of models in the HARM framework (Houlsby et al., 2017), and may be included as a feature of other ratcheting models.

In general, the stress-level effects observed in the unidirectional tests are also observed in the multidirectional tests. The trend lines obtained from the unidirectional results for variation of ratcheting exponent, stiffness exponent and first cycle energy loss factor with stress-level are also, in general, appropriate for the multidirectional results.

6.7 Summary

This Chapter has explored the effect of stress-level on the response of monopile foundations to lateral loading. Monotonic, unidirectional cyclic and multidirectional cyclic loading tests were performed on a model monopile in dry, dense sand at three different g-levels. With the same experimental set-up at each g-level, stress-level effects were isolated. The following key observations were made:

- The monotonic responses exhibit stress-level effects which can be explained by stress-dependent stiffness and dilatancy, although decoupling these phenomena is difficult.

- The monotonic results support the use of the normalisation approach proposed by Leblanc et al. (2010a), although the observed variation of maximum foundation stiffness with stress-level is not entirely consistent with this approach.

- Gapping-type behaviour reduces with increasing stress-level.

- Qualitatively, the cyclic response is similar across the three stress-levels, with power-law functions providing a reasonable fit to evolution of ratcheting, secant stiffness and energy loss factor with cycle number.
6. Investigating the effect of stress-level

- The ratcheting and stiffness exponents, which control the rate of change of these parameters with cycle number, both decrease logarithmically with increasing stress-level. The trends suggest that, for an equivalent full size monopile \(D = 8 \text{ m} \), the ratcheting exponent may be half the value at \(1g \) and the stiffening exponent may be one quarter the value at \(1g \).

- The reduction in ratcheting and stiffening rate with stress-level is explained by the increase in confinement with stress-level, which inhibits particle rearrangement understood to cause ratcheting and stiffness change.

- The energy loss factor for the first cycle reduces with increasing stress-level. This behaviour depends on the linearity of the backbone curve, which is linked to stress-dependent stiffness and dilatant behaviour, but also varies with load amplitude.

- The post-cyclic reloading response shows no clear stress-level dependency.

- The multidirectional tests exhibit stress-level effects consistent with the unidirectional tests, while the multidirectional observations are consistent with those made for OU 1\(g \) tests in Chapter 4.

Together, these results provide new insight into the impact of stress-level on the response of monopile foundations, and help inform comparison of monopile behaviour at different stress-levels. The observed impact of stress-level on the rate of change of ratcheting and stiffening with cycle number is particularly important, as it suggests the impact of cyclic loading will be less pronounced at full-scale than observed in small-scale 1\(g \) physical modelling.

The qualitative similarities in response at 1\(g \), 9\(g \) and 80\(g \) demonstrate the insight that can be gained from 1\(g \) testing, while the observed stress-level effects highlight the need to simulate full-scale stress-levels to thoroughly understand foundation behaviour. This supports the suggestion that an efficient physical modelling campaign might use a combination of modelling approaches. As conducted in Chapters 3, 4 and 5, laboratory-scale 1\(g \) testing may be used to explore a wide range of behaviour, establish trends
and inform initial development of models for design. Focused centrifuge testing can then assess the applicability of $1g$ observations at higher (ideally full-scale) stress-levels, and inform scaling relationships. Large-scale field testing may be used for validation of design methods in natural deposits.

The results in this Chapter cannot be quantitatively compared to the OU results (reported in Chapters 3 and 4), given the difference in installation method, sand type, stress and strain parameters. However, the behaviour is qualitatively similar: with ratcheting, stiffening and changes in dissipation with repeated cyclic loading, a tendency for the reloading response to approach or exceed the backbone curve, and invariance of the magnitude and evolution of the cyclic response to cyclic load direction.
Chapter 7

Modelling the response of a monopile to complex cyclic loading

7.1 Introduction

This Chapter draws on the experimental observations from previous Chapters to demonstrate and inform development of macro models for monopile foundations under cyclic lateral loading in the Hyperplastic Accelerated Ratcheting Model (HARM) framework. The hyperplastic modelling framework and the underlying multi-surface kinematic hardening models are first presented, before the introduction of unidirectional and bi-directional models which are able to capture the high-cycle response, including ratcheting and stiffness evolution.

New evolution functions, which describe how ratcheting and stiffness evolve with cyclic loading, are proposed. Focus is placed on functions which do not significantly distort Masing behaviour, are able to capture the post-cyclic reloading response, and depend on parameters which have a clear impact on the response. The models are calibrated to five datasets (OU very loose and OU dense datasets presented in Chapters 3, 4 and 5, and UWA 1g, UWA 9g and UWA 80g datasets presented in Chapter 6) and computations are compared to a representative selection of experimental results. The computations in this Chapter explore the ability of models in the HARM framework to capture the response to unidirectional and multidirectional regular cyclic loading, as well as the response to realistic multi-amplitude storm loading. Predictions are also made at prototype-scale.
7.2 Key behaviours observed experimentally

<table>
<thead>
<tr>
<th>Key behaviour</th>
<th>Key evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The monopile exhibits a non-linear monotonic response.</td>
<td>Section 3.4.1 A, B</td>
</tr>
<tr>
<td>2 The extended Masing rules are approximately adhered to during the first few loading cycles.</td>
<td>Section 4.3 A</td>
</tr>
<tr>
<td>3 Ratcheting occurs i) under biased cyclic loading and ii) in the direction of the mean load.</td>
<td>i) Section 4.4.1 A, B ii) Section 4.6.1 A, B</td>
</tr>
<tr>
<td>4 Ratcheting evolves as a power-law with cycle number.</td>
<td>Section 4.4.1 A, B</td>
</tr>
<tr>
<td>5 The magnitude of ratcheting increases as a power-law with cyclic amplitude (for constant (\zeta_c)).</td>
<td>Section 4.4.1 A, B</td>
</tr>
<tr>
<td>6 Load asymmetry ((\zeta_c)) affects the shape, rate and therefore magnitude of ratcheting.</td>
<td>Section 4.4.1</td>
</tr>
<tr>
<td>7 Secant stiffening occurs under cyclic loading and evolves logarithmically or as a power-law, depending on the load asymmetry.</td>
<td>Section 4.4.2 A</td>
</tr>
<tr>
<td>8 The cyclic response is broadly independent of the cyclic loading direction, relative to the mean load direction.</td>
<td>Section 4.6.1</td>
</tr>
<tr>
<td>9 Multidirectional fan-type loading can lead to greater ratcheting and stiffening than unidirectional loading.</td>
<td>Section 4.6.2</td>
</tr>
<tr>
<td>10 The inferred capacity on post-cyclic reloading is equal to or greater than the monotonic capacity.</td>
<td>Section 4.7</td>
</tr>
</tbody>
</table>

Table 7.1: Key behaviours observed experimentally in this work and by Abadie (2015) (A) and Beuckelaers (2017) (B) and sought to be captured in modelling

The combined experimental observations from Chapters 3, 4, 5, and 6 are used to determine the key behaviours which are sought to be captured in modelling, as outlined in Table 7.1. Evolution of energy loss factor is not directly sought to be captured, since it is understood to depend largely on the evolution of stiffness and ratcheting. No attempt is made to capture the gapping-type behaviour observed under high-amplitude 2-way loading in dense dry sand at low stress-levels, given that it occurs only at large rotations and low stress-levels, which are not representative of field conditions.

Table 7.1 indicates which behaviours were also observed by Abadie (2015) (A), as these directly informed the development of the HARM framework presented by Houlsby et al. (2017). Behaviours observed by Beuckelaers (2017) (B) at field-scale, in both sand and clay, are also indicated.
7. Modelling the response of a monopile to complex cyclic loading

7.3 Modelling basis

7.3.1 Hyperplasticity

Models in the HARM framework are formulated in the hyperplasticity framework which is comprehensively described by Houlsby and Puzrin (2006). The hyperplasticity framework allows compact, systematic development of constitutive models which are guaranteed to obey the Laws of Thermodynamics. The method is rooted in the work of Ziegler (1977), and was first presented (for rate-independent materials) by Houlsby (1981). The framework is applicable to both rate-independent and rate-dependent materials or systems, and uses internal variables (α, often plastic strains) to describe the loading history. In general, models are presented in terms of conjugate stress σ and strain ε variables. The variables σ, ε, α and related variables may be scalars, vectors or tensors depending on the model dimensionality.

Models in the hyperplasticity framework are fully specified in terms of two potential functions: one describing stored energy and one describing dissipation. This contrasts with the conventional plasticity approach, where specification of an elastic constitutive relationship, yield criterion, plastic potential and hardening law is required. Stored energy may be defined in terms of the Helmholtz free energy \(f(\varepsilon, \alpha) \) or the Gibbs free energy \(g(\sigma, \alpha) \). For rate-independent materials, dissipation may be defined in terms of the dissipation function \(d(\varepsilon, \alpha, \dot{\alpha}) \) or with a yield surface \(y(\varepsilon, \alpha, \chi) \); similar functions are defined for rate-dependent materials. The functions \(f \) and \(g \) are related through a Legendre transform and functions \(d \) and \(y \) are related through a degenerate Legendre transform.

The constitutive and incremental behaviour of a model is derived from the potentials with standardised procedures. With a model described by Helmholtz free energy \(f \) and dissipation \(d \) functions the behaviour is derived from:

\[
\sigma = \frac{\partial f}{\partial \varepsilon} \quad \bar{\chi} = -\frac{\partial f}{\partial \alpha} \quad \chi = \frac{\partial d}{\partial \dot{\alpha}} \quad \bar{\chi} = \chi \quad (7.1)
\]

Where \(\bar{\chi} \) is the generalised stress and \(\chi \) is the dissipative generalised stress, conjugate to the internal variable \(\alpha \). The condition \(\bar{\chi} = \chi \) is an expression of Ziegler’s orthogonality principle (Ziegler, 1977), which is central to the hyperplasticity
framework. This principle assumes that energy is dissipated at the maximal rate, and allows derivation of the constitutive response without any additional assumptions.

Where additional kinematic constraints are applied $c(\dot{\alpha}) = 0$, the dissipation function is augmented with a Lagrangian multiplier Λ:

$$d^* = d(\varepsilon, \alpha, \dot{\alpha}) + \Lambda c(\dot{\alpha})$$ \hspace{1cm} (7.2)

With the generalised stress given by:

$$\chi = \frac{\partial d^*}{\partial \dot{\alpha}} = \frac{\partial d}{\partial \dot{\alpha}} + \Lambda \frac{\partial c}{\partial \dot{\alpha}}$$ \hspace{1cm} (7.3)

The Lagrangian multiplier is eliminated by the use of the constraint $c(\dot{\alpha}) = 0$.

