A longitudinal twin study of Chinese children learning to read English as a second language

Wai Lap Wong
Saint John’s College

Thesis submitted to the University of Oxford for the degree of Doctor of Philosophy

Trinity Term, 2010
Department of Experimental Psychology, University of Oxford
"Give me a dozen healthy infants well-formed, and my own specified world to bring them up in and I'll guarantee to take any one at random and train him to become any type of specialist I might select—a doctor, lawyer, artist, merchant—chief, and, yes, even beggar—man and thief, regardless of his talents, inclinations, tendencies, abilities, vocations, and race of his ancestor." (Watson, 1930, pp. 82)

"Nature prevails enormously over nurture when the differences of nurture do not exceed what is commonly to be found among persons of the same rank in society and in the same country." (Galton, 1876, pp. 404)
A longitudinal twin study of Chinese children learning to read English as a second language

Wai Lap Wong
Saint John’s College, University of Oxford

Thesis submitted to the for the degree of Doctor of Philosophy, Trinity Term, 2010

This thesis investigated reading and related skills in Chinese children learning English as a second language (ESL) in 279 Chinese twin pairs aged from 3 to 11 years. Children were tested twice, a year apart, with measures of visual word recognition, receptive vocabulary, phonological awareness, phonological memory and speech perception in both Chinese and English and Chinese tone awareness. The thesis was divided into two sections with the first section exploring the phenotypic relationships and the second section estimating the genetic and environmental influences. In the first section, the causal relationships among the five ESL skills were modelled (chapter 4) and the relationships between Chinese and ESL skills were sought (chapter 4). In section two, the univariate heritability (chapter 6), the cross-linguistic genetic overlap (chapter 7) and the stability and instability of heritability estimates (chapter 8) for all skills were examined. Findings have shown that ESL speech perception is important to the development of ESL phonological awareness, phonological memory and receptive vocabulary, in turn, has an impact on ESL reading development. Genes play an important role in ESL and Chinese reading development. The differential environmental effects may be due to the differences in the ESL and Chinese acquisition ecologies.
LONG ABSTRACT

A longitudinal twin study of Chinese children learning to read English as a second language

Wai Lap Wong
Saint John’s College, University of Oxford

Thesis submitted to the for the degree of Doctor of Philosophy, Trinity Term, 2010

Background Past studies have shown the relative contributions of genes and environment to reading and related skills in children speaking English as a first language. However, how these factors influence second language reading acquisition remains unknown. This thesis has extended this line of research by examining English as a second language (ESL) acquisition in Chinese children learning with a twin study design. It focused on the processing of Chinese and English sound and phonological units under a behavioural genetic framework.

Method This thesis included 279 Chinese twin pairs who were ESL learners, aged from 3 to 11 years. Children were tested twice, a year apart, with measures of Chinese and English visual word recognition, receptive vocabulary, phonological awareness, phonological memory and speech perception, and Chinese tone awareness. Four major analyses were conducted. First, four evidence-based hypothesis Path analysis models were tested using structural equation modelling (SEM) to determine the inter-relationships among ESL skills. Second, the relationship between ESL and Chinese variables were examined using exploratory factor analysis (EFA). Third, the contribution of genes, and shared and non-shared environment were estimated with univariate twin analyses. Lastly, the genetic overlap between ESL and Chinese skills, and the stability and changes of genetic estimates across time were estimated with bivariate Cholesky twin analyses.
Results Among ESL skills, the results of the SEM model fitting showed that ESL speech perception indirectly predicted ESL visual word recognition via ESL phonological awareness. When both ESL and Chinese skills were considered, two factors (Phonological representations and Lexical restructuring) were extracted by EFA from the ESL and Chinese variables, indicating both cross-linguistic and cross-domain overlap. Univariate twin analyses showed that genes accounted for the individual variations in all skills. Bivariate twin analyses indicated genetic overlap between parallel ESL and Chinese variables, except between ESL phonological awareness and Chinese tone awareness. Moreover, genetic effects contributed to the cross-time stability of all ESL and Chinese variables. However, shared environmental effects on the overlap and cross-time stability were present for some ESL and Chinese variables only.

Conclusions This thesis has illustrated that ESL reading in Chinese children is a multi-componential system at the behavioural and cognitive levels. ESL speech perception is important to the development of ESL phonological awareness, phonological memory and receptive vocabulary, in turn, has an impact on ESL reading development. At the genetic level, genes play an important role in ESL and Chinese reading development. Also, common genetic influences between ESL and Chinese skills suggest their shared etiology, and genetic effects contribute to the stability of individual skills across time. However, the differential environmental effects between some ESL and Chinese variables suggest different learning environments could be optimal for either ESL or Chinese development. Further studies on identifying these genetic and environmental factors are recommended.
ACKNOWLEDGEMENTS

The work you are reading would not have existed without the help and involvement of the following people. More significantly, they all have played an important role in socializing me in this 3-year doctorate training. It is a delight to acknowledge all these GREAT people for their contributions to the fulfillment of this study.

First of all, I would like to say a BIG THANK YOU to the three ‘directors’ of this research project, Professors Dorothy Bishop, Connie Ho and Mary Waye, for their patient guidance and invaluable suggestions throughout the ‘filming’ of this ‘documentary’ on the heritability of second language reading acquisition. Additionally, I wish to express my gratitude to the ‘co-screenplay writer’ Miss Bonnie Chow for her tremendous support throughout the whole ‘filming’ process and for being there for me whenever I needed a helping hand.

The training I received in this Hollywood of intellectual training is amazing. I would like to express my immense gratitude to Professor Dorothy Bishop - my supervisor, my role model, and a great source of strength. Your generosity to give the best of yourself at the human and professional level has no limits, and for that I will always be in debt to you.

Special thank is extended to Professor Connie Ho who has introduced me developmental dyslexia, Behavioural genetics and aromatherapy, and has provided me with insightful comments at all stages of my research. Her guidance, suggestions and ‘World’s local bank’ (Child Psychology Laboratory, HKU) helped enormously in bringing the international collaboration between Oxford and Hong Kong thesis to completion.

Many thanks to Professor Mary Waye for teaching me a new language of Molecular Genetics (SNPs, polymorphism…etc) and her excellent team for doing a great job in zygosity testing on twin sample.

I am grateful to all the past and present members of Oxford Study of Children's Communication Impairments (OSCCI) for helping me to integrate into the life of ‘Hollywood’. Special thanks go to Noel who has been polishing my English, Mervyn who has been providing me technical support, and, Andrew, Julie, Nic and Pascale who have shared with me their PhD experiences and expertise. My thanks also go to the OSCCI angels, Anneka, Georgina and Helen.
I wish to acknowledge two members of my DPhil transfer viva, Professor John Coleman and Dr. Kate Watkins, for their useful advice and trainings on Phonetics, Phonology and Neuropsychology.

I am deeply indebted to various officers in the department of Experimental Psychology - Penny, Karen and Pippa - who have helped with the arrangement of examinations and paperwork. I want to tell Penny that my character has no resemblance to Mr. Clyde in the movie ‘Bonnie and Clyde’.

Surely, the ‘Hollywood’ English sounds very different from the Hong Kong English. Thanks for my housemate at St John’s College, Richard and Ben, who have been acting as my Dr. Higgins in Pygmalion.

I am particularly grateful to Professor Catherine McBride-Chang, Dr. Kevin Chung, Dr. Man-Tak Leung, Professor Him Cheung, Professor Kit-Tai Hau without whose continuous help and support things would have been so much harder.

Moreover, I am greatly grateful to my dear friends for keeping my spirits up during the difficult stages and for being so incredibly helpful with everything not concerning this thesis. To name a few names, Bocheng, Chris, Ornella, Yi-Chuan, Kieko, Kim, Atsuko, Aaron, Simon, Chuei-Yee…Thank you for your companionship and delicious food!!!

I am very much indebted to principals, teachers and parents who have generously given their valuable time and efforts. I would like to dedicate this work to all the little actors and actresses (the wonderful twin participants).

I also extend my gratitude to the Wellcome Trust, United Kingdom and Research Grant Council, Hong Kong.

Words cannot describe how thankful I am to my parents King and Shirley and my sisters Anny and Packy whose constant love, support and encouragement mean everything to me.

Last but not least, I am very grateful to my two DPhil viva examiners Professor Morag Stuart and Dr Jennifer Lau who have further polished my critical thinking and made this piece of work one step closer to perfection.
Table of contents

Short abstract
Long abstract
Acknowledgments
Table of contents

CHAPTER 1 Reading development in the first language

1.1 Chapter summary
1.2 General introduction
1.3 Operational definition of reading skills
1.4 Using a ‘component skills analysis’ approach to conceptualize reading
1.5 The influences of phonological awareness on reading development
1.6 Ontogeny of phonological awareness
1.7 Speech perception
1.8 The Autonomous view of reading development
1.9 Speech perception bootstraps phonological awareness
1.10 Lexical restructuring model (LRM)
1.11 A unique relation between phonological memory and vocabulary
1.12 A summary of evidence-based models of reading

CHAPTER 2 The link between the first and second language

2.1 Chapter summary
2.2 The scope of this thesis on second language reading acquisition
2.3 L1 and L2 skills and their common underlying cognitive processes
2.4 Chinese learners of English as a second language
2.5 Summary of section 1

CHAPTER 3 Design, methodology and data preparation

3.1 Participants
3.2 Procedure
3.3 Pilot testing and modification of tests
3.4 English measures
3.5 Chinese measures
3.6 Descriptive analyses, gender and zygosity effects
3.7 Correction of age effects

CHAPTER 4 Models of ESL reading development

4.1 Chapter summary
4.2 An overview of structural equation modelling (SEM)
8.1 Continuity and change of genetic and environmental effects 157
8.2 Longitudinal genetic analyses ... 159
8.3 Discussion of the results .. 164

CHAPTER 9 General Discussion ... 168

References .. 175

Appendix 1 Project advertising ... 217
Appendix 2 Testing materials ... 220
Appendix 3 Details of goodness-of-fit Indices .. 223
Appendix 4 R script (univariate ACE model) .. 225
Appendix 5 R script (univariate ADE model) .. 233
Appendix 6 R script (bivariate cholesky model) .. 239
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Number of individuals in each age band at both time 1 and 2</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Means and Standard Deviations for English measures by age, gender and zygosity Groups</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>Means and Standard Deviations for Chinese measures by age, gender and zygosity Groups</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the Autonomous model (McBride-Chang, 1996)</td>
<td>78</td>
</tr>
<tr>
<td>4.2</td>
<td>The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the ‘bootstrapping’ model</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the LRM model</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the ‘phonology independent’ model</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Zero-order correlations among time 1 variables controlling for age</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of factor matrix extracted before and after oblique rotation for variables controlling for age^ (N= 287)</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Findings of twin studies of readings relevant to variables measures in this thesis</td>
<td>114</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary of intraclass correlation coefficients (MZ twin=207 pairs, DZ twin=72 pairs)</td>
<td>121</td>
</tr>
<tr>
<td>6.2</td>
<td>Univariate ACE and nested models fit and parameter estimates for all the hypothesized variables (MZ=207 pairs, DZ=72 pairs)</td>
<td>123</td>
</tr>
<tr>
<td>6.3</td>
<td>Univariate ACE/ADE and nested model fits and parameter estimates for all the hypothesized variables (MZ=207 pairs, DZ=72 pairs)</td>
<td>126</td>
</tr>
<tr>
<td>6.4</td>
<td>Univariate ACE/ADE and nested models fit and parameter estimates for all the hypothesized variables (MZ=207 pairs, DZ=72 pairs)</td>
<td>128</td>
</tr>
<tr>
<td>6.5</td>
<td>A summary of estimates of the best-fitted models</td>
<td>130</td>
</tr>
</tbody>
</table>
Table 7.1. Cross-twin cross-trait correlations between Chinese and ESL parallel measures at time 1 ... 148

Table 7.2. Standardized unsquared path coefficients from bivariate Cholesky decomposition (and 95% confidence intervals in parentheses) of additive genetic (A), shared environment (C), and non-shared environment (E) correlations between time 1 Chinese and ESL reading-related variables ..150

Table 7.3. Summary of three indexes yielded from bivariate twin analyses of Chinese and ESL variables ..153

Table 8.1. Cross-twin cross-time correlations between time 1 and 2 of the same measures 160

Table 8.2. Standardized unsquared coefficients from bivariate Cholesky decomposition (and 95% confidence intervals in parentheses) of additive genetic (A), shared environment (C), and non-shared environment (E) effects between time 1 and time 2 reading-related variables in ESL measures ..161

Table 8.3. Standardized unsquared path coefficients from bivariate Cholesky decomposition (and 95% confidence intervals in parentheses) of additive genetic (A), shared environment (C), and non-shared environment (E) effects between time 1 and time 2 reading-related variables in Chinese measures ..162

Table 8.4. Summary of three indexes yielded from bivariate twin analyses 164
LIST OF FIGURES

Figure 1.1: Causal processes of visual word recognition development in the ‘Autonomous’ view...38
Figure 1.2: Causal processes of visual word recognition development in the ‘Bootstrapping’ view.39
Figure 1.3: Causal processes of visual word recognition development in the ‘Lexical Restructuring Model’. ..40
Figure 1.4: Causal processes of visual word recognition development in the ‘Independent Phonology’ view. ..41
Figure 2.1: Relations between first- and second-language reading acquisition and bilingualism (Bialystok, 2007)...43
Figure 2.2: An overview of English and Cantonese consonant (Chan & Li, 2000)..........................52
Figure 2.3: An overview of English (left) and Cantonese Chinese (right) vowels (Chan & Li, 2000). ...53
Figure 3.1: An instance of cubic regression curve fitting the data of Chinese visual word recognition against age ..71
Figure 4.1: A complete procedure for structural equation modelling ..73
Figure 4.2: The final Path analysis model of the Autonomous model (McBride-Chang, 1996).79
Figure 4.3: The final Path analysis model of the ‘Bootstrapping’ model ..80
Figure 4.4: The final Path analysis model of the modified Lexical Restructuring Model82
Figure 4.5: The final Path analysis model of the ‘Phonology independent’ model84
Figure 4.6: The scree plot showing eigenvalues in the Exploration Factor Analysis93
Figure 4.7: Summary of results of correlational analyses and exploratory factor analyses............94
Figure 4.8: Bilingual lexical representations on the phonological map: (a), novice; (b), intermediate; (c) advanced Chinese-English bilinguals (Zhao & Li, 2010) ..96
Figure 5.1: Bronfenbrenner’s (1979) ecological approach (adapted from Longitudinal Study of Australian Children, 2009) ..101
Figure 5.2: Levels of causation for reading abilities (Bishop & Snowling, 2004)102
Figure 5.3: A path diagram for the classical twin study using MZ and same-sex DZ pairs reared within the same family. ..105
Figure 6.1: Proportion of variance explained (%) by additive genetic (A)/ non-additive genetic (D), shared environmental (C) nd non-shared environmental (E) on Chinese measures at time 1 and 2

Figure 6.2: Proportion of variance explained (%) by additive genetic (A)/ non-additive genetic (D), shared environmental (C) nd non-shared environmental (E) on English measures at time 1 and 2

Figure 6.3: Parasitism and advanced word learning in bilinguals

Figure 7.1: For one member of a twin pair, latent factors represent A, C, and E influences on Chinese variable (phenotype 1) and ESL variable (phenotype 2)

Figure 7.2: For two members of a twin pair, latent factors represent A, C, and E influences on Chinese variable (phenotype 1) and ESL variable (phenotype 2)

Figure 9.1: A summary of findings of genetic analyses
SECTION 1

THE PHENOTYPIC ANALYSIS
CHAPTER 1 READING DEVELOPMENT IN THE FIRST LANGUAGE

1.1 Chapter summary

In this chapter, I describe the background and objectives of this thesis. The literature review centres on phonological skills which are important to word reading development. The relationships among visual word recognition, receptive vocabulary, phonological awareness, phonological memory and speech perception are discussed with respect to various theoretical backgrounds such as the motor theory of speech, the lexical restructuring model (LRM) and perceptual bootstrapping. At the end of the chapter, I will propose several hypothetical causal models of reading acquisition to be tested among Chinese learners of English as a second language (ESL).

1.2 General introduction

Reading to learn is an important survival skill for everyone living in the modern and knowledge-based society because people communicate with and learn various forms of text. The literacy rate usually ties to the economy of a country (Chiswick, Lee, & Miller, 2003) and sometimes juvenile delinquency (Shelley-Tremblay, O'Brien, & Langhinrichsen-Rohling, 2007). Also, many entertainments including web surfing demand substantial reading skills. Therefore, reading instruction is an essential part of education. Despite equal learning opportunities in many places in the world, pervasive individual differences in reading ability emerge early in development and remain steady over time (Cunningham & Stanovich, 1997; Shaywitz, Morris, & Shaywitz, 2006). A large-scale international survey revealed that the prevalence rates of developmental dyslexia estimated for school-age children ranged from 1% to 11% (Smythe, Everatt, & Salter, 2004). The above phenomena motivate us to understand the etiology of reading development.

Globalization results in more international communications. In many cultures, it is popular and sometimes necessary to master more than one script. According to the Graddol (2006), over a billion people are learning and using English as a second language for various
purposes. As the learning outcomes of reading a second script are diverse, and some
individuals are found at risk for specific learning difficulties in learning a second language, it
is essential to identify the sources of individual variations for pedagogical and diagnostic
reasons (Jia, 2006).

Past studies have shown that the success of bilingual acquisition depends upon a
wide range of factors such as meta-linguistic skills, learning motivation and quality of
education. Of the cognitive skills pertinent to reading development, phonological skills have
drawn the most attention from researchers and have been shown to be a critical factor for
reading development across cultures (Goswami, 2000). Recently, more research has been
devoted to discovering the ontogenesis of phonological skills. This issue is important because
the identification of the precursors of reading ability helps us to search the risk factors of
reading disability and track the developmental trajectory at the pre-literate stage. Recently,
more studies have been conducted on speech processing which is thought to be the foundation
for phonological skills (e.g., Hansen & Bowey, 1994; Hurford, 1991). The link between
speech processing and phonological awareness is not a simple one, but intertwines with the
development of other skills such as phonological memory and receptive vocabulary. The aim
of this study is to understand the inter-connections among the aforementioned skills.

Extending from what we have known about learning to read English as a first
language, this study explores English reading acquisition among Chinese speakers who speak
a tonal language and read a logographic script. The marked differences in language and
orthography between the first (L1) and a second language (L2) might give rise to unique
concurrent relationships among the hypothesized variables. Furthermore, it is also essential to
understand the cross-linguistic interaction between the two languages. A similar issue is
whether L1 and L2 skills involve common underlying cognitive processes (Geva, 1999).
Recent behavioural genetic studies have shown that reading abilities and reading-related skills such as phonological skills are heritable (e.g., Gayan & Olson, 2003). By employing the twin study method, we can partition the effects of genes and environment that contribute to the individual variations in reading development. While a growing body of research has indicated the genetic and environmental influences on the perceptual and cognitive abilities underlying English reading development among native-speakers, very little is known about these among learners of English as a second language (ESL). This thesis is a pioneer ESL study using a twin study design.

This thesis is divided into two main sections. The first section examines the phenotypic relationships of ESL and Chinese skills by testing several hypothetical causal models using the structural equation modelling (SEM) approach. In the second section, I conduct a series of univariate and bivariate genetic analyses to explore the genetic and environmental effects on ESL and Chinese reading skills.

1.3 Operational definition of reading skills

The definitions of reading vary from time to time and from study to study. According to the Simple View of Reading, reading involves two major components, namely decoding and linguistic comprehension (Hoover & Gough, 1990). Decoding, also known as visual word recognition, refers to the ability to retrieve semantic information from printed input at the word level. Linguistic comprehension is the ability to take the meaning aspect of words and derive sentence and discourse interpretations. Although visual word recognition can be influenced by linguistic context, the two components are empirically proven as separable. On the one hand, dyslexic children with average or even superior linguistic comprehension have difficulties in decoding printed words. On the other hand, individuals diagnosed with hyperlexia were found to have superior decoding skills but impaired linguistic
comprehension (Healy, 1982). In the present thesis, I focus on the investigation of visual word recognition which is a critical element of reading on its own.

There are two major models of visual word recognition, the dual route model (Coltheart, 2006) and the Triangle model (Harm & Seidenberg, 2004; Seidenberg & McClelland, 1989). Despite differences in the ways in which these two models conceptualise the underlying mechanisms of word reading processes, both models acknowledge that two different kinds of process underlie visual word recognition in skilled readers of English. The dual route model consists of two processing routes. The nonlexical phonological route successfully decodes regular words and nonwords by application of grapheme-phoneme correspondence rules; following successful decoding, word meanings are retrieved from the phonological form. Exception words cannot be read accurately by this route as they violate GPC rules. The lexical route gives direct access to semantics from orthography, and is successful in reading both regular and exception words, but not nonwords, as by definition these are not stored in the orthographic lexicon. The Triangle model proposes two sets of processes, phonological and semantic, which in combination can successfully read regular and exception words and nonwords. Thus, both models recognise the important contributions of both phonology and semantics to visual word recognition. Therefore, phonological skills and receptive vocabulary will be examined in this thesis.

The cognitive approach of reading research studies the mental and lexical representation, perceptual and cognitive processes, and the meta-linguistic skills that guide reading development (Lundberg, 1991). In the literature of reading research, terminologies such as ‘word identification’ and ‘word detection’ are used to denote the same reading task. Other important aspects of reading such as reading fluency and comprehension are beyond the scope of this thesis. In short, the operational definition is the accuracy of English real word
reading and Chinese character recognition i.e. visual word recognition in the two languages.

1.4 Using a ‘component skills analysis’ approach to conceptualize reading

As Carr, Brown, and Vavrus (1985) pointed out, many reading researchers have addressed a single or selective number of reading-related skills in their studies, without conceptualizing a system of reading. The “component skills analysis” (CSA) approach has been proposed to study the relative contributions of different domains of knowledge and processing procedures (Levy & Carr, 1990). In this approach, reading is conceptualized as ‘a kind of a complex information-processing system within which a number of theoretically distinctive and empirically separable knowledge-process component skills interact to support perception, comprehension, and memory of visually presented language.’ (Carr et al., 1985)

This approach establishes a solid basis for theory construction, validation and refinement. Testing of reading models suggested by the CSA approach requires the application of multivariate statistics. Although statistical theory for today’s multivariate techniques was developed long ago, these techniques could not be applied to data analysis until statistical packages became available for personal computer users. With the continued advancement of statistics (e.g. structural equation modelling, SEM) and computational power, reading models that hypothesize multiple causal cognitive processes can be tested by fitting the data to SEM structural models. The use of SEM also allows us to compute and control for measurement error and test for mediating effects. The Convergent Skills Model is an instance of a comprehensive reading model validated by SEM (Vellutino, Tunmer, Jaccard, & Chen, 2007).

In this thesis, I will compare several models of the development of visual word recognition against each other using SEM to understand ESL reading development.

1.5 The influences of phonological awareness on reading development

Learning to read involves the acquisition of a system for mapping between the sound units of a language and the visual symbols of a corresponding writing system. The
process of learning and applying these mappings is termed phonological recoding (Ziegler & Goswami, 2005). One factor that determines the outcome of phonological recoding is how well the learners access and manipulate the phonological units which are associated with contrasting meaning. This ability is termed ‘phonological awareness’. There has been a consensus that phonological awareness is one of the best predictors of early success in reading acquisition in alphabetic languages (Adams, 1990; Cunningham & Stanovich, 1997; Wagner & Torgesen, 1987). It predicts not only the reading level of typically-developing children, but also reading difficulties and developmental dyslexia (e.g., Bradley & Bryant, 1983). It has been shown to predict reading outcomes even before formal reading instruction begins (Puolakanaho et al., 2007). Moreover, training in phonological awareness significantly enhances children’s ability to read (Ehri, Nunes, Willows, Schuster, Yaghoub-Zadeh, & Shanahan, 2001).

In alphabetic languages, letters or letter-strings in printed words typically represent phonemes in spoken words; therefore, children’s abilities to segment and manipulate phonemes in spoken words are believed to give them an advantage in learning to read. This phoneme awareness is proven to be important for learning to read an alphabetic script effectively (Brady, Fowler, Stone, & Winbury, 1994; Liberman, Shankweiler, Fischer, & Carter, 1974). Goswami and Bryant (1990) argued that the ability to consciously access phonemes only develops later as a consequence of print exposure and reading instruction. For example, phonological categories of final nasal consonants in English are created by children studying in primary school (Treiman, Zukowski, & Richmond-Welty, 1995).

The awareness of larger phonological units is also helpful in reading development. Bryant, MacLean, and Bradley (1990) showed that rhyme and alliteration abilities in young children predicted their subsequent progress in learning to read and spell. They argued that
children who were aware that words that rhyme often share spelling sequences were superior in reading unfamiliar words. Goswami (1986, 1988, 1990), using a ‘clue word’ task, claimed to have shown that children were quicker to learn to use rime-based analogies to read novel words. However, Bowey, Vaughan and Hansen (1998) and Nation, Allen and Hulme (2001) provided counter evidence to challenge the interpretation of these findings. They argued that it was the phonological priming effect of saying the words that rhyme with the novel word (clue word), plus children’s own partial decoding attempts that contributed to improved novel word reading. Furthermore, Savage and Stuart (1998) showed that similar improvement on novel word reading could be obtained if clue words were able to provide the pronunciation of the medial vowel digraph of target words. Nevertheless, Bryant, Maclean, Bradley, and Crossland (1990) suggested that good rhyme skills facilitate the development of phoneme awareness, which in turn facilitates reading, possibly by allowing children to master letter–sound correspondences by sounding out words explicitly. Macmillan (2002) argued in her review paper that the importance of onset-rime skills as a predictor of reading was over-estimated. Other studies have generally found phoneme skills to be better predictors of subsequent word recognition abilities than are onset–rime skills (Duncan, Seymour, & Hill, 1997; Hulme et al., 2002; Muter, Hulme, Snowling, & Taylor, 1997). These studies found that rhyme skills explained no unique variance in later reading scores after phoneme skills had been controlled, whereas phoneme skills remained a unique predictor after rhyme skills were controlled. In a recent extensive review of reading research, Castles and Coltheart (2004) found almost no evidence that phonological awareness precedes and influences reading acquisition. However, Hulme, Snowling, Caravolas, and Carroll (2005) argued that such conclusion was based on a narrowly-defined causation and the ignorance of other factors (e.g., letter knowledge) that either mediated or moderated the link between phonological awareness and reading. This complicated relationship between phonological awareness and reading call for further studies to clarify the link.
1.6 Ontogeny of phonological awareness

Given the importance of phonological awareness, it is of no surprise that various attempts have been made to discover the precursors of phonological awareness. There is growing evidence that individual variations in phonological awareness result from differences in a child’s phonological representations (Brady, 1997; Elbro, 1996; Goswami, 2000; Metsala & Walley, 1998; Snowling, 2001). Phonological representations hold the speech sound information and abstract phonological features of spoken words and are influenced by a variety of phonological processing abilities, such as articulation, speech perception, phonological memory, vocabulary, etc (e.g., Anthony et al., 2009). Functionally, phonological representations are the basis for individuals to gain access to words’ meanings and orthographic representations. Phonological representations have been described in terms of distinctive features (Elbro, 1996), connectionist units (e.g., Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989) or patterns of motoric movements of the articulators (Liberman, 1999). Irrespective of one’s conceptualization, accessing phonological representations is critically important for oral and written communication.

Below I discuss several theoretical views that specify the nature of phonological representations and their development. The differences across various views rest on the nature and roles of perceptual and cognitive skills, the ontogenesis of phonemes and the learning and developmental mechanisms. The four views are termed ‘Autonomous’, ‘Bootstrapping’, ‘Lexical restructuring model’ and ‘Independent phonology’.

1.7 Speech perception

Before describing the role of speech perception in various views, it is useful to summarize the main features of speech perception. Speech perception involves three complementary skills; the ability to tell that a sound has occurred (detection), the ability to
distinguish different sounds (discrimination) and the ability to treat sounds that are
acoustically different as equivalent (classification/ phoneme constancy) (Bishop, 2001). A
range of tasks have been invented to tap different aspects and levels (e.g., acoustic, phonetic
and phonemic/ phonological) of speech perception. Apart from natural speech stimuli,
non-speech or synthetic speech stimuli are widely presented in experiments. Commonly used
speech perception tasks involve the identification and discrimination of sounds in a
continuum across a phonemic boundary (categorical perception), and the auditory
discrimination of minimal pairs of words (see Stackhouse, Vance, Pascoe, & Wells, 2007 for
details).

1.8 The Autonomous view of reading development

The mechanism by which speech perception enhances phonological awareness and
reading is not well-documented. It may be the necessity of accurate phoneme identification in
phoneme awareness underlies the apparent relationship between speech perception and
phonemic awareness. Based on the premise that we need a common ground for
communication and it is speech, Liberman (1999) argued that speech is comprised of
consonants and vowels which are intrinsically articulatory gestures (as opposed to the
proposal that speech is non-linguistic motor representations) and are operated in a Phonetic
mode which is shared only among mankind. Liberman, Shankweiler, and Liberman (1989)
have argued that phonemic units are present and function in infancy. However, it requires
reading experience with an alphabetic orthography or with meta-cognitive development more
generally to make the phonemes accessible at the conscious level. Meta-linguistic skills are
interpreted as a subset of a general meta-cognitive control over information processing which
emerges at the concrete operational stage (Piaget, 1985) in middle childhood (Tunmer,
Herriman, & Nesdale, 1988). This ‘Autonomous’ view conceptualizes meta-linguistic
awareness as a distinctive type of linguistic functioning that develops independently from,
and later than, basic linguistic acquisition, but concomitant with the emergence of literacy
In this view, language comprehension and production skills develop first and without need for meta-linguistic awareness during the preschool years. About age 6 or 7, children develop the capacity for meta-linguistic awareness when they are confronted with reading and writing tasks. Empirical evidence in support of the autonomy hypothesis comes from numerous studies that show that typically-developing children aged 6 to 8 years are competent in a range of meta-linguistic skills, but that preschool children cannot successfully manage tasks that require them to make explicit judgments about linguistic form. In studies of phonological awareness development, most 5 to 7 year-olds are found capable of discriminating similar phonemes but not segmenting spoken words into phonemes (Calfee, Lindamood, & Lindamood, 1973; Liberman, Shankweiler, Fischer, & Carter, 1974). Children under 7 years of age have difficulty isolating words from the objects the words refer to (Markman, 1976) and seem to regard the names as inherent properties of the objects themselves. Although children's performance on meta-linguistic tasks increases with age (e.g., Hakes, 1980; Liberman et al., 1974), the generally poor performance of young children has led many researchers to conclude that preschool children lack the ability to separate form from meaning, and that meta-linguistic awareness is a distinctive type of language skill that emerges after age 6. However, this view has been challenged and later research has shown that young children are able to segment words into phonemes (e.g. Stuart, 2004).

1.9 Speech perception bootstraps phonological awareness

By detailed phonetic analyses, researchers failed to find evidence for a unique acoustic property that was an invariant correlate of a phonological feature (Lindau & Ladefoged, 1986). One way to resolve this ‘mismatch’ problem is to conceptualize speech learning as statistical learning (Saffran, Johnson, Aslin, & Newport, 1999). For example, the distribution of patterns of sounds provide a salience cue for word segmentation. Given a letter-string such as ‘ele’, there is a tendency to anticipate either ‘phant’ or ‘vator’. Rather than a one-to-one phonological mapping, the connection between speech perception and
phonological awareness might be many-to-many and rooted in statistical learning, with speech perception an earlier learning outcome than phonological awareness. This seemingly causal relationship between speech perception and phonological awareness could also be explained by the idea of ‘Bootstrapping’ – using existing knowledge to facilitate acquisition of novel abilities (Werker & Yeung, 2005). For instance, vowel discrimination tasks at 6 months predict vocabulary size, as well as scores on other language measures at 13–24 months of age (Tsao, Liu, & Kuhl, 2004). In addition, electrophysiological measures of phonetic discrimination recorded in infancy are linked to reading proficiency in children 3 to 8 years of age (Molfese & Molfese, 1997).

Developmentally, humans possess a set of innate perceptual biases which initiate subsequent statistical learning in perceptual systems. For instance, foetuses appear to show preference for their mother’s voice, stories and songs heard prenatally, and their native language (Fifer & Moon, 2003; Kisilevsky et al., 2003). These studies confirm that prenatal auditory experience tunes neonatal perception. By at least 9 months, infants are able to detect the frequency, distribution, and other statistical properties of perceptual input in speech (Saffran, Werker, & Werner, 2006). Highly frequent phonetic contrasts and phonotactic patterns (i.e. legitimate combinations of sounds) are categorized in a language-specific manner at younger ages while less frequent ones are ignored (Anderson, Morgan, & White, 2003). After repeated exposure to lists of nonsense words, infants can recognize the recurring sound patterns and make generalizations about syllable structure (Saffran & Thiessen, 2003), stress (Gerken, 2004) and phonotactic patterns (Chambers, Onishi, & Fisher, 2003). A change of frequency distribution of the speech input can modify the phonetic categories in infants at 6–8 months of age (Maye, Werker, & Gerken, 2002).

Following the early perceptual biases, statistical learning guides further speech
perception development. Frequency detection also triggers the ‘Perceptual magnet effect’ (Kuhl, 2004), where central exemplars serve to draw other members from the same phonemic category, thus diminishing discrimination within a category (e.g. the allophones of /d/, says $[d_{1,2,3,...,x}]$ are grouped into the phoneme /d/). Indeed distributional input might drive functional reorganization by shrinking and expanding the perceptual distances within and between categories (Iverson et al., 2003). Another statistical regularity that infants are sensitive to is ‘transitional probability’, learning that syllables from within a single word have a higher chance to co-occur than syllables from separate words (Saffran, Johnson, Aslin, & Newport, 1999). Once word forms can be segmented and represented, abstract linguistic units can be mapped on concepts. Then, vocabulary learning and qualitative improvement in its efficiency can be achieved.

Through maturation, speech perception bootstraps the development of phonological awareness. McBride-Chang (1995) tested sample of 91 typically developing third-grade children and 45 fourth-grade children and found that a latent speech perception factor based on three identification tasks contributed unique variance in a phonological awareness construct, even after controlling for vocabulary knowledge and verbal short-term memory. Similarly, categorical speech perception and phoneme awareness were moderately correlated in a 15-month longitudinal study of 142 kindergarten children at the age of 5 (McBride-Chang, Wagner, & Chang, 1997). Gibbs (1996) found similar but delayed effects at the onset of reading, with speech perception ability at five and six years predicting phonological awareness at six and seven years, respectively. In a more recent study, Boets, Wouters, van Wieringen, De Smedt, and Ghesquiere (2008) showed that speech perception has direct and indirect effects (via phonological awareness) on reading in typically-developing 5-year-old Dutch children. In another study, Watson and Miller (1993) showed substantial relationship between speech perception and phonemic awareness among 94 college undergraduates, with
24 reading disabled readers. Using a different approach, Snowling, Hulme, Smith, and Thomas (1994) showed that a reduction of phonetic similarity between the odd word and the background items resulted in fewer errors in less demanding awareness measures such as rhyme oddity (identifying which of three words does not rhyme with the others). These findings again point to the importance of perceptual factors in ability to analyze the phonological structure of words. In a training study, Hurford (1990) trained dyslexic children from second and third grades for a total of 2-3 hours on phoneme discrimination for a number of phoneme pairs, proceeding from a vowel pair to a liquid pair and finally to a pair of stop consonants. Subsequently phonemic awareness was significantly enhanced.

However, a small number of studies failed to obtain noteworthy correlation between early speech perception and later reading success (Mann & DiTunno, 1990; Scarborough, 1996). In response to these negative results, Brady (1997) argued that simple discrimination or identification tasks with high frequency monosyllabic words, may not be sufficiently sensitive to tap individual differences. Also, variations in early speech perception skills are overshadowed by changes in phonology induced by the development of awareness, i.e. similar changes are undergoing in speech perception and phonological awareness. Interestingly, the ability to discriminate phonemes has its own developmental trajectory and is bootstrapped by perceptual biases that emerge before it.

Postulated in an opposite direction, phonological awareness was found to influence speech perception in multiple studies. Fowler, Brady, and Eisen (1995) compared 5-year-old children who had attained phoneme awareness with those who were still naïve about phonemic segments. Fully 100% of the children who were phonemically aware could identify un-ambiguous end point stimuli on ‘s(vowel)’ and ‘sh(vowel)’ contrasts whereas less than half of those lacking awareness of phonemes could identify to 90% criterion which syllable had
been presented. In Moore, Rosenberg, and Coleman’s (2005) study, a group of typically developing 8 to 10-year-olds showed better performances in phoneme awareness task after 6 hours of phonemic contrast discrimination training. In another training study, Fowler, Brady, and Yehuda (1995) found that a total of 90 mins of awareness training on /s/ and /f/ phonemes could enhance categorical perception of phonemes, suggesting that acquiring awareness sharpens differentiation of phonemic categories. Additional evidence is documented to support the claim that progression in phonological awareness seems to stimulate (or at least precede) development in speech perception (Mayo, Scobbie, Hewlett, & Waters, 2003; Warrier, Johnson, Hayes, Nicol, & Kraus, 2004).

Although bidirectional relationships between speech perception and phonological awareness are evidenced, due to the early emergence of speech perception in prior to phonological awareness, it is still reasonable to believe that phonological awareness is developmentally contingent on the perception of speech sounds and speech perception bootstraps the development of phonological awareness, phonological memory, vocabulary and reading by perceptual learning in the form of statistical learning.

1.10 Lexical restructuring model (LRM)

In contrast to the ‘Autonomous’ view, the ‘Emergent’ view suggests that children as young as 3 years old can analyze language structure independent of meaning by a mental framework (Chaney, 1992). Such ability helps solve real problems in oral communication, such as identifying the word boundaries in a sentence. Sharing a similar view, the Lexical restructuring model (LRM) suggests that ‘phoneme is not an integral, hard-wired aspect of speech perception and processing, rather it emerges with spoken language experience as a result of interaction between vocabulary growth and performance constraints.’ (Walley, 1993)
development of phonological awareness, especially at the phoneme level. The development of the phonological system takes two steps, first as structuring the implicit perceptual unit used in basic speech processing, and later as structuring the explicit unit that can be deployed for reading.

