Journal article
Immuno-imaging of ICAM-1 in tumours by SPECT
- Abstract:
-
Purpose
Molecular imaging of cancer cells' reaction to radiation damage can provide a non-invasive measure of tumour response to treatment. The cell surface glycoprotein ICAM-1 (CD54) was identified as a potential radiation response marker. SPECT imaging using an 111In-radiolabelled anti-ICAM-1 antibody was explored.
Methods
PSN-1 cells were irradiated (10 Gy), and protein expression changes were investigated using an antibody array on cell lysates 24 h later. Results were confirmed by western blot, flow cytometry and immunofluorescence. We confirmed the affinity of an 111In-labelled anti-ICAM-1 antibody in vitro, and in vivo, in PSN-1-xenograft bearing mice. The xenografts were irradiated (0 or 10 Gy), and [111In]In-anti-ICAM-1 SPECT/CT images were acquired 24, 48 and 72 h after intravenous administration.
Results
ICAM-1 was identified as a potential marker of radiation treatment using an antibody array in PSN-1 cell lysates following irradiation, showing a significant increase in ICAM-1 signal compared to non-irradiated cells. Western blot and immunohistochemistry confirmed this upregulation, with an up to 20-fold increase in ICAM-1 signal. Radiolabelled anti-ICAM-1 bound to ICAM-1 expressing cells with good affinity (Kd = 24.0 ± 4.0 nM). [111In]In-anti-ICAM-1 uptake in tumours at 72 h post injection was approximately 3-fold higher than non-specific isotype-matched [111In]In-mIgG2a control (19.3 ± 2.5%ID/g versus 6.3 ± 2.2%ID/g, P = 0.0002). However, ICAM1 levels, and [111In]In-anti-ICAM-1 uptake in tumours was no different after irradiation (uptake 9.2%ID/g versus 14.8%ID/g). Western blots of the xenograft lysates showed no significant differences, confirming these results.
Conclusion
Imaging of ICAM-1 is feasible in mouse models of pancreatic cancer. Although ICAM-1 is upregulated post-irradiation in in vitro models of pancreatic cancer, it shows little change in expression in an in vivo mouse xenograft model.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 1.6MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.nucmedbio.2020.02.014
Authors
- Publisher:
- Elsevier
- Journal:
- Nuclear Medicine and Biology More from this journal
- Volume:
- 84-85
- Pages:
- 73-79
- Publication date:
- 2020-02-25
- Acceptance date:
- 2020-02-24
- DOI:
- EISSN:
-
1872-9614
- ISSN:
-
0969-8051
- Language:
-
English
- Keywords:
- Pubs id:
-
1088925
- Local pid:
-
pubs:1088925
- Deposit date:
-
2020-02-25
Terms of use
- Copyright holder:
- Mosley et al.
- Copyright date:
- 2020
- Rights statement:
- © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record