7.3.2 Multi-surface kinematic hardening models

Models in the HARM framework are based on multi-surface kinematic hardening models, which adhere to the extended Masing rules. These models are commonly referred to as Iwan models following the publication of the general characteristics of these models by Iwan (1967) for application to metals. Conceptually, these models are made up of M elastoplastic elements which each consist of a linear spring of stiffness H_m and a rate-independent cohesive (Coulomb) slider of strength K_m. Figure 7.1 shows how the elastoplastic elements (along with an additional solitary spring) are arranged for unidirectional models in either series or parallel configurations; the interpretation of parameters K_m and H_m differs between the configurations. Bi-directional models are more easily represented as a series of yield surfaces (circular with radius K_m for isotropic models) which define regions of constant stiffness E_m ($E_m = f(H_m)$ which varies between series and parallel models), as shown in Figure 7.2. The models generate multi-linear stress-strain ($\sigma - \varepsilon$) responses, as indicated in Figure 7.2 for loading and unloading in the y-direction, and automatically respond to any arbitrary, continuous loading.

As well as forming the basis of the ratcheting models presented by Houlsby et al. (2017), multi-surface kinematic hardening models have been used to capture the cyclic response of soils (Prévost, 1977; Mróż et al., 1978) and the macro response of caisson foundations (Nguyen-Sy and Houlsby, 2005; Skau et al., 2018) and monopile foundations (Page et al., 2018). Multi-surface kinematic hardening models are
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.1: Conceptual models of unidirectional multi-surface kinematic hardening models in series and parallel configurations

Figure 7.2: Representation of isotropic bi-directional multi-surface kinematic hardening models showing response to loading and unloading in the y-direction

presented here in hyperplasticity theory, but can also be described in conventional plasticity theory.

7.3.3 HARM framework

The Hyperplastic Accelerated Ratcheting Model (HARM) framework presented by Houlsby et al. (2017) was developed to capture the response of monopile foundations to cyclic lateral loading, but is applicable to other materials or systems which exhibit Masing behaviour augmented by ratcheting. Rate-dependent models of this sort were initially developed by Abadie (2015), and Houlsby et al. (2017) expanded the framework
to present both rate-dependent and rate-independent models using both series and parallel configurations, with extensions to two-dimensional and tensorial models. These models are able to capture the system’s continuous response to any arbitrary loading, but can also be accelerated to capture the total ratcheting response across a packet of regular cyclic loading with explicit calculation of a single cycle (Houlsby et al., 2017).

Models in this framework are based on multi-surface kinematic hardening models but include additional ratcheting elements, as indicated in Figure 7.3. Ratcheting strain α_r accumulates as a proportion R of plastic strain, where R may vary with both loading history and surface m ($R = R_m$ in general). Stiffness evolution can be captured if the strengths K_m are also made functions of the loading history. These models have been shown to capture the response of monopiles to regular, unidirectional cyclic loading at laboratory-scale in loose, dry sand (Abadie et al., 2019a) and at field-scale at both sand and clay sites (Beuckelaers, 2017). Balaam et al. (2020) has also demonstrated the ability of these models to capture the cyclic response of clay in cyclic simple shear apparatus to irregular multi-amplitude loading.

7.3.4 Modelling choices

Models in the HARM framework, and kinematic hardening models in general, can be formulated in either series or parallel, may be rate-independent or rate-dependent,
and may be implemented as macro models (Abadie, 2015; Abadie et al., 2019a), 1D Winkler models (Beuckelaers, 2017) or as tensorial models in 3D finite element software (Houlsby et al., 2017).

Series models are employed here as they are more suited to computation of strain given a stress input, and simulations are conducted here with stress input to be consistent with the load-controlled experiments. Series and parallel models can produce identical responses under unidirectional loading, but produce slightly different responses under multidirectional loading (Beuckelaers et al., 2018). Unfortunately, the suitability of either model formulation cannot be determined from the multidirectional data as the differences in model computations are obscured by differences in response due to experimental variability (see Figure 7.7, Section 7.4.4).

Rate-independent models are presented here, given the rate-independence observed experimentally. However, models which capture the rate effects observed in clays and saturated sands have been developed in the HARM framework by Beuckelaers (2017).

Macro models for the global pile response are used here. These single-element models represent the integrated response of the pile-soil system, which may be represented with greater fidelity using a 1D Winkler model or a tensorial model. The conjugate stress σ and strain ε variables therefore represent applied moment M and pile rotation θ (OU datasets) or applied horizontal load H and pile displacement at the load application point u (UWA datasets).

7.4 Capturing the hysteretic response

This Section explores the ability of kinematic hardening models, without ratcheting elements, to capture the hysteretic response of monopile foundations observed in the first few cycles. In particular, the suitability of a bi-directional kinematic hardening model is explored. The hyperplastic model formulations are first presented.
7. Modelling the response of a monopile to complex cyclic loading

7.4.1 Unidirectional hyperplastic kinematic hardening model

The model is defined in terms of the Helmholtz free energy function f and the dissipation function d:

$$f = \frac{H_0}{2} \left(\varepsilon - \sum_{m=1}^{M} \alpha_m \right)^2 + \sum_{m=1}^{M} \frac{H_m}{2} \alpha_m^2 \quad (7.4)$$

$$d = \sum_{m=1}^{M} K_m |\dot{\alpha}_m| \quad (7.5)$$

The internal variables may be interpreted as the plastic strains α_m, while H_m, K_m and H_0 values are used to calibrate the model, as discussed in Section 7.4.3. The model’s constitutive behaviour is derived as:

$$\sigma = \frac{\partial f}{\partial \varepsilon} = H_0 \left(\varepsilon - \sum_{m=1}^{M} \alpha_m \right) \quad (7.6)$$

$$\bar{\chi}_m = -\frac{\partial f}{\partial \alpha_m} = H_0 \left(\varepsilon - \sum_{m=1}^{M} \alpha_m \right) - H_m \alpha_m = \sigma - H_m \alpha_m \quad (7.7)$$

$$\chi_m = \frac{\partial d}{\partial \dot{\alpha}_m} = K_m |\dot{\alpha}_m| \quad (7.8)$$

$$\chi_m = \bar{\chi}_m \Rightarrow \sigma - H_m \alpha_m = K_m |\dot{\alpha}_m| \quad (7.9)$$

The incremental total strain response can then be derived by differentiation and rearrangement of Equation 7.6:

$$d\varepsilon = \frac{d\sigma}{H_0} + \sum_{m=1}^{M} d\alpha_m \quad (7.10)$$

The yield functions y_m are implicit in Equation 7.9. At yield, when $\dot{\alpha}_m \neq 0$:

$$y_m = |\sigma - H_m \alpha_m| - K_m = |\chi_m| - K_m = 0 \quad (7.11)$$

Finally, the plastic strain increment is found by differentiation of the yield functions y_m with respect to time, where the consistency condition enforces $\dot{y}_m = 0$:

$$d\alpha_m = \frac{d\sigma}{H_m} \quad (7.12)$$

In numerical implementation, the yield conditions are determined using α_m from the previous increment. However, the expression for plastic strain increment is exact.
7.4.2 Bi-directional hyperplastic kinematic hardening model

The unidirectional model presented in Section 7.4.1 is extended here for bi-directional loading. It is a simplified version of the bi-directional ratcheting model presented by Houlsby et al. (2017). The model response is independent of loading direction, as expected for piles under lateral loading in a transversely-isotropic soil. The model is developed in terms of \(x \)- and \(y \)-components of stress \(\sigma \) and strain \(\varepsilon \):

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y
\end{bmatrix}
\]

The model is defined in terms of the Helmholtz free energy function \(f \) and the dissipation function \(d \):

\[
f = \frac{H_0}{2} \left((\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx})^2 + (\varepsilon_y - \sum_{m=1}^{M} \alpha_{my})^2 \right) + \sum_{m=1}^{M} \frac{H_m}{2} \left(\alpha_{mx}^2 + \alpha_{my}^2 \right)
\]

\[
d = \sum_{m=1}^{M} K_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}
\]

The model’s constitutive behaviour is derived as:

\[
\sigma_x = \frac{\partial f}{\partial \varepsilon_x} = H_0 \left(\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx} \right) \quad \sigma_y = \frac{\partial f}{\partial \varepsilon_y} = H_0 \left(\varepsilon_y - \sum_{m=1}^{M} \alpha_{my} \right)
\]

\[
\dot{\chi}_{mx} = -\frac{\partial f}{\partial \alpha_{mx}} = H_0 \left(\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx} \right) - H_m \alpha_{mx} = \sigma_x - H_m \alpha_{mx}
\]

\[
\dot{\chi}_{my} = -\frac{\partial f}{\partial \alpha_{my}} = H_0 \left(\varepsilon_y - \sum_{m=1}^{M} \alpha_{my} \right) - H_m \alpha_{my} = \sigma_y - H_m \alpha_{my}
\]

\[
\chi_{mx} = \frac{\partial d}{\partial \dot{\alpha}_{mx}} = K_m \frac{\ddot{\alpha}_{mx}}{\sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}} \quad \chi_{my} = \frac{\partial d}{\partial \dot{\alpha}_{my}} = K_m \frac{\ddot{\alpha}_{my}}{\sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}}
\]

\[
\chi_{mx} = \chi_{mx} \Rightarrow \sigma_x - H_m \alpha_{mx} = K_m \frac{\ddot{\alpha}_{mx}}{\sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}}
\]

\[
\chi_{my} = \chi_{my} \Rightarrow \sigma_y - H_m \alpha_{my} = K_m \frac{\ddot{\alpha}_{my}}{\sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}}
\]

The incremental total strain response is derived by differentiation and rearrangement of Equation 7.16:

\[
d\varepsilon_x = \frac{d\sigma_x}{H_0} + \sum_{m=1}^{M} d\alpha_{mx} \\
d\varepsilon_y = \frac{d\sigma_y}{H_0} + \sum_{m=1}^{M} d\alpha_{my}
\]

(7.20)
The yield functions y_m can be obtained by summing the squares of Equation 7.19 in the x- and y-direction. At yield, when $\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2 \neq 0$:

$$y_m = \sqrt{(\sigma_x - H_m \alpha_{mx})^2 + (\sigma_y - H_m \alpha_{my})^2} - K_m = \sqrt{\chi_{mx}^2 + \chi_{my}^2} - K_m = 0$$ (7.21)

The following relationship between generalised stresses and plastic strain rates is also obtained from Equation 7.19:

$$\frac{\chi_{mx}}{\chi_{my}} = \frac{\dot{\alpha}_{mx}}{\dot{\alpha}_{my}}$$ (7.22)

Substituting this ratio into the consistency condition ($\dot{y}_m = 0$) yields expressions for the plastic strain increments:

$$d\alpha_{mx} = \lambda \frac{\chi_{mx}}{H_m} d\alpha_{my} = \lambda \frac{\chi_{my}}{H_m}$$ (7.23)

Where λ is conventionally termed the plastic multiplier, determined as:

$$\lambda = \frac{\chi_{mx} d\sigma_x + \chi_{my} d\sigma_y}{K_m^2}$$ (7.24)

In numerical implementation, χ_{mx}, χ_{my} are determined using α_m from the previous increment. The solution for plastic strain increment $d\alpha_{mx}, d\alpha_{my}$ is therefore not exact, however, instabilities are avoided with sufficiently small load increments.