Since pre-literate children start out with small vocabulary size, holistic phonological representations are enough for storing and processing of vocabulary (e.g., Jusczyk, 1993). More precisely, the phonological aspects of vocabulary are represented in the form of physical and acoustic markers of changes (e.g., changes in amplitude) in the complex speech wave form (Vihman & Croft, 2007). With rapid vocabulary growth, especially with the “vocabulary growth spurt” around 18 months for most children, a growing number of words overlap in their acoustic properties, thus, it is hard to differentiate phonologically similar words. In this situation, there should be considerable pressure to implement more fine-grained phonological representations that are composed of smaller speech-based segments such as phonemes that specify distinctive features of these sounds (such as place of articulation, which distinguishes /b/ from /d/) (Aslin, & Smith, 1988; Fowler, 1991; Goswami, 1999). Lexical restructuring in pre-literate children largely takes the form of the representation of phonological segments corresponding to syllables, onsets and rimes (Gombert, 1992). At the early stage, this restructuring would involve ‘epilinguistic’ representation such that children should be able to recognize whether words share syllables, onsets and rimes (epilinguistic processing), but would not necessarily be able to identify and produce these phonological units as required by most ‘metalinguistic’ tasks (metalinguistic processing requires the identification and production of phonological segments). In the normal course of development, the phonological aspect of this representation is re-represented gradually and restructured a number of times. The degree to which segmental representation has taken place is in turn thought to determine how easily the child will become phonologically aware and will learn to read and write.
Various lines of research have validated different aspects of the LRM. A gating paradigm has been used to study the degree of word segmentation across age. Metsala (1997) presented the listeners with increasing amounts of acoustic-phonetic information from word onset over a series of trials. The listener then tried to guess the identity of the target word after each gate. Identification on the basis of a small amount of acoustic-phonetic information suggests segmental organization. The occurrence of this process depends on the frequency and density of neighbourhoods of the words. High-frequency words and words that shared a lot of phonological similarity with other words (in dense neighbourhoods) demanded the most discrimination and therefore less acoustic-phonetic information was needed for the gating task (see Inglis, Newsome, Tang, & Martin, 2002 for a demonstration on the internet). As age increased, the phonological representations of became more segmental and the need of acoustic-phonetic information was reduced.

The LRM also postulated a positive relation between vocabulary size and phonological awareness. Receptive vocabulary knowledge has been found to contribute to the development of phoneme awareness from kindergarten through second grade, irrespective of reading ability and linguistic environment at home (Cooper, Roth, Speece, & Schatschneider, 2002; Foy & Mann, 2001). In one study, Metsala (1999) found that children with above median vocabulary test scores had superior phonological awareness, comparing to the children in the bottom half of the vocabulary score distribution. An interaction between the density of word neighborhoods was observed. In the first year of this study (Garlock, Walley, & Metsala, 2001), the researchers found that early acquired words from sparse neighborhoods predicted phonological awareness, whereas recognition of dense words did not. However, Metsala (1997) showed that young children were better at a rime oddity task for words from dense than sparse rime-neighborhoods and children with higher vocabularies performed particularly well for the more difficult judgments involving final consonants (e.g., meat, seat,
weak; De Cara & Goswami, 2003). Similarly, 3- to 4-year-olds performed better on a phoneme blending picture-matching task for words from dense versus sparse neighborhoods (Metsala, 1999). For the youngest group of participants in that study (about 7 years of age), recognition of words from sparse neighborhoods, together with phoneme awareness, predicted word and pseudoword reading. Taken together, these findings suggest that spoken vocabulary growth prompts words in dense neighbourhoods to be more differentiated in lexical representations, and leads to development of literacy skills (e.g., Chaney, 1994; DeCara & Goswami, 2003; Metsala, 1999; Thomas & Senechal, 1998).

However, it should also be noted that the establishment of detailed phonological information would be a pre-requisite of vocabulary growth (Dollaghan, 1994). Rather than structural changes of phonological representations per se, Storkel (2002) has proposed a weak version of lexical restructuring, according to which the salience of the phonological overlap among different words (or neighbourhood membership) shifts in development. She argues that redirection of attention to perceptual salience can better handle the variability in children’s performance across different tasks, such as the salience of syllable onsets in word perception and production versus the salience of rimes for some similarity judgments. In a study, 14-month-olds fail to detect the same phonetic detail in a word-object pairing task that they (and younger infants) easily detect in a simple syllable discrimination task (Stager & Werker, 1997). Nevertheless, LRM focuses more on developmental changes in representation and/or processing at the word level, than on infants’ basic discrimination and categorization abilities (Walley, 1993).

Apart from prompting word segmentations, vocabulary has its unique role in supporting the development of visual word recognition skills (e.g., Bryant, Maclean, & Bradley, 1990; Stevenson, Parker, Wilkinson, Hegion, & Fish, 1976). It is argued that
vocabulary knowledge facilitates the creation of mappings between orthographic,
phonological, and semantic representations in a child’s developing lexical system (Nation &
Snowling, 1998; Plaut, McClelland, Seidenberg, & Patterson, 1996). A closer examination has
revealed differential patterns of such links (Nation & Cocksey, 2009). For instance, Goff,
Pratt, and Ong (2005) found that receptive vocabulary showed a stronger correlation with
irregular word reading ($r=.53$) than with nonword reading ($r=.28$) in 10-year-olds. Bowey and
Rutherford (2007) reported the same pattern in a group of 13-year-olds, with receptive
vocabulary correlating .57 with irregular word reading but only .39 with nonword reading. In
contrast, Ouellette (2006) has found that receptive vocabulary breadth (the number of stored
vocabulary entries) alone predicted decoding performance, whereas expressive vocabulary
breadth (the abilities of identifying synonyms and providing definitions) predicted visual
word recognition.

It is important to note that speech perception is not excluded in the LRM, but it
plays its role in the development of epilinguistic skills which are not consciously accessible.
Only by vocabulary acquisition can changes be made at the phonological level which leads to
the emergent of meta-linguistic skills.

1.11 A unique relation between phonological memory and vocabulary

In addition to phonological awareness, the quality of children’s phonological
representations plays an important role in phonological short-term memory (Phonological
memory; Brady, 1997; Gathercole, Willis, Emslie, & Baddeley, 1992). For example,
phonological memory, measured by nonword repetition tasks was related to spoken
vocabulary size and vocabulary acquisition (Gathercole, 1995; Gathercole, Hitch, Service, &
Martin, 1997). Development of phonological memory also makes a distinct contribution to
word reading independent of phonological awareness (Wagner & Torgesen, 1987). Fowler
(1991) has argued that children who have degraded phonological representations will
experience significant difficulties in encoding, rehearsing, storing, and retrieving speech stimuli from memory. Indeed, there is considerable evidence that poor readers perform less well on measures of phonological memory (Siegel & Ryan, 1988). Thus, phonological representations have pervasive effects throughout the phonological system.

The nature of phonological memory has been described in the working memory model (Baddeley, 1986). As a phonological loop, it comprises both a phonological store, which holds information in phonological form, and a rehearsal process, which serves to maintain decaying representations in the phonological store. By abstracting the core features from temporary representations held in the phonological loop, stable phonological specifications of words can be built and turned into a corresponding entry in lexical long-term memory (Gathercole & Baddeley, 1993). This account has been supported in the findings of Gathercole, Willis, Emslie, and Baddeley (1992; nonword repetition in 4-year-olds predicted vocabulary size at 5 years of age, with the reverse relationship not being supported. Similar results were obtained in experimental settings. Superior phonological memory function is associated with greater facility in more rapid learning of the phonological aspects of new words (Gathercole, Hitch, Service, & Martin, 1997). For instance, in Gathercole and Baddeley’s (1990) study, 5-year-old children were asked to learn new names of toy animals. The experimenter paired four toy animals with either a familiar name such as Michael or phonologically unfamiliar names such as Meeton. The children with high nonword repetition ability outperformed children with low nonword repetition ability in learning the phonologically unfamiliar names. In contrast, no noteworthy difference in the rates at which the two groups of children learned the familiar names was observed. However, the findings with older children did not support this direction of causality. For children age 4 to 6 and 6 to 8, vocabulary size predicted later performance on nonword repetition tasks, but the converse relationships were not significant.
A second account of the association between nonword repetition and vocabulary size takes an opposing direction - it is long-term lexical knowledge that influences nonword repetition. Snowling, Chiat, and Hulme (1991) argued that existing vocabulary knowledge (particularly the knowledge about the structure of English words) contributes to performance on nonword repetition tasks. Consistent with this account, Dollaghan, Biber, and Campbell (1995) have shown that children repeat multi-syllabic nonwords that have a word in the position of a stressed syllable better than matched nonwords without the lexical component. These investigators reported the improved performance was due to better repetition of the remaining, unstressed syllables in the nonword. Also, Dollaghan et al. (1995) observed that the majority of errors in nonword repetition were due to substituting a word in place of a non-lexical syllable. These authors concluded that lexical knowledge intruded on performance in nonword repetition, and then questioned whether phonological memory can be assessed independent of long-term lexical knowledge. To counter this argument, Gathercole (1995) tested if the performances of nonword repetition are confounded by wordlikeness, i.e., how much a nonword stimuli like a real word. Nonwords rated low in wordlikeness would not closely resemble any known word pattern words and would be thought to have less contribution from lexical knowledge. Indeed, a stronger association was found between the performance on nonwordlike (versus wordlike) repetition and vocabulary size. Thus, it was proposed that the repetition of nonwords rated low in wordlikeness was a purer or more sensitive measure of phonological short-term memory.

The association between nonword repetition and vocabulary size is also postulated in the LRM based on the overlap of phonological representations between the two skills. This is because it will only be possible to maintain temporary representations of unfamiliar items if the items can be robustly stored in the first place, although it is also true and necessary that more segmented lexical representations will lead to better flexibility in rearranging individual
phonemes in new patterns and thus to more robust representations of nonwords. Vocabulary size, word familiarity, and phonological relatedness between words, collectively propel the segmental structure of lexical–phonological representations; these representations, in turn, support nonword repetition (e.g., Edwards, Beckman, & Munson, 2004; Metsala, 1999). In Metsala’s (1999) study, vocabulary knowledge was strongly associated with nonword repetition scores for 3- to 5-year olds. The shared variance of this association was accounted for by phonological awareness measures, indicating an overlap between phonological awareness and phonological memory.

A third account is that it is the speech output rather than the prior encoding and storage components of phonological memory tasks that explain the link found with vocabulary knowledge (Snowling, Chiat, & Hulme, 1991). Nonword repetition requires accurate planning and execution of speech-motor gestures which will yield a correct sequence of phonological output which corresponds to a retrieved memory representation. Articulatory accuracy is particularly important in the nonword repetition task, where a single phoneme deviation is scored as an error (Gathercole & Baddeley, 1996). Some children's phonological production systems take a long time to mature and may never be fully accurate, and this output problems will result in systematic underestimation of the true phonological memory capacities of children if recall-only measures are used (Snowling & Hulme, 1989; Wells, 1995).

Based on the above views and empirical evidences of various links among the hypothesized variables, I developed several Path analysis models and compared the extent to which the data fit these models. There are several factors that affect how we interpret the findings of this thesis in respect to the past studies of English reading acquisition in L1. First, with participants spanning around a large age range, I am not arguing that the changes are
akin to development stages. Rather, in the context of individual differences, I can model how each of the skills feedforward and feedback in a system of reading. As the L1 background should have influences on L2 reading acquisition, though I use various models of L1 English reading models as a reference, I am not going to validate these models in their original forms. Instead, these models provide an empirical framework for this thesis to conceptualize and understand ESL reading acquisition. In chapter 4, separate model will be tested with the inclusion of L1 measures.

1.12 A summary of evidence-based models of reading

The present thesis tests the relative strengths of several reading development models that simulate the trajectory of ESL reading development among Chinese children. Based on the literature review above, four hypothetical causal models for ESL reading development were proposed.

The first model was constructed according to a data-driven model validated in a previous study of English-speaking children (McBride-Chang, 1996). This model would represent the ‘Autonomous’ view which built on the motor theory of speech, the representations of speech perception and phonological awareness (especially at the phoneme level) are both in the form of articulatory gestures and this leads to the hypothesis that speech perception should be highly correlated with phonology related skills. In McBride-Chang’s (1996) final best-fitted model (termed ‘Indirect’ model in her paper), latent constructs of phonological awareness, phonological memory, speech perception, rapid naming were correlated, and each of the skills except speech perception causally linked to reading abilities. The effect of speech perception on reading is mediated via phonological awareness. A model of ESL reading is constructed based on the ‘Indirect’ model. There were several discrepancies between the original and the modified ‘Indirect’ models. First, with fewer measures of the same domain of skills, observed variables instead of latent variables were tested. Second, to
compare with other ESL reading models which had receptive vocabulary as a core skill, receptive vocabulary was included and it replaced rapid naming. Lastly, if the independent variables were hypothesized as correlating to each other, the number of parameters estimated would be equal to the number of observed variables so the degrees of freedom became zero. Therefore, no connections between independent variables were assumed initially, but would be formulated according to the modification index generated from the estimates calculation.

Figure 1.1: Causal processes of visual word recognition development in the ‘Autonomous’ view.
The second model was developed based on the idea of ‘Bootstrapping’ (figure 1.2). Speech perception of which its development was guided by our innate perceptual biases since prenatal stage, was thought as a foundation for all the subsequent phonological development. This model hypothesized that speech perception bootstraps the development of phonological-related skills under the operations of a set of statistical learning mechanisms. Also, guided by the statistical learning mechanisms, the resulting phonological skills then bootstrap reading development.

Figure 1.2: Causal processes of visual word recognition development in the ‘Bootstrapping’ view.

The third model was based on the Lexical restructuring model (LRM) (figure 1.3). The main hypothesis of this model is the causal route from receptive vocabulary to phonological awareness. It is vocabulary growth that pressurizes the phonological representations to become more segmental so to make phonological units consciously accessible for reading development. In this model, speech perception is responsible for refining the inaccessible layer of phonological representations. Also, it is hypothesized that the phonological memory span is largely contributed by the segmental nature of phonological representations.
The construction of the fourth model was motivated by the distinctive functions served by phonological awareness and phonological memory (Wagner & Torgesen, 1987). Although the two skills are in the domain of phonology, phonological awareness is more related to the access and manipulation of phonological units, while phonological memory is more concerned with the temporal storage of phonological information and the conversion of information stored temporarily in short-term memory storage to long-term lexical knowledge. It is hypothesized that phonological awareness has a direct impact on reading development, whereas, phonological memory has a more direct relation with receptive vocabulary and the latter contributes to reading development. Built upon the research evidence of ‘perception as a pre-requisite of awareness’, speech perception and phonological awareness are causally linked.
Figure 1.4: Causal processes of visual word recognition development in the ‘Independent Phonology’ view.

The four ESL reading development models will be tested in chapter 4.
CHAPTER 2 THE LINK BETWEEN THE FIRST AND SECOND LANGUAGE

2.1 Chapter summary

In this chapter, I first describe a framework for the study of second language (L2) reading acquisition in this thesis. Next, I discuss skills that are important to L2 reading acquisition. Then, I discuss the overlap between L1 and L2 skills. After that, I will describe the characteristics of Chinese learners of English as a second language (ESL) and discuss relevant Chinese ESL studies. The chapter is rounded up with major research questions and hypotheses.

2.2 The scope of this thesis on second language reading acquisition

We have learnt from native reading acquisition research that reading is a complex and multifaceted construct (Koda, 2007). Diverse experimental paradigms and statistical methods have being applied to study the nature of different components of reading and their inter-relationships. The study of L2 reading acquisition is even more challenging because extra factors have to be taken into account, such as the nature of the language and writing system of the first language (L1), prior L1 linguistic and literacy experiences, age of acquisition, learning environments, neural plasticity, etc. Despite such complexity in L2 reading acquisition, much attention is given to this topic in response to the demand of policy makers, educators and our interest in human’s potential and learning patterns in multilingualism. Research has been conducted on bilinguals, early or late second language learners in a variety of linguistic environments. To date, second language reading research has shown us that common processes appear to underlie phonological awareness in different writing systems (e.g., Gottardo, Yan, Siegel, & Wade-Woolley, 2001), and the differences between writing systems have a great impact on children’s acquisition of literacy.

In this thesis, I will focus on the cognitive processes of L2 reading development. Figure 2.1 provides a schematic presentation that illustrates this particular area of study and
some outstanding issues that I will tackle.

Figure 2.1: Relations between first- and second-language reading acquisition and bilingualism (Bialystok, 2007).

Figure 2.1 highlights the dynamics and relevant cognitive processes of L2 reading development. Bialystok (2007) has contended that this diagram is not intended to be a model of reading but a description of the relationships among the background skills needed for reading in both L1 and L2. Because, the model contains the necessary and essential cognitive factors that contribute to the variability of the rate of second language development, namely phonetic-coding ability, language-analytic ability and memory (Skehan, 1989), it is appropriate and useful to construct a L1-L2 reading acquisition model in this thesis.

Bilingualism, the situation in which the learners intend to learn two languages concurrently and continuously, has an impact on L2 reading development via three major cognitive factors, namely oral proficiency, concepts of print and meta-linguistic skills. ‘Oral proficiency’ refers to linguistic knowledge (e.g., vocabulary, syntactic structure) that set a basis for reading development. ‘Concepts of print’ refers to the understanding of how spoken
language is represented in the writing system and the function of print. ‘Meta-linguistic skills’ refers to the meta-cognitive processes (e.g., phonological awareness) and strategies for reading. Bilingualism has previously been shown to enhance the development of such meta-linguistic insights. The three cognitive factors of second language reading and the precursors to reading in a first language are related through their common concepts. Bialystok (2007) has contended that bilingualism has a general effect on these three cognitive factors in reading development in both languages. And, there are mutual influences between the development of L1 and L2 skills. Traditionally, transfer between L1 and L2 is seen as the use of previously acquired linguistic knowledge, which results in inter-language forms (e.g., Gass & Selinker, 1983). These views of transfer share three assumptions. First, the reliance on L1 knowledge is partly due to an insufficient grasp of L2 linguistic knowledge. Second, the linguistic knowledge transferred to L2 is conceived as a set of closely matched, one-on-one corresponding rules. Third, once adequate L2 proficiency is attained, transfer tends to cease. The clear implication is that learners’ L1 knowledge plays a diminishing role in explaining individual differences in L2 learning as L2 develops. This interpretation of transfer is no longer uniformly endorsed and alternative conceptualizations of transfer have been called for (August & Shanahan, 2006; Koda, 2007). As an illustration, transfer is defined as the ability to learn new skills by utilizing previously acquired resources (Genesee, Geva, Dressler, & Kamil, 2006). Similarly, prior L1 learning experience is regarded as a reservoir of knowledge, skills, and abilities that is available when learning a L2 language and script (Riches & Genesee, 2006). Motivated by a constructive view of L1s, the investigative focus is more on the identification of the resources available to L2 learners at the onset of learning. Positioned in the Functionalist view, language is viewed as a set of correlated forms and functions, and its acquisition is viewed as the process of internalizing an infinite set of many-to-many relationships (MacWhinney, 1992). At the time when the L1 competencies are well rehearsed, transfer to L2 can occur. During development, both transferred and L1 competencies will
continue to mature through experience with L1 and L2 print input. No matter the progress of learning, transfer tends not to cease at any point. As shown in figure 2.1, the relationships between L1 and L2 skills are linked bi-directionally with emphasis on the mutual benefit to each other. Noted also that the ‘-/+/0’ signs in the diagram that suggest the impact of bilingualism on the three cognitive processes. As these skills develop, bilingualism may either facilitate (+), interfere (-) or have no effect (0) on reading development (Bialystok, 2007).

This pattern seems contradictory, but, in reality, each of the skills may affect different aspects of reading; for example, oral proficiency influencing comprehension, concepts of print affecting word decoding, and meta-linguistic strategies impacting on word recognition.

In this thesis, I will extend from Bialystok’s (2007) model’s original use and try to understand the ‘cross-language’ and ‘cross-domain’ relationships by exploratory factor analysis. Three hypothesized variables (i.e., receptive vocabulary, speech perception, and phonological memory) are categorized as ‘oral proficiency’. The remaining two variables (i.e., phonological awareness at the syllable, rime and phoneme levels and Chinese tone awareness) are grouped as ‘meta-linguistic skills’. As ‘oral proficiency’ and ‘meta-linguistic skills’ are also the major components of various reading and phonological development models described in the previous chapter, readers could refer to the last chapter for details. The ‘concept of print’ will be discussed in respect to Chinese children learning English as a second language.

2.3 L1 and L2 skills and their common underlying cognitive processes

Reading development within one’s L1 is dependent on accurate phonological representations. It now becomes clearer that reading acquisition in a L2 is also dependent on fully specified representations of the phonological units of L2. Although children learning to read in an L2 may have phonological representations that differ from those of L1 speakers, it does not necessarily follow that they have to go through a new learning routine to become
phonologically aware in the L2. Indeed, Cummins’s (1979) linguistic interdependence hypothesis suggests that there is a significant relationship between children’s skills in acquiring L1s and L2s. That is, children who have adequate phonological representations and phonological processing in their L1 would develop similar proficiency in learning an L2. Thus, the relationship between phonological awareness and literacy development would be similar for children learning to read in their L1 and in an L2. Indeed, a growing body of literature supports this view (e.g., Chiappe, Siegel, & Gottardo, 2002; Durgunoglu, Nagy, & Hancin-Bhatt, 1993; Geva, Yaghoub-Zadeh, & Schuster, 2000; Lesaux & Siegel, 2003). Together, these studies demonstrate that phonological awareness transfers from children’s L1 to L2 (e.g., Cisero & Royer, 1995) and that phonological awareness has a similar relationship with reading ability in children’s L1 and L2 (e.g., Chiappe & Siegel, 1999). However, a few studies have indicated that although children may acquire reading skills in their L2 at the same rate as native speakers, children initially process the L2 phonology differently than native speakers (Wang & Geva, 2003). Nonetheless, because the concept of word segmentation applies to all languages, once emerged in one language, it would be readily available in learning to discover the sound-to-print correspondence in another language, serving as the foundation for subsequent L2 phonological awareness and decoding development in L2.

Indeed, there is growing evidence that phonological awareness at the level of rhyme plays an important role in reading acquisition in Chinese (Cho & McBride-Chang, 2005; McBride-Chang & Kail, 2002; So & Siegel, 1997). Apart from natural use of languages, the cross-linguistic transfer can be elicited and facilitated by direct instruction or training which targeted at enhancing children’s awareness of phonological units (Quiroga et al., 2002). Moreover, the rate of learning depends on the orthographic depth of the language. Studies showed that learning of L2 skills can be faster than L1 skills when the L2 is a shallower
orthography (Geva, 1999). From the above discussion, it can be predicted that all facets of phonological awareness in bilingual children are highly correlated between their two languages. Indeed, a growing body of evidence suggests that phonological awareness is strongly related between Chinese and English (Bialystok, McBride-Chang, & Luk, 2005; Wang, Perfetti, & Liu, 2005), providing further support for the supposition that a portion of phonological awareness is a general ability shared between the two languages. Other aspects of reading, such as decoding, are more language dependent and need to be relearned in each writing system (Bialystok, Luk, & Kwan, 2005). Taken as a whole, the empirical findings make it plain that (a) as in L1 literacy, phonological awareness plays a critical role in L2 reading acquisition, (b) phonological awareness in a bilingual children’s two languages are highly correlated, and (c) phonological awareness relates to decoding both within and across languages.

Regarding speech perception, age of acquisition and language input affect how second language phonemes are perceived (Birdsong, 1999). In L1 reading development research, the role played by speech perception has been recognized, though how it is related to other constructs is less well known. A handful of studies have examined speech perception and reading development in L2s. For example, in a study of Korean-speaking ESL children, English speech perception and phonological awareness were important contributors to early English reading abilities, independent of English oral language skills (Chiappe, Glaeser, & Ferko, 2007). For the development of L2 speech perception and the interaction between L1 and L2 speech perception, a number of models have explained how children perceive nonnative phonology. The Feature competition model predicts that L2 phonemes that are dissimilar to L1 phonemes will be easier to learn than L2 phonemes that are similar to L1 phonemes (Hancin-Bhatt, 1994). Best’s (1995) Perceptual assimilation model suggests that the quality of L2 phonemes’ representations depends on how well they map onto the
phonological system of the L1. Finally, Flege’s (1995) Speech learning model claims that L2 learners may establish new phonetic categories for L2 sounds that differ from the sounds of their L1. Concerning individual differences in L2 speech perception, anatomical brain studies showed that the degree of myelination differentiated fast and slow phonetic learners (e.g., Anderson, Southern, & Powers, 1999). With a greater number of white matter fibres between the auditory and parietal cortices, more rapid neural transmission is achieved and therefore enhances the processing of certain speech sounds such as stop consonants which contain very rapidly changing acoustic information.

Superior phonological memory function is associated with greater facility in acquiring L2 vocabulary (Cheung, 1996; Papagno & Vallar, 1995; Service & Kohonen, 1995). Such a link was still preserved after the effects of age, IQ and L1 vocabulary were controlled (Masoura & Gathercole, 1999). Furthermore, there were significant differences in the performances between L1 and L2 nonword repetition tasks in L2 learners, suggesting that memory for nonwords is language-specific (Thorn & Gathercole, 1999). If L2 learners experience a lack of fit between their phonological representations and the phonological structure of the language they are learning, L2 phonological memory would be less readily available for L2 vocabulary and word learning.

In general, bilingual children have smaller vocabularies in both their L1 and L2 when compared with monolingual children (e.g., Bialystok & Herman, 1999; Droop & Verhoeven, 2003). Children reading in their first language have already mastered 5,000–7,000 words before they begin formal reading instruction in schools (Biemiller & Slonim, 2001). However, this is not typically the case for second language learners when assessed in their second language. For example, Umbel, Pearson, Fernandez, and Oller (1992) tested the receptive vocabulary of Hispanic children in Miami in both English and Spanish. It was found
that English-Spanish bilinguals had acquired significantly less English vocabulary than English monolinguals, even when the socioeconomic status of the bilingual children was higher than that of the monolinguals, and the bilingual children knew more English than Spanish vocabulary. Possibly, learning of two languages concurrently takes away some time and opportunities to learn and rehearse vocabulary in each language.

Vocabulary knowledge has been considered as an important source of variation in reading comprehension in past reading models, particularly as it affects higher-level language processes such as grammatical processing, construction of schemata, and text models (Chall, 1987). More recent studies have recorded the noteworthy role of vocabulary in the development of earlier reading and reading-related skills including phonological, orthographic, and morpho-syntactic processes (Muter & Diethelm, 2001; Verhallen & Schoonen, 1993; Wang & Geva, 2003). Masoura and Gathercole (1999) have shown that the relationship between L1 and L2 vocabulary was preserved even if phonological memory was controlled for, implying that L1 vocabulary was important to L2 vocabulary knowledge. This is more plausible in a non-total-immersion language learning situation where few opportunities are provided for using a L2, therefore, L1 vocabulary bootstraps the learning of L2 vocabulary. Moreover, whether L1 vocabulary facilitates L2 vocabulary learning depends on the amount of cognates shared between L1 and L2 and children’s cognate awareness. Cognates are words that share a historical origin and have similar alphabets, spelling and meaning across languages (Whitley, 2002). There is a substantial body of studies, documenting the facilitating role of cognate words in L2 learning among adults (Moss, 1992). For instance, Spanish and English share an enormous number of cognates. Cognates in English and Spanish account for one-third to one-half the average educated person’s active vocabulary, estimated at 10,000 to 15,000 words (Nash, 1997). The ability to recognize a cognate stem within a suffixed English word, and the systematic relationships between Spanish and English suffixes (e.g., English
words ending in "-ty" correspond to a Spanish cognate ending in "-dad") and the saliency and frequency of correspondence patterns (e.g., action-acción, delicious-delicioso) prompt the meaning guess and enhance frequent text comprehension (Ringbom, 1992). Nagy, Garcia, Durgunoglu, and Hancin-Bhatt (1993) found a strong relationship between the ability to recognize cognates and the reading comprehension skills of Spanish-English bilingual children in elementary school, even after controlling for Spanish and English vocabulary knowledge. In another study, the researchers found that awareness of a cognate relationship between Spanish and English increases markedly with age (Hancin-Bhatt & Nagy, 1994). However, good L2 vocabulary knowledge does not necessary imply good L2 visual word recognition because specific skills are involved for vocabulary and word learning (Geva, 1999).

As we have seen above, phonological awareness, phonological memory, speech perception and vocabulary each play an important but different role in L2 reading acquisition. Here I discuss the linkage between parallel skills in the first and second languages and whether skills in two languages are controlled by common underlying cognitive processes.

As Geva (1999) has argued, if positive and significant correlations are observed between parallel meta-linguistic skills in the two languages, it is very likely that there is a common underlying cognitive factor that controls the parallel skills in two languages. In addition, these correlations may be due to a third factor such as common genetic or common environmental influences (Harlaar et al., 2008). It is important to note that two views are compatible and the results in chapter 7 of this thesis will shed light on both views. Apart from a general cognitive process shared between L1 and L2, similar cognitive processes would be shared between various skills in one language. The development of two skills (e.g., phonological awareness and receptive vocabulary) may subsume the same learning
2.4 Chinese learners of English as a second language

L2 reading development and processes are influenced by 1) the similarity and dissimilarity between the language structure of the first and second language, 2) the ‘orthographic distance’ between the two (the degree to which the two writing systems use similar scripts and have similar levels of orthographic transparency), and 3) the transfer of processing experience from the first to the second language (Koda, 1996). How do Chinese children learn English as a second language? In the following, I will describe some of the characteristics of Chinese ESL learners. The Chinese child participants in this thesis are Hong Kong Chinese who speak Cantonese which is one of the seven major dialects in Chinese (Norman, 1988; Ramsey, 1987), and serves as the lingua franca among Hong Kong Chinese (Li, 1996). The first language of the child participants is Chinese and the second language is English.

Linguistic distance refers to the degree of structural similarity between two languages (Koda, 2007). Rogers (2005) argued that there is a long linguistic distance between Chinese and English. Chinese belongs to the Sino-Tibetan language family (Li & Thompson, 1981) and English is a Germanic language within the Indo-European language family (Yule, 1985).

In terms of phonology, English has 24 basic consonants, 12 pure vowels and 8 diphthongs; Chinese (Cantonese) has 19 basic consonants, 8 pure vowels and 10 diphthongs (Chan & Li, 2000). Chinese does not have some of the phonemes (e.g., /z/ and /θ/) and minimal pairs found in English, such as /f/ and /v/ (see figure 2.2 for details). The phonological differences between English and Chinese contribute to speech perception difficulties. Brown (2000) observed that Chinese adults who had a mean of 10.4 years of
English learning were unable to discriminate English speech contrasts that had no corresponding distinct segments in Chinese, e.g. /s-θ/ contrast. However, the Chinese learners of English in Brown’s (2000) study learnt English since their twenties which is far from the optimal period of language acquisition. The picture for young Chinese learners might be different. Chinese has a very different vowel system from English (figure 2.3). Chinese has single vowels in areas where English makes more than one contrast (e.g. the front vowels /æ/ and /ɛ/ in English are represented by a single-vowel phoneme /e/ in Chinese) and do not use vowel length as a distinctive phonemic feature (Randall, 2005). Furthermore, all of the syllables in multi-syllabic Chinese words are stressed equally and so all the syllables in an English word or phrase are pronounced with equal stress occupying more or less the same amount of time, thereby resulting in a syllable-timed rhythm (Chan, 2006).

Figure 2.2: An overview of English and Cantonese consonant (Chan & Li, 2000).
Phonotactically, Chinese’s syllable structure is simpler as Chinese syllables do not have initial and final consonant clusters, have no inflectional suffixes and do not mark plurality or tense by lexical affixation (Deterding & Poesjosoedarmo, 1998). In contrast, final clusters in English play an important syntactical role, with the last consonant often being an inflectional morpheme which indicates either past tense, plurality or person. However, such linguistic differences in terms of morpho-syntactical structure could be compensated by a very formal grammar-based (vs. communicatively-based syllable) method of studying English, which would make learners more aware of grammatical features such as past tense morphemes (Randall, 2005).

A Chinese character is the smallest meaningful unit (morpheme) and maps on a syllable. Since the same Chinese syllable corresponds to many morphemes with different meanings, children must be aware that the same spoken syllable corresponds to different units of meaning. The situation is comparable to reading English homophonic words, one pronunciation /weilz/ corresponds to three words with different spellings, ‘Wales’, ‘whales’, and ‘wails’. Learners of the Chinese morphemic writing system clearly need to be aware of morphemes more than phonological units (Li, Anderson, Nagy, & Zhang, 2002). In contrast,
English has a sound-based writing system which connects graphemes with the sounds of speech. The English script represents all the phonemes of speech. However, English is a relatively deep alphabetic orthography of which the grapheme and phoneme regularity and consistency is low, i.e., words sharing the same orthographic constituent have multiple pronunciations and words sharing the same pronunciation have several spellings. Because alphabetic literacy requires segmenting and manipulating phonemic information, alphabetic readers rely heavily on phonemic analysis. In contrast, phonological decoding in logography does not entail phonemic analysis because phonology in logographic literacy involves syllables and morphemes. Because of the syllable-morpheme mapping, the syllable, rather than the phoneme, is a more salient feature in Chinese phonology. The saliency of the syllable is demonstrated in the ‘last sound’ game; the English’s last sound is a phoneme while the Chinese’s last sound is a syllable. In Chinese, around 80% of characters belong to phono-semantic compounds which consist of a semantic and phonetic radical. A character in my name, 緯, is an instance of phono-semantic compounds. The semantic radical on the left suggests something related to ‘thread’ and the phonetic radical on the right provides a pronunciation cue (/wai/). The awareness and knowledge of phonetic radicals are critical to Chinese reading. As a result, Chinese people have more difficulties in perceiving the sub-syllabic units of English (Bialystok & Miller, 1999). However, the sensitivities to phonemes can be enhanced by training. Chinese children showed an increase from 35% to 60% accuracy in a phoneme deletion task just 10 weeks after learning Zhuyin Fuhao, a supplementary writing system used in Taiwan (Huang & Hanley, 1997), and similar results were obtained with adults (Ko & Lee, 1997). In Hong Kong, no such phonetic system is adopted. Learning to read Chinese requires rote memorization of the arbitrary associations between characters and syllables.

Chinese is a tonal language, in which a change in the tone of a syllable results in a
change in its meaning. In Cantonese, there are six lexical tones. For instance, the syllable /ji/ in different tones refers to the following meanings: /ji1/ (clothing) /ji2/ (chair), /ji3/ (opinion), /ji4/ (son), /ji5/ (ear), and /ji6/ (two). Tones 1-6 represent high-level, high-rising, mid-level, low-falling, low-rising and low-level tones respectively. As tone is perceived as attaching to the rime of a syllable, the nature of tone in spoken Chinese is thought to be suprasegmental. Gauthier, Shi and Xu (2007) argued that synchronous perception of segments (consonants and vowels) and pitch patterns is necessary for distinguishing between words, and they showed in their experiment that the object of tone perception is the articulatory gesture and not simply pitch contour. Therefore, Chinese lexical tones can also support English phoneme development. This may explain why Chinese tone processing skill contributed a moderate but significant amount of variance in predicting English reading even when English phonemic-level processing skill was controlled (Wang, Perfetti, & Liu, 2005).

In terms of orthography, a Chinese character is nonlinear, as the visual features of each syllable are shaped into a single block. There is no rule for mapping visual features with vowels and consonants to form syllable blocks, making Chinese a deep orthography. Because Chinese ESL learners are used to reading characters holistically, they would bring similar procedures to bear on word recognition in English. They would favour whole-word, lexical approaches to word recognition in English. However, orthographic distance as indicated by a simple alphabetic/logographic divide would not necessarily lead to learning difficulties. In a study of English dictation, Chinese children did not commit more errors than their alphabetic (Bahasa Malayu-speaking) counterparts despite very similar levels of language proficiency and the fact that all of the participants followed the Bahasa Malayu medium education system in Malaysia (Randall, 2005). Yet, qualitative differences are observed between proficiency-matched ESL learners (Chinese and Korean children resident in the US). By comparing the performances in semantic category judgments task, Wang, Koda, and Perfetti
(2003) showed that the two groups of children relied on different information during L2 lexical processing and these differences reflected the variations predicted from the properties specific to their respective L1s. In the study, participants were asked to judge whether a written word belonged to a category description (e.g., ‘flower’). The participants handled the task well when the target words were non-homophonic words. ESL learners with alphabetic (Korean) L1 backgrounds committed more errors with homophonic (phonologically manipulated e.g., ‘rows’ for ‘rose’) items, whereas ESL learners with logographic (Chinese) L1 backgrounds made errors with similarly spelled (graphically manipulated e.g., ‘fees’ for ‘feet’) targets.

Next, I summarize the research findings of L2 reading development among ESL Chinese learners residing in Hong Kong, Mainland China and Taiwan, where the Chinese-English bicultural children are not immersed in natural bilingual communities.