7.4.3 Calibration of kinematic hardening models

The kinematic hardening model parameters K_m and H_m are obtained for a series model from M points on a backbone curve (ε_m, σ_m) using the following relationships:

$$\sigma_m = K_m, \quad m = 1...M$$ (7.25)

$$\varepsilon_m = \sum_{i=0}^{m-1} \frac{K_m - K_i}{H_i}, \quad m = 1...M, K_0 = 0$$ (7.26)

Any monotonically increasing backbone curve can be captured, satisfying key behaviour 1 (Table 7.1). The slider strengths are typically arranged in increasing order ($K_{i+1} > K_i$), and the number of surfaces M is chosen to fit a given backbone curve with the required accuracy. Here, $M = 100$ surfaces were typically used, with σ_m evenly distributed from 0 to σ_R.
In practice, the backbone curve is an essential output of a monotonic monopile design, which is a pre-requisite for cyclic design. Various monotonic design approaches may be taken: conducting 3D finite element simulations, applying the numerical or rule-based PISA method (Byrne et al., 2017), or using established \(p-y \) methods (as presented in e.g. DNV GL, 2016). Here, the unidirectional backbone curves obtained experimentally are used for calibration of parameters \(K_m \) and \(H_m \), as monotonic design is not the focus of this work.

Although points \((\varepsilon_m, \sigma_m)\), and therefore parameters \(K_m \) and \(H_m \), could be obtained directly from the experimental backbone curves, specification of analytical functions for the backbone curves ensures smoothness of the model parameters and facilitates scaling. Three analytical functions are considered:

1. A Ramberg-Osgood (Ramberg and Osgood, 1943) or power-law relationship, as used by Abadie et al. (2019a) to capture the response of a model monopile in loose, dry sand:

\[
\varepsilon = \frac{\sigma}{E_i} + \left(\varepsilon_R - \frac{\sigma_R}{E_i} \right) \left(\frac{\sigma}{\sigma_R} \right)^{P_p} \tag{7.27}
\]

2. An expression presented by Jeanjean et al. (2017) for the response of clays, modified to include an elastic component:

\[
\varepsilon = \frac{\sigma}{E_i} + \left(\varepsilon_R - \frac{\sigma_R}{E_i} \right) \left(\frac{\arctanh \left(\frac{\sigma_R \tanh(P_j)}{P_j} \right)}{P_j} \right)^2 \tag{7.28}
\]

3. A conic function, as used to represent the soil reactions as part of the PISA project (e.g. Burd et al., 2019):

\[
\varepsilon = \frac{\sigma}{E_i} + \frac{2\varepsilon_{pu} C}{-B + \sqrt{D}} \tag{7.29}
\]

Where \(\varepsilon_{pu} = \varepsilon_R - \frac{\sigma_R}{E_i} ; A = P_c \left(\frac{\sigma_R}{E_{r_{pu}}} \right) ; B = -2 A \frac{\sigma}{\sigma_R} + (1 - P_c) \left(1 + \frac{\sigma_R}{E_{r_{pu}}} \right)^2 \left(\frac{\sigma}{\sigma_R} - 1 \right) ; \)

\[C = A \left(\frac{\sigma}{\sigma_R} \right)^2 ; D = \max \left(B^2 - 4AC, 0 \right) . \]

Figure 7.4 shows the fits obtained to the mean experimental backbone curves, for each of the five datasets, using each of the analytical functions. The fits are presented in three ways, in terms of i) the moment-rotation or load-displacement response, ii) the tangent stiffness \(K_t \) response, and iii) the fitting error \(\theta_e \) or \(u_e \) across the response. The
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.4: Fitting analytical functions to mean experimental backbone curves
initial stiffness E_i values were set equal to the maximum stiffness values $E_i = k_{MAX}$, the reference stress values σ_R were set to either M_R or H_R and the reference strain values ε_R were set to either θ_R or u_R, as defined experimentally in Sections 3.4.3 and 6.5.1. The remaining fitting parameters (P_p, P_j, P_c for Equations 7.27, 7.28, 7.29) were then obtained by regression analyses with θ or u as the dependent variable.

The power-law (Equation 7.27) provides a very good fit to the OU very loose data
and UWA 80g data, while the Jeanjean expression (Equation 7.28) provides the best fit to the OU dense, UWA 1g and UWA 9g data. Table 7.2 summarises the chosen analytical function, fitting parameters and goodness of fit metric (R^2) for each dataset.

7.4.4 Computation of hysteretic response

Figure 7.5 presents computations of the unidirectional hysteretic responses using the unidirectional model described in Section 7.4.1, calibrated to each dataset as described in Section 7.4.3. Increasing amplitude 2-way tests demonstrate the model performance for the OU datasets, while the first four cycles of symmetric 2-way tests are used for the UWA datasets. The kinematic hardening model complies with the extended Masing rules, which the experimental responses approximately follow for the first few cycles (key behaviour 2, Table 7.1). The model therefore approximately captures the hysteretic response for all datasets. The model does not capture gapping, which is most marked in the UWA 1g data, and does not capture the increase in secant stiffness observed in the OU dense, UWA 9g and UWA 80g data.

Figure 7.6 shows the performance of the bi-directional model described in Section 7.4.2, calibrated following Section 7.4.3, under multidirectional spiral loading in OU very loose and dense sand. Although spiral loading is not realistic, these data present a robust test of the bi-directional model formulation. The OU very loose data is captured with excellent accuracy, while the OU dense data is captured with reasonable accuracy. The OU dense test was thought to be affected by sample inhomogeneity (discussed in Section 4.5), which may explain the poorer model performance. The results indicate that the bi-directional model formulation proposed by Houlsby et al. (2017) is appropriate for capturing the response of a monopile to multidirectional lateral loading.

As discussed in Section 7.3.4, series and parallel kinematic hardening models produce slightly different responses under multidirectional loading (Beuckelaers et al., 2018). To explore this, computations are presented in Figure 7.7 using i) the series model used throughout this Chapter, and ii) an equivalent parallel model (as presented in e.g. Houlsby et al., 2017). A range of rotation responses are presented for each model, corresponding to a ±5% variation in the value of σ_R used to define the backbone curve;
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.5: Computation of unidirectional hysteretic responses using unidirectional kinematic hardening model

(model computations, experimental data)
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.6: Computation of multidirectional hysteretic responses using bi-directional kinematic hardening model

\[\theta / \theta_R \]

(a) OU very loose

(b) OU dense

the range of responses therefore account for typical experimental variability. The difference in the computations is sufficiently subtle that, when experimental variability is accounted for, there is significant overlap in the predicted responses. The series model appears to perform better for the OU very loose dataset, but no such distinction can be made for the OU dense dataset; in general it is not possible to establish a preferred model on the basis of these tests. Indeed, additional trial computations suggest that it may not be possible to devise a multidirectional test which is able to establish a preferred model.

7.5 Capturing the high-cycle response

This Section explores the ability of models in the HARM framework to capture the high-cycle response, which includes ratcheting and stiffening. Unidirectional and bi-directional hyperplastic ratcheting models (Houlsby et al., 2017) are first presented, before discussing evolution functions and calibration, and finally computing the responses to regular cyclic loading and multi-amplitude storm loading.
7. Modelling the response of a monopile to complex cyclic loading

7.5.1 Unidirectional hyperplastic ratcheting model

The unidirectional ratcheting model builds on the unidirectional kinematic hardening model presented in Section 7.4.1 and was presented and demonstrated by Houlsby et al. (2017). The Helmholtz free energy function f and dissipation function d both include a contribution from ratcheting strain α_r, which plays the role of an additional internal variable:

$$ f = \frac{H_0}{2} \left(\varepsilon - \sum_{m=1}^{M} \alpha_m - \alpha_r \right)^2 + \sum_{m=1}^{M} \frac{H_m}{2} \alpha_m^2 \quad (7.30) $$

$$ d = \left(\sum_{m=1}^{M} K_m |\dot{\alpha}_m| \right) + \sigma |\dot{\alpha}_r| \quad (7.31) $$

Where a constraint defines the ratcheting strain α_r:

$$ c = \dot{\alpha}_r - \frac{\sigma}{|\sigma|} \sum_{m=1}^{M} R_m |\dot{\alpha}_m| = 0 \quad (7.32) $$

The model's constitutive behaviour is derived as:

$$ \sigma = \frac{\partial f}{\partial \varepsilon} = H_0 \left(\varepsilon - \sum_{m=1}^{M} \alpha_m - \alpha_r \right) $$

$$ \bar{\chi}_m = - \frac{\partial f}{\partial \alpha_m} = H_0 \left(\varepsilon - \sum_{m=1}^{M} \alpha_m - \alpha_r \right) - H_m \alpha_m = \sigma - H_m \alpha_m \quad (7.34) $$
7. Modelling the response of a monopile to complex cyclic loading

\[
\dot{\chi}_r = -\frac{\partial f}{\partial \alpha_r} = H_0 \left(\varepsilon - \sum_{m=1}^{M} \alpha_m - \alpha_r \right) = \sigma \tag{7.35}
\]

\[
\chi_m = \frac{\partial d^*}{\partial \dot{\alpha}_m} = K_m \dot{\alpha}_m - \Lambda \frac{\sigma}{|\sigma|} R_m \dot{\alpha}_m \tag{7.36}
\]

\[
\chi_r = \frac{\partial d^*}{\partial \dot{\alpha}_r} = \sigma + \Lambda \tag{7.37}
\]

\[
\chi_r = \bar{\chi}_r \Rightarrow \Lambda = 0 \tag{7.38}
\]

\[
\chi_m = \bar{\chi}_m \Rightarrow \sigma - H_m \alpha_m = K_m \frac{\dot{\alpha}_m}{|\dot{\alpha}_m|} \tag{7.39}
\]

The incremental total strain response is derived from Equation 7.33:

\[
d\varepsilon = \frac{d\sigma}{H_0} + \sum_{m=1}^{M} d\alpha_m + d\alpha_r \tag{7.40}
\]

While the constraint (Equation 7.32) defines the increment of ratcheting strain:

\[
d\alpha_r = \frac{\sigma}{|\sigma|} \sum_{m=1}^{M} R_m |\dot{\alpha}_m| \tag{7.41}
\]

This expression is consistent with key behaviour 3 (Table 7.1), given that \(d\alpha_r\) is aligned with the sign of the incremental load. The yield functions and incremental plastic strain are the same as for the kinematic hardening model, and are implicit in Equation 7.39. At yield, when \(\dot{\alpha}_m \neq 0\):

\[
y_m = |\sigma - H_m \alpha_m| - K_m = |\chi_m| - K_m = 0 \tag{7.42}
\]

\[
d\alpha_m = \frac{d\sigma}{H_m} \tag{7.43}
\]

7.5.2 Bi-directional hyperplastic ratcheting model

The unidirectional ratcheting model presented in Section 7.5.1 is extended here for bi-directional loading, as proposed by Houlsby et al. (2017). This model builds on the bi-directional kinematic hardening model presented in Section 7.4.2, which was shown to capture the multidirectional hysteretic response in Section 7.4.4. The model is developed in terms of \(x\)- and \(y\)-components of stress \(\sigma\) and strain \(\varepsilon\) and is defined in terms of the Helmholtz free energy function \(f\), dissipation function \(d\) and constraints \(\varepsilon_x, \varepsilon_y\):

\[
f = \frac{H_0}{2} \left(\left(\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx} - \alpha_{rx} \right)^2 + \left(\varepsilon_y - \sum_{m=1}^{M} \alpha_{my} - \alpha_{ry} \right)^2 \right) + \sum_{m=1}^{M} \frac{H_m}{2} \left(\alpha_{mx}^2 + \alpha_{my}^2 \right) \tag{7.44}
\]
7. Modelling the response of a monopile to complex cyclic loading

\[d = \left(\sum_{m=1}^{M} K_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2} \right) + \sigma_x \dot{\alpha}_{rx} + \sigma_y \dot{\alpha}_{ry} \]
(7.45)

\[c_x = \dot{\alpha}_{rx} - \frac{\sigma_x}{\sqrt{\sigma_x^2 + \sigma_y^2}} \sum_{m=1}^{M} R_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2} = 0 \]
(7.46)

\[c_y = \dot{\alpha}_{ry} - \frac{\sigma_y}{\sqrt{\sigma_x^2 + \sigma_y^2}} \sum_{m=1}^{M} R_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2} = 0 \]
(7.47)

The model’s constitutive behaviour is derived here in the \(x \)-direction only, for brevity:

\[\sigma_x = \frac{\partial f}{\partial \varepsilon_x} = H_0 \left(\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx} - \alpha_{rx} \right) \]
(7.48)

\[\bar{\chi}_{mx} = -\frac{\partial f}{\partial \alpha_{mx}} = H_0 \left(\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx} - \alpha_{rx} \right) - H_m \alpha_{mx} = \sigma_x - H_m \alpha_{mx} \]
(7.49)

\[\bar{\chi}_{rx} = -\frac{\partial f}{\partial \alpha_{rx}} = H_0 \left(\varepsilon_x - \sum_{m=1}^{M} \alpha_{mx} - \alpha_{rx} \right) = \sigma_x \]
(7.50)

\[\chi_{mx} = \frac{\partial d^*}{\partial \dot{\alpha}_{mx}} = K_m \frac{\dot{\alpha}_{mx}}{\sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}} - \Lambda \frac{\sigma_x}{\sqrt{\sigma_x^2 + \sigma_y^2}} \sum_{m=1}^{M} R_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2} \]
(7.51)

\[\chi_{rx} = \frac{\partial d^*}{\partial \dot{\alpha}_{rx}} = \sigma_x + \Lambda \]
(7.52)

\[\chi_{rx} = \bar{\chi}_{rx} \Rightarrow \Lambda = 0 \]
(7.53)

\[\chi_{mx} = \bar{\chi}_{mx} \Rightarrow \sigma_x - H_m \alpha_{mx} = K_m \frac{\dot{\alpha}_{mx}}{\sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}} \]
(7.54)

The incremental total strain response is derived from Equation (7.48) (the equivalent \(y \)-direction expression is also presented):

\[d\varepsilon_x = \frac{d\sigma_x}{H_0} + \sum_{m=1}^{M} d\alpha_{mx} + d\alpha_{rx} \quad d\varepsilon_y = \frac{d\sigma_y}{H_0} + \sum_{m=1}^{M} d\alpha_{my} + d\alpha_{ry} \]
(7.55)

While the constraints (Equation 7.46 and 7.47) define the increments of ratcheting strain:

\[d\alpha_{rx} = \frac{\sigma_x}{\sqrt{\sigma_x^2 + \sigma_y^2}} \sum_{m=1}^{M} R_m \sqrt{d\alpha_{mx}^2 + d\alpha_{my}^2} \]
(7.56)

\[d\alpha_{ry} = \frac{\sigma_y}{\sqrt{\sigma_x^2 + \sigma_y^2}} \sum_{m=1}^{M} R_m \sqrt{d\alpha_{mx}^2 + d\alpha_{my}^2} \]
(7.56)

These expressions are consistent with key behaviour 3 (Table 7.1), with \(d\alpha \) aligned with the incremental load direction. The yield functions \(y_m \) are the same as for the
bi-directional kinematic hardening model, and are implicit in Equation\(^7.54\). At yield, when \(\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2 \neq 0\):

\[
y_m = \sqrt{(\sigma_x - H_m\alpha_{mx})^2 + (\sigma_y - H_m\alpha_{my})^2} - K_m = \sqrt{\chi_{mx}^2 + \chi_{my}^2} - K_m = 0
\]

\[
d\alpha_{mx} = \lambda \frac{\chi_{mx}}{H_m} d\alpha_{my} = \lambda \frac{\chi_{my}}{H_m}
\]

\[
\lambda = \frac{\chi_{mx} d\sigma_x + \chi_{my} d\sigma_y}{K_m^2}
\]

7.5.3 Calibration of ratcheting models

To capture ratcheting behaviour which decreases in rate with loading history, the ratcheting factor \(R_m\) is made a function of a scalar hardening parameter \(\beta\). Changes in stiffness are also captured by making \(K_m\) vary with either the same, or a different, hardening parameter. It is more straightforward to evolve stiffness by evolving the slider strengths \(K_m\) than the spring stiffness \(H_m\), as the derivatives of the Helmholtz free energy functions \(f\) would change if \(H_m = f(\beta)\) (Houlsby et al., 2017). Selection of the evolution functions \(R_m = f(\beta)\) and \(K_m = f(\beta)\) is discussed in detail in Section 7.5.4 and calibration of these functions is discussed in Section 7.5.5.

The parameters \(H_m\) and \(K_{m0}\) (the initial values of \(K_m\)) are initially calibrated following the approach for kinematic hardening models outlined in Section 7.4.3. However, the inclusion of ratcheting and stiffening causes the initial loading computation to depart from the backbone curve. It is therefore necessary to modify the initial parameters as part of evolution function calibration to ensure the backbone curve is followed on initial loading. Here, backbone correction was achieved by adjusting the \(H_m\) values, keeping the \(K_{m0}\) values unchanged. A two-parameter function was fitted to the variation of \(H_m\) with surface \(m\) \((H_m = Dm^E)\), and the parameters \((D, E)\) were optimised to minimise the error between the backbone curve and the initial loading computation affected by ratcheting and stiffening.

7.5.4 Evolution functions

This Section describes selection of the hardening parameter \(\beta\) and evolution functions \(R_m = f(\beta)\) and \(K_m = f(\beta)\), which control the computed ratcheting, stiffening, and related energy dissipation and post-cyclic response.
7. Modelling the response of a monopile to complex cyclic loading

Hardening parameter β

The hardening parameter β should increase monotonically with loading history, but can take various forms. Houlsby et al. (2017) suggest both strain-type values ($\dot{\beta} = |\dot{\alpha}_r|$, $\dot{\beta} = \sum_{m=1}^{M} |\dot{\alpha}_m|$) and work-type values ($\dot{\beta} = \sigma \dot{\alpha}_r$, $\dot{\beta} = \sum_{m=1}^{M} K_m |\dot{\alpha}_m|$). The accumulated ratcheting strain $\dot{\beta} = |\dot{\alpha}_r|$ was used by Abadie (2015), Abadie et al. (2019a) and Beuckelaers (2017). However, a work-type hardening parameter is used here as this makes the evolution functions and parameters comparable between series and parallel model formulations. The hardening parameter was also chosen to evolve with plastic strain α_m, rather than ratcheting strain α_r, as this eases calibration of the ratcheting evolution function R_m and allows stiffness evolution to be implemented independently of ratcheting behaviour. Local or surface-specific (β_m) and global (β) hardening parameters are defined here for bi-directional loading:

$$\hat{\beta}_m = \frac{K_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}}{\sigma_R}$$

(7.60)

$$\dot{\beta} = \sum_{m=1}^{M} \hat{\beta}_m = \sum_{m=1}^{M} \left(\frac{K_m \sqrt{\dot{\alpha}_{mx}^2 + \dot{\alpha}_{my}^2}}{\sigma_R} \right)$$

(7.61)

The hardening parameters are independent of strain direction, allowing the evolution functions to evolve independently of cyclic loading direction to capture key behaviour 8 (Table 7.1).

Function for R_m

The evolution function for R_m should capture the observed power-law evolution of ratcheting with cycle number n (key behaviour 4, Table 7.1). Abadie et al. (2015), Abadie et al. (2019a) and Beuckelaers (2017) captured the evolution of ratcheting with functions of the form:

$$R_m = R_0 \left(\frac{\beta}{\beta_0} \right)^{-m_r} \cdot f(K_m, \sigma, ...)$$

(7.62)

Where β_0 is the initial value of hardening parameter β, and is specified as an arbitrary small value. Although functions of this form are able to capture ratcheting under biased loading, the rate of change of R_m at small β is very large, which can significantly
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.8: Example of distortion of Masing behaviour when using power-law expression for \(R_m \)

Figure 7.9: Illustration of proposed evolution function for \(R_m \)

distort Masing behaviour. Figure 7.8 exemplifies this effect with two computations for test D.TW.04: one using a kinematic hardening model and one using a ratcheting model employing the example evolution functions from Houlsby et al. (2017), which follow Equation 7.62.

Instead, a modified power-law function for \(R_m \) is proposed, which reduces distortion of Masing behaviour:

\[
R_m = R_0 \left(1 + \frac{\beta}{\beta^*} \left(\frac{R_m}{R_0} \right)^{\frac{1}{m_r}} - 1 \right)^{-m_r}
\]

(7.63)

At large values of \(\beta \) this function resembles a power-law, but at small values of \(\beta \) the rate of change of the function is limited. Parameter \(R_0 \) is the value of the function at \(\beta = 0 \), exponent \(m_r \) is positive and controls the rate of change of the function
at large β, and the pair of parameters β^* and R^* ($R^* < R_0$) control the magnitude of the function (by pinning it to point \ast). As the parameters β^* and R^* are coupled, one is arbitrary. The function is illustrated in Figure 7.9 and may also be expressed in the following symmetric form:

$$\frac{1}{\beta} \left(\frac{R_0}{R_m} \right)^{\frac{1}{m_r}} - 1 = \frac{1}{\beta^*} \left(\frac{R_0}{R^*} \right)^{\frac{1}{m_r}} - 1$$ \hspace{1cm} (7.64)

The function for R_m should also capture the power-law increase in magnitude of ratcheting with cyclic amplitude (key behaviour 5, Table 7.1). Here, stress-dependency is captured by making R^* a function of stress σ. For bi-directional loading:

$$R^* = R_R^* \left(\frac{\sqrt{\sigma_x^2 + \sigma_y^2}}{\sigma_R} \right)^{m_s}$$ \hspace{1cm} (7.65)

Where R_R^* is the value of R^* at $\sqrt{\sigma_x^2 + \sigma_y^2} = \sigma_R$ and the exponent m_s is positive. The resulting combined expression for R_m does not vary with surface m and is expressed here as R:

$$R = R_0 \left(1 + \frac{\beta}{\beta^*} \left(\frac{R_0}{R^*_R} \left(\frac{\sqrt{\sigma_x^2 + \sigma_y^2}}{\sigma_R} \right)^{m_s} \right)^{\frac{1}{m_r}} - 1 \right)^{-m_r}$$ \hspace{1cm} (7.66)

Figure 7.10 plots the variation of R with β and $\sqrt{\sigma_x^2 + \sigma_y^2} = \sigma_R$, using example parameter values. The pinned point (β^*, R_R^*) is indicated \ast. The parameter β^* is defined in terms of a global work metric in Equation 7.73.