Positive cross-linguistic transfers have been evidenced in several studies of Chinese ESL learners. Chow, McBride-Chang, and Burgess (2005) found that, of the three facets of phonological processing skills measured, syllable deletion was a relatively strong predictor of English reading abilities, both concurrently and longitudinally. They suggested that phonological awareness in Chinese can aid concurrent and subsequent English language acquisition. Similar results were obtained by Keung and Ho (2009) in their study of 53 Hong Kong Chinese primary 2 students, showing that English phonological skills (including rhyme detection and initial phoneme deletion) significantly predicted English (L2) word reading. However, rhyme awareness in Chinese (L1) predicted phonemic awareness in English (L2) but not English (L2) word reading. In McBride-Chang and Ho’s (2005) longitudinal study, Time 1 Chinese phonological processing skills predicted no significant variance in English word recognition 2 years later. In a recent study, McBride-Chang et al. (2008) showed that
there was some evidence for general transfer of phonological awareness in the L1 of Cantonese to a L2 of English, as demonstrated by the unique contribution of both tone and syllable awareness to word recognition in English. However, after statistically controlling for general knowledge, age, and speeded naming, the effect of tone awareness was marginalized and no longer predictive of English word reading. More recently, a study showed that Chinese phonological awareness and visual orthographic skills, but not morphological awareness, accounted for unique variance in English word reading even with the effects of Chinese character recognition and other reading-related cognitive tasks statistically controlled (Tong & McBride-Chang, 2010). These findings provide support only for the possible transfer of phonological skills in Chinese (L1) to phonological skills in English (L2), but not for the transfer of phonological skills in Chinese (L1) to English (L2) word reading. In contrast, Huang and Hanley (1995) found that a Chinese phoneme deletion task was correlated with Chinese and English reading similarly.

Leong, Hau, Cheng, and Tan (2005) concluded from their results of two-wave structural equation analyses that sensitivity to both the orthography and phonology of English is essential to learning to read and spell English words and that neither skill by itself is sufficient. However, it is not clear about the independent contributions of orthographic and phonological skills to reading and spelling.

A recent paper published by Cheung et al. (2010), which included 141 Hong Kong Chinese children (three age cohorts: Children in their third [last] kindergarten year, 2nd and 4th graders), showed that speech perception was more predictive of reading and vocabulary skills in the L1 than L2. Phonological awareness uniquely predicted reading and vocabulary skills after controlling for morphological awareness in the alphabetic L2. L1 speech perception and metalinguistic awareness predicted L2 word reading but not vocabulary, after
controlling for the corresponding L2 variables.

It was speculated that the cross-linguistic transfer was mediated by some external factors. Leong et al. (2005) argued that the mandatory primary English syllabus in Hong Kong overemphasizes semantic rather than phonological and orthographic aspects of English. Taken as a whole, previous studies have shown that sensitivity to phonology and the ability to discriminate speech sounds are important to ESL reading development in Chinese learners.

2.5 Summary of section 1

The main research goal in section 1 is to identify the relationships among speech perception, phonological awareness, phonological memory, vocabulary and reading abilities. The effects of transfer from L1 to L2 will also be examined.

The major questions are:

1) What are the inter-relationships among speech perception, phonological awareness, phonological memory, vocabulary and reading abilities? To answer this question, a series of Path analysis using structural equation modelling (SEM) will be conducted. The hypothesized models were compared against alternative models to specify the role played by each skill.

2) Are parallel skills in ESL and Chinese served by a common underlying cognitive process? First, I will examine the correlations between parallel English and Chinese variables. Positive and significant correlations between two skills would imply that those variables may be governed by a common underlying process. In contrast, negative and significant correlations suggest that cross-linguistic interference occurs.
3) Are there any cross-linguistic and cross-domain relationships among the ESL and Chinese variables? I will test if the ESL and Chinese variables load on certain latent factor(s) by exploratory factor analysis (EFA). If the ESL and Chinese reading and its related skills (e.g., Chinese phonological awareness and ESL visual word recognition) load on the same latent factor, these skills are more likely to operate under the same mechanism and the Chinese cognitive skills are more readily available for ESL reading development. Otherwise, the Chinese skills would be less supportive to ESL learning.
CHAPTER 3 DESIGN, METHODOLOGY AND DATA PREPARATION

3.1 Participants

A total of 207 pairs of MZ and 72 pairs of DZ twins aged from 3 to 11 were tested. The number of individuals in each age band is shown in table 3.1. As recruiting twins was a labour-intensive and expensive task; for economical reasons, I collaborated with another DPhil student at the University of Oxford and we shared the data from the same pool of children. In the current sample, the gender ratios in MZ and DZ twins were 1 and 0.7 respectively. In MZ twins, about half of the participants are male and half are female. In DZ twins, 70% of the participants are male and 30% of them are female. All the participants were Hong Kong Chinese. We had several inclusion criteria. First, the children and their parents had to be native speakers of Chinese. In Hong Kong, the conventional spoken Chinese is Cantonese which is widely used in everyday life spoken in Guangzhou and the vicinity (Norman, 1988) and by Chinese settled in overseas countries. There are approximately 64 millions speakers. Participants who had learned other dialects of Chinese first had been speaking Cantonese for at least three years. Second, we included only same-sex twins who lived together. Third, we recruited only children studying in local schools. Children studying international schools were not included, because the majority of students there are native English speakers. Representative participants were recruited through multiple channels: (a) school; (b) the project’s website (appendix 2a); (c) community centres; (d) educational psychologists; and (e) poster (appendix 2b). This project has received much publicity in the last few years. For example, several local newspapers and a TV programme reported our study (appendix 2c).
Table 3.1. Number of individuals in each age band at both time 1 and 2

<table>
<thead>
<tr>
<th>Age Band</th>
<th>MZ male</th>
<th>MZ female</th>
<th>DZ male</th>
<th>DZ female</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3.11 years</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4-4.11 years</td>
<td>38</td>
<td>30</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>5-5.11 years</td>
<td>24</td>
<td>38</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>6-6.11 years</td>
<td>38</td>
<td>28</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>7-7.11 years</td>
<td>40</td>
<td>30</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>8-8.11 years</td>
<td>28</td>
<td>44</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>9-9.11 years</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>10-10.11 years</td>
<td>10</td>
<td>18</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>total</td>
<td>208</td>
<td>206</td>
<td>82</td>
<td>62</td>
</tr>
</tbody>
</table>

In Hong Kong, kindergarten lasts 3 years, beginning when the children are 3 years old (McBride-Chang & Ho, 2005). There are no strict guidelines for English lessons in kindergarten. In most of the kindergartens, formal instruction in reading begins early. Letters from the English alphabet and single Chinese characters are also covered in K1 (K1; 1st year of kindergarten). In K2, children learn to read single English words and Chinese multiple-character words and short phrases. Thus, on average, Hong Kong students by K3 can recognize about 50 to 80 isolated English, plus a few phrases or sentences. At that time, they should know approximately 150 to 200 Chinese characters and are able to read some short phrases and sentences in Chinese. For primary schools, the minimum number of periods for English lesson is from five to eight out of a 38-period (40 minutes each) week in primary 1 to 4.

Twinning rates differ across ethnic groups, and are highest for blacks (1.32%) and lowest for Asians (0.72%), and fall between these two ends for whites (1.01%) (Pollard, 1995). The twinning rate is 7.18 per 1000 births for Chinese (Pollard, 1995). The DZ and MZ twinning ratio tended to be lower in Asian populations. For instance, the number of DZ twins was double that of MZ twins in England and Wales, whereas they were about the same in
Japan, in 1998 (Imaizumi, 2003). In Hong Kong, the DZ to MZ twinning ratio was found to be 0.86 in 1994 and 1995 (Tong, Caddy, & Short, 1997). This figure deviated from the DZ: MZ ratio of the current sample (0.35), possibly due to the exclusion of opposite-sex DZ twins in this thesis.

The twin identity was confirmed with zygosity testing. We used Oragene DNA self-collection kit (model no. OG-100 vial format or OG-250 disc format) to collect saliva from children for zygosity testing done corporately by professionals at the department of Biochemistry at the Chinese University of Hong Kong and Genome Quebec Innovation Centre at the University of McGill. Zygosity testing was conducted by two methods: Sequenom and AmpFISTR. The predictions made by these two methods concur in 100% of the cases (see Lim et al., under review, for details).

3.2 Procedure

The testing was conducted either at schools, children’s homes or a laboratory at the University of Hong Kong. All instructions were given in Cantonese. The testing was completed over two consecutive summers (April to September, 2008 and 2009).

3.3 Pilot testing and modification of tests

We did a pilot test with around 15 children at each grade from kindergarten grade 2-3, and primary school grade 1-4 children (aged from 4 to 10) to verify the difficulty level and discrimination power of the tests. A test item of high discrimination power is able to differentiate children with high composite test scores from those with low composite test scores. We did item analysis for all the tests and selected items that represent high-, mid- and low- level of difficulty, provided that the item had a fair discrimination power.
3.4 English measures

English visual word recognition. This task assessed children’s knowledge of English words. The English words were adapted from a corpus that included words taken from popular textbooks used in Hong Kong (appendix 2a). We asked the children to read the words aloud. We awarded 1 mark for each correct response. Basal and ceiling rules were constructed based on results of the pilot test so to minimize the administration time. Children were first tested at the entry level according to their grade levels. If they committed 3 or more errors in a set, they were then given items from the next lower level. Otherwise, they moved up to the next higher level. The test stopped when the child scored 0 in 15 consecutive items. The maximum score was 85, and its Cronbach’s alpha was .99.

English receptive vocabulary Test. The English vocabulary test was an adaptation of a standardized test, the Receptive One-Word Picture Vocabulary Tests (ROWPVT) (Brownell, 2000). In each item, there are 4 colorful pictures. We presented the target English words to the children via headphones and asked them to point to the picture that corresponded to the target. We administered 54 and 94 English words to kindergarteners and primary students respectively. The Cronbach’s alpha was .92.

English phonological awareness. This test consisted of rime detection, syllable deletion and initial phoneme deletion tests. In the rime-detection task, all items were selected and modified from the Alliteration and Rhyme subtest of the Phonological Assessment Battery (PhAB) (Frederickson, Frith & Reason, 1997). In each trial, we presented three English words via headphones to the participants and asked them to identify the two words having the same rime. For example, “look” rhymed with “book” but not with “horse”. The task started with two sample trials and followed by eight test trials. One mark was rewarded for each correct response.
In the syllable-deletion task, we asked children to delete one syllable from unfamiliar three-syllable English words. The redundant syllable was either at the initial, middle or final position. There were a total of six test trials. One mark was awarded for each correct response. Children who scored at least one mark in this task could proceed to the initial phoneme deletion task. We instructed children to mentally delete the initial phoneme of English words and say them aloud. The Cronbach’s alpha for the whole test was .88.

English phonological memory. We assessed phonological memory with a modified Children’s Test of Nonword Repetition (CNRep) (Gathercole & Baddeley, 1996). We presented children English pseudo-words with a length of 2-5 syllables via headphones and asked them to repeat. The responses were marked by the experimenter and were recorded with mp3 players. We awarded 1 mark for each correctly uttered syllable and 1 mark for each right order. We subtracted 1 mark for a redundant syllable. For instance, the total score of a 5-syllable word was nine (5 points for correct pronunciation; 4 points for correct order). The test consisted of 2 sample trials and 16 test items. The Cronbach’s alpha was .87. The inter-rater reliability indicated by the Intraclass correlation coefficients were satisfactory, ranging from 0.72 to 0.92 for the scores marked by the 6 experimenters.

English (and Chinese) speech perception. This was a test of AXB speech perception of phonemic contrasts and it was adapted from Bishop’s owl test (Bishop, Adams, Nation, & Rosen, 2005). The English and Chinese versions of this task were the same. The children were asked to choose from two words which sounded the same as a target word in the context of a computer game (appendix 2b). A correct response was rewarded with a cartoon picture appearing on the computer screen; otherwise, a 'sigh' sound was presented. The minimal pair differed either in the place of articulation, manner of articulation or both. Results from the
pilot testing indicated that the test was too easy for older participants, so we combined speech-like noise and the English word tokens with a signal-to-noise ratio of -12dB. Following the 6 trial items, we presented 24 test trials. The Cronbach’s alpha for English and Chinese version was .72 and .80 respectively.

To ensure that the participants’ performances were not confounded by auditory perception, a pure-tone hearing test was administered. We used calibrated audiometer and followed a standardized procedure to test children’s hearing abilities. Firstly, experimenters instructed the participant to raise their head if they hear a pure tone via the headphone. Secondly, the experimenter sat behind the participants so not to allow the child to look at which button was being pressed. Then, we presented three 1000 Hz pure tones at 40 dB at unpredictable intervals to familiarize the children the task demands. If the children failed respond correctly, we increased the volume by 5 dB; otherwise, we decrease 10 dB. Once the child was able to detect the pure tones at 25 dB, we tested children with 2000 Hz, 4000 Hz and 500 Hz pure tones. The right ear was tested first, then the left ear.

3.5 Chinese measures

Chinese word reading. A 48-item character reading list and 150 items adapted from the reading subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD) (Ho, Chan, Tsang, & Lee, 2000) were combined. Children were required to read each word aloud. Testing stopped when they failed to read 15 consecutive items. Kindergartners started from the character reading list, and were given the items adapted from the HKT-SpLD if they progressed beyond this list. However, the first item of the HKT-SpLD reading subtest was regarded as the entry point for all primary school children. They were given the kindergarten character reading list only if they failed to read the easiest 15 consecutive items on the HKT-SpLD reading subtest. The maximum score was 198, and its
Cronbach’s alpha was .996.

Chinese receptive vocabulary. The receptive vocabulary test consisted of 2 practice trials and 80 test trials translated and adapted for Chinese from the Peabody Picture Vocabulary Test – Fourth Edition (PPVT-IV; Dunn & Dunn, 2007). For each trial, the experimenter read out the target item and the child was required to select a picture from the four options to match it. An entry point for each grade level and a basal rule were set according to pilot testing on 90 kindergartners and junior primary school students. The basal rule was fulfilled if correct responses were given in nine or all trials in the first 10 consecutive trials from the corresponding entry point. Testing stopped when the child failed 11 or all trials in 12 consecutive trials. The maximum score was 80, and its Cronbach’s alpha was .96.

Chinese phonological memory. A nonword repetition task consisted of a series of nonword strings ranging from two syllables to seven syllables. A nonword string was constituted by Cantonese syllables and had no lexical meaning as a whole (e.g., /fong1 ling1/). There were two practice trials and 14 test trials. For each trial, the child was presented a nonword string, in which the inter-syllable interval was 0.5 second, by an mp3 player. The child was then requested to repeat the nonword string in the exact order of syllables presented, and the response was recorded. For a nonword string, a point was given for each correct syllable, and also for each correct pair of consecutive syllables, but a point was deducted for each additional syllable. Testing stopped when the child failed four consecutive items. The maximum score was 124, and its Cronbach’s alpha was .90.

Chinese phonological awareness. This task consisted of measures of syllable and rhyme awareness. The syllable deletion task consisted of three blocks of trials in an increasing difficulty order: real words, nonwords (i.e., syllables which had no lexical meaning as a whole)
and nonsense words (i.e., nonsense syllables which had no lexical meaning itself or as a whole). The items were orally presented by the experimenter and the children were required to produce an answer orally with one syllable taken away from the compound words. In each block, two trials required deletion of the first syllable, two trials required deletion of the last syllable, and one trial required deletion of the middle syllable. For example, the real word /mong6 jyun5 geng3/ (binoculars) without / jyun5/ is /mong6 geng3/. The target answers of some real word items were meaningful words. The maximum score was 15.

The rime detection task consisted of two practice trials and nine test trials. For each item, the experimenter read out a target syllable, and then read out three syllables and simultaneously showed three pictures illustrating each of them. The child was required to select a syllable from the three options which rhymed with the target syllable. For example: /jan4/ (human) was read out as the target syllable, and /ngaa4/ (tooth),/hau4/ (monkey) and /wan4/ (cloud) were then presented with their illustrations. The answer was /wan4/ (cloud) which rhymed with the target syllable /jan4/ (human). The maximum score was nine. The maximum score of the combined task was 24, and its Cronbach’s alpha was .88.

Chinese tone awareness. The Cantonese tone task consisted of 3 practice trials and 15 test trials, administered with a computer. There were three blocks of test trials arranged in the following order: three-syllable, two-syllable, and one-syllable blocks, and each had five trials. The three-syllable block was presented first, while the one-syllable block was shown last, because the more syllables given could provide more cues on identifying the correct tones and were thus relatively easier. For each trial, three pictures each illustrated a syllable (in the one-syllable block)/ a group of syllables (in the two-syllable and three-syllable blocks), in which these syllables/ these groups of syllables had different tones, were shown. The child was required to label each of them, and was given the syllables if they were not able to label
them correctly. This procedure was to ensure that the child knew the syllables represented by
the pictures before proceeding to the actual tone test. Then, a sound of a lexical tone (in the
one-syllable block)/ of a group of lexical tones (in the two-syllable and three-syllable blocks)
was presented, and the child was asked to select the picture representing the syllable(s) which
matched with the sound of lexical tone(s). For instance, in a one-syllable trial, a Cantonese
first lexical tone sound (i.e., high-level tone sound) was presented, and three pictures
illustrated a letter (/seon3/) a lock (/so2/) and a pig (/zyu1/) respectively, were shown
(appendix 2c). The child was then asked which of the three options had the same tone as the
lexical tone sound. The answer was a pig (/zyu1/) which had a Cantonese first tone. The
maximum score was 15, and its Cronbach’s alpha was .66.

3.6 Descriptive analyses, gender and zygosity effects

Before conducting subsequent statistical analyses, descriptive statistics are
computed. The whole sample was divided into two age groups: 3-6.11 years and 7-11 years.
The first group included children studied in kindergarten or grade 1. The second group was
consisted of children graded 2 or above. Descriptive tables for each gender and zygosity are
shown in tables 3.2 (English measures) and 3.3 (Chinese measures).

Next, comparisons of group means between gender and zygosity groups were done.
To achieve random sampling for conducting independent sample t-test, one cotwin was
selected from each twin pair. Results showed that there was no significant mean differences
across zygosity group for all variables, ts (277) = -1.8 to 1.3, p>.05, except for Chinese tone
awareness at time 1, t (277) = 2.01, p<.05. Significant gender differences were observed in
time 1 ESL phonological awareness, time 1 and time 2 Chinese speech perception, time 2 ESL
visual word recognition and time 2 ESL speech perception, ts (277) = -3.1 to -.65, p<.05. No
significant gender differences was observed in the remaining variables, ts (277) = -3.4 to -.35,
Though significant mean differences were found, the interpretations should be made cautiously as the number of participants was imbalanced between zygosity groups and between gender groups.

Table 3.2. Means and Standard Deviations for English measures by age, gender and zygosity Groups

<table>
<thead>
<tr>
<th></th>
<th>Kindergarteners (3-6.11 years)</th>
<th>Primary school children (7-11 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
</tr>
<tr>
<td>Time 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVWR</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>29.20 (26.24)</td>
<td>52.82 (26.40)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>17.01 (14.68)</td>
<td>62.68 (22.18)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ male n=24</td>
</tr>
<tr>
<td></td>
<td>29.47 (23.18)</td>
<td>26.29 (16.29)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>28.85 (18.46)</td>
<td>27.46 (15.52)</td>
</tr>
<tr>
<td>ERV</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>18.61 (8.52)</td>
<td>23.95 (7.11)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>18.91 (7.74)</td>
<td>25.85 (6.93)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ male n=24</td>
</tr>
<tr>
<td></td>
<td>22.15 (7.40)</td>
<td>26.29 (15.52)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>20.59 (9.04)</td>
<td>27.46 (15.52)</td>
</tr>
<tr>
<td>EPA</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>7.58 (4.44)</td>
<td>13.45 (4.00)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>7.96 (3.76)</td>
<td>14.47 (3.46)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ male n=24</td>
</tr>
<tr>
<td></td>
<td>8.10 (4.14)</td>
<td>14.70 (3.48)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>8.75 (4.57)</td>
<td>12.56 (3.48)</td>
</tr>
<tr>
<td>EPM</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>53.16 (21.40)</td>
<td>71.68 (15.12)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>59.06 (17.75)</td>
<td>72.48 (14.98)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ male n=24</td>
</tr>
<tr>
<td></td>
<td>57.62 (19.75)</td>
<td>76.04 (12.29)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>61.31 (23.27)</td>
<td>70.43 (15.01)</td>
</tr>
<tr>
<td>ESP</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>15.78 (3.56)</td>
<td>18.62 (3.21)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>16.45 (3.24)</td>
<td>19.51 (2.33)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ male n=24</td>
</tr>
<tr>
<td></td>
<td>15.79 (3.54)</td>
<td>19.08 (2.53)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>15.43 (5.30)</td>
<td>18.40 (2.76)</td>
</tr>
<tr>
<td>Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVWR</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>31.10 (27.91)</td>
<td>56.96 (25.68)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>36.08 (21.56)</td>
<td>60.03 (19.97)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ male n=24</td>
</tr>
<tr>
<td></td>
<td>36.17 (25.67)</td>
<td>73.12 (14.48)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>46.66 (27.22)</td>
<td>70.10 (16.18)</td>
</tr>
<tr>
<td>ERV</td>
<td>MZ male n=112</td>
<td>MZ male n=94</td>
</tr>
<tr>
<td></td>
<td>23.73 (7.05)</td>
<td>26.56 (7.60)</td>
</tr>
<tr>
<td></td>
<td>MZ female n=104</td>
<td>MZ female n=104</td>
</tr>
<tr>
<td></td>
<td>24.64 (7.01)</td>
<td>29.36 (6.08)</td>
</tr>
<tr>
<td></td>
<td>DZ male n=58</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>26.84 (7.19)</td>
<td>30.54 (4.99)</td>
</tr>
<tr>
<td></td>
<td>DZ female n=32</td>
<td>DZ female n=30</td>
</tr>
<tr>
<td></td>
<td>25.87 (8.39)</td>
<td>15.87 (3.28)</td>
</tr>
<tr>
<td></td>
<td>EPA</td>
<td>MZ male n=112</td>
</tr>
<tr>
<td></td>
<td>(4.60) MZ male n=112</td>
<td>14.46 (4.02)</td>
</tr>
<tr>
<td></td>
<td>(4.21) MZ female n=104</td>
<td>15.46 (3.56)</td>
</tr>
<tr>
<td></td>
<td>(4.37) DZ male n=58</td>
<td>(3.23) (3.87)</td>
</tr>
<tr>
<td></td>
<td>(5.84) DZ female n=32</td>
<td>(2.87)</td>
</tr>
<tr>
<td></td>
<td>EPM</td>
<td>MZ male n=112</td>
</tr>
<tr>
<td></td>
<td>(58.08) MZ male n=112</td>
<td>72.15 (74.03)</td>
</tr>
<tr>
<td></td>
<td>(62.87) MZ female n=104</td>
<td>75.54 (72.63)</td>
</tr>
<tr>
<td></td>
<td>(66.79) DZ male n=58</td>
<td>(13.27) (14.36)</td>
</tr>
<tr>
<td></td>
<td>(62.62) DZ female n=32</td>
<td>(19.43)</td>
</tr>
<tr>
<td></td>
<td>(72.15) (15.75)</td>
<td>(19.43)</td>
</tr>
<tr>
<td></td>
<td>ESP</td>
<td>MZ male n=112</td>
</tr>
<tr>
<td></td>
<td>(16.74) (19.37)</td>
<td>19.30 (2.95)</td>
</tr>
<tr>
<td></td>
<td>(17.98) (17.67)</td>
<td>20.16 (1.97)</td>
</tr>
<tr>
<td></td>
<td>(17.53) (18.03)</td>
<td>(2.16)</td>
</tr>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
</tr>
<tr>
<td></td>
<td>n=112</td>
<td>n=94</td>
</tr>
<tr>
<td></td>
<td>n=104</td>
<td>n=104</td>
</tr>
<tr>
<td></td>
<td>n=58</td>
<td>n=32</td>
</tr>
<tr>
<td></td>
<td>n=32</td>
<td>n=24</td>
</tr>
<tr>
<td></td>
<td>n=30</td>
<td></td>
</tr>
</tbody>
</table>

Note. EVWR=ESL visual word recognition; ERV=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception.
Table 3.3. Means and Standard Deviations for Chinese measures by age, gender and zygosity

<table>
<thead>
<tr>
<th>Groups</th>
<th>Kindergarteners (3-6.11 years)</th>
<th>Primary school children (7-11 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
</tr>
<tr>
<td></td>
<td>MZ male</td>
<td>MZ female</td>
</tr>
<tr>
<td></td>
<td>male n=112</td>
<td>female n=104</td>
</tr>
<tr>
<td>CVWR</td>
<td>41.20 (39.36)</td>
<td>135.15 (36.29)</td>
</tr>
<tr>
<td>CRV</td>
<td>12.65 (12.94)</td>
<td>18.48 (7.49)</td>
</tr>
<tr>
<td>CPA</td>
<td>62.63 (5.38)</td>
<td>85.59 (22.09)</td>
</tr>
<tr>
<td>CPM</td>
<td>(23.14)</td>
<td>(22.09) (20.45)</td>
</tr>
<tr>
<td>CRP</td>
<td>16.07 (17.44)</td>
<td>19.73 (2.42)</td>
</tr>
<tr>
<td>CPM</td>
<td>6.13 (6.36)</td>
<td>21.53 (2.32)</td>
</tr>
<tr>
<td>CTA</td>
<td>(2.54)</td>
<td>(3.19) (2.74)</td>
</tr>
<tr>
<td>Time 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVWR</td>
<td>70.25 (48.34)</td>
<td>154.08 (29.05)</td>
</tr>
<tr>
<td>CRV</td>
<td>52.37 (46.06)</td>
<td>69.30 (19.78)</td>
</tr>
<tr>
<td>CPA</td>
<td>4.64 (4.60)</td>
<td>19.13 (19.73)</td>
</tr>
<tr>
<td>CPM</td>
<td>(24.04)</td>
<td>(3.00) (2.42)</td>
</tr>
<tr>
<td>CTA</td>
<td>(2.66)</td>
<td>(3.38) (2.87)</td>
</tr>
<tr>
<td>Time 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVWR</td>
<td>78.66 (46.06)</td>
<td>154.08 (19.78)</td>
</tr>
<tr>
<td>CRV</td>
<td>53.14 (37.55)</td>
<td>69.30 (19.78)</td>
</tr>
<tr>
<td>CPA</td>
<td>6.34 (4.60)</td>
<td>19.13 (19.73)</td>
</tr>
<tr>
<td>CPM</td>
<td>(20.55)</td>
<td>(3.00) (2.42)</td>
</tr>
<tr>
<td>CTA</td>
<td>(3.38)</td>
<td>(3.38) (2.87)</td>
</tr>
</tbody>
</table>

Note. CVWR=Chinese visual word recognition; CRV=Chinese receptive vocabulary; CPA=Chinese phonological awareness; CPM=Chinese phonological memory; CSP=Chinese speech perception; CTA=Chinese tone awareness

3.7 Correction of age effects

As the age range of my sample was large, I controlled for the effect of age in the subsequent analyses. Previous research has shown that months of school is highly correlated (r = .88) with age (Petrill et al., 2007). As months of school did not affect genetic and environmental estimates beyond child age, once age was controlled for, the effects of school
were spontaneously minimized. The relationship between raw scores and age for each variable was identified by curve estimation version 16.0 of Statistical Package for the Social Sciences (SPSS). Consistently for all the variables, Cubic regression was the best fitted in comparison to Linear, Logarithmic and Quadratic regressions. Figure 3.1 shows a typical Cubic regression curve obtained by fitting the raw scores of the hypothesized variables against age. The standardized residuals of the Cubic regression were computed and saved for subsequent analyses. To obtain an optimal degree of skewness and kurtosis for each variable, the data was further normalized based on their cumulative frequencies. Scores that were more than 3 SD from the mean were scaled down to -3 or +3.

Figure 3.1: An instance of cubic regression curve fitting the data of Chinese visual word recognition against age
CHAPTER 4 MODELS OF ESL READING DEVELOPMENT

4.1 Chapter summary

In this chapter, the basics of structural equation modelling (SEM) will be outlined. The SEM approach is then applied to test the model fit of a series of Path analysis models that describe the relationships between visual word recognition, receptive vocabulary, phonological awareness, phonological memory and speech perception.

4.2 An overview of structural equation modelling (SEM)

Structural equation modelling (SEM) is a multivariate statistical analytic approach. A SEM model pictorially or mathematically presents the inter-variable relations of a theory. These relations are defined as causal processes represented by a series of regression equations (Byrne, 2010). In this thesis, SEM modelling was applied to time 1 data only. The resulting concurrent relationships among the hypothesized variables indicate how each of the reading-related skills influences each other either unidirectionally or bidirectionally. This statistical analysis strategy actualizes the ‘Component skills analysis’ approach outlined in section 1.4. However, the results do not imply causality unless longitudinal data are fitted into the models in order to have the auto-regressive effects (i.e. the attainment of skills at a previous time point) controlled. The testing of a SEM model is to estimate the extent to which the entire system of variables fits the data. Because data analyses in SEM are inferential in nature, it serves the function of hypothesis-testing in non-experimental research.

Joreskog (1993) has described three common goals of SEM, namely (a) strictly confirmatory; (b) model comparison; and (c) model generating. As suggested by the name itself, researchers who aim for ‘strictly confirmatory’ test if the theoretical model matches the data. The model is either accepted or rejected without further modification and testing. It is less common than the next two approaches. The ‘model comparison’ approach allows researchers to test several theoretical models and then determine which model(s) best explain(s) the data. Lastly, ‘model generating’ suggests that researchers make use of the
tentative result of the initial SEM model testing and re-specify a better model until a satisfactory model is obtained. This iterative method should be guided by theoretical underpinnings or previous research. From the above discussion, we see the multi-step and iterative nature of SEM. Figure 4.1 describes the general procedure of the complete SEM model testing. Because the topic of ESL reading studied in this thesis is still in its infancy, ‘model comparison’ and ‘model generation’ are the more appropriate goals to aim for.

Figure 4.1: A complete procedure for structural equation modelling.

Before model construction, it is crucial to know the number of observed data variances and covariances (A) and the number of parameters to be estimated (B). If A is equal to B, a unique solution is obtained for all parameters. This ‘just-identified’ model has no degrees of freedom and cannot be rejected. If A is smaller than B, the model is under-identified and results in an infinite number of possible solutions. Neither situation is useful for hypothesis testing. To specify a SEM model, it is important to maintain the situation that A is larger than B. With positive degrees of freedom, the ‘over-identified’ model could be rejected, thereby rendering it of scientific use. So, the construction of ‘over-identified’ models is a basic requirement of SEM. (Note: A = number of observed variables x (number of
observed variables + 1)/2).

Behind the pictorial representation of the theory (as shown in figure 1.1 to 1.4) are the structural parameters obtained by the transposition of the variance-covariance matrix of observed variables. SEM estimates the value of the parameters in the structural equation from the observed variables. This is achieved with the use of statistical analysis software (with various optimization algorithms). A cycle of calculation carries on until an optimal solution is obtained. Of various estimation methods, the Maximum likelihood (ML)-based fit indices outperform those obtained from Generalized least square (GLS) and Asymptotically distribution-free (ADF), and, are preferable for evaluating model fit (Hu & Bentler, 1998). The goodness-of-fit indices provide information in the model-fitting and re-specification process. Despite controversies on the choice of goodness-of-fit indices, it is a common consensus to use multiple indices. According to Hu and Bentler’s (1999) combinational rule, using the ML-based Standardized root mean square residual (SRMR) and supplementing it with either Comparative fit index (CFI), or Root mean squared error of approximation (RMSEA) enables researchers to reasonably conclude that there is a relatively good fit between the hypothesized model and the observed data. Indeed, all the goodness-of-fit indices fall into either one of the three categories: (a) Absolute fit; (b) Incremental fit; and (c) Parsimonious fit. The goodness-of-fit indices in each category give different information to guide decision making. Absolute fit indices evaluate how well the overall model (structural and measurement models) fits the observed data. Incremental fit indices compare the improvement of the fit of the proposal model over the null model (a model that specifies no relationship among variables). Parsimonious fit indices assess if too many estimate coefficients have been expended to achieve a certain level of fit. In this thesis, the combinational rule is adapted. To ensure that at least one goodness-of-fit index from each of the three categories is included, the Parsimonious normed fit index (PNFI) is also computed.
Detailed descriptions of each goodness-of-fit index (e.g. conventional cutoff) are shown in appendix 3.

The validity of SEM analysis requires the fulfilment of several pre-requisites and assumptions, such as sufficient sample size, multi-collinearity, multi-variate normality and missing data.

Sample size is critical to the statistical power. Kline (2005) has proposed a criterion of 10 to 20 participants per estimated parameter. MacCallum, Browne, and Sugawara (1996) suggested that other factors such as model complexity affected sample-size requirements. However, Jackson (2003) showed that sample size had little impact on model fitting. Weston and Gore (2006) recommended a minimum sample size of 200 when the problems of missing data or nonnormal distribution were tolerable.

Multi-collinearity is ‘the extent to which a variable can be explained by the other variables’ (Hair, Anderson, Tatham, & Black, 1998). It happens when the correlations between measured variables are very high. Kline (2005) suggested discarding one of the redundant variables if bivariate correlations are higher than .85.

Multivariate normality is ideal for SEM. However, due to an infinite number of linear combinations in a model, it is hard to test and fulfil this assumption. One practical solution is to assess the distribution of each observed variable. Skewness and kurtosis are two important indexes of normality. Skewness indicates the degree of symmetry of the data distribution. Kurtosis describes the peak and tails of the distribution. Non-normality can usually be corrected by data transformation. Section 3.8 of this thesis describes the transformation of my data.
4.3 The application of SEM in the present study

In this thesis, the ‘model comparison’ and ‘model generating’ methods outlined by Joreskog (1993) were applied to test the SEM models. The goals of using SEM are twofold. First, it tests the validity of various hypothetical causal models of ESL reading abilities. Second, it guides the model modifications of each model in order to generate models that better reflect the reality. It is important to note that the results are sample-specific. In the lack of any relevant and well-established SEM model of ESL visual word recognition development, no comparison can be made. The subsequent structural equation modelling (SEM) analyses were computed by version 16 of Analysis of Moment Structures (Amos; Arbuckle, 2006), and exploratory factor analyses were computed with SPSS 16.0.

To avoid mis-identification of estimate parameters due to the dependence between related twins, I disregarded the twin identity of the dataset and created an ad-hoc random sample by randomly selected one individual from each twin pair. Thus, a sample of 278/279 (one missing data for a child) children was obtained. The unselected children formed another sample for the validation of the results. As the results yielded from the two samples concurred, the result of one sample was reported only.

Based on the literature review, several path diagrams that encapsulate the inter-relationships between the hypothesized variables were constructed. The Path analysis models tested in Amos were the same as those except that a residual term was constrained for each endogenous (dependent) variable. This residual term represents error in the prediction of endogenous factors from exogenous factors. First, the baseline model was tested. Based on the results of the overall goodness-of-fit indices and modification indices, the baseline model was modified by adding an extra pathway of direct effects. As a rule of thumb, a Modification index (M.I.) over 10 suggests a significant change of overall model fit. In the case of a reasonable suggestion, pathway amendment will also be committed even if the M.I. was less
than 10. Because the generation of the modification indices was based on statistical analyses, re-specification of the pathway also relied on theoretical soundness. The modified model was then subject to another model-fitting test. In addition, based on the principle of parsimony, a non-significant pathway would be dropped even if the overall model fit did not improve. A drop of pathway also increased the degrees of freedom. As recommended by Byrne (2010), it was more sensible to modify one pathway in each model re-specification. This procedure was repeated until a satisfactory level of goodness-of-fit was obtained. The standardized regression coefficients of the final model were printed next to the pathway of direct effects (single-headed arrow) in the Path analysis diagrams (figure 4.1-5 & 7).