Function for K_m

To capture the change in secant stiffness k_n under cyclic loading the slider strengths K_m are made a function of the hardening parameter β and expressed in terms of $\kappa = K_m/K_{m0}$. In order to use experimental secant stiffness k_n values to inform the choice of evolution function for K_m (or equivalently κ), the relationship between κ and secant stiffness k_n is first explored.

Figure 7.11 shows how κ scales the computed backbone curves, for the example case of $\kappa = 2$. The increase in secant stiffness (between σ_1 and σ_2, where $\sigma_2 > \sigma_1$) for a given κ may be approximated with the Masing rules, given an analytical expression
Figure 7.10: Variation of R (Equation 7.66) with β and $|\sigma|/\sigma_R$ ($R_0 = 1, m_r = 0.85, \beta^* = 1, R^*_R = 0.2, m_s = 3$) for the backbone curve ($\varepsilon = f(\sigma)$). For a backbone curve defined with a power-law (Equation 7.27) secant stiffness approximately varies with κ as:

$$
\frac{k_n}{k_0} = \frac{\sigma_1 - \sigma_2}{E_i} + 2 \left(\varepsilon_R - \frac{\sigma_R}{E_i} \right) \left(\frac{\sigma_1 - \sigma_2}{2\sigma_R} \right)^{P_p} \left(\frac{\sigma_R}{E_i} \right)^{P_p}
$$

(7.67)

Where k_0 is the initial secant stiffness. Meanwhile, for a backbone defined with the Jeanjean expression (Equation 7.28):

$$
\frac{k_n}{k_0} = \frac{\sigma_1 - \sigma_2}{E_i} + 2 \left(\varepsilon_R - \frac{\sigma_R}{E_i} \right) \left(\frac{\sigma_1 - \sigma_2}{2\sigma_R} \right)^{P_p} \left(\frac{\sigma_R}{E_i} \right)^{P_p} \left(\frac{\arctan \left(\frac{\sigma_1 - \sigma_2}{2\kappa\sigma_R} \tanh(P_j) \right)}{P_j} \right)^2
$$

(7.68)

Figure 7.12 plots k_n/k_0 for the OU dense backbone curve to demonstrate the non-linear dependency of k_n/k_0 on both σ and κ; the dependency is similar for the other backbone curves.

Accounting for this non-linear dependency, approximate experimental values for κ (κ_e) are determined from measured secant stiffness k_n values by employing Equation 7.67 or 7.68 with parameter values from Table 7.2. These values are plotted against cycle number n in Figure 7.13 for exemplar 1-way and 2-way tests from each dataset. Neglecting ratcheting, cycle number n is approximately proportional to β for regular cyclic loading. There is some variation in the shape of evolution of κ_e between 1-way and 2-way loading, consistent with the observed variation of stiffness evolution with
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.11: Illustration of impact of $\kappa = K_m/K_{m0}$ on secant stiffness k_n

Figure 7.12: Approximate variation of secant stiffness k_n/k_0 with κ and $(\sigma_2 - \sigma_1)/\sigma_R$ for OU dense backbone curve

Figure 7.13: Variation of experimental value for κ (κ_e) with cycle number N (approximately proportional to β)

load type. The magnitude of κ_e also varies between datasets. However, overall, the data plots approximately linearly in log-log space and supports the use of a power-law to capture the evolution of κ with β. Power-law functions were also used by Abadie (2015), Houlsby et al. (2017) and Abadie et al. (2019a).

Modified power-laws with a similar functional form to that used for R are proposed to capture the evolution of stiffness. These functions approximate power-laws at large β and ensure $\kappa = 1$ at $\beta = 0$. Stiffening can be applied globally to all surfaces (as ratcheting is, employing global hardening variable β) or locally at each surface m (employing local
7. Modelling the response of a monopile to complex cyclic loading

![Diagram showing proposed evolution functions for $\kappa_m = K_m/K_{m0}$ and $\kappa_g = K_m/K_{m0}$](image)

Figure 7.14: Illustration of proposed evolution functions for $\kappa_m = K_m/K_{m0}$ and $\kappa_g = K_m/K_{m0}$

Hardening variable β_m. Local stiffness evolution is represented by κ_m (Equation 7.69) and global stiffness evolution by κ_g (Equation 7.70):

$$\kappa_m = \frac{K_m}{K_{m0}} = \left(1 + \frac{\beta_m}{\beta_m^*} \left(\kappa_m^* (1/m_{km}) - 1\right)\right)^{m_{km}} \tag{7.69}$$

$$\kappa_g = \frac{K_m}{K_{m0}} = \left(1 + \frac{\beta}{\beta^*} \left(\kappa_g^* (1/m_{kg}) - 1\right)\right)^{m_{kg}} \tag{7.70}$$

These functions are illustrated in Figure 7.14. At $\beta_m = 0$ or $\beta = 0$, the functions are equal to unity, while at large β_m or β the functions evolve as power-laws with exponents m_{km} or m_{kg}. Stiffening behaviour is captured with positive exponents, while softening behaviour can be captured with negative exponents (Balaam, 2020). The function magnitude is controlled by pairs of parameters (β_m^*, κ_m^*) or (β^*, κ_g^*). Although parameters κ_m^* and m_{km} control local stiffness evolution they are assumed not to vary with surface m.

The local stiffening expression (Equation 7.69) is able to capture changes in secant stiffness k_n (key behaviour 7, Table 7.1), while the global stiffening expression (Equation 7.70) is also able to capture changes in stiffness beyond the strained region, as observed during post-cyclic reloading (key behaviour 10, Table 7.1). Neither equation alters the initial stiffness H_0. Combined local and global stiffening may be captured with the following expression (Balaam, 2020), which partitions local (κ_m) and global (κ_g) stiffening with a factor ρ_κ:

$$\kappa = \frac{K_m}{K_{m0}} = \kappa_m^{\rho_\kappa} \kappa_g^{1-\rho_\kappa} \tag{7.71}$$
To ensure consistency of evolution of κ_m across the surfaces the local reference hardening parameter β_m^* is set as proportional to a surface-specific work quantity. Here, the following expression is used:

$$\beta_m^* = F_{\beta^*} \frac{K_u K_m 0}{H_m}$$ \hspace{1cm} (7.72)

Where $K_u = K_m 0$ at $m = M$. Alternatively, $\beta_m^* = F_{\beta^*} \frac{K_m^2 0}{H_m}$ may be used, which leads to very similar results. The global reference hardening parameter β^* may then be set as a corresponding global parameter. Here, the following expression is used:

$$\beta^* = F_{\beta^*} 2 A$$ \hspace{1cm} (7.73)

Where A is the area beneath the backbone curve $(\varepsilon_m, \sigma_m)$ to K_u.

7.5.5 Evolution function parameters

Table 7.3 summarises the necessary parameters for calibration of the evolution functions for R (Equation 7.66) and K_m (Equations 7.69, 7.70 and 7.71). Four parameters calibrate the evolution of R while five parameters calibrate the evolution of K_m. However, the local and global stiffening parameters are chosen to be equal here ($m_{kg} = m_{km}, \kappa_{g}^* = \kappa_{m}^*$), for simplicity. Additionally, parameter F_{β^*} controls the value of the reference hardening parameters β^* and β_m^*. With $F_{\beta^*} = 5$ the reference hardening parameters tend to locate where the functions approximate power-laws, which increases parameter independence and therefore eases calibration; larger values of F_{β^*} would also be appropriate.

The evolution function parameters were manually chosen to approximately fit the regular, unidirectional, 1-way cyclic loading data. Focus was placed on capturing the ratcheting and stiffness evolution at high cycle numbers — and in combination — the post-cyclic reloading response. The resulting parameters are summarised in Table 7.4 for each dataset. Calibration methods are not explored in detail here, although the sensitivity of the computations to the parameters is explored. Analytical calibration methods have been presented by Abadie et al. (2019a) (for alternative evolution functions), while Balaam (2020) is exploring methods for calibration of HARM models from element testing data.
7. Modelling the response of a monopile to complex cyclic loading

K

\[R_0 \text{ Value of } R \text{ at } \beta = 0 \text{ and } |\sigma| = \sigma_R. \]

\[R^*_R \text{ Value of } R \text{ at } \beta = \beta^* \text{ and } |\sigma| = \sigma_R, \text{ controls magnitude of } R. \]

\[m_s \text{ Positive exponent which controls the stress-dependency of the magnitude of } R. \]

\[m_r \text{ Positive exponent which controls the rate of reduction of } R \text{ with } \beta \text{ at large } \beta. \]

\[\kappa_g^* \text{ Value of } \kappa_g \text{ at } \beta = \beta^*, \text{ controls the magnitude of } \kappa_g. \]

\[\kappa_m^* \text{ Value of } \kappa_m \text{ at } \beta_m = \beta_m^*, \text{ controls the magnitude of } \kappa_m. \text{ Assumed not to vary with surface } m. \]

\[m_{kg} \text{ Exponent which controls the rate of change of } \kappa_g \text{ with } \beta \text{ at large } \beta, \text{ positive for stiffening.} \]

\[m_{km} \text{ Exponent which controls the rate of change of } \kappa_m \text{ with } \beta_m \text{ at large } \beta_m, \text{ positive for stiffening. Assumed not to vary with surface } m. \]

\[\rho_k \text{ Factor which partitions local and global stiffness change, } \rho_k = 1 \text{ for solely local stiffness change, } \rho_k = 0 \text{ for solely global stiffness change.} \]

\[F_{\beta^*} \text{ Factor which controls the value of } \beta^* \text{ and } \beta_m^*. \]

Table 7.3: Description of parameters for calibration of evolution functions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OU very loose</th>
<th>OU dense</th>
<th>UWA 1g</th>
<th>UWA 9g</th>
<th>UWA 80g</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(R^*_R)</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>(m_s)</td>
<td>2.8</td>
<td>2.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>(m_r)</td>
<td>0.65</td>
<td>0.65</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>(\kappa_g^* = \kappa_m^*)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(m_{kg} = m_{km})</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>(\rho_k)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>(F_{\beta^*})</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 7.4: Summary of evolution function parameters manually calibrated to fit the regular, unidirectional, 1-way cyclic loading responses

Figure 7.15 explores the sensitivity of the computations to the parameter values for an example 1-way test in the UWA 9g dataset (9G.OW.03). The impact of each parameter on either ratcheting, secant stiffening or reloading is explored in turn, keeping the remaining parameters constant and equal to the values chosen for the UWA 9g dataset and presented in Table 7.4. For parameters \(R^*_R, m_s, m_r\) and \(m_{kg} = m_{km}\), sensitivity is explored across the range of parameter values obtained by manual calibration to each of the five datasets. For parameters \(R_0, \kappa_g^* = \kappa_m^*\) and \(\rho_k\),
where the parameter values do not vary across the manual calibrations, sensitivity is explored across an arbitrary parameter range.

Figure 7.15b, c, d, f shows that the computations are sensitive to parameters R_R^*, m_s, m_r and $m_{kg} = m_{km}$ across the range of values obtained in manual calibration. Parameters R_R^* and m_s affect ratcheting magnitude as expected, but also impact ratcheting rate. Meanwhile, parameter m_r only subtly affects ratcheting rate across the range of values obtained in manual calibration, but also impacts ratcheting magnitude. Parameter $m_{kg} = m_{km}$ affects the rate of stiffness evolution, as expected.

Figure 7.15a shows that the computations are not sensitive to R_0 across $0.1 \leq R_0 \leq 10$, which justifies the choice of a constant value for all computations. $R_0 = 1$ was chosen as ratcheting strain $d\alpha_r$ tends to be small compared to the associated plastic strain $\sum_{m=1}^{M} d\alpha_m$ (this is not, however, a theoretical requirement).

A constant value of parameter $\kappa_g = \kappa_m$ was found to be suitable across the datasets, however, Figure 7.15b demonstrates that the computations are sensitive to this parameter across the arbitrary range $1.5 \leq \left(\kappa_g = \kappa_m\right) \leq 5$. A constant value of ρ_c was also found to be suitable across the datasets. Indeed, including some global stiffening ($0 \leq \rho_c < 1.0$) ensures that $K_i < K_{i+1}$ as K_m evolves and avoids the computation of an elastic hysteretic response (which would occur if $K_i \geq K_{i+1}$ in the loading region). Figure 7.15g demonstrates the impact of ρ_c on the reloading response over its defined range $0 \leq \rho_c \leq 1$.

Some trends can be observed across the parameters obtained by manual calibration. In particular, parameters R_R^* and $m_{kg} = m_{km}$ decrease with increasing stress-level across the UWA datasets, consistent with the experimental observations in Chapter 6. The parameter m_s is also found to be approximately equal to experimental exponent m_σ, as highlighted in Figure 7.16. The experimental exponent m_σ captures the power-law variation of ratcheting magnitude with cyclic amplitude under 1-way loading (see Figure 4.8, Section 4.4.1; Figure 6.14, Section 6.5.2; Leblanc et al. (2010a) and Abadie (2015)). The similarity of these parameters may therefore be expected, as both capture the dependence of ratcheting magnitude on load. It would be appropriate to take $m_s = m_\sigma$ for initial calibration of this model to other datasets.
Figure 7.15: Exploration of sensitivity of computations to evolution function parameter values for example test in UWA 9g dataset (9G.OW.03)
(parameter values obtained in manual calibrations, arbitrary parameter values)
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.15: Exploration of sensitivity of computations to evolution function parameter values for example test in UWA 9g dataset (9G.OW.03) (parameter values obtained in manual calibrations, arbitrary parameter values)

Figure 7.16: Correlation between experimental exponent m_σ and evolution function parameter m_s

7.5.6 Computation of regular cyclic loading response

Figures 7.17 to 7.21 present computations of the regular cyclic response for each of the five datasets, employing either the unidirectional ratcheting model described in Section 7.5.1 or the bi-directional ratcheting model described in Section 7.5.2 with the evolution functions presented in Section 7.5.4. Section 7.4.3 describes calibration of the backbone parameters K_m and H_m, while Table 7.4 summarises the evolution function parameters, which were manually calibrated to unidirectional, 1-way responses. For
the UWA datasets, computations are presented for all tests conducted, as summarised in Tables 6.3 and 6.4, Section 6.3. For the OU datasets, where a greater number of tests were conducted, computations are presented for a representative selection of the tests summarised in Tables 4.1 and 4.2, Section 4.2.

Each Figure 7.17 to 7.21 presents a unidirectional hysteretic response, the evolution of ratcheting, secant stiffness and energy loss factor under various unidirectional and multidirectional cyclic loadings, and post-cyclic reloading responses; a multidirectional hysteretic response is also presented for the OU datasets. The corresponding experimental responses are presented (dashed) alongside the computations, to facilitate direct comparison. Some aspects of the responses are captured very well and others are captured less well, but together, Figures 7.17 to 7.21 demonstrate the ability of the calibrated models to capture the overall patterns of behaviour observed experimentally.

The inclusion of ratcheting and stiffening precludes exact adherence of the model computations to the extended Masing rules. Nevertheless, Masing behaviour is not significantly distorted and the unidirectional hysteretic responses are generally captured with good accuracy; the OU very loose case is an exception, where pile rotation is significantly underestimated upon unloading to $M/M_R = 0.6$. In contrast, the multidirectional hysteretic responses (for the OU datasets) present a challenge for the model. Pile rotation is underestimated at both densities, perhaps due to too rapid an increase in K_m. However, the inability of the models to capture this response is not a key concern, as this loading is not representative of that experienced by monopiles.

The magnitude and evolution of ratcheting under unidirectional, 1-way cyclic loading is captured accurately at various load amplitudes across the five datasets; indeed, these data were used for calibration of the evolution function parameters. Under perpendicular cyclic loading ratcheting is overestimated for the UWA 1g dataset but is captured well for the remaining four datasets: ratcheting under L-shape loading is captured accurately in both directions, while ratcheting under T-shape loading tends to be slightly underestimated. Ratcheting under moderate ($\Phi = 30^\circ$) fan-type loading is captured with reasonable accuracy for the OU datasets, although the models cannot
7. Modelling the response of a monopile to complex cyclic loading

(a) Unidirectional hysteretic response

(b) Multidirectional hysteretic response

(c) Ratcheting response

(d) Secant stiffening

(e) Evolution of energy loss factor

(f) Post-cyclic reloading

Figure 7.17: Computation of regular cyclic responses for OU very loose dataset using ratcheting models

(E.g. — model computations, experimental data)
7. Modelling the response of a monopile to complex cyclic loading

(a) Unidirectional hysteretic response

(b) Multidirectional hysteretic response

(c) Ratcheting response

(d) Secant stiffening

(e) Evolution of energy loss factor

(f) Post-cyclic reloading

Figure 7.18: Computation of regular cyclic responses for OU dense dataset using ratcheting models

(E.g. — model computations, —— experimental data)
7. Modelling the response of a monopile to complex cyclic loading

Figure 7.19: Computation of regular cyclic responses for UWA 1g dataset using ratcheting models

(E.g. — model computations, — experimental data)
7. Modelling the response of a monopile to complex cyclic loading

(a) Hysteretic response

(b) Ratcheting response

(c) Secant stiffening

(d) Evolution of energy loss factor

(e) Post-cyclic reloading

Figure 7.20: Computation of regular cyclic responses for UWA 9g dataset using ratcheting models

(E.g. --- model computations, ----- experimental data)
Figure 7.21: Computation of regular cyclic responses for UWA 80g dataset using ratcheting models

(E.g. — model computations, — experimental data)
capture the significant increase in ratcheting observed under fan-type loading at greater spread angles. The OU datasets also highlight the inability of the models to capture the increase in ratcheting that tends to be observed under partial 2-way loading.

The evolution of secant stiffness k_n under unidirectional, 1-way loading is captured reasonably well across the datasets. However, there is some variation in the magnitude of secant stiffness — which will also depend on the monotonic calibration — for the UWA 1\textsubscript{g} and OU very loose datasets. Under multidirectional (T-shape, L-shape and moderate fan-type) loading, the evolution of secant stiffness is generally captured as well as under unidirectional loading, while the stiffness evolution under 2-way and partial 2-way loading is often underestimated.

The magnitude and evolution of the energy loss factor η_n under unidirectional and multidirectional loading is captured very well for the UWA 1\textsubscript{g} dataset, reasonably well for the UWA 9\textsubscript{g} dataset and overestimated for the UWA 80\textsubscript{g} dataset. This trend is at odds with the increasing accuracy of the computed ratcheting and stiffness values for the UWA datasets as stress-level increases, and suggests that evolution of the energy loss factor may not be wholly explained by evolution of secant stiffness and ratcheting. For the OU datasets, energy loss factor is significantly and systematically underestimated where the experimental data is distorted by transducer friction contributions (at high cycle number and low cyclic amplitude). This represents a limitation of the experimental data, rather than the numerical model.

The post-cyclic reloading responses are captured approximately for the UWA 1\textsubscript{g} dataset and reasonably well for the remaining four datasets. However, the inferred capacity on reloading tends to be underestimated where secant stiffness evolution is underestimated (often under 2-way or partial 2-way loading).

Together, Figures 7.17 to 7.21 demonstrate the ability of the calibrated ratcheting models to capture ratcheting, evolution of stiffness and (in some cases) energy loss factor under unidirectional and multidirectional (perpendicular and moderate fan-type) cyclic loading at various cyclic amplitudes, in three sand densities and at multiple stress-levels. Distortion of Masing behaviour is limited and the post-cyclic reloading
responses are captured with reasonable success. The accuracy of the computations may also be improved by optimisation of the evolution function parameters.

The ability of the models to capture the response to perpendicular cyclic loading builds confidence in the bi-directional ratcheting model formulation. However, model development is necessary to capture the increase in ratcheting and stiffening under fan-type loading where $\Phi > 30^\circ$. The models are also unable to capture the full impact of load asymmetry: ratcheting under partial 2-way loading is underestimated and stiffness evolution under 2-way and partial 2-way loading is often underestimated. This is of concern as much of the loading experienced by a monopile is expected to be partial 2-way (see e.g. Figure 5.6, Section 5.3.5). Development of a model which better captures the impact of load asymmetry would therefore be of great value.

7.5.7 Computation of response to storm loading

Figures 7.22 and 7.23 present computations for two example multidirectional storms using the ratcheting model presented in Section 7.5.2 with the evolution functions outlined in Section 7.5.4. The results for both the OU very loose and dense datasets are presented, in terms of the moment-rotation ($M - \theta$) response and rotation per cycle on loading (θ_{na}). The corresponding experimental responses are plotted alongside the computations for comparison, and the results are presented in the dominant loading direction (x) only. The computations used the same backbone parameters (K_m, H_m, Section 7.4.3) and evolution function parameters (Section 7.5.5) used to compute the regular cyclic loading responses in Section 7.5.6. The storm responses did not inform model calibration, but the responses were known at the time of model computation; the computations are therefore Class C1 predictions (Lambe, 1973).

In general, the computations capture the key features of the monopile response to storm loading: ratcheting is observed during application of small-amplitude cyclic loading but the response is dominated by large load events. The peak rotations are predicted particularly accurately in all cases. However, the OU very loose computations over-predict the rotation per cycle on loading (θ_{na}) for both tests, principally because the rotation accumulated across the peak load cycle (at $n \approx 1000$) is significantly over-predicted. This behaviour is related to the poor prediction of the hysteresis loop
shape, which is also observed in computation of the unidirectional hysteretic response for the OU very loose dataset (Figure 7.17a). The hysteretic response and evolution of θ_{na} can be better predicted by reducing the evolution of K_m (e.g. with $m_k = 0.01$), however, this would be at odds with the observed increase in secant stiffness under regular cyclic loading.