4.4 Testing the four ESL reading models

I first tested the Autonomous model (McBride-Chang, 1996) (Figure 1.1). The results of the baseline model indicated that the overall goodness-of-fit (details of various indices can be found in appendix 3) was not satisfactory, and so model re-specification was required. The standardized regression coefficient of two pathways were not significant (Speech perception to Visual word recognition, \(p = .51 \); Phonological memory to Visual word recognition, \(p = .78 \)), but they were preserved until all the modifications suggested by the modification indices (M.I.) were completed. Based on the largest M.I., a bidirectional pathway between Receptive vocabulary and Phonological awareness was added. The resulting model gave an improved model fit. The actual correlation coefficient of the new link was found to be larger than the value expected from the M.I.. Five extra bi-directional pathways were included and the two non-significant pathways were dropped from the model (see table 4.1 for details). The final model is shown in figure 4.2.
Table 4.1. The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the Autonomous model (McBride-Chang, 1996)

<table>
<thead>
<tr>
<th>Model</th>
<th>Respecification</th>
<th>M.I. suggested and actual changes</th>
<th>χ^2 (df)</th>
<th>RMSEA</th>
<th>SRMR</th>
<th>CFI</th>
<th>PNFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-Line</td>
<td>NA</td>
<td>NA</td>
<td>195.52 (6)</td>
<td>.34</td>
<td>.26</td>
<td>.48</td>
<td>.29</td>
</tr>
<tr>
<td>B</td>
<td>+ EVR < > EPA</td>
<td>63,.47,.48</td>
<td>123.37 (5)</td>
<td>.29</td>
<td>.22</td>
<td>.68</td>
<td>.34</td>
</tr>
<tr>
<td>C</td>
<td>+ EPM < > EPA</td>
<td>25,.25,.35</td>
<td>90.01 (4)</td>
<td>.28</td>
<td>.18</td>
<td>.77</td>
<td>.30</td>
</tr>
<tr>
<td>D</td>
<td>+ EVR < > EPM</td>
<td>39,.31,.44</td>
<td>29.77 (3)</td>
<td>.18</td>
<td>.12</td>
<td>.93</td>
<td>.28</td>
</tr>
<tr>
<td>E</td>
<td>+ EPA < > ESP</td>
<td>5,.11,.13</td>
<td>23.93 (2)</td>
<td>.20</td>
<td>.10</td>
<td>.94</td>
<td>.19</td>
</tr>
<tr>
<td>F</td>
<td>+ EVR < > ESP</td>
<td>6,.13,.16</td>
<td>15.76 (1)</td>
<td>.23</td>
<td>.07</td>
<td>.96</td>
<td>.10</td>
</tr>
<tr>
<td>+ EPM < > ESP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>- ESP > EVWR#</td>
<td>10,.16,.23</td>
<td>.49 (2)</td>
<td>.00</td>
<td>.00</td>
<td>1.0</td>
<td>.20</td>
</tr>
<tr>
<td>- EPM > EVWR#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: EVWR=ESL visual word recognition; EVR=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception; < >=bidirectional pathway; > unidirectional pathway; + Added an additional pathway; - Deleted a pathway; # based on the principal of parsimony

M.I. = Modification indices (Joreskog & Sorbom, 1984); χ^2=likelihood ratio chi-square; RMSEA=Root mean square error of approximation; SRMR=Standardized root mean square residual; CFI=Comparative fit index; PNFI=Parsimonious goodness-of-fit index
Next, I tested the ‘Bootstrapping’ model (figure 1.2). The results of the baseline model indicated that the overall goodness-of-fit was not satisfactory, and so model re-specification was recommended. The standardized regression coefficient of one pathway was not significant (Phonological memory to Visual word recognition, \(p = .82 \)), but it was preserved until all the modification suggested by the modification indices were done. Based on the largest M.I., a unidirectional pathway from Phonological memory to Phonological awareness was added. The resulting model had a better model fit. The actual correlation coefficient of the new link was found to be larger than predicted. Two extra unidirectional pathways were included and one non-significant pathway was dropped from the model (see table 4.2 for details). The final model is shown in figure 4.3.
Table 4.2. The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the ‘bootstrapping’ model

<table>
<thead>
<tr>
<th>Model</th>
<th>Respecification</th>
<th>M.I., suggested and actual changes</th>
<th>χ^2 (df)</th>
<th>RMSEA</th>
<th>SRMR</th>
<th>CFI</th>
<th>PNFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>NA</td>
<td>NA</td>
<td>140.03 (4)</td>
<td>.35</td>
<td>.20</td>
<td>.63</td>
<td>.25</td>
</tr>
<tr>
<td>B</td>
<td>+ EPM > EPA</td>
<td>50,42,44</td>
<td>80.13 (3)</td>
<td>.30</td>
<td>.16</td>
<td>.79</td>
<td>.24</td>
</tr>
<tr>
<td>C</td>
<td>+ EPA > ERV</td>
<td>49,41,44</td>
<td>20.52 (2)</td>
<td>.18</td>
<td>.05</td>
<td>.95</td>
<td>.19</td>
</tr>
<tr>
<td>Final</td>
<td>+ EPM > ERV</td>
<td>14,21,26</td>
<td>.49 (2)</td>
<td>.00</td>
<td>.00</td>
<td>1.0</td>
<td>.20</td>
</tr>
</tbody>
</table>

Note: EVWR=ESL visual word recognition; EVR=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; > unidirectional pathway; + Added an additional pathway; - Deleted a pathway; # based on the principal of parsimony

M.I. = Modification indices (Joreskog & Sorbom, 1984); χ^2=likelihood ratio chi-square; RMSEA=Root mean square error of approximation; SRMR=Standardized root mean square residual; CFI=Comparative fit index; PNFI=Parsimonious goodness-of-fit index

Figure 4.3: The final Path analysis model of the ‘Bootstrapping’ model
The third model to be tested was the Lexical restructuring model (‘LRM’) (figure 1.3). The results of the baseline model indicated that the overall goodness-of-fit was not satisfactory, model re-specification was required. The standardized regression coefficient of one pathway was not significant (Phonological memory to visual word recognition, \(p = .82 \)), but it was kept until all the modifications suggested by the modification indices were completed. Based on the largest M.I., a unidirectional pathway from Receptive vocabulary to Visual word recognition was added. The resulting model had a better model fit. The actual correlation coefficient of the new link was found to be larger than expected. Three extra unidirectional and one extra bidirectional pathways were included (see table 4.3 for details). The final model is shown in figure 4.4.
Table 4.3. The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the LRM model

<table>
<thead>
<tr>
<th>Model</th>
<th>Respecification</th>
<th>M.I. suggested and actual changes</th>
<th>χ^2 (df)</th>
<th>RMSEA</th>
<th>SRMR</th>
<th>CFI</th>
<th>PNFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>NA</td>
<td>NA</td>
<td>129.29 (5)</td>
<td>.30</td>
<td>.13</td>
<td>.66</td>
<td>.33</td>
</tr>
<tr>
<td>B</td>
<td>+ ERV > EVWR</td>
<td>51,.37,.51</td>
<td>45.32 (4)</td>
<td>.19</td>
<td>.08</td>
<td>.89</td>
<td>.35</td>
</tr>
<tr>
<td>C</td>
<td>+ EPM > EPA</td>
<td>25,.27,.33</td>
<td>11.95 (3)</td>
<td>.10</td>
<td>.05</td>
<td>.98</td>
<td>.29</td>
</tr>
<tr>
<td>D</td>
<td>+ Speech > EPA</td>
<td>5,.11,.13</td>
<td>6.12 (2)</td>
<td>.09</td>
<td>.03</td>
<td>.99</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>+ ESP > EPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>- EPM > EVWR#</td>
<td>5,.12,.13</td>
<td>.49 (2)</td>
<td>.00</td>
<td>.00</td>
<td>1.0</td>
<td>.20</td>
</tr>
</tbody>
</table>

Note: EVWR=ESL visual word recognition; EVR=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception; > unidirectional pathway; + Added an additional pathway; - Deleted a pathway; # based on the principal of parsimony

M.I. = Modification indices (Joreskog & Sorbom, 1984);
χ^2=likelihood ratio chi-square; RMSEA=Root mean square error of approximation;
SRMR=Standardized root mean square residual; CFI=Comparative fit index;
PNFI= Parsimonious goodness-of-fit index

Figure 4.4: The final Path analysis model of the modified Lexical Restructuring Model.
Lastly, the ‘Independent phonology’ model was tested (figure 1.4). The overall goodness-of-fit of the baseline model was not satisfactory, the model was re-specified. Based on the largest M.I., a unidirectional pathway from Phonological memory to Phonological awareness was added. The resulting model achieved a better overall model fit. The actual correlation coefficient of the new link was found to be larger than expected. One extra unidirectional pathway and one bidirectional pathway were included (see table 4.4 for details). The final model is shown in figure 4.5.

Table 4.4: The values of parameter estimates and goodness-of-fit indices of a series of Path analysis models tested against the ‘phonology independent’ model

<table>
<thead>
<tr>
<th>Model</th>
<th>Respecification</th>
<th>M.I., suggested and actual changes</th>
<th>χ^2 (df)</th>
<th>RMS EA</th>
<th>SRMR</th>
<th>CFI</th>
<th>PNFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>NA</td>
<td>NA</td>
<td>113.85 (6)</td>
<td>.25</td>
<td>.20</td>
<td>.71</td>
<td>.42</td>
</tr>
<tr>
<td>B</td>
<td>+ EPM > EPA</td>
<td>50, .42,.44</td>
<td>53.95 (5)</td>
<td>.19</td>
<td>.12</td>
<td>.87</td>
<td>.43</td>
</tr>
<tr>
<td>C</td>
<td>+ EPA > ERV</td>
<td>25, .28,.34</td>
<td>19.88 (4)</td>
<td>.12</td>
<td>.08</td>
<td>.96</td>
<td>.38</td>
</tr>
<tr>
<td>Final</td>
<td>+ ESP < > EPM</td>
<td>15, .23,.23</td>
<td>4.13 (3)</td>
<td>.04</td>
<td>.02</td>
<td>1.0</td>
<td>.30</td>
</tr>
</tbody>
</table>

Note: EVWR=ESL visual word recognition; EVR=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception; < >=bidirectional pathway; > unidirectional pathway; + Added an additional pathway; - Deleted a pathway; # based on the principal of parsimony

M.I. = Modification indices (Joreskog & Sorbom, 1984); χ^2=likelihood ratio chi-square; RMSEA=Root mean square error of approximation; SRMR=Standardized root mean square residual; CFI=Comparative fit index; PNFI=Parsimonious goodness-of-fit index
4.5 Discussion on models of ESL reading development

In all the four hypothesized models, the baseline models needed further model re-specification in order to obtain a model with satisfactory overall model fit. The data fitted almost perfectly into the final models. All final models included L2 variables without a single L1 variable. As observed consistently in L2 reading research, L2 variables were found to have a stronger impact on L2 reading skills, overriding the variance attributable to L1 experience. Thus, although L2 print information processing is guided by insights stemming from literacy experiences in the two languages, L2 print input appears to be a dominant force in shaping reading sub-skills in that language (Koda, 2007). The purpose of comparing the four models is not to support one in the expense of others. On the contrary, the comparisons of different models help us to uncover the multiple but unique functions of each skill in ESL reading development.

4.6 Commonalities and specificities of the four final models

Several commonalities were observed across four final models.

First, receptive vocabulary and phonological awareness were causally linked to
visual word recognition with a standardized regression weight of .51 and .28 respectively across the four final models. The magnitude of the ‘receptive vocabulary to visual word recognition’ pathway was the largest amongst other pathways in each of the four models. This implied the reliance on meaning when learning new English words in Chinese ESL children. One reason is that, in the absence of shared cognates, Chinese ESL children cannot utilize their L1 phonological or orthographic knowledge but rely on semantic knowledge to assimilate the new English words. Therefore, it is easier to acquire a new word when the meaning is known to the child at the time of learning. For example, when a child encounters a new word (e.g., ‘comedy’) and is presented with its meaning and sound, it is more likely that the child will master it, comparing with a child who is presented with the word and its pronunciation only. Generally, findings from cognitive psychology also suggest that meaningful information can be better retained in second language learning (e.g., Atkinson, 1975). As working memory capacity is pertinent to individual differences in L2 learning (Li & Farkas, 2002), meaningful information reduces the taxation of cognitive loads. Also, the importance of receptive vocabulary to visual word recognition implies a positive a transfer of L1 linguistic knowledge; given the morphemic-based characteristic of Chinese orthography, Chinese ESL learners would unconsciously make use of a semantic-based learning algorithm to acquire a new word.

Second, across the four final models, speech perception had no direct relation with visual word recognition. Consistently, speech perception was indirectly linked to visual word recognition via phonological awareness or other skills in different models, a finding reported in McBride-Chang’s (1996) study of L1 English reading. On top of this finding, this thesis shows that speech perception is indirectly linked to visual word recognition via other skills, such as phonological awareness, phonological memory and receptive vocabulary. This evidence further consolidates the significant bootstrapping role played by speech perception.
in ESL reading development. Apart from exploring the role of speech perception in supporting listening comprehension, it is worth understanding how speech perception influences the development of reading-related skills. To date, deficits in speech perception are found to be precursors of reading disabilities (Joanisse, Manis, Keating, & Seidenberg, 2000). This thesis further showed that speech perception influenced a wider range of reading related abilities and ESL reading development. More studies on whether speech perception and visual word recognition share the same etiology and learning mechanisms are warranted.

Third, phonological memory had no direct relationship with visual word recognition. However, phonological memory was bi-directionally linked to receptive vocabulary and contributed to better phonological awareness in all the final models. On the one hand, as predicted by the Lexical restructuring model (LRM), vocabulary growth enhanced phonological memory. On the other hand, as postulated by the working memory model, phonological memory enhanced vocabulary growth. The findings pinpointed the dynamic and multi-faceted nature of L2 phonological memory. At the onset of L2 learning, the memory component is critical to L2 vocabulary acquisition. With an increasing vocabulary size, the phonetic and phonotactic properties of L2 are being built up and improve phonological memory. The mutual exchange between phonological memory and receptive vocabulary fosters the growth of two skills exponentially and is beneficial to L2 reading development. This cycle would continue and the ‘snowball’ effects would be experienced throughout the whole learning process. On the other side of the same coin, it implies a risk of experiencing the ‘Matthew effect’ (Stanovich, 2000) – a compromised skill leading to a devastating vicious cycle. Therefore, early measurement of phonological memory among L2 learners is important.

The contribution of phonological memory to phonological awareness was important.
As observed in the Self-organizing Connectionist model of bilingualism (SOMBIP, Li & Farkas, 2002), novice bilingual speakers’ bilingual lexicon is still largely monolingual, with one language being the dominant language (Heredia, 1997). Under this circumstance, the access and processing of L2 phonological information is largely entrenched by L1. To compensate this L1 entrenchment, better phonological memory is necessary to hold the less familiar L2 phonological information for further processing. Otherwise, the phonological information would be incompletely stored and hinder further learning (MacWhinney, 1992).

Next, I discuss unique features of the four final models.

In the modified ‘Indirect’ model, all independent variables were significantly correlated to each other and no uni-directional relation was suggested. This pattern of high overlap of the four skills favors a complementary view of precursors of L2 reading development. The four skills would be subsumed by common underlying mechanisms or they are similar in nature. This is consistent with Liberman’s (1999) claim that the representations of speech and phonemes are based on articulatory gestures.

In the ‘Bootstrapping’ model, it was shown that speech perception was not affected by other skills and was interpreted as the foundation for the development of all other skills in the model. The same observation was noted in the LRM model. If speech perception is not much influenced by other skills tested in the thesis, it is essential to further explore factors that influence speech perception development. To explore the precursors of speech perception, another path analysis diagram was constructed and put into test (figure 4.6). After a series of model re-specifications, the results showed that phonological awareness was the only variable that contributed to speech perception. This is consistent with training studies demonstrating that awareness promotes perception (Mayo et al., 2003; Warrier et al., 2004).
The findings of the LRM underscore the importance of receptive vocabulary in phonological development. The LRM is the only model among the four that shows causal relationships from receptive vocabulary to phonological memory and phonological awareness. Although speech perception also had the same direct causal effect on phonological memory and phonological awareness, the effects of receptive vocabulary outweighed that of speech perception (to phonological memory, .41 vs. .13; to phonological awareness, .31 vs. .12).

In the ‘Independent phonology’ model, the hypothesis of independence between phonological awareness and memory was not supported. The linkage between the two skills was shown to be rooted in speech perception.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.EVWR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2.ERV</td>
<td>.64**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.EPA</td>
<td>.52**</td>
<td>.47**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.EPM</td>
<td>.36**</td>
<td>.44**</td>
<td>.47**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.ESP</td>
<td>.18**</td>
<td>.25**</td>
<td>.27**</td>
<td>.23**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.CVWR</td>
<td>.55**</td>
<td>.30**</td>
<td>.23**</td>
<td>.20**</td>
<td>.16**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.CRV</td>
<td>.19**</td>
<td>.32**</td>
<td>.26**</td>
<td>.32**</td>
<td>.26**</td>
<td>.26**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.CPA</td>
<td>.37**</td>
<td>.39**</td>
<td>.49**</td>
<td>.43**</td>
<td>.33**</td>
<td>.37**</td>
<td>.41**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.CTA</td>
<td>.27**</td>
<td>.23**</td>
<td>.35**</td>
<td>.20**</td>
<td>.24**</td>
<td>.20**</td>
<td>.21**</td>
<td>.33**</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.CPM</td>
<td>.12*</td>
<td>.19**</td>
<td>.25**</td>
<td>.37**</td>
<td>.30**</td>
<td>.15*</td>
<td>.35**</td>
<td>.35**</td>
<td>.17**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11.CSP</td>
<td>.11</td>
<td>.13*</td>
<td>.22**</td>
<td>.25**</td>
<td>.52**</td>
<td>.17**</td>
<td>.26**</td>
<td>.31**</td>
<td>.20**</td>
<td>.20**</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. *p<.05; **p<.01
EVWR=ESL visual word recognition; ERV=ESL receptive vocabulary;
EPA=ESL phonological awareness; EPM=ESL phonological memory;
ESP=ESL speech perception;
CVWR=Chinese visual word recognition; CRV=Chinese receptive vocabulary;
CPA=Chinese phonological awareness; CTA=Chinese tone awareness;
CPM=Chinese phonological memory; CSP=Chinese speech perception.
4.7 Testing the relationships between ESL and Chinese variables

First, I tested the relationships between parallel variables in L1 and L2. It is hypothesized that if the correlation is positive and significant between parallel variables in two languages, the skills operate under common underlying cognitive processes. The magnitude of the correlation indicates how much the same skills in two languages overlap.

Table 4.6 shows the zero-order correlation among ESL and Chinese variables. All the variables are positively and significantly correlated to other variables except between ESL visual word recognition and Chinese speech perception. Chinese tone awareness has the highest correlation with Chinese and ESL phonological awareness (rs=.33 and .35 respectively). The correlations between parallel variables are positive and significant, visual word recognition (r=.55); receptive vocabulary (r=.32); phonological awareness (r=.49); phonological memory (r=.37); speech perception (r=.52).

Next, I tested the commonality and specificity of all the ESL and Chinese skills by exploratory factor analysis (EFA). EFA is a statistical analytic method used for exploring the unknown or uncertain linkages among a set of observed variables and their underlying latent constructs (i.e. factor). The purpose of doing EFA is to examine whether certain variables would be grouped into latent factors. I conducted Principal Axis Factoring with 11 variables with oblique rotation (Direct Oblimin, Delta=0) method. Oblique rotation was used because the observed variables were in the domain of language and reading skills and therefore the factors that would be extracted were not independent. The factor analysis was useful for structure detection of the data as indicated by Kaiser-Meyer-Olkin measure of sampling adequacy: 79% of variance could be explained by the underlying factors. Also, as suggested by Bartlett's Test of sphericity, $\chi^2(55)=922.85$, p<.001, the correlation matrix was not likely to be an identity matrix and some form of structure could be detected from the observed
variables. After the factor extraction process, two components with eigenvalues over Kaiser’s (1960) criterion of 1 were extracted and they explained 36.86% of the variability in the original observed variables. This suggested that over 60% of the variation was unexplained. Summary of factor loadings is shown in table 4.7. Taking the scree plot into account (figure 4.6), two components were retained in the final analysis. Rotation was conducted to optimize the factor structure and equalize the importance of the extracted factors. The factor loadings after rotation are show in table 4.7. After the rotation, two factors remained with eigenvalues larger than 1. Factors with loading higher than .40 are considered to be significantly linked to the latent factor. Factor 1 consisted of all the variables except ESL and Chinese visual word recognition. Factor 2 consisted of ESL and Chinese visual word recognition, ESL and Chinese phonological awareness, ESL receptive vocabulary and ESL phonological memory. The correlation between Factors 1 and 2 is .47.
Table 4.6. Summary of factor matrix extracted before and after oblique rotation for variables controlling for age\(^\wedge\) (N= 287)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Before rotation</th>
<th>After rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor 1</td>
<td>Factor 2</td>
</tr>
<tr>
<td>1. ESL visual word recognition</td>
<td>.73</td>
<td>-.62</td>
</tr>
<tr>
<td>2. ESL receptive vocabulary</td>
<td>.65</td>
<td>-.24</td>
</tr>
<tr>
<td>3. ESL phonological awareness</td>
<td>.66</td>
<td>-.07</td>
</tr>
<tr>
<td>4. ESL phonological memory</td>
<td>.60</td>
<td>.07</td>
</tr>
<tr>
<td>5. ESL speech perception</td>
<td>.47</td>
<td>.37</td>
</tr>
<tr>
<td>6. Chinese visual word recognition</td>
<td>.49</td>
<td>-.17</td>
</tr>
<tr>
<td>7. Chinese receptive vocabulary</td>
<td>.49</td>
<td>.22</td>
</tr>
<tr>
<td>8. Chinese phonological awareness</td>
<td>.68</td>
<td>.15</td>
</tr>
<tr>
<td>9. Chinese tone awareness</td>
<td>.43</td>
<td>.05</td>
</tr>
<tr>
<td>10. Chinese phonological memory</td>
<td>.43</td>
<td>.28</td>
</tr>
<tr>
<td>11. Chinese speech perception</td>
<td>.41</td>
<td>.40</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>4.05</td>
<td>1.47</td>
</tr>
<tr>
<td>% of variance</td>
<td>36.86</td>
<td>12.88</td>
</tr>
</tbody>
</table>

Note: Extraction method is principal axis factoring; Factor loadings over .40 appear in bold.

\(^\wedge\) More than 25 iterations required. (Convergence=.002). Extraction was terminated.

\(^#\) If the factors are related, the sums of squares loadings cannot be added to obtain a total variance.

Superscript b. Marginal case
Figure 4.6: The scree plot showing eigenvalues in the Exploration Factor Analysis
4.8 Discussion on the ESL-Chinese relationships

The results in this thesis showed that parallel ESL and Chinese reading and its related skills were positively and significantly correlated, indicating that similar underlying learning mechanisms appear to drive the development. The findings replicated results previously shown in similar studies (e.g., McBride-Chang et al., 2008).

More importantly, the two latent factors extracted by the exploratory factory analysis implicated that cross-linguistic cum cross-domain relationships are present. Based on the two clusters of variables loaded on Factors 1 and 2, Factor 1 seems to represent the quality of phonological representations and Factor 2 is more related to skill pertinent to visual word
recognition skills. It should be noted that most of the observed variables loaded on both Factors 1 and 2. It is possible that each observed variable entails more than one component skill and different component skills contribute differently to a more general cognitive factor.

As discussed in chapter 1, phonological representations lay the foundation for the development of receptive vocabulary, phonological memory and phonological awareness. The current results further indicate that ESL and Chinese skills overlap, possibly at the level of phonological representations (Factor 1). The nature of phonological representations in Chinese-English bilinguals has been studied with computational models. Figure 4.8a-c shows the computational maps generated from the Hong Kong Bilingual Corpus from the CHILDES database (MacWhinney, 2000; Yip & Matthews, 2000) by Zhao and Li (2010). In novice Chinese-English bilinguals (figure 4.8a), the lexical organization patterns show only small and fragmented regions of ESL units that dispersed throughout the map. That is, the ESL representations were parasitic on Chinese words. The limited ESL lexical knowledge would constrain the development of linguistic and metalinguistic functions in English. In the case of more competent ESL learners (figure 4.8b), the lexical organization patterns consist of larger regions of ESL representations. For these ESL learners, there are richer linguistic resources for ESL learning. Lastly, the network of advanced Chinese-English bilinguals (figure 4.8c) shows clear and distinct ESL and Chinese phonological representations. The high distinctiveness of these representations allows the user to use both languages effectively and efficiently.
The overlap among ESL and Chinese visual word recognition, ESL and Chinese phonological awareness, ESL receptive vocabulary and ESL phonological memory (Factor 2) shows that, apart from cross-linguistic transfer between parallel skills, cross-linguistic transfer can occur across skills. In previous studies, Chinese phonological awareness was found predictive not only to Chinese but ESL visual word recognition (e.g., Huang & Hanley, 1995; Wang, Perfetti, & Liu, 2005). The nature of the transfer would be grounded on similar lexical restructuring mechanisms and demand of meta-linguistic skills. As sub-syllabic information is less important in Chinese lexical processing, the pressure on lexical restructuring would be lower in Chinese and therefore Chinese receptive vocabulary is absent in Factor 2. Rather, ESL phonological memory is important for storing newly acquired ESL receptive vocabulary. Despite the fact that distinctive latent factors were extracted, the two factors were significantly correlated ($r=.47$). This may be due to shared etiology (genetic and environmental influences) among various skills (Harlaar, Hayiou-Thomas, Dale & Plomin, 2008). The issue of cross-linguistic overlap at the etiological level will be addressed in chapter 7.
SECTION 2

THE GENETIC ANALYSIS
CHAPTER 5 TWIN STUDY METHOD AND PAST TWIN STUDIES ON READING DEVELOPMENT

5.1 Chapter summary

This chapter provides an overview of the quantitative behavioural genetic approach, with a primary focus on twin studies. I will discuss how behavioural genetic studies have enhanced our understanding of reading development. This chapter concludes with a set of research questions and hypotheses tested in chapters 7, 8, and 9.

5.2 Linkage between section 1 and 2

Individual differences, causal cognitive processes and L1-L2 relationships in ESL have been evidenced in section 1. One outstanding issue from section 1 is the etiology of ESL reading development. In this section, the sources of individual differences in ESL reading will be explored. It has been a common consensus that all the studied cognitive abilities are outcomes of the interaction between genes and environments (Plomin, DeFries, McClearn, & McGuffin, 2008). An important first step in understanding how the nature-nurture interaction affects the mechanism of human cognitive development, is to partition the effects of genes and environment by the twin study method. By fitting twin data into SEM models, the extent to which genes and environment contribute to ESL reading can be estimated.

Another outstanding issue from section 1 concerns the phenotypic correlations between parallel Chinese and ESL reading skills. A positive and significant correlation is often interpreted as indicating a common underlying cognitive process. But, such phenotypic correlation could be attributed to a ‘third variable’ which could be a common genetic or environmental factor in the behaviour-genetic model. By doing bivariate genetic analysis, we can examine the sizes of common genetic (the same set of genes govern the development of the two skills), common shared-environmental (the environmental influences that make twins more similar on one skill is related to the environmental influences that make twins more similar in another skill) and common non-shared environmental influences (an individual’s
unique experiences explain the development of two skills).

5.3 **Behavioural genetics and twin study: nature and nurture**

Heritability refers to ‘the contribution of genetic differences to observed differences among individuals in a particular population at a particular time’ (Plomin et al., 2008). Our genes are inherited from our parents and are composed of various forms of protein. Functions of the human genome include genetic coding that occurs in cells throughout the body. However, effects of individual genes seem to be very small. Using a systematic allelic association strategy, several significant associations were found between IQ and DNA markers in or near candidate genes that were relevant to synaptic transmission and brain development (Plomin et al., 1995). However, only one association was replicated in an independent sample. Subsequent studies failed to obtain similar results (Payton, 2006; Plomin, Kennedy, & Craig, 2006). Once the microarrays technique was available and pooling of a few nanograms of DNA from each participant could be done, genomewide association studies with hundreds of thousands of single-nucleotide polymorphism (SNP) could be conducted more efficiently and economically (Sham, Bader, Craig, O’Donovan, & Owen, 2002). SNPs are the most common type of DNA polymorphism and involve a mutation in a single nucleotide (Plomin et al., 2008). With pooled DNA and a microarray with 10,000 SNPs, four SNPs associated with general cognitive factor (g) were identified at seven years of age, though less than 0.3 percent of the variance of g was explained (Butcher et al., 2005). In a second study, the g SNP set was also found to be significantly associated with reading (Harlaar et al., 2005). In short, recent discoveries in the field of behavioural genetics have shown that genes are critical in the individual differences of a range of human behaviours including reading, but the effects observed in twin studies reflect the combined effect of many genes, each of which has only a small influence.

Apart from genetic influences, environment as well plays a prime role in reading
development. The most prominent of the environmental factors include home language spoken (Snow & Tabors, 2001), classroom teaching style (Foorman et al., 1998), home environment (Whitehurst & Lonigan, 1998), and socioeconomic status (Vernon-Feagans, 1996). The nature and interplay of various environmental factors have been summarized in Bronfenbrenner’s (1979) ecological model. The model has been applied to understand both literacy development (McBride-Chang, 2004) and dyslexia (Poole, 2003). This ecological view considers not only the immediate environment the child has close contact with, but what is influencing this immediate environment in a larger context. Within the ecology of reading, all environmental factors pertaining to the child continuously influence one another in a bi-directional manner. For example, in the micro-system, parents design the home literacy environment, decide which school the child should go to and what learning program the child should attend. The parents’ choice could be influenced by factors at other systems in the ecology, e.g. the ideologies of the culture and educational values in the macro-system. The five systems (chrono-, macro-, exo-, meso-, and micro- systems) and factors related to reading development in each system are shown in figure 6.1. The chrono-system refers to the pattern of the environmental events and transitions over time (Bronfenbrenner & Morris, 2006). The impact of chrono-system which concerns time is considered with a longitudinal design in this thesis. The effects of some factors are stable and some are not. For instance, parental influences are relatively stable as shown in research that parents contribute significantly to children’s literacy development prior to coming to school (McCardle, Scarborough, & Catts, 2001) and during school (Molfese, Molfese, Key, & Kelly, 2003).
Since environment is not simply a cluster of standalone agencies but a set of dynamic transactions between multiple agencies in the five systems of the ecology, interpretations of environmental influences on ESL reading in this thesis will be made in reference to the ecological approach. The twin study method provides a unique way to understand a pure aggregate effect of the ecological system by controlling the genetic effects. Also, it potentially allows researchers to further explore how an individual’s genetic propensity influences his surrounding environment. Although this thesis has not dealt with this gene-environment correlation, it is worth bearing this situation in mind.

In addition, it is worth considering Turkheimer’s (1998) comment on ‘biological reductionism in psychology’ – how biogenetic theories associate behaviour with genotypic or neurological variation. He argued that ‘complex human behaviours do not have localized biological or genetic causes in the sense that stroke lesions cause aphasia or a single gene causes phenylketonuria.’ In fact, there are levels of distinctive processes that operate between
reading behaviour and neurons or genes. Attempts have been made by researchers to build a comprehensive model that encapsulates the causal relationship among factors at various levels of analyses (e.g., Bishop & Snowling, 2004; Morton & Frith, 1995). This kind of model is helpful to understand the essence of and interplay between behaviour, cognition, neurobiology and etiology. Critically, the mappings between levels are not one-to-one but many-to-many, i.e. behaviour results from the activity of multiple genes amidst the influence of numerous environmental factors. In section 1 of this thesis, the interactions between visual word recognition and related skills have been demonstrated at the behavioural and cognitive levels. In section 2, the genetic and environmental factors that guide word recognition development at the etiological level will be examined with the twin study method.

Figure 5.2: Levels of causation for reading abilities (Bishop & Snowling, 2004).

![Levels of causation for reading abilities](image)

5.4 The classical twin study design

The twin method is a quasi-experimental design that compares the degree of phenotypic resemblance between monozygotic (MZ) and dizygotic (DZ) twins. MZ twins are genetically identical because they derive from the same fertilized egg; DZ twins share on average, half of their segregating alleles (genes that vary across individuals) with their cotwins because they derive from two separately fertilized eggs.
If a trait is influenced by genetic factors, MZ twins should resemble each other to a greater extent than DZ twins. By comparing the within-pair correlations between MZ and DZ twins, the relative size of genetic and environmental influences can be estimated. In principle, doubling the difference between the correlations for MZ and DZ twins provides a rough approximation to heritability, because MZ twins are twice as similar genetically as DZ twins. Strong genetic influence (also heritability in the narrow sense, symbolized as a^2) is indicated when the MZ twin correlation is substantial and the DZ twin correlation approaches half that of the MZ correlation. Within-pair similarity that is not due to genetic factors is assigned as shared environmental influences (c^2), which contribute towards resemblance among individuals growing up in the same environment. Finally, an estimate of the non-shared environmental effects (e^2), individual specific factors that create differences among cotwins from the same family, are estimated from within-pair differences between MZ twins. This is equivalent to the difference between the total phenotypic variance (assigned as 1) and the MZ twin correlation. Because MZ twins share all their genes and family environment, anything less than a perfect within-pair correlation for MZ twins shows the influence of non-shared environment. As this term constitutes the residual variance, any measurement error present will also be included in this component. Mathematically, MZ twins share all of their genetic makeup (a^2) and shared environment (c^2), so that the within-pair correlation (r_{MZ}) is equal to $a^2 + c^2$. DZ twins share only half of their segregating genes ($1/2a^2$) but all of the shared environment (c^2), thus the within-pair correlation (r_{DZ}) is equal to $1/2 a^2 + c^2$.

For instance, consider the present twin correlations for phenotype X ($r_{MZ} = .61$, $r_{DZ} = .37$). A simple method for estimating the approximate level of genetic influence is to double the difference (i.e. $2 \times (.61 - .37)$) between MZ and DZ correlations, which would yield an a^2 estimate of .48, indicating that 48% of the variance in phenotype X is due to genetic influence. An estimate of c^2 can then be obtained by subtraction: since $r_{MZ} = a^2 + c^2$,

$$a^2 = 2 \times (r_{MZ} - r_{DZ})$$

$$c^2 = r_{MZ} - a^2$$
c^2 in this case is .61-.48 = .13. Finally, c^2 is 1-rMZ = .39.

5.5 The ACE and ADE models

Although twin correlations can provide a rough approximation of genetic, shared and non-shared environmental effects, structural equation model-fitting analyses of variance/covariance matrices are used to estimate genetic and environmental parameters and to obtain confidence intervals for these estimates (Neale & Cardon, 1992).

In the narrow sense of heritability (denoted as a^2/ h^2), the phenotypic variance (Vp) in a trait is a linear function of additive genetic influences (A), non-additive genetic influences (D), shared environmental influences (C), and non-shared environmental influences (E) (i.e. Vp=A+D+C+E). Non-additive genetic influences occur when alleles interact with other alleles at a locus (dominance) or across loci (epistasis). Graphically, the latent factors (i.e. A, C, D, E) are represented by circles whereas measured variables are shown by squares (figure 6.3). The causal paths between the latent and observed variables are represented by single headed arrows and the correlational paths between the latent variables are shown by double headed arrows. Since the estimation of shared environmental effects and non-additive effects rely on the difference between the MZ and DZ twin correlation, it is impossible to test the ACDE model unless sufficient information is supplied by both twin and adoption studies. The pattern of twin correlations can hint as to whether an ACE or ADE model should be applied to the data. Because the presence of dominant genetic effects tends to increase the similarity of MZ twins relative to DZ twins, if the MZ correlation is more than twice of the DZ correlation on a measure, an ADE model is typically tested. On the basis of behavioural genetic theory, the genetic correlation between the two siblings (r_g) is fixed at 1.0 for MZ twins and 0.5 for DZ twins. The genetic dominance correlation (r_d) is fixed at 1.0 for MZ twins and 0.25 for DZ twins. By definition, the family environment shared between the two siblings is congruent, so the shared environmental correlation (r_c) is fixed at 1.0 for MZ and
DZ twins. As non-shared environmental effects are not shared between cotwins, no correlation is fixed for this term.

Figure 5.3: A path diagram for the classical twin study using MZ and same-sex DZ pairs reared within the same family.

In this thesis, OpenMx (Braun & Murdoch, 2007), a software package for structural equation modelling, is used to perform maximum likelihood estimation. The model fitting procedure starts with the construction of a saturated model out of the raw data. This ‘perfect fit’ model is then used as a baseline model to test against the twin models (ACE/ADE or its nested models) that have not specified all the parameters. Any difference in fit between the saturated model and the twin models reflects how well the twin models fit the data. The fit of the raw models is given as twice the negative log likelihood (−2ll) and the difference in this statistic between two nested models is distributed as chi-square, with the degrees of freedom being the difference in degrees of freedom between the two models. There is a p-value associated with this calculated chi-square statistic (χ^2), which reveals whether the data are significantly different from that predicted by the model ($p<.05$ indicates a difference between
the model and the data, i.e. a poor fit). Another relative measure of fit, Akaike’s Information Criterion (AIC), is obtained by comparing the log-likelihood statistics between a full model and a saturated model, which estimates the maximum number of parameters to describe the variances, covariances and means of all studied variables from the raw data. In general, the lower the fit statistic, the better fit to the data. Lower chi-square values and more negative AIC generally indicate good fit and parsimony (models with fewest estimated parameters). The details of goodness-of-fit indices are provided in appendix 3.

In the literature of twin studies, although the majority of measured traits fit better in an ACE than an ADE model, non-additive genetic effects have been observed in some rare traits (Lykken, 1982). For the ADE model, heritability (H^2) equals the additive genetic variance (a^2) plus non-additive genetic variance ($a^2 + d^2$), which reflects broad heritability. Non-additive genetic effects result from either interactions between alleles at one locus (i.e., dominance) or across alleles at multiple loci (i.e., epistasis, i.e. the non-reciprocal interaction of non-allelic genes) (Lykken, McGue, Tellegen, & Bouchard, 1992). Non-additive variance is more usually ascribed to dominance rather than epistasis; epistasis is very hard to detect in human family data, although it can be demonstrated in animal studies where selective breeding makes it possible to control which genes are present. The strongest evidence ever obtained for polygenic epistasis in humans involved counts of the number of fingerprint tri-radii. In this study, the within-pair correlation observed (.90) in 110 pairs of MZ twins was more than twice the within-pair correlations of 111 pairs of DZ twins and in hundreds of sibling and parent-child pairs (Heath, Martin, Eaves, & Loesch, 1984). However, correlations between parent-child and sib pairs were similar, which would not be expected if this effect was due to dominance.

An alternative way of viewing marked MZ similarity combined with weak
similarity of DZ twins is in terms of an emergenic trait (Lykken, 1982). An emergenic trait refers to a novel or emergent property resulting from the interaction of independently segregating polygenes interacting at a more molar level (Lykken, McGue, Tellegen, & Bouchard, 1992). Unlike additive genetic effects, in a configural genetic process all of the genetic components are essential, and the absence of, or a change in any genetic components in the sequential process can produce a qualitative or a large quantitative change. Our organs (e.g., eyes, hands and ears) are properties of configurations of monomorphic genes, configurations that we all share as part of being human. Polymorphic genes, the type of genes that are responsible for individual differences of the emergenic traits, can also behave configurally. Whether they are reared together or apart, MZ twins who share all their genes and hence all gene configurations, are more likely to share an emergent trait than DZ twins, siblings, or parents and offspring. For this reason, emergenic traits, although genetic, would not tend to run in families. MZ twins have almost the same voices and can easily substitute for one another in telephone conversation (Farber, 1981). Metrical traits such as EEG spectrum parameters, electrophysiological habituation and many of the idiosyncratic personal styles (e.g., leadership, artistic ability, creativity) have been found to be emergenic (Lykken, 1982; Lykken, Lacono, Haroian, McGue, & Bouchard, 1988; Lykken, Bouchard, McGue, & Tellegen, 1990; Tellegen et al., 1988).

5.6 The interpretation of univariate estimates from the ACE/ADE models

Results of univariate twin modelling analyses reveal the relative contributions of genetic, shared and non-shared environmental influences on a measure. In the early years of conducting twin studies, the main research aim was to set the null hypothesis as ‘heritability ($h^2 = 0$)’ and test if genetic factors have any influence on the behavioural outcomes. With accumulative evidence of a wide range of psychological traits, it is now known that almost all behaviours are the results of genetic disposition and environment. The pure nature-nurture debate could be said to be over. Turkheimer (2000) has proposed the First law of behaviour
genetics – All human behavioural traits are heritable – that summarizes the universal influences of genes on behaviour. Although many researchers have advocated that twin studies should go beyond reporting the estimates of genetic and environmental influences (Johnson, Turkheimer, Irving, & Bouchard, 2009), these univariate estimates analyses are worthwhile for traits of which the genetic influences have not been acknowledged. Second-language reading abilities studied in this thesis is one of them. Moreover, the univariate heritability estimates are important as they clarify findings of familial studies which examine the relatedness of traits between parents and offspring (Turkheimer, 2000). For example, Conlon, Zimmer-Gembeck, Creed, and Tucker (2006) have shown that history of parental reading problems and other reading problems in the family contribute significantly to orthographic but not phonological processing in early adolescence. But reliance on studies which use measured parents’ variables to predict reading and meta-linguistic skills cannot determine if the effects of parents are mediated through the genes they have passed to the children or the environment shared among them. Applying the twin study method, the effects of genes and environment can be distinguished.

Recently, many studies have demonstrated that genes and shared environment explain less than half of the differences among siblings and lead to a critical question of ‘why are children in the same family so different?’ (Plomin & Daniels, 1987). As hypothesized as an E term in the twin model, it represents either measurement errors or non-shared environmental effects. Given that the measurement errors were controlled and minimized, non-shared environment events are potent in explaining individual variations. So, the univariate estimates in the twin model can shed light on the potential influences of non-shared environmental events which had often been ignored (e.g. perinatal factors; Stromswold, 2006). Researchers have tried to capture non-shared environmental effects with measurable non-shared environmental events (e.g. birth order), but these have proved to be less important
than predicted. It seems more likely that nonshared environment effects involve a series of unsystematic and unpredictable events whose influences compound over time. Another point is that researchers have tended to equate idiosyncratic events with accidents, illnesses or other traumas, which fosters a gloomy view of non-shared environmental events. With better measurement tools that can maximize the chance of identifying specific non-shared environmental effects and minimize the chance of committing measurement errors on the dependent variable, we can understand more of environmental effects that operate on an individual-by-individual basis.

5.7 Assumptions of the twin models

It is worth noting that the validity of the twin study method depends on a number of assumptions.

The equal environments assumption (EEA) postulates that MZ and DZ twins are experiencing roughly the same environments regardless of their zygosity. If MZ twins experience more similar environments than DZ twins, their phenotypic similarities may inflate, and as a consequence genetic effects may be over-estimated. One way of testing the EEA is to study the effect of perceived zygosity in misclassified twins. When MZ twins or their parents mistake themselves as DZ twins, they have been found to behave similarly to MZ twins with correctly perceived zygosity (Kendler, Neale, Kessler, Heath, & Eaves, 1994). While no study has addressed the EEA for reading ability, a few studies that directly concerned with the EEA for cognitive abilities provided support for the EEA (Richardson & Norgate, 2005).

Approximately two thirds of MZ twins share the same chorion whereas DZ twins
are always in separate chorions. The mono-chorionic MZ twins may experience more similar environments in utero and this chorionicity effect could potentially inflate the genetic estimates for monochorionic MZ twins (Prescott, Johnson, & McArdle, 1999). Also, monochorionic MZ twins experience intrauterine competition for nutrition in the shared chorion and result in larger birth weight differences in comparison to DZ twins. In more severe cases, twin to twin transfusion syndrome may occur (van Gemert, Umur, Tijssen, & Ross, 2001). The association between chorionicity, placentation and organ maturation have been reported though the effects are small (Jacob et al., 2001; Gutknecht, Spitz, & Carlier, 1999; Sokol, Moore, Rose, Williams, Reed, & Christian, 1995). Importantly, no evidence has been found regarding the impacts of these factors on language and reading development. The findings require replication with larger sample size. Further evidences that support the EEA are observed in various studies (Cronk et al., 2002; Borkenau, Riemann, Angleitner, & Spinath, 2002).

Another important assumption for the twin study design is random mate selection for the measured trait. Non-random mate selection (assortative mating) occurs when one chooses his/her partner bases on a particular phenotype (e.g. occupation), culture or environment, or chooses a genetically related partner. For example, if a book lover marries another book lover, their offspring are more genetically prepared for reading and are more likely to be exposed to an environment rich in books. If a trait is affected by nonrandom mating, twin similarity in DZ twins for this trait will be heightened. Consequently, the shared environmental influences will be over-estimated while the genetic effects will be under-estimated. When relevant phenotypic data for the parental generation are collected and controlled, we can minimize the effects of non-random mating in the twin model (Neale & Cardon, 1992).

Though participants in twin studies come from multiple births, findings of twin
studies are expected to be generalized into the singleton population. Ideally, we would expect the effects of twinning to be negligible. In reality, twins tend to be born, on average, about 2 weeks earlier and they are more prone to some adverse conditions triggered by intrauterine complications (Phillips, 1993). The resulting lighter birth weights (about one third less than singletons) in twins do not lead to far-reaching impacts in their development (Wilson, 1979). However, elevated risk for reading difficulties due to twinning has been documented (e.g., Johnston, Prior, & Hay, 1984). Insofar as these effects of twinning affect both MZ and DZ twins, serving to make both members of a pair similar, they are likely to lead to underestimation of heritability.

Finally, in twin model fitting, the distribution of the phenotypic measures is assumed to be continuous and normal. Departures from normality can bias estimates of heritability.

5.8 The phenotypes of reading and sources of individual differences

Reading involves a series of skills, from perceptual to cognitive, and from linguistic to syntactic. Moreover, reading skills require continuous learning and reading experiences vary across individuals. The multi-componential and dynamic nature of reading imposes some challenges on measuring the phenotype of reading. On one hand, we can measure reading accuracy with norm-referenced reading measures. In the Twins Early Development Study (TEDS) being conducted in England and Wales (Kovas, Haworth, Dale, & Plomin, 2007), word identification was measured with the Test of Word Reading Efficiency (TOWRE; Torgesen, Wagner, & Rashotte, 1999) or a broad range of reading skills including word- and meaning level strategies and with assessments by classroom teachers based on the UK National Curriculum (NC) criteria. Petrill, Deater-Deckard, Thompson, De Thorne, and Schatschneider (2006) have distinguished between content- and process-based reading measures. Content-based measures (e.g., letter identification) reflect ability of accurately
retrieving learnt lexical knowledge from long-term memory. Process-based measures (e.g. phoneme deletion) require manipulation of linguistic information by mental operation. On the other hand, reading researchers are constantly exploring the endophenotypes of reading which are more akin to the genotypes and can be observed consistently even if the behaviours are constantly changing (Doyle et al., 2005). Endophenotypes are typically identified among affected individuals. And, potentially valuable endophenotypes should be measurable reliably, sensitive to genetic susceptibility and specific to the disorder in question (Skuse, 2001). The endophenotypes of reading have been identified at different levels. For instances, phonological deficit is an endophenotype of developmental dyslexia at the cognitive level (Snowling, 2008). The phonological deficits are persistent despite the improved capability of word decoding and learning in dyslexic children. Neurological markers represented by electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data are potential endo-phenotypes for various traits (Zietsch et al., 2007).

As documented in earlier chapters, in this thesis, the phenotype of reading is defined as reading aloud printed words, but in addition, reading-related perceptual and linguistic skills were assessed.

5.9 Studies of reading using the twin study design

Before reporting past twin studies on reading, it is important to highlight the factors that influence heritability estimation.

Modelling of twin data requires a sufficiently large sample size for an acceptable range of statistical power, recruitment and testing of twins is labor-intensive and time-consuming. Not surprisingly, the number of published studies on reading development is very scanty and not always ideal in terms of age range or balance of MZ and DZ twins. The relevant variables may differ from study to study (e.g., including phonological awareness but
not phonological memory in study A, and vice versa in study B). Also studies vary in choice of methods (psychometric testing vs. telephone interview vs. teacher rating), and in the average levels of literacy attainment of the sample, etc. This can result in huge variations in design across twin studies of reading and make direct comparison of heritability estimates not always feasible. In fact, the estimates of genetic and environmental effects do vary across studies (see Grigorenko, 2001; Stromswold, 2001 for reviews). Nonetheless, improvements have been made to ensure the validity and reliabilities of twin studies.

The following review of twin studies is centred on the variables studied in section 1 - visual word recognition, receptive vocabulary, phonological awareness and phonological memory. To the best of my knowledge, no twin study of speech perception has been reported and no reference can be made.

Generally speaking, nearly all of the twin studies of reading show that the variances of word reading, vocabulary and phonological skills are influenced by genetic factors. This is evident in modest to substantial level of additive genetic effects (a^2) which mean genes contribute to the similarity of performances in reading. In one study, Byrne et al. (2005) found that phonological awareness was highly heritable with modest effects of shared environment, among preschoolers and kindergarteners in the United States and Australia. Despite a few exceptions, the genetic influences are consistently larger than shared environmental influences for word recognition, phonological awareness and phonological memory. An opposite pattern is observed for vocabulary development. Details of relevant studies are presented in table 6.1.
Table 5.1: Findings of twin studies of readings relevant to variables measures in this thesis.

<table>
<thead>
<tr>
<th>Studies (paper, country, age and MZ:DZ ratio)</th>
<th>Visual word recognition</th>
<th>Receptive vocabulary</th>
<th>Phonological awareness</th>
<th>Phonological memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byrne et al., 2005<sup>a</sup> Australia, USA</td>
<td>TOWRE</td>
<td></td>
<td>CTOPP Elision, Blending, Sound matching subtests</td>
<td></td>
</tr>
<tr>
<td>Preschool 172/153</td>
<td>a²=.70(.52,.93)</td>
<td>c²=.22(.00,.40)</td>
<td>a²=.63(.36,.92)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e²=.07(.05,.09)</td>
<td></td>
<td>c²=.28(.00,.53)</td>
<td>e²=.10(.05,.16)</td>
</tr>
<tr>
<td>Byrne et al., 2009<sup>a</sup> Australia, USA, Scandinavia 7.9 – 8.7 303/312</td>
<td>TOWRE</td>
<td>Boston Naming Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a²=.82(.67,.88)</td>
<td>a²=.44(.31,.59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c²=.03(.00,.19)</td>
<td>c²=.36(.22,.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e²=.14(.12,.17)</td>
<td>e²=.19(.16,.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byrne et al., 2002<sup>a</sup> Australia, USA, Norway 4.9 – 5.1 125/125</td>
<td>WPPSI-R Vocabulary subtest; Hundred Pictures Naming Test</td>
<td></td>
<td>CTOPP; Lonigan’s task</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a²=.18</td>
<td>a²=.52(sig)</td>
<td>a²=.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c²=.49(sig)</td>
<td>c²=.32(.06,.56)</td>
<td>e²=.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e²=.33</td>
<td>c²=.60(.38,.81)</td>
<td>e²=.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c²=.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e²=.59</td>
<td></td>
</tr>
<tr>
<td>Samuelsson et al., 2005<sup>a</sup> Australia, USA, Scandinavia 4.8 - 5.1 312/315</td>
<td>WPPSI-R Vocabulary subtest; Hundred Pictures Naming Test</td>
<td></td>
<td>Word blending; Syllable and phoneme blending; Sound matching; Word elision; Syllable and phoneme elision; Rhyme and final sound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a²=.32(.06,.56)</td>
<td>a²=.60(.37,.85)</td>
<td>a²=.57(.35,.79)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c²=.60(.38,.81)</td>
<td>c²=.32(.08,.52)</td>
<td>c²=.29(.08,.48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e²=.08(.01,.17)</td>
<td>e²=.08(.03,.15)</td>
<td>e²=.14(.07,.21)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.1: (continued)

<table>
<thead>
<tr>
<th>Studies (paper, country, age and MZ:DZ ratio)</th>
<th>Visual word recognition</th>
<th>Receptive vocabulary</th>
<th>Phonological awareness</th>
<th>Phonological memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kovas, Hayiou-Thomas, et al., 2005<sup>b</sup> UK 4;6 281/275/231</td>
<td>Authors devised phoneme detection task based on Bird, Bishop, & Freeman, 1995 $a^2=.38(.13,.53)$ $c^2=.06(.00,.24)$ $e^2=.56(.47,.66)$</td>
<td>Children’s Test of Nonword Repetition $a^2=.41(.18,.57)$ $c^2=.09(.00,.27)$ $e^2=.50(.43,.59)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gayàn & Olson, 2003<sup>b</sup> USA 10.6 (8 - 18) 257/183</td>
<td>PIAT Word recognition subtest; Time-limited word recognition test. $a^2=.85(.69,.92)^{CA}$ $c^2=.04(.00,.19)^{CA}$ $e^2=.11(.08,.15)^{CA}$</td>
<td>Phoneme transposition; Phoneme deletion; Lindamood auditory conceptualization test $a^2=.83(.62,.94)^{CA}$ $c^2=.08(.00,.27)^{CA}$ $e^2=.09(.05,.14)^{CA}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrill et al., 2006<sup>d</sup> USA 6.1 102/140</td>
<td>WRMT-R Word identification subtest. $a^2=.68(.48,.91)$ $c^2=.22(.00,.42)$ $e^2=.10(.07,.14)$</td>
<td>6 subtests from Robertson $a^2=.48(.33,.68)$ $c^2=.43(.23,.58)$ $e^2=.09(.07,.12)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Studies based on the same sample are denoted by the same superscript. Studies with samples in the age range of 3 to 11 years are reviewed in this table. Superscript CA denotes estimates with general cognitive ability accounted for.

a^2=additive genetic effects; c^2=shared environmental effects; e^2=nonshared environmental effects
CTOPP=Comprehensive Test of Phonological Processing; PIAT=Peabody Individual Achievement Test; TOWRE=Test of Word Reading Efficiency; WPPSI-R=Wechsler Preschool and Primary Scale of Reasoning-Revised; WRAML=Wide Range Assessment of Memory and Learning; WRMT-R=Woodcock Reading Mastery Tests-Revised

Interestingly, the size of genetic effects is not a fixed property of individuals, but will depend on characteristics of the population. Large genetic effects may be due to small environmental range in real life. For example, if nationwide reading curriculum or universal childhood education is implemented, the environmental variations are restricted and
individual variations are more likely to be caused by genetic variations. The twin model is potentially important to evaluate the effectiveness of response to-instruction (RTI) approach on reading. The idea of RTI is to observe age-to-age changes in reading and spelling achievement to improve identification of reading disability and the selection of at-risk readers for intervention (Compton, Fuchs, Fuchs, & Bryant, 2006). If successful, individual differences in reading and spelling skills accounted for by lack of or limited reading instruction should be successively reduced, implying that unresponsiveness to generally effective literacy instruction should be increasingly accounted for by individual capabilities. If the twin study method could be integrated with intervention studies of RTI, the training effects attributed to genes and environment could be partitioned.

As mentioned above, variations in design across studies complicate comparisons of heritability estimates. A few studies, such as the International Longitudinal Twin Study (ILTS) have attempted to investigate the cultural and country effects systematically in a single twin study.

The ILTS of early reading development involves the United States (Colorado), Australia (the Sydney area), and Scandinavia (Sweden and Norway) with samples of twins born between 1994 and 2000. As shown in their studies, the onset of reading instruction and educational philosophy seem to be a critical factor for cross-country differences in the etiology of reading. In Scandinavia, there is an established tradition that children should not be subjected to any formal or informal reading instruction until compulsory education starts when the child is 7 years old (Lundberg, 1999). The main theme in the preschool curriculum is to emphasize social, emotional, and aesthetic development rather than intellectual preparation for school work. This philosophy is also well integrated among most parents in Scandinavia. Thus, approximately 50% of the Scandinavian twins were unable to read any
words at the end of kindergarten prior to formal reading instruction at age seven in first grade. The situation in English-speaking countries is quite the opposite. These countries generally favour early informal and sometimes formal reading instruction in the home and preschool (Mann & Wimmer, 2002). Comparing between two English-speaking countries, Australian children attend kindergarten for the full school day (roughly 9:00 a.m. to 3:00 p.m.) whereas in Colorado, the state from which the U.S. sample was recruited, kindergarten children generally attend half days. With greater intensity of instruction in New South Wales, children are engaged to genetically-influenced learning processes earlier than in the US and more reliable individual differences in response to formal reading instruction can be observed, resulting in a higher genetic contribution to overall variability. Non-significant trends suggest higher heritabilities for several measures in the Australian sample, significantly lower preschool print knowledge in Scandinavia, consistent with the relatively lower amount of shared book reading and letter-based activities with parents, and lack of emphasis on print knowledge in Scandinavian preschools.

The twin study reported in this thesis was conducted in Hong Kong and it can be a focal point for comparing reading development between Western and Chinese cultures.

5.10 Heritability in second language acquisition

To date, there is only one twin study of second language acquisition. Dale, Harlaar, Haworth, and Plomin (2010) tested 604 pairs of 14-year-old twins from England and Wales. These adolescents had English as the primary language of their home and had been learning French, German, Italian, or Spanish as L2. The assessment of L2 competency was based on teachers’ rating of the twins’ performance in their foreign-language course using the United Kingdom National Curriculum (NC) criteria (Department for Education and Skills, 2004; National Curriculum Assessments, 2007). The L1 competency at the same age was assessed
with a similar tool for English in NC.

It was shown that the additive genetic effects on L2 acquisition were substantial (.67) and larger than that for L1 (.41) and also larger than estimates previously published for first-language acquisition in early childhood. The findings add evidence to the general pattern of increasing heritability across development for language and cognitive measures (Plomin et al., 2008). The non-shared environmental effects of .20 may reflect the fact that about 10% of the twins were studying a different language than their sibling, and were assessed by a different teacher. Moreover, the results demonstrate that overlap of genetic influences on first- and second-language acquisition were virtually complete (.99) whereas overlap between shared environmental influences on the two domains was low (.07).

The current study overcomes some of the methodological limitations of Dale et al.’s (2010) study. First, I study reading acquisition and reading related skills specifically, rather than the global assessment of attainment of a second language. Second, rather than relying on teachers’ assessments, children’s abilities were measured directly with psychometric tests and experimental tasks. Third, the participants are limited to Chinese native speakers who learn English as a second language, rather than having a mixture of second languages.
5.11 Research questions and hypotheses in this study

To fill the research gap, I devised this pioneering study. Building on past studies, I examined genetic and environmental contributions to reading development in a second language.

Research question 1: What are the sources of individual differences in Chinese and ESL skills? To handle this question, I fit the twin data into the univariate ACE (ADE, if necessary), AE, CE and E models to estimate the additive/dominant genetic effects, shared and non-shared environmental effects on all the variables.

Research question 2: To what extent do genes and environment contribute to the ESL-Chinese phenotypic correlation? How much can L2 learning rely on resources available from L1? Are the same cognitive processes or neural networks subsumed for parallel skills in Chinese and ESL?

Research question 3: Are ESL and Chinese skills at the two time points controlled by the same set of genes?

Chapter 6 will focus on analyses relating to question 1. Chapters 7 and 8 will then introduce the bivariate statistical methods that are required to handle questions 2-3. Using the Cholesky decomposition I obtain three indexes that represent 1) bivariate heritability, 2) genetic correlation, and 3) the percentage of genetic and environmental influences that explain the phenotypic associations between ESL and Chinese and skills.
6.1 Chapter summary

In this chapter, the results of univariate twin analysis are presented and discussed. The measures and data preparation procedures are detailed in Chapter 3.

6.2 Intraclass correlation coefficients of monozygotic and dizygotic twins

An initial approximation of genetic relatedness can be obtained by comparing the cross-twin, within-trait (also intra-twin) correlations (Shrout & Fleiss, 1979) of MZ and DZ twins. One-way intraclass correlations (ICCs) were computed separately for MZ and DZ twins using SPSS 16.0 (table 7.1). It should be noted that a stringent comparison between the MZ and DZ twins’ ICCs should refer to the confidence intervals. The report of ICCs here is to hint if the ACE or ADE should be modelled in later twin modelling analyses. A genetic influence is suggested when the ICC of MZ twins is higher than that of DZ twins; this was observed for all variables except time 1 Chinese phonological awareness (ICC$_{MZ}$=.60 vs. ICC$_{DZ}$=.61). Several MZ twin correlations were double the size of DZ twin correlations: Chinese tone awareness and Chinese speech perception at time 1, ESL and Chinese speech perception and Chinese tone awareness at time 2. This pattern was suggestive of non-additive genetic influences and therefore the ADE models were also tested on these variables.
6.3 Univariate genetic analyses

The influences of segregating genes, shared environment and non-shared environment (included measurement error) were estimated by the ACE/ADE model fitting. To achieve this, scores corrected for age were computed by OpenMx, a plugin for structural equation modelling (SEM) optimization using the R statistical package (Braun & Murdoch, 2007). The OpenMx script is presented in appendices 4-6.

The ACE model tested the hypothesis that genetic (a^2), shared environmental (c^2), and non-shared environmental (e^2) effects were significantly different from zero, as assessed by 95% confidence intervals. The evaluation of the ACE/ADE model was based upon the comparison between the ACE/ADE and the saturated model, which uses the same maximum

Table 6.1. Summary of intraclass correlation coefficients (MZ twin=207 pairs, DZ twin=72 pairs)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Time 1</th>
<th>Time 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MZ-twin</td>
<td>DZ-twin</td>
</tr>
<tr>
<td>visual word recognition</td>
<td>.90 (.88-.93)</td>
<td>.61 (.44-.73)</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.86 (.82-.89)</td>
<td>.80 (.69-.87)</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.67 (.59-.74)</td>
<td>.40 (.19-.57)</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.62 (.53-.70)</td>
<td>.50 (.31-.66)</td>
</tr>
<tr>
<td>Speech perception</td>
<td>.26 (.13-.38)</td>
<td>.16 (-.06-.38)</td>
</tr>
</tbody>
</table>

Chinese variables				
Visual word recognition	.89 (.86-.92)	.52 (.33-.67)	.90 (.87-.92)	.53 (.34-.68)
Receptive vocabulary	.66 (.57-.73)	.63 (.47-.75)	.72 (.64-.78)	.45 (.24-.61)
Phonological awareness	.60 (.51-.68)	.61 (.44-.73)	.66 (.57-.73)	.41 (.20-.58)
Tone awareness	.52 (.41-.61)	.26 (.03-.46)	.58 (.48-.66)	.13 (.09-.35)
Phonological memory	.74 (.67-.79)	.43 (.22-.60)	.70 (.63-.77)	.55 (.37-.69)
Speech perception	.33 (.20-.44)	-.04 (-.27-.18)	.42 (.30-.53)	.10 (-.12-.32)

Note. The 95% confidence interval for intraclass correlation coefficients are in parenthesis.
likelihood estimation method to estimate all the observed variances and covariances, without making any assumptions about genetic relationships.

6.4 Comparing between the ACE/ADE and its nested models

In order to discover the most parsimonious model to explain the data, the full ACE/ADE model were compared against their nested models. The alternative univariate nested models included the CE, AE and E models. The AE and CE models were constructed by dropping the C and A term respectively. They were used to compare with the ACE model in order to evaluate the importance of the A and C terms. The importance of the A and C terms in the AE and CE models were evaluated by comparing the AE and CE models against the nested E model. In the case of testing an ADE model, the full ADE model was compared to the AE and E models to evaluate the importance of the D term and the A and D terms respectively. Although a simpler (nested) model has the advantage of parsimony, the estimates of the full ACE/ADE model are informative and should not be overlooked. The model fittings were conducted on raw data (after age-correction). Models yielding a p-value higher than .05 indicate a good fit. The same analytic method was applied to both time 1 and time 2 data.

Note that for the present, differences between languages and between time 1 and time 2 will be described but no statistical comparison is made. The relationship between different languages and different time points will be considered more fully in chapters 7 and 8.

6.5 Visual word recognition and receptive vocabulary

First, the results of visual word recognition and receptive vocabulary are presented (table 6.2). It is interesting to note that ESL visual word recognition fitted the ACE model but not simpler models at both time points, indicating that the genetic, shared and non-shared environmental effects are all important in explaining the individual variations in this skill. The genetic and shared environmental effects were moderate and modest respectively ($a^2=53\%$,
c²=38%) and the non-shared environmental effects were negligible (e²=9%) at time 1.

Table 6.2. Univariate ACE and nested models fit and parameter estimates for all the hypothesized variables (MZ=207 pairs, DZ=72 pairs)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Time</th>
<th>Model</th>
<th>χ²</th>
<th>AIC</th>
<th>a² (%)</th>
<th>c² (%)</th>
<th>e² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVWR</td>
<td>T1</td>
<td>(ACE)</td>
<td>8.81</td>
<td>74.11</td>
<td>53 (35.68)</td>
<td>38 (19.57)</td>
<td>9 (8.10)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>(ACE)</td>
<td>10.75</td>
<td>42.27</td>
<td>45 (31.58)</td>
<td>47 (30.63)</td>
<td>8 (6.9)</td>
</tr>
<tr>
<td>CVWR</td>
<td>T1</td>
<td>(AE)</td>
<td>5.26</td>
<td>113.05</td>
<td>76 (53.96)</td>
<td>14 (-7.37)</td>
<td>10 (8.11)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>(AE)</td>
<td>1.87</td>
<td>101.03</td>
<td>74 (52.94)</td>
<td>17 (-5.38)</td>
<td>9 (8.11)</td>
</tr>
<tr>
<td>ERV</td>
<td>T1</td>
<td>(ACE)</td>
<td>9.26</td>
<td>113.26</td>
<td>13 (2.22)</td>
<td>74 (59.87)</td>
<td>13 (11.15)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>(ACE)</td>
<td>14.19*</td>
<td>146.15</td>
<td>33 (18.46)</td>
<td>54 (37.70)</td>
<td>13 (12.15)</td>
</tr>
<tr>
<td>CRV</td>
<td>T1</td>
<td>(CE)</td>
<td>7.10</td>
<td>315.97</td>
<td>11 (-8.30)</td>
<td>56 (36.75)</td>
<td>33 (28.37)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>(AE)</td>
<td>15.72</td>
<td>303.78</td>
<td>62 (36.86)</td>
<td>12 (-12.35)</td>
<td>26 (23.30)</td>
</tr>
</tbody>
</table>

Note. EVWR= ESL visual word recognition, CVWR=Chinese visual word recognition, ERV=ESL receptive vocabulary, CRV=Chinese receptive vocabulary
a²=additive genetic influence; c²=shared environmental influence; e²=non-shared environmental influence;
95% confidence interval in parenthesis; Degrees of freedom (df) for ACE model is 554, and df for AE, and CE models is 555;
*=p-value<.05
Nested models have p-value smaller than 0.05 are not reported here.
#The best fitted models are parenthesised.
At time 2, the genetic effects on ESL visual word recognition were moderate ($a^2 = 45\%$). The shared environmental effects were moderate ($c^2 = 47\%$) and the non-shared environmental effects were negligible ($e^2 = 8\%$). It is interesting to note that only a full ACE model could adequately explain the variances of ESL visual word recognition.

Regarding Chinese visual word recognition, the data fitted the ACE and AE models at time 1 and 2. In the ACE models at the two time points, the C terms were not significant and it seems that shared environmental factor was not important to explain the individual variations in Chinese visual word recognition. In the time 1 and 2 AE models, the genetic effects were substantial ($a^2 = 90\%$ at time 1 and 2) and the non-shared environmental effects were negligible ($e^2 = 10\%$ at time 1 and 2).

For ESL receptive vocabulary at time 1, the data fitted the ACE model only. In the ACE model, it showed modest genetic effects ($a^2 = 13\%$), strong shared environmental effects ($c^2 = 74\%$) and modest non-shared environmental effects ($e^2 = 13\%$). At time 2, the data did not fit any model and this will be discussed at the end of this chapter.

For Chinese receptive vocabulary at time 1, the data fitted the ACE (but the A term was not significant) and CE models ($c^2 = 66\%$ and $e^2 = 34\%$ in the CE model). It seems that genetic factor was not important to explain the individual variations in this skill. However, this pattern changed at time 2 when the C term became non-significant and the genetic effects became substantial ($a^2 = 74\%$ in the AE model). This shift of effects led to the speculation that genetic and environmental changes would be present across time in Chinese receptive vocabulary. The stability of genetic and environmental influences will be tested in chapter 8.

6.6 Phonological awareness and memory

Next, I report and discuss the results of genetic analyses of phonological skills
important to reading and vocabulary acquisition, namely phonological awareness and phonological memory (table 6.3). Phonological awareness taps the understanding of the segmental nature of spoken word (phoneme, onset-rime and syllable).

For ESL phonological awareness, the shared environmental effects were not significant at time 1 while the genetic effects in the AE model were strong ($a^2=68\%$) and the non-shared environmental effects were modest ($e^2=32\%$). At time 2, the shared environmental effects became significant and were moderate ($c^2=47\%$). The genetic effects of the ACE model became modest ($a^2=23\%$) and the non-shared environmental effects remained modest ($e^2=28\%$). The speculation that significant new shared environmental influences emerged at time 2 will be considered further in Chapter 8.
Table 6.3. Univariate ACE/ADE and nested model fits and parameter estimates for all the hypothesized variables (MZ=207 pairs, DZ=72 pairs)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Time</th>
<th>Model</th>
<th>(\chi^2)</th>
<th>AIC</th>
<th>(a^2) (%)</th>
<th>(c^2 / d^2) (%)</th>
<th>(e^2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>T1</td>
<td>ACE</td>
<td>3.52</td>
<td>332.73</td>
<td>57 (28.83)</td>
<td>11 (-14.38)</td>
<td>32 (27.36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0.35</td>
<td>331.09</td>
<td>68 (58.77)</td>
<td>-</td>
<td>32 (27.36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE</td>
<td>7.77</td>
<td>295.09</td>
<td>23 (4.43)</td>
<td>47 (28.67)</td>
<td>28 (24.32)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.61</td>
<td>296.71</td>
<td>-</td>
<td>68 (62.81)</td>
<td>32 (24.32)</td>
</tr>
<tr>
<td>CPA</td>
<td>T1</td>
<td>ACE</td>
<td>9.64</td>
<td>342.74</td>
<td>10 (-11.30)</td>
<td>52 (32.72)</td>
<td>38 (34.43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CE)</td>
<td>0.40</td>
<td>341.14</td>
<td>-</td>
<td>60 (50.70)</td>
<td>40 (34.43)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.86</td>
<td>341.06</td>
<td>50 (22.36)</td>
<td>16 (-9.42)</td>
<td>34 (29.38)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0.66</td>
<td>339.73</td>
<td>66 (56.76)</td>
<td>-</td>
<td>34 (29.38)</td>
</tr>
<tr>
<td>CTA</td>
<td>T1</td>
<td>(ACE)</td>
<td>9.93</td>
<td>400.77</td>
<td>37 (11.71)</td>
<td>14 (2.47)</td>
<td>49 (43.56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE</td>
<td>0.28</td>
<td>399.06</td>
<td>50 (41.59)</td>
<td>-</td>
<td>50 (43.56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE</td>
<td>2.56</td>
<td>401.33</td>
<td>-</td>
<td>46 (37.55)</td>
<td>54 (47.59)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADE</td>
<td>10.21</td>
<td>401.06</td>
<td>50 (41.59)</td>
<td>0</td>
<td>50 (43.56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.80</td>
<td>385.65</td>
<td>56 (46.65)</td>
<td>0</td>
<td>44 (38.50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0</td>
<td>383.65</td>
<td>56 (46.65)</td>
<td>-</td>
<td>44 (38.50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADE</td>
<td>6.03</td>
<td>384.88</td>
<td>10 (-68.87)</td>
<td>46 (-31,1.24)</td>
<td>44 (38.49)</td>
</tr>
<tr>
<td>EPM</td>
<td>T1</td>
<td>(ACE)</td>
<td>7.67</td>
<td>345.83</td>
<td>36 (12.60)</td>
<td>29 (5.50)</td>
<td>35 (30.40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE</td>
<td>2.52</td>
<td>346.35</td>
<td>65 (55.68)</td>
<td>-</td>
<td>35 (30.39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.59</td>
<td>315.24</td>
<td>52 (26.77)</td>
<td>18 (-7.43)</td>
<td>30 (25.33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0.88</td>
<td>314.13</td>
<td>70 (60.80)</td>
<td>-</td>
<td>30 (25.33)</td>
</tr>
<tr>
<td>CPM</td>
<td>T1</td>
<td>ACE</td>
<td>1.65</td>
<td>292.73</td>
<td>72 (45.96)</td>
<td>4 (-2.28)</td>
<td>24 (21.28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0.05</td>
<td>290.79</td>
<td>76 (65.85)</td>
<td>-</td>
<td>24 (21.28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.17</td>
<td>302.95</td>
<td>29 (7.50)</td>
<td>41 (19.62)</td>
<td>29 (25.33)</td>
</tr>
</tbody>
</table>

Note. EPA=ESL phonological awareness, CPA=Chinese phonological awareness, CTA=Chinese tone awareness, EPM=ESL phonological memory, CPM=Chinese phonological memory.
\(a^2 \)=additive genetic influence; \(c^2 \)=shared environmental influence; \(e^2 \)=non-shared environmental influence;
95% confidence interval in parenthesis; Degrees of freedom (df) for ACE/ADE model is 554, and df for AE, and CE models is 555;
*= all the \(p \)-values >.05
Nested models have \(p \)-value smaller than 0.05 are not reported here.
An increase in genetic effects was observed in Chinese phonological awareness. At time 1, the A term in the ACE model was not significant and the CE model provided a good fit and showed moderate shared and non-shared environmental effects ($c^2=60\%$ and $e^2=40\%$). At time 2, the C term in the ACE became non-significant. The AE model provided a good fit with substantial genetic and modest non-shared environmental effects ($a^2=66\%$ and $e^2=34\%$).

At time 1, the genetic, shared and non-shared environmental effects were significant in Chinese tone awareness ($a^2=37\%$, $c^2=14\%$; $e^2=49\%$), suggesting that all factors played a significant role in explaining individual differences in Chinese tone awareness. At time 2, the shared environmental diminished and the genetic and non-shared environmental were moderate ($a^2=56\%; c^2=44\%$). The data of Chinese tone awareness at time 1 also fitted the ADE model, with moderate additive and non-shared environmental effects ($a^2=50\%$ and $e^2=50\%$) but no indication of non-additive genetic effects. At time 2, although data fitted into the ADE model, the additive and non-additive estimates were not significant as indicated by the fact that the lower bound of the confidence interval fell outside 0. The AE model provided a more parsimonious explanation without loss of fit at time 2 ($\chi^2=0$, df=1, $p=1.00$).

For ESL phonological memory, the data fitted both the ACE and AE models at the two time points. The genetic effects were modest ($a^2=36\%$) at time 1 and became moderate ($a^2=52\%$) at time 2 in the ACE model. In the AE model, the genetic effects were strong at time 1 ($a^2=65\%$) and time 2 ($a^2=70\%$). The shared environmental effects were modest at time 1 ($c^2=29\%$) and time 2 ($c^2=18\%$) in the ACE model. The non-shared environmental effects were modest at time 1 ($e^2=35\%$) and time 2 ($e^2=30\%$) in both the ACE and the AE models at time 2.

In the case of Chinese phonological memory, the time 1 data fitted the AE model
well with substantial genetic and modest non-shared environmental effects ($a^2=76\%$ and $e^2=24\%$). At time 2, it requires a full ACE model to explain the data. The genetic, shared and non-shared environmental effects were all modest ($a^2=29\%$, $c^2=41\%$ and $e^2=29\%$).

6.7 Speech perception

As shown in the results of the ‘indirect’ SEM model of reading in the last chapter, speech perception is important to ESL visual word recognition via the effects of ESL phonological awareness. The results of the genetic analyses are presented in table 6.4.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Time</th>
<th>Model</th>
<th>χ^2</th>
<th>AIC</th>
<th>a^2 (%)</th>
<th>c^2 / d^2 (%)</th>
<th>e^2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>T1</td>
<td>ACE</td>
<td>5.96</td>
<td>455.03</td>
<td>27 (-7.59)</td>
<td>1 (-27.30)</td>
<td>72 (64,83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0.00</td>
<td>453.03</td>
<td>28 (18.37)</td>
<td>-</td>
<td>72 (62,81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE</td>
<td>1.24</td>
<td>454.27</td>
<td>-</td>
<td>23 (14.31)</td>
<td>77 (67,85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADE</td>
<td>5.97</td>
<td>455.03</td>
<td>28 (18.37)</td>
<td>0</td>
<td>72 (62,81)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>ACE</td>
<td>5.13</td>
<td>456.67</td>
<td>26 (16.36)</td>
<td>0</td>
<td>74 (64,83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0</td>
<td>454.67</td>
<td>26 (16.36)</td>
<td>-</td>
<td>74 (64,83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CE</td>
<td>3.45</td>
<td>458.12</td>
<td>-</td>
<td>20 (12.28)</td>
<td>80 (70,89)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADE</td>
<td>4.09</td>
<td>455.63</td>
<td>0</td>
<td>28 (18.38)</td>
<td>72 (62,81)</td>
</tr>
<tr>
<td>CSP</td>
<td>T1</td>
<td>ACE</td>
<td>9.98</td>
<td>452.11</td>
<td>31 (20.41)</td>
<td>0</td>
<td>69 (59,78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0</td>
<td>450.11</td>
<td>31 (20.41)</td>
<td>-</td>
<td>69 (59,78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADE</td>
<td>7.09</td>
<td>449.21</td>
<td>0</td>
<td>34 (24,44)</td>
<td>66 (56,74)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>ACE</td>
<td>6.82</td>
<td>432.09</td>
<td>42 (32.51)</td>
<td>0</td>
<td>58 (50,65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AE)</td>
<td>0</td>
<td>430.09</td>
<td>42 (32.51)</td>
<td>-</td>
<td>58 (50,65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADE</td>
<td>5.43</td>
<td>430.7</td>
<td>0</td>
<td>44 (33,53)</td>
<td>56 (48,64)</td>
</tr>
</tbody>
</table>

Note. ESP=ESL speech perception, CSP=Chinese speech perception a^2=additive genetic influence; c^2=shared environmental influence; e^2=non-shared environmental influence; 95% confidence interval in parenthesis; Degrees of freedom (df) for ACE/ADE model is 554, and df for AE, and CE models is 555; *=all the p-values>.05 Nested models have p-value smaller than 0.05 are not reported here.
For ESL speech perception, the data fitted both the AE and CE models. The genetic and shared environmental effects were modest at the two time points ($a^2=28\%$ and $c^2=23\%$ at time 1; $a^2=26\%$ and $c^2=20\%$ at time 2). The non-shared environmental effects were substantial at time 1 and 2 ($e^2 = 72$ and 74\% respectively). The data of English speech perception at time 1 also fitted the ADE model, with modest additive genetic ($a^2=28\%$) and moderate non-shared environmental ($e^2=50\%$) effects. The AE model provided a more parsimonious explanation without loss of fit at time 2 ($\chi^2=0$, df=1, $p=1.00$). At time 2, although data fitted the ADE model, all the additive genetic effects dissipated whereas non-additive genetic effects became significant ($d^2=28\%$). Although the AE model provided a more parsimonious explanation without loss of fit at time 2 ($\chi^2=1.03$, df=1, $p=.30$), the modest non-additive genetic effects should not be neglected and will be discussed at the last section of this chapter.