The hysteresis loop shapes are predicted more accurately for the OU dense computations, as too are the accumulated rotations across the peak loads (at $n \approx 750$). However, the rate of ratcheting under small amplitude cycling is slightly under-predicted, causing an under-prediction of the rotation per cycle on loading (θ_{na}) across the tests. This behaviour can also be observed in the OU very loose computations, and may be explained by the inability of the presented models to
capture the increase in ratcheting under partial 2-way loading, which constitutes the majority of the loading in these example storms.

7.6 Prediction of prototype-scale response to storm loading

In this Section, a prototype-scale model is developed to allow exploration of the response of a monopile to storm loading at prototype-scale. This brief study reflects the overall aim of the coordinated programme of research to which this thesis contributes: to develop practical design methods to capture the response of full-scale monopiles to realistic cyclic lateral loading.
7. Modelling the response of a monopile to complex cyclic loading

7.6.1 Generation of prototype-scale model

A prototype-scale ratcheting model is generated here by scaling the bi-directional ratcheting model (Section 7.5.2) for the UWA 80\textit{g} dataset using the dimensionless framework presented by Leblanc \textit{et al.} (2010a). An equivalent prototype-scale kinematic hardening model (Section 7.4.2) is also generated for comparison. The models are scaled to represent a prototype monopile with diameter 6.9 m and \(L/D = 4\); the same size prototype was used to scale down the prototype-scale DeRisk loads to laboratory-scale for application in dense sand (see Section 5.3.4). There is confidence in the use of the dimensionless framework of Leblanc \textit{et al.} (2010a) to account for the impact of foundation size and stress-level on the monotonic response (Kelly \textit{et al.} (2006); Section 6.4.1), but the framework does not account for the impact of stress-level on ratcheting and stiffness evolution revealed in Chapter 6. The dimensionless framework is therefore used to scale the UWA 80\textit{g} backbone curve, while the evolution function parameters calibrated to the UWA 80\textit{g} dataset are used directly at prototype-scale (for the ratcheting model), given that the prototype-scale stress-level is close to that simulated in the UWA 80\textit{g} tests.

The laboratory- and prototype-scale parameters necessary for scaling the backbone curve are summarised in Table 7.5. The prototype-scale unit weight was determined by matching \(\phi'_p\) between laboratory- and prototype-scale using the relations presented by Bolton (1987); the prototype soil is assumed to be saturated. The scaling factors on horizontal load \(f_H\) and pile displacement \(f_u\) are determined from the expressions presented in Table 3.4, Section 3.4.3. Employing the values in Table 7.5, the scaling factors become:

\[f_H = H_P/H_L = 22.67 \times 10^3\]

\textbf{Table 7.5:} Parameters used for scaling UWA 80\textit{g} models to prototype-scale

<table>
<thead>
<tr>
<th>Scale</th>
<th>Pile diameter (D) [m]</th>
<th>Pile length (L) [m]</th>
<th>Unit weight (\gamma') [kN/m(^3)]</th>
<th>Normalised reference stress-level (\sigma'_{REF}/p_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWA 80\textit{g}</td>
<td>0.042</td>
<td>0.170</td>
<td>(17 \times 80 = 1360)</td>
<td>1.60</td>
</tr>
<tr>
<td>Prototype</td>
<td>6.9</td>
<td>27.6</td>
<td>7.12</td>
<td>1.36</td>
</tr>
</tbody>
</table>

The laboratory- and prototype-scale parameters necessary for scaling the backbone curve are summarised in Table 7.5. The prototype-scale unit weight was determined by matching \(\phi'_p\) between laboratory- and prototype-scale using the relations presented by Bolton (1987); the prototype soil is assumed to be saturated. The scaling factors on horizontal load \(f_H\) and pile displacement \(f_u\) are determined from the expressions presented in Table 3.4, Section 3.4.3. Employing the values in Table 7.5, the scaling factors become:

\[f_H = H_P/H_L = 22.67 \times 10^3\] (7.74)
Table 7.6 summarises the resulting prototype-scale backbone parameters, where the backbone is defined by a power-law (Equation 7.27). The prototype-scale parameters K_m and H_m are then obtained using Equations 7.25 and 7.26.

$$
\sigma_R = H_R \quad \varepsilon_R = u_R \quad E_i \quad P_p
$$

<table>
<thead>
<tr>
<th>σ_R</th>
<th>ε_R</th>
<th>E_i</th>
<th>P_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.53 MN</td>
<td>2.70 m</td>
<td>33.04 MN/m</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Table 7.6: Prototype-scale backbone curve parameters (backbone defined by a power-law, Equation 7.27)

7.6.2 Response to storm loading

Figure 7.24 presents the response of the prototype-scale models to an example storm. The responses are presented in the dominant loading direction (x) only, in terms of the load-displacement ($H - u$) response at $\ddot{e} = h/L = 2.5$ and the pile displacement per cycle on loading (u_{na}). The loading was derived from the DeRisk wave basin tests (described in Section 5.3) and corresponds to a multidirectional sea-state with a 100-year return period acting on a 7 m diameter cylinder, with additional constant wind loading (MD.W). The kinematic hardening and ratcheting models predict very similar pile displacement at peak load (≈ 1.8 m), approximately corresponding to 1.16° pile rotation (assuming the model monopile used for the UWA 80 g tests was perfectly rigid). These displacements are towards the upper limit of what may be tolerated in ULS design, but are not unrealistic.

For both models, the hysteretic responses are more linear than observed under equivalent loading for the OU very loose and dense datasets, given the higher stress-level. For the ratcheting computation, the linearity of the cyclic response, coupled with evolution parameters which capture the (lower) rate of ratcheting at approximately prototype-scale stress-level, leads to prediction of negligible ratcheting between peak load cycles. However, the ratcheting model does predict greater accumulation of pile displacement across the peak load cycles than the kinematic hardening model. Some stiffening can be observed in the hysteretic response computed using the ratcheting model, although the change in loop shape is not significant.
These computations suggest that a kinematic hardening model may approximately capture the peak response and hysteretic response over a short storm, but may underestimate the accumulation of pile displacement. Although the difference in the pile displacement computed using the two models is small for the short (6 hour) storm computed here, the contribution from ratcheting may become large over the \(20 - 25\) year lifetime of the structure.

These computations demonstrate how numerical models, informed by experimental testing, can be used to explore prototype-scale responses when coupled with appropriate scaling techniques. However, validation of the scaling techniques (particularly the use of evolution function parameters calibrated to centrifuge tests at approximate prototype stress-level) through \textit{e.g.} large-scale field testing may be necessary before such scaled models can be applied with confidence for full-scale
7.7 Summary

<table>
<thead>
<tr>
<th>Key behaviour</th>
<th>Capturing key behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The monopile exhibits a non-linear monotonic response.</td>
<td>Underlying kinematic hardening model is able to capture any monotonically increasing non-linear response.</td>
</tr>
<tr>
<td>2 The extended Masing rules are approximately adhered to during the first few loading cycles.</td>
<td>Underlying kinematic hardening model adheres to extended Masing rules, evolution functions and parameters chosen to minimise distortion of Masing rules.</td>
</tr>
<tr>
<td>3 Ratcheting occurs i) under biased cyclic loading and ii) in the direction of the mean load.</td>
<td>The ratcheting strain increment occurs in the direction of the incremental applied load (Equations 7.41 and 7.56).</td>
</tr>
<tr>
<td>4 Ratcheting evolves as a power-law with cycle number.</td>
<td>Evolution function for (R) (Equation 7.66) evolves as a power-law with hardening parameter (\beta) at large (\beta).</td>
</tr>
<tr>
<td>5 The magnitude of ratcheting increases as a power-law with cyclic amplitude (for constant (\zeta_c)).</td>
<td>The magnitude of (R) (Equation 7.66) varies as a power-law with incremental load magnitude.</td>
</tr>
<tr>
<td>6 Load asymmetry ((\zeta_c)) affects the shape, rate and therefore magnitude of ratcheting.</td>
<td>Behaviour not fully captured: more ratcheting observed than predicted.</td>
</tr>
<tr>
<td>7 Secant stiffening occurs under cyclic loading and evolves logarithmically or as a power-law, depending on the load asymmetry.</td>
<td>Evolution function for (K_m) captures power-law increase in local (K_m) at large (\beta_m), but impact of load asymmetry not captured.</td>
</tr>
<tr>
<td>8 The cyclic response is broadly independent of the cyclic loading direction, relative to the mean load direction.</td>
<td>Evolution of (R) and (K_m) depend on hardening parameter (\beta) (Equation 7.61) which is direction-independent.</td>
</tr>
<tr>
<td>9 Multidirectional fan-type loading can lead to greater ratcheting and stiffening than unidirectional loading.</td>
<td>Behaviour not fully captured: more ratcheting and stiffening observed than predicted.</td>
</tr>
<tr>
<td>10 The inferred capacity on post-cyclic reloading is equal to or greater than the monotonic capacity.</td>
<td>Evolution function for (K_m) can capture power-law increase in all (global) (K_m) at large (\beta).</td>
</tr>
</tbody>
</table>

Table 7.7: Description of whether and how the key behaviours observed experimentally are captured with the presented ratcheting models

This Chapter has demonstrated the ability of constitutive models in the HARM framework to capture many key features of the response of a monopile to complex cyclic lateral loading in dry sand. Multi-surface kinematic hardening models were able
to capture the hysteretic response for the first few cycles of loading, but ratcheting models were necessary to capture the high-cycle response. Both unidirectional and bi-directional models were presented, formulated as rate-independent, series models and implemented as macro (single-element) models.

New evolution functions were proposed to capture the evolution of ratcheting and stiffness under cyclic loading. These functions avoid significant distortion of the Masing rules, are able to capture the post-cyclic reloading response and are calibrated with parameters which all have an interpretable impact on the computed cyclic response. The evolution functions are applicable to equivalent rate-dependent and parallel models, and are expected to be suitable for application in 1D Winkler models.

The ratcheting models were calibrated to the monotonic responses and the ratcheting and stiffening behaviour under regular, unidirectional, 1-way cyclic loading for five datasets (OU very loose, OU dense, UWA 1g, UWA 9g and UWA 80g). Computation of the cyclic response under a variety of regular cyclic loadings demonstrates the ability of the models to capture the majority of the key behaviours outlined in Table 7.1. Table 7.7 summarises whether and how each of the key behaviours are captured. A key limitation is the inability of the models to capture the full impact of load asymmetry and multidirectional fan-type loading (for $\Phi > 30^\circ$) on the cyclic response.

The bi-directional ratcheting model, calibrated to regular, unidirectional, 1-way data, was also shown to capture the key features of the response to realistic, irregular, multi-amplitude and multidirectional storm loading. This result builds confidence in the use of models developed in the HARM framework for design in realistic loading scenarios. Models were also scaled to explore the potential response at prototype-scale, reflecting the overall aim of this research.