For Chinese speech perception, the C term was not significant in any of the models at time 1 and 2. At time 1, modest shared environmental effects ($c^2=31\%$) and substantial non-shared environmental effects ($e^2=69\%$) were observed. At time 2, moderate shared environmental ($c^2=42\%$) and non-shared environmental ($e^2=58\%$) effects were observed. Also, the data of Chinese speech perception at both time points fitted the ADE model, with modest non-additive genetic ($d_{time1}^2=34\%; d_{time2}^2=44\%$) and moderate to strong non-shared environmental ($e_{time1}^2=66\%; e_{time2}^2=56\%$) effects. Despite the fact that the AE models provided a more parsimonious explanation without loss of fit at both time points ($\chi^2=2.89$, df=1, $p=.08$ at time 1; $\chi^2=1.39$, df=1, $p=.23$ at time 2), the non-additive genetic effects will be considered and discussed later in this chapter.

6.8 Discussion of the results

The estimates of the best-fitted models for all the ESL and Chinese measures at
both time points are summarized in table 6.5.

Table 6.5. A summary of estimates of the best-fitted models

<table>
<thead>
<tr>
<th>Skills/ Effects</th>
<th>Genetic (%)</th>
<th>Shared-Environmental (%)</th>
<th>Non-shared Environmental (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chinese</td>
<td>ESL</td>
<td>Chinese</td>
</tr>
<tr>
<td>Time 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual word recognition</td>
<td>90</td>
<td>52</td>
<td>ns</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>ns</td>
<td>13</td>
<td>66</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>ns</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>76</td>
<td>36</td>
<td>ns</td>
</tr>
<tr>
<td>Speech perception</td>
<td>31</td>
<td>28</td>
<td>34^</td>
</tr>
<tr>
<td>Tone awareness</td>
<td>37</td>
<td>NA</td>
<td>14</td>
</tr>
<tr>
<td>Time 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual word recognition</td>
<td>90</td>
<td>45</td>
<td>ns</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>74</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>66</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>29</td>
<td>70</td>
<td>41</td>
</tr>
<tr>
<td>Speech perception</td>
<td>42</td>
<td>26</td>
<td>44^</td>
</tr>
<tr>
<td>Tone awareness</td>
<td>56</td>
<td>NA</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note: Non-significant pathways are indicated by ‘ns’

^=Non-additive genetic effects
Figure 6.1: Proportion of variance explained (%) by additive genetic (A)/ non-additive genetic (D), shared environmental (C) and non-shared environmental (E) on Chinese measures at time 1 and 2.

Note: CVWR=Chinese visual word recognition; CRV=ESL receptive vocabulary; CPA=Chinese phonological awareness; CTA=Chinese tone awareness; CPM=Chinese phonological memory; CSP=Chinese speech perception. Confidence intervals and the values of goodness-of-fit indices can be found in tables 6.2-4.
Figure 6.2: Proportion of variance explained (%) by additive genetic (A)/ non-additive genetic (D), shared environmental (C) and non-shared environmental (E) on English measures at time 1 and 2

Note: EVWR=ESL visual word recognition; ERV=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception;
Confidence intervals and the values of goodness-of-fit indices can be found in tables 6.2-4
The non-significant genetic effects in Chinese receptive vocabulary and phonological awareness at time 1 and ESL receptive vocabulary at time 2 seem to violate what is called the first Law of behaviour genetics – all behaviours are heritable (Turkheimer, 2000). More studies are needed to verify this. It should be noted that, at time 1, about 16% more of the participants studied in kindergartens in which the learning environment is different from primary schools in terms of the homogeneity of Chinese and English literacy curriculum. In future studies with larger sample size, differences in estimates might be detected between the kindergarten and the primary school groups.

The genetic effects for Chinese visual word recognition at both time points were substantial ($a^2=.90$). Similar size of genetic effects was found in the Australia sample in Samuelsson et al.’s (2007) study and was argued as an effect of intensive literacy training in New South Wales.

The shared environmental effects of ESL receptive vocabulary were substantial at the two time points, implying that similar learning environment and materials could produce similar learning outcomes. Most of the twin studies on English-speaking children also showed that shared environmental effects were important in vocabulary acquisition (e.g., Dionne et al., 2003). It highlights the nature of vocabulary learning. In terms of breadth, the environment (ecology) determines what vocabulary the learner can encounter and whom the learners can learn from. For example, vocabulary can be learnt when parents bring their children to a European-style restaurant and introduce them to vocabulary such as ‘starter’ and ‘main course’. In terms of depth, one vocabulary item can represent more than one meaning (e.g., ‘well’ means a deep hole for getting water, is the adverb of ‘good’ and is part of a name as in ‘Blackwell’), and only by multiple contextual learning can the multiple meanings of a vocabulary item be acquired and then applied or understood correctly according to a specific
context. Therefore, shared opportunities of vocabulary uses would result in similar enrichment of the extended meanings of vocabulary. Also, as argued by the Competition model (Hernandez, Li, & MacWhinney, 2005), sufficient rehearsal of L2 vocabulary use is necessary to reduce the entrenchment from the strong L1 and consolidate the L2 phonology-and-referent link. Otherwise, the L2 vocabulary is parasitic on L1 vocabulary and easily forgotten (more details in figure 6.1). Thus, the strong shared environmental effects might reveal the importance of practice opportunities for L2 vocabulary consolidation.

Furthermore, the genetic factors would increase the propensity for being a self-motivated learners of a foreign language and reinforce vocabulary learning. This kind of reinforcement was especially important in a non total-immersion English learning environment where the use of first language is enough for people to function well enough in the society.

Figure 6.3: Parasitism and advanced word learning in bilinguals.

(a) Parasitism: The English (L2) word ‘potato’ is a word associate of the Chinese word ‘馬鈴薯’ without a direct link to meaning. (b) Later in learning, direct connections form between the L2 form ‘potato’ and the meaning in L1. As L2 forms gain strength, they can compete with L1, and be accessed more readily (adapted from Hernandez, Li, & MacWhinney, 2005).

Moderate shared environmental effects on ESL phonological awareness were
observed at time 2. This could be related to the introduction of new elements in language curriculums in Hong Kong. In Hong Kong, increasingly more schools have adapted the analytic approach, in conjunction with the whole word approach, to teach English vocabulary knowledge. Mandarin class is now compulsory and there is evidence that knowledge of Pinyin enhances phonological skills in English among Chinese speakers (Lin, et al., 2010). The introduction of new teaching elements would result in a more diversified learning environment and increase the chance of detecting environmental influences. Although the education reform had been implemented since 2002, the objectives of the first stage of development (2001-2006) were related to the motivational aspects of learning. Therefore, the shared environmental effects could be not detected for ESL phonological awareness at time 1 when the second stage of reform which focused on learners’ needs started to take place in 2007.

The patterns of the genetic and shared environmental estimates for Chinese and ESL phonological memory were not stable over time. While Chinese phonological memory fitted only the AE model at time 1, it fitted the ACE model at time 2. The emergent of shared-environmental effects may be a training effect of dictations given regularly and commonly by the teachers in local schools. At time 1, it was likely that most of the children were only required to dictate simple words and short phrases, which demanded shorter memory span. A year later, the children would be expected to be able to recite a whole passage and their memory span would be increased with trainings. Future research is needed to verify this speculation. A reverse pattern of estimates was observed in ESL phonological memory – the data fitted the ACE model at time 1 but only the AE model at time 2. Unlike Chinese dictation, in more advanced English dictation, the children were asked to spell words that had not be learnt before rather than reciting a longer passage. If rote learning and recitation are crucial to phonological memory development, the task demand of English
dictation may not contribute to the enhancement of phonological memory but the awareness of grapheme-phoneme correspondences. It is worth to further investigate the environmental factors (e.g. school activities) that contribute to phonological memory.

Moderate to substantial non-shared environmental effects were observed in ESL and Chinese speech perception at time 1 and 2. Despite the sensitivities to strategies, it also implied that a person’s unique experiences are vital in determining individual variations. Social interaction is an important aspect for L2 language learning. In an intervention study, 9-month-old American infants were taught a Chinese speech contrast that does not exist in English (Kuhl, Tsao, & Liu, 2003). The results of the study demonstrated that American infants who were exposed to live social interaction with speakers of Chinese reading books and playing with toys performed significantly better on discrimination of a Chinese phonetic contrast than infants in the control group who did not have the Chinese exposure. More importantly, exposure to recorded video or audio tapes of the same Chinese speakers via a television set or speaker showed no signs of phonetic learning. Unlike written materials which are tangible and transferable from person to person, speech produced in conversation is usually not recorded and the transmission is limited to real-time interaction between speakers and listeners. A twin is not likely to meet the same people his cotwin meets all the time. Even if they share the same talkers, it is not very likely to share the same conversation. Therefore, twins would share the same reading materials but it is less likely they will share the same interpersonal oral communication. Therefore, unique personal experiences have a greater impact on the individual variations in speech perception. Larger non-shared environmental effects in ESL than Chinese speech perception might reflect the more limited opportunities to make English conversation in Hong Kong. Apart from speaking practice conducted in the classroom, extra oral practices are not always available. There is a chance factor involved in meeting an English speaker or engaging in a conversation with other ESL speakers in English.
In Hong Kong, children speak English outside school when they have in-house English speaking maids, private tutors or interactive learning software. One way to identify the specific nonshared environmental effects is to have the child participants self-reporting the nature and amount of interpersonal communication in Chinese and English in their daily life with structured interviews. With the use of ‘MZ differences’ method (any differences between the MZ twins’ environment is purely nonshared), we can examine if the variations in interpersonal communication contribute to the individual differences in speech perception. Moreover, if interpersonal communication is important for the development of ESL speech perception, the etiologies of social aspects of communication and personality would be correlated with that of speech perception. Future research could investigate this.

It is interesting to note that significant non-additive genetic effects were observed in time 2 ESL speech perception and time 1 and 2 Chinese speech perception. Speech perception may be a kind of emergenic trait which depends on the configuration of polygenic genes. It is not clear if the non-additive effects operate at the peripheral level of the auditory system or the neurological level (auditory cortex and related brain areas). Future research is needed to test these possibilities. I am not aware of other studies on genetics of tone awareness; the closest phenotype that has been investigated is pitch perception, usually in the context of music studies. Drayna, Manichaikul, de Lange, Snieder, and Spector (2001) used a twin study to investigate the genetic and environmental contributions to differences in musical pitch perception abilities in humans. They administered a Distorted Tunes Test (DTT), which requires participants to judge whether simple popular melodies contain notes with incorrect pitch, to 136 monozygotic twin pairs and 148 dizygotic twin pairs. The correlation of DTT scores between twins was estimated at 0.67 for monozygotic pairs and 0.44 for dizygotic pairs, with no dominant genetic effects and no significant effect of shared environment detected. Musical pitch perception may not be as idiosyncratic as expected by the idea of emergenic
trait. Absolute pitch (AP), commonly referred to as perfect pitch, is the rare ability to identify tones with their corresponding musical note names without the aid of a reference tone. Some aspects of AP resemble that of second language speech perception. Musical training during a critical period of childhood development probably contributes to the acquisition of AP (Baharloo, Johnston, Service, Gitschier, & Freimer, 1998), but this training alone is insufficient; many people receive early musical training but do not develop AP. Interestingly, one study showed that infants preferentially use AP cues over relative pitch cues in certain situations, suggesting that all people might be born with AP but that the majority lose their AP abilities with age (Saffran & Griepentrog, 2001). Genetic makeup of the individual (as evidenced in twin studies, e.g., Gregersen, Kowalsky, Kohn, & Marvin, 2001) and environmental factors (type of musical training, e.g., Gregersen, et al., 2001 or the individual’s tone language fluency, e.g., Deutsch, Dooley, Henthorn, & Head, 2009) have been suggested to influence whether an individual develops AP. However, as absolute pitch is a rare ability, twin studies on this topic had very small sample size and non-additive genetic effects could not be detected easily. We expect more aggregation of multiple datasets from various sources to come.

At time 1, modest genetic and shared-environmental effects were observed in Chinese lexical tone awareness. A year later, the shared-environmental effects dissipated and the data fitted only the AE model. As shown in Chen, Ku, Koyama, Anderson, and Li’s (2008) study, Cantonese-speaking children’s tone awareness were found to have improved from grade 1 to 2 but then deteriorated till grade 4. This progressive and then regressive developmental trajectory would affect the stability of genetic and environmental estimates, especially as the sample spanned a large age range in this thesis.

For both Chinese and ESL measures, similar patterns of the non-shared
environmental effects were observed at time 1 and 2. It is speculated that the systematic non-shared environmental effects might relate to the strategies adopted by the child for various experimental tasks. Individuals may handle the same experimental tasks with different strategies. Some tasks allow more flexible use of strategies, while others are less sensitive to strategies. Despite shared genetic disposition and shared environment, a twin can develop his own way for accomplishing the experimental tasks that differ from his cotwin. In visual word recognition, an accurate pronunciation is expected. Children who have learnt phonics may give themselves an advantage of reading aloud unfamiliar word correctly. In phoneme deletion tasks, children may mentally delete the initial phoneme or compare words with similar rimes by relying on the spelling of the word. In phonological memory, different mnemonics can be applied. For example, the English sounds could be transcribed into meaningful Cantonese sounds or visual images. In doing the speech perception task, children may approach the three auditory stimuli differently when deciding if the first or third sound matches the second one. They could compare between the first two sounds or between the last two sounds or compare among the three sounds. Style and strategies could make a difference if some styles are superior to the others. Further studies are warranted to clarify the effects of strategy use.

The results showed that time 2 ESL receptive vocabulary did not fit any twin model. As ESL receptive vocabulary was the only skill in this thesis that did not fit the twin model, an explanation in terms of ascertainment bias is unlikely. Further studies are needed to investigate this.
CHAPTER 7 BIVARIATE GENETIC ANALYSES

7.1 Chapter summary

In this chapter, the nature and applications of bivariate twin modelling and Cholesky decomposition analysis will be described and explained. The results of twin analyses concerning genetic overlap and stabilities will be reported and discussed. This chapter closes with a general discussion of this chapter’s findings.

7.2 Genetic overlap and distinctiveness

The application of the twin study method is not limited to heritability estimation. It can be deployed to examine one important question in cognitive psychology – modularity. Modularity refers to innate and invariant information-processing units (Fodor, 1983). According to Petrill (1997), a system is molar when a general and unitary process handles a wide range of cognitive tasks. In contrast, in a modular system, cognitive processes are relatively independent in their functioning and each of them serves highly specific cognitive tasks. Traditionally, the principle of differentiation as put forth by Werner (1948) was phrased in terms of normative development. In the behavioural-genetic framework, the degree of differentiation can be seen as the magnitude of inter-correlations among measures. Though bivariate twin modelling is not a direct test of modularity of L1 and L2, the results will inform us if modularity is associated with etiological overlap between skills.

The modularity issue can also be seen at the neurological level. In a (relatively) molar system, processing of L1 and L2 would be subsumed by overlapping neural networks and substrates, as predicted by the ‘system assimilation hypothesis’ (Perfetti, Liu, Fiez, Nelson, Bolger, & Tan, 2007). Using functional magnetic resonance imaging (fMRI), Tan et al. (2003) found that phonological processing of Chinese characters among Chinese-English bilinguals (their dominant language is Chinese) relied on a neural system that was clearly distinct from that used by monolingual native English speakers. Critically, when processing
English, the participants exhibited patterns of neural activity virtually identical to those involved in Chinese decoding. These findings clearly show that well established L1 functional neural network is involved heavily in L2 lexical processing. More precisely, the neural networks are situated in the bilateral occipital and occipital-temporal regions (Perfetti et al., 2007). Some researchers argued that similar processing patterns for the two languages are signs of low proficiency in late English–Chinese bilinguals. By comparing the high and low proficiency English–Chinese bilinguals, it has been found that extra cortical areas in the right hemisphere are recruited for late low proficiency bilinguals to process the L2 (e.g., Chee, Hon, Lee, & Soon, 2001). In additional to word decoding, verb generation (Pu et al., 2001) and semantic decision (Xue, Dong, Jin, Zhang, & Wang, 2004) are found to engage similar processing for Chinese and ESL. Similar findings are documented in studies of L2 learners of other languages (e.g., Japanese-English bilinguals; Callan, Jones, Callan, & Akahane-Yamada, 2004; Spanish-English bilinguals; Hernandez, Martinez, & Kohnert, 2000).

In contrast, several studies have supported a (relatively) modular system, in which distinct writing systems impose cognitive-perceptual constraints that the learner must accommodate during the acquisition process, as predicted by the ‘system accommodation hypothesis’. Both MEG and fMRI data appear to suggest distinct neural substrate or mechanisms in terms of hemispheric laterality, regions of activation, duration of activity, or intensity of activity (Scott & Johnsrude, 2003; Valaki et al., 2004). By employing a homophone matching task in a fMRI study, Tham et al. (2005) concluded that a number of distinct brain regions were activated during phonological processing of both English words and Chinese characters in early English-Chinese bilingual bi-scriptal readers. In a study of late adult Chinese ESL learners, L2 speech processing (discrimination of the L2 English vowel contrast [i–I]) did not share the exact same regions with L1 processing (Wang, Lin, Kuhl, & Hirsch, 2007). Significantly greater activation in left Inferior parietal lobule (LPI)
involvement in L2 suggested that English–Chinese bilinguals demanded more attention in processing L2 information (Xue et al. 2004), although neural processing of L1 and L2 may have shared patterns for early and/or more proficient bilinguals (Golestani & Zatorre 2004). Distinct brain mechanisms supporting different languages would be a function of age of acquisition (Kim, Relkin, Lee, & Hirsch, 1997).

Genes choreograph the development of the brain through transcription and translation of DNA into proteins. Through those processes, genes affect the molecular structure of the brain and control the development of interconnections among neurons (Baker, 2004). Variation in the genes that control neural development may lead to variation of behaviour. Apparently, the genetic basis of second language reading acquisition is mediated by the brain. In several recent review papers, heritabilities of brain development at different regions are summarized: heritabilities of frontal lobe volumes are high (90–95%) and those of the hippocampus are moderate (40–69%) (see Peper, Brouwer, Boomsma, Kahn, & Hulshoff Pol, 2007 for review). Functionally, Thompson et al. (2001) examined grey matter density in 10 MZ and 10 DZ adult twin pairs and found that genetic factors strongly influenced language and executive processing regions. Also, probability maps suggested particularly strong genetic effects in middle frontal regions, and an asymmetry in Wernicke’s region (the centre for receptive speech), with the left side highly significant but not the right. Furthermore, the individual variation in morphology of areas involved in attention, language, visual, and sensorimotor processing is strongly genetically influenced. Unique environmental factors influenced the lateral ventricles in the majority of studies and brain tissue surrounding the lateral ventricles (up to 50% in Hulshoff Pol et al., 2006). This suggests that medially, some focal brain regions are probably largely influenced by non-shared environmental influences. For the cerebellum, high heritability estimates are observed in adult twin samples but not in a childhood twin-sample (Gilmore et al., 2010).
In sum, neurological research has contributed to the quest of modularity in cognitive skills, including Chinese and ESL learning. However, how Chinese and ESL skills overlap at the genetic level remains unclear. Genetic research on the normal range of individual differences in cognitive processes can investigate the extent to which genetic effects on one cognitive process covary with genetic effects on the other cognitive processes. From a genetic perspective, a high degree of genetic overlap reflects a low degree of modularity, while a high degree of genetic specificity reflects a high degree of modularity. Therefore, for genetically distinct abilities, genetic effects on one cognitive ability should be independent of genetic effects on the other cognitive abilities, yielding low genetic overlap but high genetic specificity (Fulker & Plomin, 2001). The degree of genetic overlap is shown by the genetic correlation in twin research.

The genetic correlation is the probability that a set of genes that influence one measure will also influence the other measure. A genetic correlation of 1 indicates all genetic effects overlap for the two measures, suggesting a high degree of genetic overlap. However, a genetic correlation of 0 indicates all genetic effects are independent for the two measures, suggesting a high degree of genetic specificity. Previous studies have shown genetic overlap between reading skills and rapid naming ability (Davis, Knopik, Olson, Wadsworth, & DeFries, 2001), phonological memory (Wadsworth et al., 1995), phonological awareness (Petrill et al., 2007), and oral language skills (Haworth et al., 2009). Cross-sectional studies including children of a wide age-range have shown that the component processes of reading such as phonology, fluency, and orthographic skills were correlated largely via genetic pathways (e.g., Gayan & Olson, 2003; Davis et al., 2001). Similar results were obtained in longitudinal studies, showing that genetic influences were largely responsible for the overlap between phonological awareness, word knowledge, and phonological decoding at two time points which were around a year apart (Petrill et al., 2007), and between early language skills
and later reading performance (Harlaar et al., 2007b).

In this thesis, I will test if parallel skills in Chinese and ESL operate more in a modular or molar fashion with a twin study design. Under a molar system, knowledge of L1 is more readily available to L2 learning, and the transfer between languages will be more direct. In this case, genetic overlap between parallel Chinese and ESL skills will be demonstrated. Otherwise, an evidence of a modular system would suggest that both L1 and L2 knowledge is characterized by cognitive impenetrable (or informationally encapsulated), i.e., the processing of linguistic input of one language is not significantly affected by other languages or accessible to higher cognitive functions (Fodor, 1983). In this case, genetic specificity between parallel Chinese and ESL skills will be shown.

With bivariate twin analyses, the phenotypic correlation between parallel Chinese and ESL skills can be understood at the level of etiology. In other words, the extent to which genes and environment contribute to the phenotypic correlation can be computed by model fitting. Excitingly, the overlap between Chinese and ESL neural networks and the existence of an underlying cognitive process can be inferred from the same twin analysis method. The logic of this is explained below.

Because genes do not know what language a person will be learning, the genetic programme must be flexible enough to cater for the linguistic demand later on. In the course of first language acquisition, genes are expressed in neurodevelopment which interacts with linguistic input from the environment. According to the contemporary interpretation of ‘transfer’ (Koda, 2007), the mastery of a first language provides resources for the acquisition of a second language. If the existing neural and cognitive resources are sufficient for the development of a second language, the variations of intrinsic factors across individuals can
explain the phenotypic relationship between the proficiencies of L1 and L2 skills. Otherwise, external factors such as special training programs or linguistic experiences are necessary to explain the residual variance in phenotypic correlation. In a twin model, assuming gene-environment correlation is low, the intrinsic (represented by genes) and extrinsic (shared or non-shared environmental factors) components can be partitioned and are therefore ideal to study the issue of modularity (at both cognitive and neurological levels). In bivariate twin analysis, the degree of common additive genetic effects shared between L1 and L2 skills implicates how much parallel skills in two languages are subsumed by a common underlying cognitive process or a common neural network in two languages. If the common additive genetic effects between parallel Chinese and ESL skills are high, it implies that the intrinsic factors (genes, also genes-induced neural network or cognitive abilities relevant to L1 learning) are sufficient to support L2 learning, and in favour of a relatively molar system. If the common additive genetic effects are low, the intrinsic factors are insufficient to support L2 learning and other external resources are sought and a relatively modular system is probable.

7.3 Bivariate analysis

Bivariate genetic analysis is based on cross-twin correlations. That is, one twin's trait X is correlated with the co-twin's trait Y. The correlation between two traits is attributed to genetic factors to the extent that the MZ cross-twin correlation exceeds the DZ cross-twin correlation. In terms of the twin model, the correlation between traits may be due to common genetic factors (A), shared (C) or non-shared environmental factors (E).

Cross-twin cross-trait correlations (e.g., the correlation between Chinese receptive vocabulary scores in Twin 1 and English receptive vocabulary scores in Twin 2) can be used to decompose the covariance between scores of two or more skills into genetic and environmental influences. When the MZ cross-trait correlations are greater than the DZ cross-trait correlations, genetic factors mediating the phenotypic correlation is suggested.
7.4 Cholesky decomposition analysis

Cholesky decomposition is similar in principle to hierarchical regression where the effects of an independent variable on a dependent variable are assessed after the effects of another, correlated predictor are taken into account. This model has the advantage of having as many parameters being estimated as there are data points (Cherny, 2005). There are other advantages of using Cholesky decomposition, such as all factors are constrained to impact later, but not earlier data points, it requires few assumptions, and can predict any pattern of change. The disadvantages of Cholesky decomposition are that it is not falsifiable and not feasible for a limited number of measurements. For a Cholesky decomposition model including two measures, the first latent factor \((A_1)\) loads on both measures, and the second factor \((A_2)\) loads on the second measure only. The same situation applies to modelling of shared-environmental \((C_1/C_2)\) and non-shared environmental \((E_1/E_2)\) effects.

Figure 7.1: For one member of a twin pair, latent factors represent A, C, and E influences on Chinese variable (phenotype 1) and ESL variable (phenotype 2).

Extended from figure 7.1, figure 7.2 illustrates the model that includes the expected additive genetic relationships, with intra-pair correlations among the additive factors \((A_i)\).
constrained to be 1.0 and .5 for MZ and DZ twins respectively. Similarly, shared environmental factors are constrained to be correlated at 1.0, and the unique environmental factors are not correlated for both twin groups.

Figure 7.2: For two members of a twin pair, latent factors represent A, C, and E influences on Chinese variable (phenotype 1) and ESL variable (phenotype 2).

7.5 Genetic overlap and specificity between ESL and Chinese skills

The genetic-environmental basis of the covariance between two measures was studied by fitting data into bivariate ACE models. The phenotypic correlations between parallel Chinese and ESL variables, including visual word recognition, receptive vocabulary, phonological skills and speech perception (e.g., Chinese and ESL visual word recognition) were significant and moderate. Such correlations might be explained by either additive genetic factors, shared environmental factors or non-shared environmental factors, and so the genetic and environmental correlations among the six pairs of Chinese and ESL variables were estimated by the Cholesky decomposition analysis. Beforehand, it is useful to calculate the cross-twin cross-trait correlations to get a rough idea about genetic overlap (table 7.1).
Table 7.1. Cross-twin cross-trait correlations between Chinese and ESL parallel measures at time 1

<table>
<thead>
<tr>
<th>ESL and parallel Chinese skills</th>
<th>MZ Twin 1 Trait A</th>
<th>MZ Twin 2 Trait B</th>
<th>DZ Twin 1 Trait A</th>
<th>DZ Twin 2 Trait B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual word recognition</td>
<td>.46 (.34-.56)</td>
<td>.46 (.35-.56)</td>
<td>.33 (.11-.52)</td>
<td></td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.28 (.15-.40)</td>
<td>.35 (.22-.46)</td>
<td>.16 (-.06-.38)</td>
<td></td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.50 (.39-.60)</td>
<td>.56 (.46-.64)</td>
<td>.41 (.20-.58)</td>
<td></td>
</tr>
<tr>
<td>Chinese tone awareness & ESL phonological awareness</td>
<td>.42 (.30-.53)</td>
<td>.15 (-.03-.40)</td>
<td>.37 (.24-.48)</td>
<td>.14 (-.09-.35)</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.41 (.29-.51)</td>
<td>.52 (.41-.61)</td>
<td>.30 (.08-.50)</td>
<td></td>
</tr>
<tr>
<td>Speech perception</td>
<td>.22 (.09-.34)</td>
<td>.39 (.27-.50)</td>
<td>.30 (-.11-.56)</td>
<td></td>
</tr>
</tbody>
</table>

Note. Non-significant correlations are bolded.

The cross-twin cross-trait correlations of MZ twins were larger than that of DZ twins, indicating that genetic factors were likely to have an influence on the phenotypic correlations between Chinese and ESL variables. Because the MZ correlation were not greater than double the DZ correlations, the genetic influences do not account completely for twin similarity and as such implies that twin resemblance must also partly reflect environmental influences.

Because the native language develops prior to a second language, in the bi-variate analyses, Chinese measures were entered first, followed by ESL measures. The first set of additive genetic (A), shared environmental (C), and non-shared environmental (E) factors—A1, C1, E1—accounts for the variance in Chinese variable and the covariance between Chinese and ESL variables. The second set—A2, C2, E2—accounts for the remaining variance in ESL variables. Table 8.2 shows the standardized unsquared path coefficients from bivariate Cholesky decomposition.
The contribution of genetic influences to the covariance between Chinese and ESL variables is the product of the paths a11 and a21 (see Figure 7.1); if significant, this indicates genetic overlap. Residual variance in ESL variable is denoted by path a22; if this path coefficient is significant, this indicates genetic influences on individual differences in an ESL variable that are independent of the corresponding Chinese variable. As shown in table 7.2, independent genetic effects were observed only in ESL visual word recognition. Independent shared environmental effects were found in visual word recognition and receptive vocabulary. Independent non-shared environmental effects were found in all ESL variables.
Table 7.2. Standardized unsquared path coefficients from bivariate Cholesky decomposition (and 95% confidence intervals in parentheses) of additive genetic (A), shared environment (C), and non-shared environment (E) correlations between time 1 Chinese and ESL reading-related variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>A1</th>
<th>A2</th>
<th>C1</th>
<th>C2</th>
<th>E1</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVWR</td>
<td>.85 (.67,1.02)</td>
<td>.40 (-.02,.78)</td>
<td>.63 (-.66,.56)</td>
<td>.31 (.28,.34)</td>
<td>.07 (.03,.11)</td>
<td>.29 (.26,.32)</td>
</tr>
<tr>
<td>EVWR</td>
<td>.63 (.46,.80)</td>
<td>.30 (.11,.49)</td>
<td>-.04 (-.66,.56)</td>
<td>.63 (.40,.87)</td>
<td>.07 (.03,.11)</td>
<td>.29 (.26,.32)</td>
</tr>
<tr>
<td>CRV</td>
<td>.40 (.12,.67)</td>
<td>.71 (.55,.88)</td>
<td>.57 (.52,.62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVR</td>
<td>.37 (.19,.55)</td>
<td>0 (-.62,.62)</td>
<td>.21 (.02,.40)</td>
<td>.82 (.73,.92)</td>
<td>.01 (-.02,.06)</td>
<td>.36 (.33,.40)</td>
</tr>
<tr>
<td>CPA</td>
<td>.37 (.13,.62)</td>
<td>.69 (.54,.85)</td>
<td>.61 (.56,.66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>.74 (.59,.88)</td>
<td>0 (-1.31,1.31)</td>
<td>.36 (.10,.62)</td>
<td>0 (-1.50,1.50)</td>
<td>.00 (-.07,.07)</td>
<td>.57 (.51,.62)</td>
</tr>
<tr>
<td>CTA</td>
<td>.57 (.15,1.00)</td>
<td>.41 (-.15,.98)</td>
<td>.71 (.64,.78)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>.52 (.00,1.04)</td>
<td>.51 (-.01,1.03)</td>
<td>.17 (-.49,.84)</td>
<td>.34 (-.13,.82)</td>
<td>.00 (-.07,.08)</td>
<td>.57 (.51,.63)</td>
</tr>
<tr>
<td>CPM</td>
<td>.72 (.62,.105)</td>
<td>.21 (-.59,1.01)</td>
<td>.49 (.45,.54)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPM</td>
<td>.49 (.31,.85)</td>
<td>.11 (-1.37,1.6)</td>
<td>-.14 (-1.70,1.41)</td>
<td>.51 (-1.31,1.16)</td>
<td>-.03 (-.11,.05)</td>
<td>.59 (.54,.65)</td>
</tr>
<tr>
<td>CSP</td>
<td>.57 (.45,.69)</td>
<td>0 (-.47,.47)</td>
<td>.81 (.74,.89)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP</td>
<td>.55 (.43,.67)</td>
<td>0 (-.41,.41)</td>
<td>0 (-.66,.66)</td>
<td>0 (-.38,.38)</td>
<td>.24 (.14,.34)</td>
<td>.79 (.73,.85)</td>
</tr>
</tbody>
</table>

Note: EVWR=ESL visual word recognition; ERV=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception; CVWR=Chinese visual word recognition; CRV=Chinese receptive vocabulary; CPA=Chinese phonological awareness; CTA=Chinese tone awareness; CPM=Chinese phonological memory; CSP=Chinese speech perception.
Are genetic and environmental influences on individual differences common in Chinese and ESL variables? If yes, to what extent? As shown in Table 7.2, genetic overlap was observed in all variables, except Chinese tone awareness and English phonological awareness; shared environmental overlap was found in visual word recognition and phonological awareness; nonshared environmental overlap was indicated in visual word recognition and speech perception. The genetic and environmental correlations between Chinese and ESL variables with significant genetic or environmental overlap were estimated to indicate the extent to which individual differences in two measures reflect the same genetic or environmental influences. Genetic and environmental correlations, by definition, are the probability that a set of genes (or environment) that influence one measure will also influence the other measure, which may assume any value between –1 and +1. The genetic correlations between all parallel Chinese and ESL skills with significant genetic links were high (over .90), indicating that most of the genetic influences on Chinese correlated with those influencing ESL. The shared environmental correlations were high in phonological awareness and modest but significant in receptive vocabulary. The non-shared environmental correlations are modest in visual word recognition and speech perception. Note that the genetic correlations are independent of the extent to which two traits are each influenced by genetic influences. So, it is possible that two skills are highly heritable but genetically distinctive. For example, height and language skills are high in heritability on their own but they seem not to have high genetic overlap. To take the genetic influences on each trait into account, the bivariate heritability should be computed.

To what extent genetic and environmental influences contribute to the phenotypic correlations? The bivariate heritability reflects both the genetic links of and the genetic contributions to each trait, and it represents the genetic contributions to the phenotypic correlation. It was computed by multiplying the two squared path coefficients a11 and a12
(figure 7.2). The percentage of the phenotypic links explained by genetic effects was computed by dividing the bivariate heritability by the phenotypic correlation of each pair of variables.

Genetic factors explained over half of the phenotypic correlations across pairs of variables (from 54% for phonological awareness to 94% for visual word recognition). Shared environmental effects contributed to around half of the phenotypic correlations between Chinese and ESL receptive vocabulary (47%) and phonological awareness (54%). In addition, non-shared environmental effects were found in the phenotypic link between visual word recognition and speech perception, but they included measurement errors.
7.6 Discussion of the results

Table 7.3. Summary of three indexes yielded from bivariate twin analyses of Chinese and ESL variables

<table>
<thead>
<tr>
<th>Chinese and ESL skills</th>
<th>r_p</th>
<th>Common genetic/environmental effects</th>
<th>% of r_p contributed by common genetic/environmental effects</th>
<th>Genetic/environmental correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual word recognition</td>
<td>.55</td>
<td>.53 ns .02</td>
<td>96 ns 3 .90 ns .24</td>
<td></td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.32</td>
<td>.15 .15 .00</td>
<td>47 47 ns 1 .24 ns</td>
<td></td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.49</td>
<td>.27 .24 .00</td>
<td>54 46 ns 1 1 ns</td>
<td></td>
</tr>
<tr>
<td>Chinese tone awareness & ESL phonological awareness</td>
<td>.32</td>
<td>ns ns .00 ns ns ns ns ns ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.37</td>
<td>.35 ns .00</td>
<td>94 ns ns .98 ns ns</td>
<td></td>
</tr>
<tr>
<td>Speech perception</td>
<td>.52</td>
<td>.31 ns .19</td>
<td>59 ns 36 1 ns .29</td>
<td></td>
</tr>
</tbody>
</table>

Note. ns=nonsignificant pathway

It is important to note that the phenotypic correlations ranged from modest to moderate, implying that the attainment of parallel reading skills in two languages are not entirely related. Apart from the fact that the cross-linguistic differences hinder the transfer of learning from one language to another, the learners may devote incongruent effort and time to learning Chinese and English. From conversation with the participants’ parents, children have their own preferences in learning the reading skills of a particular language, with some preferring Chinese and others English (e.g., a fan of Harry Potter chooses to read the original text printed in English rather than the translated Chinese version). Moreover, the limited oral communication experience in the second language makes the learners less sensitive to the functional significance of linguistic features in L2 (Koda, 2007). For example, ‘cover’ can be a verb or noun. It carries multiple meanings when it compounds with other morphemes, e.g.
cover letter, cover charge and cover story. To acquire such knowledge, second language learners have to rely more on rote memorization of lexical information in non-interpersonal settings (e.g. looking unfamiliar words up in a dictionary). Therefore, additional learning skills (for instance, paired-associate learning skills) are necessary to compensate vocabulary learning that supports word learning. Therefore, good reading skills in one language do not necessarily lead to similar attainment in another language, as competition of time and attentional resources might occur. Since there are commonalities of reading skills across languages, reading skills in one language provide a reservoir of resources for the development of reading skills in another language. Whether such relationship is explained by shared genes or environment is indicated in my findings.

Genetic correlation and bivariate heritability indicate the cognitive overlap between parallel Chinese and ESL reading skills. A high degree of genetic overlap and substantial genetic contribution to the phenotypic link was evidenced in visual word recognition. In Chinese societies, the ‘look-and-say’ and ‘look-and-copy’ learning methods have been conventionally used in classroom and home learning. Copying is related to the establishment of motor programs that lead to the formation of long-term motor memories of Chinese characters (Tan, Spinks, Eden, Perfetti, & Siok, 2005). In Chinese culture, children’s educational attainments are usually assessed with their direct fact retrieval skills (Chen & Stevenson, 1989). This universal educational practice would restrict individual differences in learning goals and style of learning. As a result, neural networks specialized for copying and rote memorization are deployed to serve the learning needs of Chinese ESL children collectively. In addition, great genetic overlap and moderate to strong genetic contributions to the cross-linguistic phenotypic links were found for receptive vocabulary, phonological awareness, phonological memory and speech perception. Therefore, various language and reading skills in Chinese and ESL shared sources of genetic origins, supporting the molar
system of processing Chinese and ESL skills.

Common shared environmental origins across Chinese and ESL were found in receptive vocabulary and phonological awareness. Around half of the phenotypic correlations between Chinese and ESL receptive vocabulary, and between Chinese and ESL phonological awareness, were explained by shared environmental influences. In other words, the environment which influences vocabulary or phonological awareness acquisition in Chinese could affect those in ESL, or vice versa. These common environmental influences could be aspects of home literacy environment, such as parent-child reading and parental instructions. For instance, parent-child reading enhanced both Chinese and English phonological awareness in Chinese ESL children (Chow, McBride-Chang, & Cheung, 2010).

While phonological awareness in Chinese and ESL showed common genetic and shared environmental origins, Chinese tone awareness and ESL phonological awareness shared neither genetic nor environmental effects. The different results highlighted Chinese lexical tone as a special characteristic in Chinese which English does not possess, and the ability to distinguish and manipulate Chinese tone and English phonological units involve different etiology. In the case of Chinese tone awareness, the detection of tone involves the extraction of acoustic signals that specify the identity of a tone (e.g., fundamental frequency at different levels and of different contours). In the case of ESL phonological awareness, the detection of the acoustic boundary between sub-syllable units (e.g., consonant and vowels) of an English syllable is involved. At the cognitive level, lexical tone is important to extract the meaning of a Chinese syllable. A Chinese syllable in different tones (six tones in Cantonese) represents different meanings and each of them is denoted by a different character. Though some have argued that English stress was comparable to Chinese tone (Gauthier, Shi, & Xu, 2007), these two units are fundamentally different because Chinese tone conveys lexical
meaning but English stress does not. The significant and positive phenotypic correlation between Chinese tone awareness and ESL phonological awareness may suggest similarity between the mental operations of the two skills at the metalinguistic level. The mental operations involve in the identification of phoneme constancy (e.g., the first sounds in ‘cat’ and ‘kite’ are the same: /k/) in English is likely to be equivalent to that of the identification of tone constancy (e.g., the lexical tones of ‘father’ /ba1/ and ‘clothes’ /yi1/ are the same: high level tone) in Chinese.

Last but not least, findings of genetic correlation have implications for studies that search for genes influencing first and second language reading abilities and disabilities. It is commonly acknowledged that many genes of small effect size, called quantitative trait loci (QTLs; Plomin, Owen, & McGuffin, 1994), contribute to the heritability of individual differences in complex cognitive traits such as reading. The genetic correlations of .90 between Chinese and ESL visual word recognition and phonological memory can be interpreted as suggesting that some of the QTLs responsible for genetic effects on Chinese reading are likely to have pleiotropic effects on ESL reading.
CHAPTER 8 LONGITUDINAL GENETIC ANALYSIS

8.1 Continuity and change of genetic and environmental effects

Learning to read is something that happens over time. During the course of reading development, reading and related skills tend to remain stable (e.g., Catts, Adlof, Hogan, & Weismer, 2005), but changes are also observed (e.g., Dale & Crain-Thorenson, 1999). The underlying mechanisms of the stability and change have attracted a great deal of researchers’ attention, and one core area is determining the genetic and environmental contributions. The stability of various reading skills may be contributed by consistent shared family and school environmental influences and/or consistent genetic effects. Conversely, instability over time may be a function of genetic expression or environment changes that respond to the different demands in reading over time (Cherny et al., 2001).

Demands in reading change across time. Research examining the development of reading skills has emphasized the distinction between young children who are “learning to read,” as opposed to older children who are “reading to learn.” For example, Chall (1983) argued that young children who are learning to read are primarily tasked with learning to read words that are already present in their oral vocabulary. The main requirements of successfully learning to read at this stage are phonological awareness, orthography, and visual–analytic ability (see Dale & Crain-Thoreson, 1999). As reading skills mature, children are able to use reading to learn new words and to integrate these words into their developing semantic knowledge. From learning to read to reading to learn is a major milestone in children’s reading development. This process requires the support of mastered skills in early stages and a shift in the relative importance of various cognitive skills. Twin research has demonstrated strong and stable genetic influences across learning to read to reading to learn (Harlaar, Dale, & Plomin, 2007). The importance of genetic and shared environmental factors on various reading skills across time have also been demonstrated, (e.g., Byrne et al., 2009; Petrill et al., 2007).
There are a few longitudinal projects investigating the developmental etiology of normal range development of reading and related skills, and they include: the International Longitudinal Twin Study (ILTS) involving samples in Colorado, Australia, and Scandinavia, the Twins Early Development Study (TEDS) and the Western Reserve Reading Project (WRRP). These projects have involved children of different age ranges, focused on various reading skills, and tapped these reading skills with different methods.

Despite these differences across projects, they have suggested converging research findings. For instance, Wadsworth, Corley, Hewitt, Plomin, and DeFries (2002) reported substantial genetic correlations between reading skills at three time points in the WRRP sample, and they assessed participants when they were 7, 12, and 16 years of age on a single measure of reading (i.e., PIAT Reading Recognition). Also, Byrne et al. (2005) found genetic influences on the stability of reading skills, and they assessed children from preschool to kindergarten on various reading and related measures, including preschool print knowledge, preschool phonological awareness, and later oral reading fluency skills in kindergarten. The roles of genetic influences on reading development have been demonstrated across studies. However, findings specific to particular samples were also indicated. For instance, shared environmental contributions to the stability of phonological awareness were found in Petrill et al. (2007) with the WRRP sample, but not Byrne et al. (2005, 2006) with the ILTS sample.

In general, studies of these projects suggested genetic contributions to the stability of reading and related skills, including word reading, receptive vocabulary, and phonological awareness (e.g., Byrne et al., 2005; Byrne et al., 2009; Harlaar et al., 2007a; Petrill et al., 2007), and shared environmental contributions to the stability of vocabulary knowledge (Byrne et al., 2009, 2009; Petrill et al., 2007). In addition, new sources of genetic influences emerged for word reading (Harlaar et al., 2007b; Petrill et al., 2007).
8.2 Longitudinal genetic analyses

In this thesis, twins were assessed across two measurement occasions 1 year apart.

The Cholesky decomposition method was used to examine the genetic and environmental stabilities with the longitudinal data. The statistics logic was basically the same with the Cholesky decomposition model utilized for the estimation of genetic overlap as in the last chapter. The etiology of stability was estimated by comparing the cross-time similarity of members of MZ and DZ twin pairs. If the cross-time MZ correlation (between one twin’s score at the initial assessment and the other twin’s score at follow-up) is greater than the cross-time DZ correlation, genetic stability will be indicated.

The cross-twin cross-time correlations between time 1 and 2 are shown in table 8.1. Except for one pair of ESL speech perception correlations, the MZ correlations were consistently larger than the DZ correlations, implying that genetic stabilities were likely to be observed.
Table 8.1. Cross-twin cross-time correlations between time 1 and 2 of the same measures

<table>
<thead>
<tr>
<th>Variable pairs/correlation</th>
<th>MZ</th>
<th>DZ</th>
<th>MZ</th>
<th>DZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time1 and 2 ESL variable</td>
<td>Twin 1 Time 1</td>
<td>Twin 2 Time 2</td>
<td>Twin 1 Time 1</td>
<td>Twin 2 Time 2</td>
</tr>
<tr>
<td>Visual word recognition</td>
<td>.81 (.76-.85)</td>
<td>.50 (.31-.65)</td>
<td>.79 (.73-.83)</td>
<td>.64 (.49-.76)</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.85 (.81-.88)</td>
<td>.73 (.61-.82)</td>
<td>.81 (.75-.85)</td>
<td>.73 (.60-.82)</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.60 (.51-.68)</td>
<td>.29 (.07-.49)</td>
<td>.59 (.49-.67)</td>
<td>.38 (.16-.56)</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.56 (.46-.64)</td>
<td>.34 (.12-.53)</td>
<td>.48 (.37-.58)</td>
<td>.35 (.13-.53)</td>
</tr>
<tr>
<td>Speech perception</td>
<td>.28 (.15-.40)</td>
<td>-.08 (-.31-.14)</td>
<td>.23 (.10-.36)</td>
<td>.43 (.22-.60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time1 and 2 Chinese variable</th>
<th>MZ</th>
<th>DZ</th>
<th>MZ</th>
<th>DZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual word recognition</td>
<td>.79 (.74-.84)</td>
<td>.42 (.22-.59)</td>
<td>.75 (.68-.80)</td>
<td>.49 (.29-.64)</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.63 (.54-.70)</td>
<td>.41 (.20-.59)</td>
<td>.56 (.45-.64)</td>
<td>.50 (.31-.65)</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.53 (.42-.62)</td>
<td>.30 (.08-.50)</td>
<td>.54 (.44-.63)</td>
<td>.46 (.26-.62)</td>
</tr>
<tr>
<td>Tone awareness</td>
<td>.48 (.37-.58)</td>
<td>.25 (.02-.45)</td>
<td>.47 (.36-.57)</td>
<td>.22 (.00-.42)</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.64 (.55-.71)</td>
<td>.37 (.15-.55)</td>
<td>.58 (.49-.67)</td>
<td>.45 (.24-.61)</td>
</tr>
<tr>
<td>Speech perception</td>
<td>.35 (.22-.46)</td>
<td>-.04 (-.27-.18)</td>
<td>.19 (.06-.32)</td>
<td>.01 (-.21-.24)</td>
</tr>
</tbody>
</table>

The path coefficients from bivariate Cholesky decomposition of time 1 and time 2 variables are presented in Table 8.2 (ESL variables) and Table 8.3 (Chinese variables).

Significant genetic links (i.e., paths linking A1 and time 2) were indicated for all ESL and Chinese variables; significant shared environmental links (i.e., paths linking C1 and time 2) were shown for Chinese receptive vocabulary, Chinese phonological awareness, Chinese phonological memory, English visual word recognition, and English receptive vocabulary; and significant nonshared environmental links (i.e., paths linking E1 and time 2) were found for all Chinese variables except Chinese phonological awareness and speech perception, and for English visual word recognition and speech perception. In addition, specific genetic effects (i.e., paths linking A2 to time 2) were significant for Chinese and English visual word recognition and Chinese speech perception, while specific shared environmental effects (i.e.,
paths linking C2 to time 2) were significant for Chinese and English visual word recognition. All nonshared environmental specific effects were significant. Note that the nonshared environmental terms included measurement errors. Therefore, interpretation will focus on the genetic and shared environmental estimates.

Table 8.2. Standardized unsquared coefficients from bivariate Cholesky decomposition (and 95% confidence intervals in parentheses) of additive genetic (A), shared environment (C), and non-shared environment (E) effects between time 1 and time 2 reading-related variables in ESL measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>A1</th>
<th>A2</th>
<th>C1</th>
<th>C2</th>
<th>E1</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1EWR</td>
<td>.73</td>
<td></td>
<td>.61</td>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.57,.90)</td>
<td>(.38,.83)</td>
<td>(.27,.33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2EWR</td>
<td>.58</td>
<td>.32</td>
<td>.61</td>
<td>.14</td>
<td>.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.41,.74)</td>
<td>(.20,.45)</td>
<td>(.41,.82)</td>
<td>(.10,.18)</td>
<td></td>
<td>(.22,.26)</td>
</tr>
<tr>
<td>T1ERV</td>
<td>.33</td>
<td></td>
<td>.87</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.13,.52)</td>
<td></td>
<td>(.75,.98)</td>
<td></td>
<td>(.33,.40)</td>
<td></td>
</tr>
<tr>
<td>T2ERV</td>
<td>.48</td>
<td>.14</td>
<td>.77</td>
<td>.01</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.22,.75)</td>
<td>(-.04,.69)</td>
<td>(.64,.90)</td>
<td>(-.03,.06)</td>
<td></td>
<td>(.34,.41)</td>
</tr>
<tr>
<td>T1EPA</td>
<td>.73</td>
<td></td>
<td>.37</td>
<td></td>
<td>.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.48,.97)</td>
<td></td>
<td>(-.08,.84)</td>
<td></td>
<td>(.51,.62)</td>
<td></td>
</tr>
<tr>
<td>T2EPA</td>
<td>.52</td>
<td></td>
<td>.52</td>
<td>.41</td>
<td>.05</td>
<td>.53</td>
</tr>
<tr>
<td></td>
<td>(.28,.75)</td>
<td></td>
<td>(.06,.98)</td>
<td>(.00,.82)</td>
<td>(-.01,.12)</td>
<td>(.48,.58)</td>
</tr>
<tr>
<td>T1EPM</td>
<td>.60</td>
<td></td>
<td>.53</td>
<td></td>
<td>.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.32,.87)</td>
<td></td>
<td>(.23,.83)</td>
<td></td>
<td>(.53,.65)</td>
<td></td>
</tr>
<tr>
<td>T1EPM</td>
<td>.72</td>
<td>.14</td>
<td>.18</td>
<td>.35</td>
<td>.04</td>
<td>.54</td>
</tr>
<tr>
<td></td>
<td>(.33,1.11)</td>
<td>(-1.56,1.85)</td>
<td>(-.25,.63)</td>
<td>(-.02,.11)</td>
<td></td>
<td>(.49,.59)</td>
</tr>
<tr>
<td>T1ESP</td>
<td>.53</td>
<td></td>
<td>0</td>
<td></td>
<td>.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.41,.65)</td>
<td></td>
<td>(-2.74,2.74)</td>
<td></td>
<td>(.77,.92)</td>
<td></td>
</tr>
<tr>
<td>T2ESP</td>
<td>.52</td>
<td></td>
<td>0</td>
<td></td>
<td>.11</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>(.39,.64)</td>
<td></td>
<td>(-1.11,1.11)</td>
<td>(-1.34,1.34)</td>
<td>(.01,.21)</td>
<td>(.77,.91)</td>
</tr>
</tbody>
</table>

Note: T1=Time 1; T2=Time 2; EVWR=ESL visual word recognition; ERV=ESL receptive vocabulary; EPA=ESL phonological awareness; EPM=ESL phonological memory; ESP=ESL speech perception
Table 8.3. Standardized unsquared path coefficients from bivariate Cholesky decomposition (and 95% confidence intervals in parentheses) of additive genetic (A), shared environment (C), and non-shared environment (E) effects between time 1 and time 2 reading-related variables in Chinese measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>A1</th>
<th>A2</th>
<th>C1</th>
<th>C2</th>
<th>E1</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1CWR</td>
<td>.86</td>
<td>(.68,.103)</td>
<td>.38</td>
<td>(-.02,.79)</td>
<td>.31</td>
<td>(.28,.34)</td>
</tr>
<tr>
<td>T2CWR</td>
<td>.78</td>
<td>(.59,.97)</td>
<td>.34</td>
<td>(.21,.48)</td>
<td>.26</td>
<td>(-.23,.77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.26</td>
<td>(.14,.47)</td>
<td>.30</td>
<td>(.15,.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.19</td>
<td>(.22,.27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>T1CRV</td>
<td>.39</td>
<td>(.16,.61)</td>
<td>.72</td>
<td>(.57,.86)</td>
<td>.74</td>
<td>(.57,.86)</td>
</tr>
<tr>
<td>T2CRV</td>
<td>.74</td>
<td>(.59,.88)</td>
<td>.43</td>
<td>(-1.30,1.30)</td>
<td>.31</td>
<td>(-.23,.75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.43</td>
<td>(.19,.66)</td>
<td>.26</td>
<td>(.15,.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.25</td>
<td>(.22,.27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.30</td>
<td>(.28,.34)</td>
<td>.34</td>
<td>(.21,.48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.26</td>
<td>(-.23,.77)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.30</td>
<td>(.14,.47)</td>
<td>.30</td>
<td>(.15,.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.25</td>
<td>(.22,.27)</td>
</tr>
<tr>
<td>T1CPA</td>
<td>.30</td>
<td>(.00,.59)</td>
<td>.73</td>
<td>(.58,.87)</td>
<td>.39</td>
<td>(-.19,.98)</td>
</tr>
<tr>
<td>T2CPA</td>
<td>.66</td>
<td>(.39,.92)</td>
<td>.45</td>
<td>(-1.74,1.74)</td>
<td>.25</td>
<td>(.19,.69)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.45</td>
<td>(.19,.69)</td>
<td>.14</td>
<td>(-.70,.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.05</td>
<td>(.01,.14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.64</td>
<td>(.39,.88)</td>
<td>.08</td>
<td>(.02,.13)</td>
</tr>
<tr>
<td>T1CTA</td>
<td>.58</td>
<td>(.17,.99)</td>
<td>.39</td>
<td>(-.19,.98)</td>
<td>.25</td>
<td>(.19,.98)</td>
</tr>
<tr>
<td>T2CTA</td>
<td>.62</td>
<td>(.33,.91)</td>
<td>.25</td>
<td>(-.01,.64)</td>
<td>.25</td>
<td>(.19,.98)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.25</td>
<td>(-.24,.75)</td>
<td>.15</td>
<td>(.01,.62)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.11</td>
<td>(.00,.20)</td>
</tr>
<tr>
<td>T1CPM</td>
<td>.81</td>
<td>(.67,.94)</td>
<td>.30</td>
<td>(-.01,.62)</td>
<td>.49</td>
<td>(.45,.54)</td>
</tr>
<tr>
<td>T1CPM</td>
<td>.52</td>
<td>(.29,.76)</td>
<td>.64</td>
<td>(-.58,.87)</td>
<td>.11</td>
<td>(.24,.75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.14</td>
<td>(.39,.88)</td>
<td>.11</td>
<td>(.24,.75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.53</td>
<td>(.48,.58)</td>
</tr>
<tr>
<td>T1CSP</td>
<td>.56</td>
<td>(.43,.68)</td>
<td>.30</td>
<td>(-.84,.84)</td>
<td>.10</td>
<td>(.00,.20)</td>
</tr>
<tr>
<td>T2CSP</td>
<td>.47</td>
<td>(.30,.63)</td>
<td>.44</td>
<td>(-1.48,1.48)</td>
<td>.10</td>
<td>(.00,.20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.74</td>
<td>(.67,.81)</td>
</tr>
</tbody>
</table>

Note: T1=Time 1; T2=Time 2
CVWR=Chinese visual word recognition; CRV=Chinese receptive vocabulary;
CPA=Chinese phonological awareness; CTA=Chinese tone awareness;
CPM=Chinese phonological memory; CSP=Chinese speech perception.
At the phenotypic level, the performances at time 1 correlated significantly with that of time 2 (r ranged from .34 to .84; see Table 8.4). Among the ESL measures, the cross-time phenotypic correlations of visual word recognition and receptive vocabulary were high, those of phonological memory and phonological awareness were moderate and that of speech perception was modest. Similar patterns were observed in Chinese measures, except that a moderate correlation between time 1 and 2 Chinese receptive vocabulary was identified. Chinese tone awareness correlated moderately across time 1 and time 2.

The genetic and shared environmental correlations were computed for the aforementioned significant genetic and shared environmental paths to understand the extent of overlap (see Tables 8.2 and 8.3). As shown in Table 8.4, genetic factors mediated continuity from time 1 to 2 for all the measures except Chinese phonological awareness. Except for Chinese phonological awareness, the genetic correlations were strong for various variables, ranging from .72 to 1.0. In other words, 72% to all genetic factors at time 1 overlapped with those at time 2 for various Chinese and ESL variables. Also, strong shared environmental correlations were found in ESL visual word recognition, ESL receptive vocabulary, Chinese receptive vocabulary and Chinese phonological awareness, varied from .89 to 1.0. Therefore, 89% to all shared environmental factors at time 1 overlapped with those at time 2 for these variables.
Table 8.4. Summary of three indexes yielded from bivariate twin analyses

<table>
<thead>
<tr>
<th>Time 1 and 2 ESL variable</th>
<th>$r_p^{\text{Time 1-2}}$</th>
<th>Common genetic/environmental effects</th>
<th>Specific genetic/environmental effects</th>
<th>Genetic/environmental correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>Visual word recognition</td>
<td>.84</td>
<td>.42</td>
<td>.37</td>
<td>.04</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.83</td>
<td>.15</td>
<td>.66</td>
<td>ns</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.60</td>
<td>.37</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.56</td>
<td>.43</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Speech perception</td>
<td>.37</td>
<td>.27</td>
<td>ns</td>
<td>.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time 1 and 2 Chinese variable</th>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>rA</th>
<th>rC</th>
<th>rE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual word recognition</td>
<td>.84</td>
<td>.67</td>
<td>ns</td>
<td>.05</td>
<td>.11</td>
<td>.09</td>
<td>.06</td>
<td>.91</td>
<td>ns</td>
<td>.60</td>
</tr>
<tr>
<td>Receptive vocabulary</td>
<td>.63</td>
<td>.29</td>
<td>.31</td>
<td>.05</td>
<td>ns</td>
<td>ns</td>
<td>.26</td>
<td>1</td>
<td>1</td>
<td>.15</td>
</tr>
<tr>
<td>Phonological awareness</td>
<td>.55</td>
<td>ns</td>
<td>.33</td>
<td>ns</td>
<td>ns</td>
<td>.36</td>
<td>ns</td>
<td>.94</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Tone awareness</td>
<td>.57</td>
<td>.35</td>
<td>ns</td>
<td>.10</td>
<td>ns</td>
<td>.42</td>
<td>ns</td>
<td>.89</td>
<td>ns</td>
<td>.23</td>
</tr>
<tr>
<td>Phonological memory</td>
<td>.67</td>
<td>.42</td>
<td>ns</td>
<td>.05</td>
<td>ns</td>
<td>.28</td>
<td>.96</td>
<td>ns</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>Speech perception</td>
<td>.34</td>
<td>.26</td>
<td>ns</td>
<td>.19</td>
<td>ns</td>
<td>.54</td>
<td>.72</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. ns=nonsignificant pathway

8.3 Discussion of the results

Results indicated that genetic factors contributed to the stability across time for all Chinese and ESL variables, except Chinese phonological awareness. Consistent with past research on learning English as a mother tongue, genetic effects play an important role in the consistency of reading and related skills across time (e.g., Byrne et al., 2005, 2009; Harlaar et al., 2007a; Hart, Petrill, DeThorne, et al., 2009; Petrill et al., 2007; Samuelsson et al., 2008). Shared environment contributed to the stability across time for Chinese and ESL receptive...
vocabulary, ESL visual word recognition, and Chinese phonological awareness. These shared environmental effects on vocabulary knowledge were found in past research (Byrne et al., 2009; Hart, Petrill, DeThorne, et al., 2009; Petrill et al., 2007). However, it is interesting to note the shared environmental effects on ESL visual word recognition but not Chinese visual word recognition in this study. Past studies have demonstrated genetic influences on ESL visual word recognition (e.g., Byrne et al., 2005; Harlaar et al., 2007a; Petrill et al., 2007; Samuelsson et al., 2008). Environmental overlap on reading ability was shown in a study (Harlaar et al., 2007b), but reading skills were assessed by teachers’ ratings, and twins in the same classroom were even assessed by the same teacher in their research, and thus the shared environmental link might be inflated. These results could reflect the different etiology of visual word recognition in mother tongue and second language acquisition. Further research is warranted to confirm the results.

In addition, shared environmental effects but not genetic influences contributed to the continuity in Chinese phonological awareness. It was inconsistent to past research findings on English as a mother tongue which showed the genetic mediation in the stability of phonological awareness, though mixed evidence on the shared environmental mediation was obtained (e.g., Byrne et al., 2005, 2006; Petrill et al., 2007). Also, no significant shared environmental link was found for ESL phonological awareness in this thesis. Putting these results together, it seems the learning ecology of Chinese is relatively stable comparing to that of ESL. In Hong Kong, increasingly more parents send their children to English-speaking countries to attend summer schools or intensive courses. Moreover, children have more opportunities to participate in exchange programmes in foreign countries organized by the schools. Therefore, the Chinese ESL learners can acquire new peer groups and exposure to more varieties of English. These new learning experiences could contribute to the instability in shared environmental influences.
Apart from the stability, new sources of genetic and shared environmental effects emerged for Chinese and ESL visual word recognition, and new sources of genetic influences emerged for Chinese speech perception. These results reflect the change in cognitive demands in both Chinese and ESL reading across time, which are best described in Ehri (1995)’s model of four phases of reading development. For reading English, beginning readers at the pre-alphabetic phase look for salient visual cues and connect them to meanings by rote learning. Progressing to the partial alphabetic phase, through the full alphabetic phase to the consolidated alphabetic phase, learners are trying to discover the regularities between the graphical and phonological units of the language. Similar developmental phases have been observed in Chinese reading acquisition (Ho & Bryant, 1997). The emergent of new genetic and shared environmental effects on Chinese and ESL reading may be a response to new learning skills demanded at a new phase of development. As smaller speech units of Chinese language (consonants and vowels) are introduced in Pinyin class to the children, the new genetic influences on Chinese speech perception may then come into play in response to a new learning demand. It would be worthwhile to follow the child participants to further examine the continuity and discontinuity of the genetic and environmental estimates.

The emergence of new genetic effects at time 2 for ESL and Chinese visual word recognition may reflect enhanced self-directed learning abilities. When a novice reader starts learning to read, his reading activities are mostly guided by external factors. For example, the books the child reads are assigned or recommended by teachers or parents. The words the child pays attention to are those explicitly taught by teachers based on the syllabus or read by parents. When the child has mastered a satisfactory level of proficiency and knows how to access different sources of printed materials, he becomes a self-directed learner. Then, he can choose from the library, bookshop or internet what he wants to read and then how much time he wants to invest on reading activities. This learning trajectory has been framed as a shift from the stage of ‘learning to read’ to ‘reading to learn’ (Chall, 1983). Previous studies have
tested the differences in heritability estimates across two stages. In fact, similar etiologies were found in reading achievement at 7, 9, 10 of years of age (Harlaar, Dale, & Plomin, 2007). It may be because the self-directed learners’ learning ecologies in the two learning stages were similar. In contrast, the progression from ‘learning to read’ to ‘reading to learn’ in a second language would induce a change in the learners’ learning ecology. Being able to read a second language not only allows the learners to understand the meaning of the language itself, but get in touch with a new culture and a new community of speakers. The ESL learning ecology was extended from classroom to chat-rooms, online forums, newsgroups or blogs on the internet which link English speakers and users from all over the world. Therefore, the environmental range becomes larger and the heritability estimates reduce accordingly.
CHAPTER 9 GENERAL DISCUSSION

Since our writing system represents our spoken language and the aim of reading is to decode the message conveyed by our speech, the linkage between reading and speech perception has been thought to be close. Traditionally, reading researchers have focused very much on the individual differences and learning mechanisms in different aspects of reading. Although speech perception has been widely studied, the investigative focus is the nature of speech perception deficits in developmental dyslexia. On the other hand, speech perception has been a long standing interest for linguists and computer scientists who are interested in the nature of speech perception, without attending much to individual variations in this skill.

In the last decade, more research has been reported regarding the relationship between speech perception and reading owing to the quest for the ontogeny of phonological skills and more multi-disciplinary collaborations. Extending from investigations of reading, phonological skills and speech perception at the behavioural and cognitive levels, this thesis studied the etiology of these skills with a special focus on second language reading acquisition.

In terms of methodology, this thesis has made the first ever attempt to measure reading and reading-related skills in two languages among twin children who read a logographic script (Chinese) and learn to read an alphabetic script (English). From the perspective of behavioural genetics, the sample size of this thesis is not optimal. However, a sample of this size is sufficient for Path analysis using a structural equation modelling (SEM) approach. Therefore, collection of twin data allows us to fulfil two goals simultaneously: estimating heritability and testing SEM structural models. This data collection strategy is recommended for future research, though the generalizability of the twin findings to the wider population needs to be verified.
In clarifying the unique role each skill plays in visual word recognition development, I adopted the component skills analysis (CSA) approach and made reference to four conventional views of reading and phonology development and then postulated four testable hypothetical developmental models. By using SEM in a ‘model generating’ manner, noteworthy findings were yielded. As the models were based on previous research on English reading of native English speakers, cross-linguistic comparisons could be made. First, ESL variables alone can account for the variance in ESL visual word recognition, confirming previous observations that L2 print input is a dominant force in shaping reading sub-skills in that language and its impact overrides the impacts produced by L1 experience (Koda, 2007). Second, the strong and significant causal link from ESL receptive vocabulary to ESL visual word recognition highlights the meaning-based learning in ESL reading development, especially if no cognate is shared between two languages as in Chinese and English. Third, ESL speech perception contributes to ESL visual word recognition through multiple pathways. The effects of speech perception on reading may have been overshadowed because the effects were not direct but mediated by phonologically-related skills such as phonological awareness, phonological memory and receptive vocabulary. This finding further encourages researchers to study speech perception and reading in normative development. Fourth, it is worth noting the bidirectional relationship between ESL phonological memory and ESL phonological awareness for theoretical and practical reasons. Theoretically, this significant mutual transaction between two core phonological skills may imply that the development of the two skills is not linear. In regard to growth, an exponential increase would be expected. Concerning underdeveloped phonological skills, it is likely that one phonological skill has a detrimental effect on the other and vice versa. For therapists and educators, early identification and training of two core phonological skills concurrently without neglecting either one is essential for the prevention and remediation of reading disabilities. Everyone must love to see the positive ‘Snowball’ but not the negative ‘Matthew’ effects (Stanovich,
Individual variations in ESL reading and the impact of relevant factors such as age of acquisition and parental influence have been documented in the literature. A recent study
on second language acquisition indicated that genetic factors are prominent for L2 learning (Petrill et al., 2010). This thesis provides further evidence for this claim and shows the size of genetic and environmental influences on measured reading and its related skills. The findings led to some speculations about causal mechanisms. First, the environmental influences could reflect the way in which a skill is learnt. For example, incidental learning is essential to enhance the breath and depth of vocabulary knowledge, and this could explain why the shared environmental factor is important in explaining the variance of this skill. And, due to the interpersonal nature of conversation, ESL learners’ exposure to spoken English depends on whom they meet and how much conversation is engaged. As speech is intangible and interpersonal relationship is subject to a ‘talker and listener’ context, different communicative experiences could explain why nonshared environment becomes a more important factor in explaining speech perception. For phonological awareness, as its performances are largely dependent on training, shared environmental effects are salient in this skill. Second, nonadditive genetic effects were observed in ESL and Chinese speech perception. This leads to a possibility that speech perception is an emergenic trait which depends on the configuration of polygenic genes. At the behavioural level, it has been suggested that the individual differences of an emergent trait would not be normally distributed. If it is true, we need to refine our measurement and statistical approach to categorized typical and atypical development of speech perception. More studies of speech perception with a sample in a narrow age range are recommended. At the etiological level, further studies on whether ESL speech and musical pitch perceptions share a common etiology would enable us to have a better understanding of the whole auditory system.

Bivariate Cholesky decomposition twin analyses were applied to examine the issues of genetic overlap and genetic stability.
High genetic correlations between ESL and Chinese skills were consistently observed for all variables. These implicate the existence of common underlying cognitive processes and a high overlap of neural networks that serve ESL and Chinese processing. Moreover, high genetic overlap also consolidates the contemporary interpretation of cross-linguistic transfer which suggests that L1 background provides a reservoir of resources for L2 learning. Among Chinese ESL learners, the conventional ‘look-and-say’ and ‘look-and-copy’ learning methods would have been applied equally in handling ESL and Chinese learning tasks. However, significant common shared environmental effects on Chinese and ESL receptive vocabulary and phonological awareness should not be overlooked. On one hand, the findings suggest that linguistic environment and literacy activities important to one language are facilitative to another language. On the other hand, the findings that Chinese tone awareness and ESL phonological awareness shared neither genetic nor environmental effects reminds us to be aware that ESL and Chinese respond differentially to the learning environment. Therefore, a tailor-made teaching programme is critical to success in ESL learning, especially in a non total-immersion English speaking environment.

As indicated in the chronosystem of the ecological theory, time is prominent in human development. As shown in my findings, the genetic, shared and nonshared environmental influences were not entirely stable after 1 year of time. This is not a surprising result given that reading is a complex skill and changes over time. The new genetic effects detected in ESL and Chinese visual word recognition at time 2 may reflect an enhancement in self-learning abilities. The heightening of this skill not only fosters better reading skills but implies that the learners are potentially self-motivated learners. Furthermore, the continuity itself may imply the timing of gene expressions; also, it sheds light on the important issue ‘nature of nurture’. By referring to the results, we can better understand if a stimulating or deprived linguistic environment changes or remains unchanged over time. However, as the
age range in this thesis was broad, this would make it difficult to detect changes in genetic or environmental effects that occurred at a specific age point. The wide age range of this sample also limits the inference of temporal causality in the longitudinal design. Children at different ages may be at different stage of language and reading development. There may be qualitative differences among children at different developmental stages. Children being born and raised in a particular time and situation may have unique experiences (cohort effects). The testing of twin models on a sample made up of children in different cohorts would affect the estimation of environmental effects.

Through the whole research process, I have devoted great effort to maintain the validity and reliability of the study. There are some uncontrollable factors that lead to several caveats. First of all, without a well-established twin database, it is difficult to establish the actual MZ/DZ twin ratio in Hong Kong. An imbalanced number of MZ and DZ twins were recruited and this would affect the accuracy of heritability estimates. Also, the availability of twins is an issue. Though the minimal sample size requirement is marginally met, the restricted sample limits the statistical power, especially for multivariate twin analyses, and made it impracticable to do analyses to detect gender effects. To recruit an adequate sample size it was necessary to have a sample spanning a large age range, which limits the arguments centred on developmental change. For future development in behavioural genetics, it would be worth establishing a twin registry. Second, given limited labour force and time, only single measures were administered for each construct. In future studies, it would be worth including multiple measures for a construct to minimize the measurement errors. In future research, researchers could consider researching other aspects of language and reading abilities such as reading comprehension, reading fluency, syntactic skills, orthographic processing, etc.

To conclude, this thesis has illustrated that ESL reading is a multi-componenental
system at the behavioural and cognitive levels. Speech perception, phonological awareness, phonological memory and receptive vocabulary interact with each other and contribute significantly to visual word recognition. Reading acquisition in a second language has been shown empirically to be a heritable trait though also influenced by shared and nonshared environment. Although the interplay between ESL and Chinese in the course of developmental is still unknown, it has been shown in this thesis that ESL and Chinese skills overlap partially but significantly in terms of shared functions and etiology.

Bialystok, E., & Miller, B. (1999). The problem of age in second-language acquisition:

Bialystok, E., Luk, G., & Kwan, E. (2005). Bilingualism, biliteracy, and learning to read:
Interactions among languages and writing systems. *Scientific Studies of Reading, 9*(1), 43.

learners at the end of Key Stage 1. *British Journal of Educational Psychology, 74*, 15-36.

ability: Multivariate evidence for a convergent skills model of reading development.

Scientific Studies of Reading, 11(1), 3-32.

Vernon-Feagans, L. (1996). *Children's talk and communities and classrooms*. Cambridge,
MA: Blackwell.

Reading performance and verbal short-term memory: A twin study of reciprocal

resemblance for reading performance at 7, 12 and 16 years of age in the Colorado
adoption project. *Journal of Child Psychology and Psychiatry, 43*(6), 769-774.

Walley, A. C. (1993). The role of vocabulary development in children's spoken word

second language: Lexical and visual-orthographic processes. *Applied Psycholinguistics,
24*(1), 1-25.

Appendix 1a: The project’s website: http://sites/google.com/site/hkoxtwin/english

A Behavioral Genetic Study on Bilingual Development among Hong Kong Chinese Children

We recruit children aged 2-10

University of Hong Kong
University of Oxford
Chinese University of Hong Kong

Introduction

Language plays a very important role in children’s personal growth and cognitive development. To understand the genetic and environmental contributions to language and reading development, researchers in University of Hong Kong, University of Oxford and Chinese University of Hong Kong collaborate to conduct the first large-scale behavioral genetic research in Hong Kong. In this project, it requires the participation of over three hundreds pairs of same-sex twins. The success of the project really relies on the support from parents and people from the educational sector. With the research grant funded by the University Grant Committee (UGC) and Wellcome Trust, the project was started in September, 2007.

Support us!

We need kindergartens, primary schools, non-governmental organization (NGOs) to support our research.

Join us!
Appendix 1b: A poster for the participant recruitment.

誠邀同性別雙胞胎學童參與一項遺傳學研究

研究項目
《遺傳與環境因素對語言及閱讀發展的影響》

目的
香港大學心理學系聯同英國牛津大學實驗心理學系及香港中文大學生物化學系現正進行一項為期三年的雙胞胎研究，以了解影響語言及閱讀發展的重要因素。

測試內容
1. 家長填写简单问卷；
2. 收集學童口水樣本，以確認學童雙胞胎的身份
 (同卵生或異卵生)；
3. 學童接受語言、閱讀及認知能力的測試(每年一次)。

參加者
本港兩歲至九歲同性別雙胞胎的學童。

獎勵
1. 家長每年均可獲得測試成績報告，以了解子女的語言及閱讀能力的發展概况；
2. 於研究第二年，家長將獲贈「中文字詞認識訓練」光碟一套；
3. 研究完成後學童將獲發獎狀。

截止日期
報名從速

資料保密性
所有收集的資料只作研究用途，絕對保密。

參加及查詢
請填妥報名表連同回研究小組(地址: 香港薄扶林道香港大學建華樓623室)或傳真至2241 5558。
如有任何查詢，請與研究助理黃小姐(電話: 2219 4439)或歐小姐(電話: 2241 5558)聯絡或
電郵至hkoxtwin@hkucc.hku.hk。歡迎瀏覽本研究之網頁: http://hkoxtbg.googlepages.com/home。

心理學系
香港大學
實驗心理學系
英國牛津大學
生物化學系
香港中文大學
Appendix 1c: A snapshot of a tv program reporting the current twin study.