The development of practical calibration methods for the evolution function parameters, derived from standard element testing results, is essential if these models are to be used for design. Balaam (2020) is exploring the correlation between parameters calibrated to cyclic element tests using a single-element model and parameters calibrated to the response of monopile systems using a 1D Winkler model.
There is confidence that correlations between these parameters can be observed, given the similarity in the cyclic response observed in element tests and in model pile tests in similar soils (Truong et al., 2019).
Chapter 8

Conclusions

8.1 Introduction

This thesis has explored the response of monopile foundations in sand to complex cyclic lateral loading through physical modelling. Regular cyclic loading tests allowed systematic investigation of monopile behaviour, while the application of storm loading and exploration of stress-level effects has provided insight into the response under realistic loading and at full-scale. The physical modelling data has also facilitated demonstration of the ability of models in the HARM framework to capture key features of the monopile response to complex cyclic lateral loading. Summary sections at the end of each Chapter have presented detailed conclusions; this Chapter distils the key contributions and implications for design, and makes suggestions for future work.

8.2 Key contributions

Development of novel laboratory apparatus for 1g monopile testing

New laboratory apparatus was developed to apply complex lateral loading to a model monopile. The loading and pile measurement apparatus, with associated Labview software, is capable of applying continuously varying, multi-amplitude and multidirectional loading under accurate load control, and was used to perform the 60 1g tests at OU presented in Chapters 3, 4 and 5.

Regular cyclic loading response at 1g

Regular cyclic loading tests at 1g in very loose and dense sand revealed i) approximate adherence to the extended Masing rules over the first few loading cycles (Section 4.3),
ii) accumulation of pile rotation (ratcheting) under many cycles of biased loading (e.g. Section 4.4.1), and iii) evolution of the hysteretic response (characterised in terms of secant stiffness and energy loss factor) under many cycles of general cyclic loading (e.g. Sections 4.4.2 and 4.4.3), consistent with previous studies (e.g. Abadie, 2015). The results also highlighted the significant impact of load amplitude and load asymmetry.

Novel perpendicular multidirectional tests revealed that ratcheting occurs in the direction of mean load and that the cyclic response is insensitive to cyclic loading direction (Section 4.6.1), with implications for numerical modelling (Section 7.2). Meanwhile, spread fan-type loading tests demonstrated that an increase in ratcheting and secant stiffening is possible under multidirectional loading, compared to equivalent unidirectional loading (Section 4.6.2).

The post-cyclic reloading responses showed no decrease in capacity relative to the monotonic response, at odds with the conventional cyclic degradation approach (Section 4.7). In general, the behaviour in very loose and dense sand was qualitatively similar.

Application of realistic storm loading at 1g

Irregular, multi-amplitude and multidirectional storm loading was derived from wave tank tests performed as part of the DeRisk project (Section 5.2); careful processing of the loading data was necessary, particularly to ensure structural dynamic effects were accounted for. Application of these realistic loading signals to the model monopile led to behaviour consistent with that observed under regular cyclic loading, and highlighted the dominance of large load events (Section 5.4). The results suggested that, for a short storm, peak monopile rotation may be approximated by the monotonic response.

Investigating the effect of stress-level

Exploration of stress-level effects — through 21 monotonic, unidirectional and multidirectional cyclic loading tests — revealed qualitatively similar responses at g-levels from 1g to 80g, building confidence in the applicability of observations made at 1g to full-scale. However, a logarithmic reduction in the exponents controlling the rate of ratcheting and secant stiffness evolution with stress-level was observed.
8. Conclusions

(Sections 6.5.2 and 6.5.3). This suggests that the effects of cyclic loading will be significantly less pronounced at full-scale than observed in small-scale physical modelling. These results help inform comparison of behaviour observed at different stress-levels, and support the dimensionless framework proposed by Leblanc et al. (2010a) for scaling of the monotonic response of the monopile (Section 6.4.1).

Modelling the response of a monopile to complex cyclic loading

Together, the physical modelling results facilitated demonstration of the ability of models in the HARM framework to capture key features of the monopile response to complex cyclic loading in (dry) sand at multiple stress-levels and in various densities, following calibration to regular, unidirectional data. Multi-surface kinematic hardening models were able to approximate the hysteretic response (Section 7.4.4), but ratcheting models were necessary to capture ratcheting and evolution of hysteresis loop shape under many cycles (Section 7.5.6).

The physical modelling results also informed new functions for capturing the evolution of ratcheting and hysteresis loop shape (Section 7.5.4). In particular, these functions limit distortion of Masing behaviour and improve the ability to capture the post-cyclic reloading response, analogous to the ULS response.

8.3 Key implications for design

Approximating the response to large loads

The monotonic response is likely to provide a conservative estimate for monopile rotation under ULS loading for drained conditions (Section 4.7 and 6.5.5), given that the inferred post-cyclic capacity on reloading was found to be equal to or greater than the monotonic capacity. The monotonic response may also be used to approximate the peak foundation rotation during a short storm (Section 5.5).

Assessment of loading conditions

Greater ratcheting and stiffening behaviour was observed under partial 2-way loading and spread multidirectional loading (Chapter 4). This highlights the need to accurately assess loading asymmetry and directionality before conducting cyclic design for monopile foundations.
8. Conclusions

Considering stress-level effects

The logarithmic reduction in the exponents controlling ratcheting and stiffening rate with stress-level (Sections 6.5.2 and 6.5.3) suggests that cyclic loading effects will be less pronounced at full-scale than observed in small-scale 1g physical modelling. As a result, direct application of empirical functions for ratcheting and evolution of stiffness with cycle number, derived from small-scale 1g physical modelling (e.g. Leblanc et al., 2010a), are not recommended for full-scale design, although the expressions for ratcheting are likely to be conservative.

Modelling the cyclic response

Multi-surface kinematic hardening models may be appropriate for some dynamic design calculations (Section 7.4), but ratcheting models are necessary for predicting permanent monopile rotation and the effects of cyclic loading on foundation strength and stiffness. Models in the HARM framework are able to capture many aspects of the response to complex cyclic loading, but development of practical calibration methods for the evolution functions and parameters is required (Section 7.5). Accurate prediction of the monotonic response is a pre-requisite for models in the HARM framework (Section 7.4.3), and cyclic design in general.

Noting the stress-level effects discussed above, for preliminary full-scale cyclic design in sand, the evolution functions and parameters for the UWA 80g dataset might be employed, as this dataset most closely represents full-scale stress-levels. The limitations of the presented models to fully capture the impact of load asymmetry and spread multidirectional loading should, however, be considered.

8.4 Future work

Physical modelling

The physical modelling presented herein simulated fully-drained conditions, which may not be representative of field conditions (Section 3.2.2). Exploration of pore-pressure accumulation and the effect on the cyclic response under partial drainage conditions, in soils of representative permeability and under realistic loading rates,
would therefore be of great value. Exploration of the monopile response under complex cyclic loading in cohesive and layered soils would also complement this work.

Monopiles in the field are exposed to lateral loading with continuously varying loading eccentricity (Section 1.2.1), but a single loading eccentricity was used for the physical modelling presented herein. It would therefore be of interest to explore the effect of loading eccentricity, across a representative range, on the monotonic and cyclic response.

Exploration of stress-level effects

In exploration of stress-level effects in Chapter 6, a constant dimensional reference pile displacement \(u_R \) was employed (Section 6.5.1). As a result, the linearity of the responses (at a given normalised load) varied with stress-level. Although this variation in linearity may be interpreted as a stress-level effect, complementary insight into the effect of stress-level may be gained by elimination of the variation in linearity through selection of a dimensionless reference parameter e.g. \(\tilde{u}_R \), following the dimensionless framework of Leblanc et al. (2010a). Ideally, a future study into stress-level effects would involve tests at a number of cyclic amplitudes such that the results could be interpreted in terms of i) a constant dimensional reference parameter e.g. \(u_R \), and ii) a constant dimensionless reference parameter e.g. \(\tilde{u}_R \), which minimises the variation in response linearity.

The centrifuge study presented herein was limited to simulation of monopiles 5.7 m in diameter (Section 6.1). Extension of this study to simulate prototype monopiles with diameters of 8–10 m would build confidence in the applicability of the presented trends at full-scale. Future testing may also consider using a driven installation method.

Loading investigations

Chapter 4 showed how spread multidirectional loading can lead to greater ratcheting and stiffening than equivalent unidirectional loading; for example, accumulated rotation after 1000 cycles was found to approximately double with a 90° half internal spread angle (Section 4.6.2). However, application of example multidirectional storm loading in Chapter 5 showed only a small impact of multidirectionality (Sections 5.4.3)
and 5.4.4. Future work may investigate typical distributions of cyclic load direction in detail, to provide more informed inputs for physical and numerical modelling. Further exploration of typical distributions of cyclic load amplitude and asymmetry would also be of value.

Numerical modelling

Although able to capture many of the key features of the monopile response to complex cyclic loading, the models in the HARM framework presented in Chapter 7 are unable to capture fully the effect of load asymmetry and spread multidirectional loading. Refinement of the models to capture these effects is likely to be important, but must be informed by further investigations into typical loading (discussed above). This work employed a series, rate-independent model, but future work might explore other model variants.

The development of practical calibration methods for models in the HARM framework will also be essential if these models are to be used in design. Mapping between parameters calibrated to cyclic element tests and parameters calibrated to the response of monopile systems (using 1D Winker models) may be possible. Alternatively, element testing may inform calibration of 3D FE models, from which parameters for 1D Winkler models may be obtained. Validation of these models and associated calibration methods against e.g. large-scale responses in natural deposits may also be necessary to build confidence in their application for design.

Pragmatic cyclic design

The computed response of a prototype-scale monopile to realistic storm loading (Figure 7.24, Section 7.6) exhibited negligible ratcheting between peak load events, illustrating the potential combined effects of i) the reduction in ratcheting and evolution of hysteresis loop shape at large-scale stress-levels, and ii) the dominance of large amplitude loads in controlling the rotation response under multi-amplitude loading. Future work could therefore explore the extent to which the ratcheting response can be approximated by computation of the response to only the largest load events (following the work of Abadie, 2017).
8. Conclusions

8.5 Overview

As conservatism in the monotonic design of monopile foundations reduces, OWTs are developed at sites with more demanding environmental conditions, and lifetime extension is considered, the cyclic design of monopile foundations is increasingly critical. However, no commonly accepted design methods exist for predicting the response of monopiles to cyclic lateral loading. This thesis forms part of a coordinated programme of research at Oxford University which aims to understand monopile performance and develop practical cyclic design methods for the next generation of monopiles. Through laboratory-scale physical modelling, this thesis has provided important insights into the response of monopile foundations in sand under regular and complex — irregular, multi-amplitude and multidirectional — cyclic loading. These insights inform monopile design and, in particular, build confidence in the use of models in the HARM framework for the design of monopiles under realistic loading and at full-scale.
References

References

Leblanc, C., Houlsby, G. T., and Byrne, B. W. (2010a). “Response of stiff piles in sand to long-term cyclic lateral loading”. *Géotechnique* 60.2, pp. 79–90. DOI: [10.1680/geot.07.00196](http://dx.doi.org/10.1680/geot.07.00196).

References