The chip (in Cantonese) is available on youtube: http://www.youtube.com/watch?v=iwNnBKq1jxk&feature=related

Wai Lap (right) was testing a twin in a local school in Hong Kong.
APPENDIX 2 TESTING MATERIALS

Appendix 2a: The English visual word recognition test.

<table>
<thead>
<tr>
<th>Boy</th>
<th>Entry level for K1-3</th>
<th>book</th>
<th>nose</th>
<th>pig</th>
<th>girl</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>yellow</td>
<td>two</td>
<td>you</td>
<td>you</td>
<td>mother</td>
<td>10</td>
</tr>
<tr>
<td>fish</td>
<td>milk</td>
<td>happy</td>
<td>school</td>
<td>orange</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>bus</td>
<td>me</td>
<td>sun</td>
<td>egg</td>
<td>moon</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>eye</td>
<td>dog</td>
<td>father</td>
<td>cat</td>
<td>ice cream</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>jump</td>
<td>tree</td>
<td>bird</td>
<td>hot</td>
<td>is</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>key</td>
<td>green</td>
<td>see</td>
<td>cow</td>
<td>like</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>what</td>
<td>cook</td>
<td>leg</td>
<td>write</td>
<td>hand</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>what</td>
<td>what</td>
<td>hand</td>
<td>like</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>umbrella</td>
<td>umbrella</td>
<td>climb</td>
<td>cake</td>
<td>van</td>
<td>ear</td>
<td>50</td>
</tr>
<tr>
<td>short</td>
<td>short</td>
<td>window</td>
<td>policeman</td>
<td>elephant</td>
<td>rice</td>
<td>60</td>
</tr>
<tr>
<td>water</td>
<td>water</td>
<td>zebra</td>
<td>birthday</td>
<td>drink</td>
<td>that</td>
<td>55</td>
</tr>
<tr>
<td>wash</td>
<td>wash</td>
<td>beautiful</td>
<td>ship</td>
<td>taxi</td>
<td>cold</td>
<td>60</td>
</tr>
<tr>
<td>sport</td>
<td>sport</td>
<td>kind</td>
<td>over</td>
<td>jelly</td>
<td>work</td>
<td>65</td>
</tr>
<tr>
<td>grass</td>
<td>grass</td>
<td>number</td>
<td>lot</td>
<td>live</td>
<td>rain</td>
<td>70</td>
</tr>
<tr>
<td>dry</td>
<td>dry</td>
<td>with</td>
<td>need</td>
<td>inside</td>
<td>buy</td>
<td>75</td>
</tr>
<tr>
<td>than</td>
<td>than</td>
<td>best</td>
<td>together</td>
<td>clap</td>
<td>always</td>
<td>80</td>
</tr>
<tr>
<td>parrot</td>
<td>parrot</td>
<td>quiet</td>
<td>favourite</td>
<td>visit</td>
<td>usually</td>
<td>85</td>
</tr>
</tbody>
</table>
Appendix 2b: The screen display of the speech perception task.

When ‘dog’ (the owl on the left), ‘fog’ (the owl in the middle) and ‘fog’ (the owl on the right) were played, the correct response is ‘the owl on the right’ (red button should be pressed). A picture is rewarded for a correct response (on the leftmost of the screen).
Appendix 2c: An example item of the tone awareness task.

The target is tone 1 (high-level tone), so the correct response is ‘pig (/zyu1/).
APPENDIX 3 DETAILS OF GOODNESS-OF-FIT INDICES

(1) Absolute fit measures

Chi-square (χ^2)

It is commonly used for comparing the observed covariance matrix with the expected covariance matrix. A chi-square value approaches zero indicates that there is no difference between the observed and the predicted matrices and implies a perfect fit.

Chi-square is sensitive to changes in sample size. As the difference between two chi-squares can be interpreted in the same way as chi-square, this allows comparison of models with different degrees of freedom. As non-significant is looked for, higher p-values are better. The .05 significance level is recommended as the minimum accepted (Hair et al., 1998).

Root Mean Square Error of Approximation (RMSEA)

The RMSEA is the discrepancy per degree of freedom and is relatively insensitive to changes in the sample size. The value is representative of the goodness-of-fit that that could be expected if the model were estimated in the population. The closer the index is to zero, the better the fit indicated. A value of .05-.08 is considered adequate and values between .00-.05 indicate a good fit (Rigdon, 1996).

(2) Incremental fit measure

Comparative Fit Index (CFI)

The CFI represents comparisons between the estimated model and null or independence model. The values lie between 0 and 1.0, with values close to .95 indicating superior goodness-of-fit (Bentler, 1990). The CFI has been found to be more appropriate in a model development strategy.
(3) Parsimonious fit measures

Akaike's (1987) Information Criterion (AIC)

AIC is a comparative measure between models with different numbers of constructs. It carries a penalty in relation to degrees of freedom but not sample size. It is equal to ‘number of estimated parameters x (chi-square + 2). Zero or a larger negative number indicates a good fit. It will favour simpler models over more complex ones.

Standardized Root Mean Square Residual (SRMR)

This measure is the standardized difference between the observed covariance and predicted covariance. A value of zero indicates perfect fit. This measure tends to be smaller as sample size increases and as the number of parameters in the model increases. A value less than .08 is considered a good fit (Hu & Bentler, 1999).

Parsimonious Normed Fit Index (PNFI)

Higher values of PNFI are better, and its principle use is for the comparison of models with differing degrees of freedom. When comparing between models, differences of .06 to .09 are proposed to be indicative of substantial model differences (Williams & Holahan, 1994).
APPENDIX 4 R SCRIPT (UNIVARIATE ACE MODEL)

Univariate ACE model analysis

Program: Generic Univariate ACE with saturated model comparison
Author: DVM Bishop
Date: 15th March 2010
based on UnivariateTwinAnalysis_MatrixRaw.R by Hermine Maes

Revision History by DVM Bishop & SWL Wong
16/3/10: Added standard errors in output
24/3/10: Amended DF computation for saturated model so will work if missing values
Automatically saves output table as tab-separated text
Added SE for squared unstandardized paths at end
28/3/10: Added E model
24/5/10: Added Standardized squared estimates, SE and CI
25/5/10: Added Standardized squared estimates, SE and CI for ACE, AE, CE and E models
25/5/10: Added AIC for all models
05/6/10: Added "Fit Multivariate Model with Equal Means & Variances across Twin Order and Zygosity"
Added description [=becomes equ; -becomes neg]
Added xlsReadWrite

require(OpenMx)
require(psych)
source("GenEpiHelperFunctions.R")
require(xlsReadWrite)

mydatafile=read.table('file.dat', header = TRUE) # assumes column names in top line (otherwise header is FALSE)
mycols=colnames(mydatafile)
validmz=mydatafile$zygo==1
validdz=mydatafile$zygo==2

Specify here the column numbers you want to use
col1=41; col2=42
myMZdata=mydatafile[validmz,col1:col2]
myDZdata=mydatafile[validdz,col1:col2]

datasetname=c(mydatafile,mycols[col1]," and ",mycols[col2])
colnames(myMZdata)=c("phenotype1","phenotype2")
colnames(myDZdata)=c("phenotype1","phenotype2")
nucolnames=colnames(myMZdata)

summary(myMZdata)
summary(myDZdata)
cov(myMZdata,use="complete") #don't include cases with missing data
cov(myDZdata,use="complete")

cov(myMZdata,use="complete") #don't include cases with missing data

Count number of data observations (discarding missing); will be used for DF calculation
MZlist=as.vector(as.matrix(myMZdata)) #put all MZ data in a single row
MZfinite=MZlist[is.finite(MZlist)] #retain those with finite values
DZlist=as.vector(as.matrix(myDZdata)) # do the same with DZ
DZfinite=DZlist[is.finite(DZlist)]
Nobs=length(MZfinite)+length(DZfinite)

Print Descriptive Statistics

Fit Saturated Model with RawData and Matrices Input

Model specification starts here
mytwinSatModel <- mxModel("twinSat",
 mxModel("MZ",
 mxMatrix(type="Full", nrow=1,ncol= 2, free=TRUE,values=c(0,0),name="expMeanMZ"),
 mxMatrix("Lower",nrow= 2,ncol=2,free=TRUE,values=.5,name="CholMZ"),
 mxAlgebra(CholMZ %*% t(CholMZ), name="expCovMZ"),
 mxData(myMZdata, type="raw"),
 mxFIMLObjective("expCovMZ", "expMeanMZ", nucolnames),
 # Algebra's needed for equality constraints
 mxAlgebra(expression=expMeanMZ[1,1:1], name="expMeanMZt1"),
 mxAlgebra(expression=expMeanMZ[1,2:2], name="expMeanMZt2"),
 mxAlgebra(expression=t(diag2vec(expCovMZ)), name="expVarMZ"),
 mxAlgebra(expression=expVarMZ[1,1:1], name="expVarMZt1"),
 mxAlgebra(expression=expVarMZ[1,2:2], name="expVarMZt2")
),
 mxModel("DZ",
 mxMatrix(type="Full", nrow=1,ncol= 2, free=TRUE,values=c(0,0), name="expMeanDZ"),
 mxMatrix(type="Lower", nrow=2,ncol=2, free=TRUE, values=.5, name="CholDZ"),
 mxAlgebra(CholDZ %*% t(CholDZ), name="expCovDZ"),
 mxData(myDZdata, type="raw"),
 mxFIMLObjective("expCovDZ", "expMeanDZ", nucolnames),
 # Algebra's needed for equality constraints
 mxAlgebra(expression=expMeanDZ[1,1:1], name="expMeanDZh1"),
 mxAlgebra(expression=expMeanDZ[1,2:2], name="expMeanDZh2"),
 mxAlgebra(expression=t(diag2vec(expCovDZ)), name="expVarDZ"),
 mxAlgebra(expression=expVarDZ[1,1:1], name="expVarDZh1"),
 mxAlgebra(expression=expVarDZ[1,2:2], name="expVarDZh2")
),
 mxAlgebra(MZ.objective + DZ.objective, name="twin"), # adds together likelihoods for MZ and DZ groups
 mxAlgebraObjective("twin")) # evaluate expression from mxAlgebra, i.e. both submodels together
#--
mytwinSatFit <- mxRun(mytwinSatModel) #The mxRun command evaluates the model.

LL_Sat <- mxEval(objective, mytwinSatFit)
summary(mxRun(mytwinSatModel))

#--
compute DF for this model # N observations (all rows and variables, minus N estimated parameters)
DF_Sat=Nobs-nrow(mytwinSatFit@output$standardErrors)
#--

Fit ACE Model with RawData and Matrices Input
#--
twinACEModel <- mxModel("twinACE",
 # Matrices X, Y, and Z to store a, c, and e path coefficients
 #--
mxMatrix(type="Full", nrow=1,ncol=1,free=TRUE, values=.6,label="a",name="X",lbound=0),
mxMatrix(type="Full", nrow=1, ncol=1,
free=TRUE,values=.6,label="c",name="Y",lbound=0),
mxMatrix(type="Full", nrow=1, ncol=1,
free=TRUE,values=.6,label="e",name="Z",lbound=0),

Matrices A, C, and E compute variance components
mxAlgebra(expression=X %*% t(X), name="A"),
mxAlgebra(expression=Y %*% t(Y), name="C"),
mxAlgebra(expression=Z %*% t(Z), name="E"),
mxMatrix(type="Full", nrow=1, ncol=2, free=TRUE, values= 20,label="mean",
name="expMean"),

Algebra for expected variance/covariance matrix in MZ
mxAlgebra(expression= rbind (cbind(A+C+E , A+C),
 cbind(A+C , A+C+E)),
name="expCovMZ"),

Algebra for expected variance/covariance matrix in DZ
note use of 0.5, converted to 1*1 matrix with Kronecker product
mxAlgebra(expression= rbind (cbind(A+C+E , 0.5%x%A+C),
 cbind(0.5%x%A+C , A+C+E)),
name="expCovDZ"),

mxModel("MZ",
 mxData(observed=myMZdata, type="raw"),
 mxFIMLObjective(
covariance="twinACE.expCovMZ",
 means="twinACE.expMean",
dimnames=nucolnames)),

mxModel("DZ",
 mxData(observed=myDZdata, type="raw"),
 mxFIMLObjective(
covariance="twinACE.expCovDZ",
 means="twinACE.expMean",
dimnames=nucolnames)),

mxAlgebra(expression=MZ.objective + DZ.objective, name="twin"),
mxAlgebraObjective("twin")
)

#Run ACE model
--
twinACEFit <- mxRun(twinACEModel)

DF_ACE=Nobs-nrow(twinACEFit@output$standardErrors)
LL_ACE <- mxEval(objective, twinACEFit)
mychi_ACE= LL_ACE
mychi_DF_ACE=DF_ACE
mychi_p_ACE=1-pchisq(mychi_ACE,mychi_DF_ACE)# compute chi square probability

expMZcov_ACE <- mxEval(expCovMZ, twinACEFit) # expected covariance matrix for MZ's
expDZcov_ACE <- mxEval(expCovDZ, twinACEFit) # expected covariance matrix for DZ's
expMeans_ACE <- mxEval(expMean, twinACEFit) # expected mean

A_ACE <- mxEval(a*a, twinACEFit) # additive genetic variance, a^2
C_ACE <- mxEval(c*c, twinACEFit) # shared environmental variance, c^2
E_ACE <- mxEval(e*e, twinACEFit) # unique environmental variance, e^2
V <- (A_ACE+C_ACE+E_ACE) # total variance

a2_ACE <- A_ACE/V # standardized additive genetic variance

c2_ACE <- C_ACE/V # standardized shared environmental variance
e2_ACE <- E_ACE/V # standardized unique environmental variance

ACE_mySE=round(twinACEFit@output$standardErrors,3)
ACE_myest=round(twinACEFit@output$estimate,3)
ACE_mylower=round(ACE_myest-1.96*ACE_mySE,3)
ACE_myupper=round(ACE_myest+1.96*ACE_mySE,3)

ACESum <- summary(twinACEFit)

Set up and run AE model

twinAEModel <- mxModel(twinACEModel, name = "twinACE", # retain ACE name or won't match objective function
drop c, i.e. fix at zero
mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="c", name="Y")
)

twinAEFit <- mxRun(twinAEModel)

LL_AE <- mxEval(objective, twinAEFit)
DF_AE=Nobs-nrow(twinAEFit@output$standardErrors)

mychi_AE= LL_AE - LL_Sat # subtract LL for Saturated model from LL for AE
mychi_DF_AE=DF_AE-DF_Sat # subtract DF for Saturated model from DF for AE
mychi_p_AE=1-pchi2sq(mychi_AE,mychi_DF_AE)# compute chi square probability

A_AE <- mxEval(a*a, twinAEFit)
C_AE <- mxEval(c*c, twinAEFit)
E_AE <- mxEval(e*e, twinAEFit)
V <- (A_AE+C_AE+E_AE)
a2_AE <- A_AE/V
c2_AE <- C_AE/V
e2_AE <- E_AE/V

mychiAEdiff=mychi_AE-mychi_ACE
myDFAEdiff=mychi_DF_AE-mychi_DF_ACE
mychiAEdiff_p=1-pchi2sq(mychiAEdiff,myDFAEdiff)

ACE_myest=round(twinACEFit@output$estimate,3)
ACE_mylower=round(ACE_myest-1.96*ACE_mySE,3)
ACE_myupper=round(ACE_myest+1.96*ACE_mySE,3)

ACESum <- summary(twinAEFit)

Set up and run CE model

twinCEModel <- mxModel(twinACEModel, name = "twinACE", # drop a, i.e. fix at zero
mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="a", name="X")
)

twinCEFit <- mxRun(twinCEModel)

LL_CE <- mxEval(objective, twinCEFit)
DF_CE=Nobs-nrow(twinCEFit@output$standardErrors)

mychi_CE= LL_CE - LL_Sat # subtract LL for Saturated model from LL for CE
mychi_DF_CE=DF_CE-DF_Sat # subtract DF for Saturated model from DF for CE
mychi_CE=1-pchi2sq(mychi_CE,mychi_DF_CE)# compute chi square probability

A_CE <- mxEval(a*a, twinCEFit)
C_CE <- mxEval(c*c, twinCEFit)
E_CE <- mxEval(e*e, twinCEFit)
V <- (A_CE+C_CE+E_CE)

a2_CE <- A_CE/V
c2_CE <- C_CE/V
e2_CE <- E_CE/V

mychiCEdiff=mychi_CE-mychi_ACE
myDFCEdiff=mychi_DF_CE-mychi_DF_ACE
mychiCEdiff_p=1-pchisq(mychiCEdiff,myDFCEdiff)
CE_mySE=round(twinCEFit@output$standardErrors,3)
CE_myest=round(twinCEFit@output$estimate,3)
CE_mylower=round(CE_myest-1.96*CE_mySE,3)
CE_myupper=round(CE_myest+1.96*CE_mySE,3)

twinCEFitSumm <- summary(twinCEFit)
twinCEFitSumm

-- set up run E model ---
-- twinCEModel <- mxModel(twinACEModel, name = "twinACE",
-- # drop a, i.e. fix at zero
-- mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="a", name="X"),
-- mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="c", name="Y")
twinEMModel <- mxModel(twinACEModel, name = "twinACE",
-- # drop a, i.e. fix at zero
-- mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="a", name="X"),
-- mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="c", name="Y")
#)
twinEFit <- mxRun(twinEMModel)

DF_E=Nobs-nrow(twinEFit@output$standardErrors)
LL_E <- mxEval(objective, twinEFit)

mychi_E = LL_E - LL_Sat # subtract LL for Saturated model from LL for E
mychi_DF_E=DF_E - DF_Sat # subtract DF for Saturated model from DF for E
mychi_p_E=1-pchisq(mychi_E,mychi_DF_E) # compute chi square probability
expected values for covs and means can be found in mxEval(expCovMZ, twinCEFit)

A_E <- mxEval(a*a, twinEFit)
C_E <- mxEval(c*c, twinEFit)
E_E <- mxEval(e*e, twinEFit)
V <- (A_E+C_E+E_E)
a2_E <- A_E/V
c2_E <- C_E/V
e2_E <- E_E/V

mychiEdiff=mychi_E-mychi_ACE
myDFEdiff=mychi_DF_E-mychi_DF_ACE
mychiEdiff_p=1-pchisq(mychiEdiff,myDFEdiff)
mychiAEvsEdiff=mychi_E-mychi_AE
myDFAEvsEdiff=mychi_DF_E-mychi_DF_AE
mychiAEvsEdiff_p=1-pchisq(mychiAEvsEdiff,myDFAEvsEdiff)

E_mySE=round(twinEFit@output$standardErrors,3)
E_myest=round(twinEFit@output$estimate,3)
E_mylower=round(E_myest-1.96*E_mySE,3)
E_myupper=round(E_myest+1.96*E_mySE,3)

twinEFitSumm <- summary(twinEFit)
twinEFitSumm

#--
Generate SE, CI for squared paths
#--
ACE model: SEs for squared paths computed here - not included in main table as yet
mysqbit_ace=ACE_myest*sqrt(2*ACE_mySE^2)
nuV_ace <- (A_ACE+C_ACE+E_ACE)
sqpath_SE_ace=cbind(ACE_myest^2,mysqbit_ace,ACE_myest^2-1.96*mysqbit_ace,ACE_myest^2+1.96*mysqbit_ace)
sqpath2_ace=round(sqpath_SE_ace/nuV_ace,3)
#colnames(sqpath_SE_ace)=c('estimate','SE','lower95%CI','upper95%CI')
#print("Squared standardized paths (ACE model)")
#print(sqpath2_ace[1:3,])

AE model: SEs for squared paths computed here - not included in main table as yet
mysqbit_ae=AE_myest*sqrt(2*AE_mySE^2)
nuV_ae <- (A_AE+C_AE+E_AE)
sqpath_SE_ae=cbind(AE_myest^2,mysqbit_ae,AE_myest^2-1.96*mysqbit_ae,AE_myest^2+1.96*mysqbit_ae)
sqpath2_ae=round(sqpath_SE_ae/nuV_ae,3)
#colnames(sqpath_SE_ae)=c('estimate','SE','lower95%CI','upper95%CI')
#print("Squared standardized paths (AE model)")
#print(sqpath2_ae[1:2,])

CE model: SEs for squared paths computed here - not included in main table as yet
mysqbit_ce=CE_myest*sqrt(2*CE_mySE^2)
nuV_ce <- (A_CE+C_CE+E_CE)
sqpath_SE_ce=cbind(CE_myest^2,mysqbit_ce,CE_myest^2-1.96*mysqbit_ce,CE_myest^2+1.96*mysqbit_ce)
sqpath2_ce=round(sqpath_SE_ce/nuV_ce,3)
#colnames(sqpath_SE_ce)=c('estimate','SE','lower95%CI','upper95%CI')
#print("Squared standardized paths (CE model")
#print(sqpath2_ce[1:2,])

E model: SEs for squared paths computed here - not included in main table as yet
mysqbit_e=E_myest*sqrt(2*E_mySE^2)
nuV_e <- (A_E+C_E+E_E)
sqpath_SE_e=cbind(E_myest^2,mysqbit_e,E_myest^2-1.96*mysqbit_e,E_myest^2+1.96*mysqbit_e)
sqpath2_e=round(sqpath_SE_e/nuV_e,3)
#colnames(sqpath_SE_e)=c('estimate','SE','lower95%CI','upper95%CI')
#print("Squared standardized paths (E model")
#print(sqpath2_e[1:1,])

Output to compare all models
===
myoutput <- rbind(cbind("________________________","__________","__________","_________"),
cbind("ACE model","A","C","E"),
cbind("Unsquared path estimates",ACE_myest[1],ACE_myest[2],ACE_myest[3]),
cbind("Standard errors",ACE_mySE[1],ACE_mySE[2],ACE_mySE[3]),
cbind("Lower 95% CI",ACE_mylower[1],ACE_mylower[2],ACE_mylower[3]),
cbind("Upper 95% CI",ACE_myupper[1],ACE_myupper[2],ACE_myupper[3]),
cbind("Unstandardized variance comps",round(A_ACE,3),round(C_ACE,3),round(E_ACE,3)),
cbind("Standardized variance comps",round(a2_ACE,3),round(c2_ACE,3),round(e2_ACE,3)),
cbind("saturated vs. "))
ACE*, round(mychi_ACE,3), mychi_DF_ACE, round(mychi_p_ACE,3)),

```
cbind("AE model", "A", "C", "E"),
cbind("Unsquared path estimates", AE_myest[1], AE_myest[2]),
cbind("Standard errors", AE_mySE[1], AE_mySE[2]),
cbind("Lower 95% CI", AE_mylower[1], AE_mylower[2]),
cbind("Upper 95% CI", AE_myupper[1], AE_myupper[2]),
cbind("Unstandardized variance comps", round(A_AE,3), round(C_AE,3), round(E_AE,3)),
cbind("Standardized variance comps", round(a2_AE,3), round(c2_AE,3), round(e2_AE,3)),
cbind("saturated vs. AE", round(mychi_AE,3), mychi_DF_AE, round(mychi_p_AE,3)),
cbind("ACE vs AE", round(mychiAEdiff,3), 1, round(mychiAEdiff_p,3)),
cbind("CE model", "A", "C", "E"),
cbind("Unsquared path estimates", CE_myest[1], CE_myest[2]),
cbind("Standard errors", CE_mySE[1], CE_mySE[2]),
cbind("Lower 95% CI", CE_mylower[1], CE_mylower[2]),
cbind("Upper 95% CI", CE_myupper[1], CE_myupper[2]),
cbind("Unstandardized variance comps", round(A_CE,3), round(C_CE,3), round(E_CE,3)),
cbind("Standardized variance comps", round(a2_CE,3), round(c2_CE,3), round(e2_CE,3)),
cbind("saturated vs. CE", round(mychi_CE,3), mychi_DF_CE, round(mychi_p_CE,3)),
cbind("ACE vs CE", round(mychiCEdiff,3), 1, round(mychiCEdiff_p,3)),
cbind("E model", "A", "C", "E"),
cbind("Unsquared path estimates", E_myest[1], E_myest[2]),
cbind("Standard errors", E_mySE[1], E_mySE[2]),
cbind("Lower 95% CI", E_mylower[1], E_mylower[2]),
cbind("Upper 95% CI", E_myupper[1], E_myupper[2]),
cbind("Unstandardized variance comps", round(A_E,3), round(C_E,3), round(E_E,3)),
cbind("Standardized variance comps", round(a2_E,3), round(c2_E,3), round(e2_E,3)),
cbind("saturated vs. E", round(mychi_E,3), mychi_DF_E, round(mychi_p_E,3)),
cbind("ACE vs E", round(mychiEvsEdiff,3), 1, round(mychiEvsEdiff_p,3)),
cbind(date(), "", "", "")
```

#round is used here simply to keep output to 3 decimal places

myoutput2 <- data.frame(myoutput)
#names(myoutput2)=datasetname
#write.table(myoutput2, "myfileout.txt", sep = "\t", quote=F)#saves hard copy of output as tab-separated text
You can read 'myfileout.txt' into Word for easy formatting
#write.xls(myoutput2,"myfileout2.xls",colName=TRUE,sheet=2,from=1,rowNames=NA)
myoutput2 #print the table on screen

#mymessage="If table not formatted properly, make console screen full size and type myoutput2"
print(sqpath2_ace[1:3,])
print(sqpath2_ae[1:2,])
print(sqpath2_ce[1:2,])
print(sqpath2_e[1:1,])

twinACENested <- list(twinAEFit, twinCEFit, twinEFit)
tableFitStatistics(twinAEFit, twinACENested)
The first part of the scripts for running the ACE and ADE models overlap until ‘Fit ACE (ADE) Model with RawData and Matrices Input’.

Fit ADE Model with RawData and Matrices Input

twinADEModel <- mxModel("twinADE",
 # Matrices X, Y, and Z to store a, d, and e path coefficients
 mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="a", name="X", lbounds=0),
 mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="d", name="Y", lbounds=0),
 mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=.6, label="e", name="Z", lbounds=0),

 # Matrices A, D, and E compute variance components
 mxAlgebra(expression=X %*% t(X), name="A"),
 mxAlgebra(expression=Y %*% t(Y), name="D"),
 mxAlgebra(expression=E %*% t(Z), name="E"),
 mxMatrix(type="Full", nrow=1, ncol=2, free=TRUE, values=20, label="mean", name="expMean"),

 # Algebra for expected variance/covariance matrix in MZ
 mxAlgebra(expression=rbind(cbind(A+D+E, A+D), cbind(A+D, A+D+E)), name="expCovMZ"),

 # Algebra for expected variance/covariance matrix in DZ
 # note use of 0.5, converted to 1x1 matrix with Kronecker product
 mxAlgebra(expression=rbind(cbind(A+D+E, 0.5%x%A+0.25%x%D), cbind(0.5%x%A+0.25%x%D, A+D+E)), name="expCovDZ"),

 mxModel("MZ",
 mxData(observed=myMZdata, type="raw"),
 mxFIMLObjective(covariance="twinADE.expCovMZ", means="twinADE.expMean", dimnames=nucolnames)),

 mxModel("DZ",
 mxData(observed=myDZdata, type="raw"),
 mxFIMLObjective(covariance="twinADE.expCovDZ", means="twinADE.expMean", dimnames=nucolnames)),

 mxAlgebra(expression=MZ.objective + DZ.objective, name="twin"),
 mxAlgebraObjective("twin")
)
Run ADE model

twinADEFit <- mxRun(twinADECLmodel)

DF_ADE=Nobs-nrow(twinADEFit@output$standardErrors)
LL_ADE <- mxEval(objective, twinADEFit)
mychi_ADE= LL_ADE - LL_Sat # subtract LL for Saturated model from LL for ADE
mychi_DF_ADE=DF_ADE-DF_Sat # subtract DF for Saturated model from DF for ADE
mychi_p_ADE=1-pchisq(mychi_ADE, mychi_DF_ADE) # compute chi square probability

expMZcov_ADE <- mxEval(expCovMZ, twinADEFit) # expected covariance matrix for MZ's
expDZcov_ADE <- mxEval(expCovDZ, twinADEFit) # expected covariance matrix for DZ's
expMeans_ADE <- mxEval(expMean, twinADEFit) # expected mean
A_ADE <- mxEval(a*a, twinADEFit) # additive genetic variance, a^2
D_ADE <- mxEval(d*d, twinADEFit) # shared environmental variance, c^2
E_ADE <- mxEval(e*e, twinADEFit) # unique environmental variance, e^2
V <- (A_ADE+D_ADE+E_ADE) # total variance
a2_ADE <- A_ADE/V # standardized additive genetic variance
d2_ADE <- D_ADE/V # standardized shared environmental variance
e2_ADE <- E_ADE/V # standardized unique environmental variance

ADE_mySE=round(twinADEFit@output$standardErrors,3)
ADE_myest=round(twinADEFit@output$estimate,3)
ADE_mylower=round(ADE_myest-1.96*ADE_mySE,3)
ADE_myupper=round(ADE_myest+1.96*ADE_mySE,3)

twinADEFitSumm <- summary(twinADEFit)
twinADEFitSumm

Set up and run AE model [test significance of D]

twinADECLmodel <- mxModel(twinADECLmodel, name = "twinADE" , # retain ADE name or won't match objective function
 # drop c, i.e. fix at zero
 mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="d", name="Y")
)
twinAEFit <- mxRun(twinADECLmodel)
LL_AE <- mxEval(objective, twinAEFit)
DF_AE=Nobs-nrow(twinAEFit@output$standardErrors)
mychi_AE = LL_AE - LL_Sat # subtract LL for Saturated model from LL for AE
mychi_DF_AE = DF_AE - DF_Sat # subtract DF for Saturated model from DF for AE
mychi_p_AE = 1 - pchisq(mychi_AE, mychi_DF_AE) # compute chi square probability
expected values for covs and means can be found in mxEval(expCovMZ, twinAEFit)

A_AE <- mxEval(a*a, twinAEFit)
D_AE <- mxEval(d*d, twinAEFit)
E_AE <- mxEval(e*e, twinAEFit)
V <- (A_AE + D_AE + E_AE)
a2_AE <- A_AE / V
d2_AE <- D_AE / V
e2_AE <- E_AE / V

mychiAEdiff = mychi_AE - mychi_ADE
myDFAEdiff = mychi_DF_AE - mychi_DF_ADE
mychiAEdiff_p = 1 - pchisq(mychiAEdiff, myDFAEdiff)

AE_mySE = round(twinAEFit@output$standardErrors, 3)
AE_myest = round(twinAEFit@output$estimate, 3)
AE_mylower = round(AE_myest - 1.96 * AE_mySE, 3)
AE_myupper = round(AE_myest + 1.96 * AE_mySE, 3)

twinAEFitSumm <- summary(twinAEFit)
twinAEFitSumm

Set up and run E model
1. E Model vs AE Model, test significance of A
2. E Model vs ADE Model, test combined significance of A & D

twinEMModel <- mxModel(twinADEModel, name = "twinADE",
drop a, i.e. fix at zero
 mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="a",
 name="X"),
 mxMatrix(type="Full", nrow=1, ncol=1, free=FALSE, values=0, label="d",
 name="Y")
)
twinEFit <- mxRun(twinEMModel)

DF_E = Nobs - nrow(twinEFit@output$standardErrors)
LL_E <- mxEval(objective, twinEFit)
mychi_E = LL_E - LL_Sat # subtract LL for Saturated model from LL for E
mychi_DF_E = DF_E - DF_Sat # subtract DF for Saturated model from DF for E
mychi_p_E = 1 - pchisq(mychi_E, mychi_DF_E) # compute chi square probability
expected values for covs and means can be found in mxEval(expCovMZ, twinCEFit)

A_E <- mxEval(a*a, twinEFit)
D_E <- mxEval(d*d, twinEFit)
E_E <- mxEval(e*e, twinEFit)
V <- (A_E+D_E+E_E)
a2_E <- A_E/V
d2_E <- D_E/V
e2_E <- E_E/V

mychiEdiff = mychi_E - mychi_ADE
myDFEdiff = mychi_DF_E - mychi_DF_ADE
mychiEdiff_p = 1 - pchisq(mychiEdiff, myDFEdiff)
mychiAEvsEdiff = mychi_E - mychi_AE
myDFAEvsEdiff = mychi_DF_E - mychi_DF_AE
mychiAEvsEdiff_p = 1 - pchisq(mychiAEvsEdiff, myDFAEvsEdiff)

E_mySE = round(twinEFit@output$standardErrors, 3)
E_myest = round(twinEFit@output$estimate, 3)
E_mylower = round(E_myest - 1.96 * E_mySE, 3)
E_myupper = round(E_myest + 1.96 * E_mySE, 3)

twinEFitSumm <- summary(twinEFit)
twinEFitSumm

Generate SE, CI for squared paths

ADE model: SEs for squared paths computed here - not included in main table as yet
mysqbit_ade = ADE_myest * sqrt(2 * ADE_mySE^2)
nuV_ade <- (A_ADE + D_ADE + E_ADE)
sqpath_SE_ade = cbind(ADE_myest^2, mysqbit_ade, ADE_myest^2 - 1.96 * mysqbit_ade, ADE_myest^2 + 1.96 * mysqbit_ade)
sqpath2_ade = round(sqpath_SE_ade / nuV_ade, 3)
colnames(sqpath_SE_ade) = c('estimate', 'SE', 'lower95%CI', 'upper95%CI')
print("Squared standardized paths (ADE model)"
print(sqpath2_ade[1:3,])

AE model: SEs for squared paths computed here - not included in main table as yet
mysqbit_ae = AE_myest * sqrt(2 * AE_mySE^2)
nuV_ae <- (A_AE + D_AE + E_AE)
sqpath_SE_ae = cbind(AE_myest^2, mysqbit_ae, AE_myest^2 - 1.96 * mysqbit_ae, AE_myest^2 + 1.96 * mysqbit_ae)
sqpath2_ae = round(sqpath_SE_ae / nuV_ae, 3)
colnames(sqpath_SE_ae) = c('estimate', 'SE', 'lower95%CI', 'upper95%CI')
print("Squared standardized paths (AE model)"
print(sqpath2_ae[1:2,])

E model: SEs for squared paths computed here - not included in main table as yet
mysqbit_e = E_myest * sqrt(2 * E_mySE^2)
nuV_e <- (A_E+D_E+E_E)
sqpath_SE_e=cbind(E_myest^2,mysqbit_e,E_myest^2-1.96*mysqbit_e,E_myest^2+1.96*mysqbit_e)
sqpath2_e=round(sqpath_SE_e/nuV_e,3)

#colnames(sqpath_SE_e)=c('estimate','SE','lower95%CI','upper95%CI')
#print("Squared standardized paths (E model)")
#print(sqpath2_e[1:1,])

#---
Output to compare all models
#---

myoutput <-
 rbind(cbind(
 "__ ____________________","__________","__________","__________"),
 cbind("ADE model","A","D","E"),
 cbind("Unsquared path estimates",ADE_myest[1],ADE_myest[2],ADE_myest[3]),
 cbind("Standard errors",ADE_mySE[1],ADE_mySE[2],ADE_mySE[3]),
 cbind("Lower 95% CI",ADE_mylower[1],ADE_mylower[2],ADE_mylower[3]),
 cbind("Upper 95% CI",ADE_myupper[1],ADE_myupper[2],ADE_myupper[3]),
 cbind("Unstandardized variance comps",round(A_ADE,3),round(D_ADE,3),round(E_ADE,3)),
 cbind("Standardized variance comps",round(a2_ADE,3),round(d2_ADE,3),round(e2_ADE,3)),
 cbind("saturated vs. ADE",round(mychi_ADE,3),mychi_DF_ADE,round(mychi_p_ADE,3)),
 cbind("ADE vs AE",round(mychiAEdiff,3),1,round(mychiAEdiff_p,3)),
 cbind("AE model","A","D","E"),
 cbind("Unsquared path estimates",AE_myest[1],AE_myest[2],AE_myest[3]),
 cbind("Standard errors",AE_mySE[1],AE_mySE[2]),
 cbind("Lower 95% CI",AE_mylower[1],AE_mylower[2]),
 cbind("Upper 95% CI",AE_myupper[1],AE_myupper[2]),
 cbind("Unstandardized variance comps",round(A_AE,3),round(D_AE,3),round(E_AE,3)),
 cbind("Standardized variance comps",round(a2_AE,3),round(d2_AE,3),round(e2_AE,3)),
 cbind("saturated vs. AE",round(mychi_AE,3),mychi_DF_AE,round(mychi_p_AE,3)),
 cbind("ADE vs AE",round(mychiAEdiff,3),1,round(mychiAEdiff_p,3)),
cbind(".*",".*",".*",".")

```
<table>
<thead>
<tr>
<th>E model</th>
<th>A</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsquared path estimates</td>
<td>E_myest[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard errors</td>
<td>E_mySE[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>E_mylower[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>E_myupper[1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```

<table>
<thead>
<tr>
<th>Unstandardized variance comps</th>
<th>round(A_E,3),round(D_E,3),round(E_E,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized variance comps</td>
<td>round(a2_E,3),round(d2_E,3),round(e2_E,3)</td>
</tr>
<tr>
<td>"chisq","DF","p"</td>
<td>mychi_E,mychi_DF_E,round(mychi_p_E,3)</td>
</tr>
</tbody>
</table>

```
| ADE vs E | round(mychiEdiff,3),1,round(mychiEdiff_p,3) |
| AE vs E | round(mychiAEvsEdiff,3),1,round(mychiAEvsEdiff_p,3) |

```

```
| date() | ".*" |

```

#round is used here simply to keep output to 3 decimal places

myoutput2 <- data.frame(myoutput)
names(myoutput2)=datasetname
write.table(myoutput2, "myfileout.txt",sep = "\t",quote=F)#saves hard copy of output as tab-separated text
You can read 'myfileout.txt' into Word for easy formatting
write.xls(myoutput2,"myoutput2.xls",colName=TRUE,sheet=2,from=1,rowNames=NA)
myoutput2 #print the table on screen
#mymessage="If table not formatted properly, make console screen full size and type myoutput2"

print(sqpath2_ade[1:3,])
print(sqpath2_ae[1:2,])
print(sqpath2_e[1:1,])

twinADENested <- list(twinAEFit, twinEFit)
tableFitStatistics(twinADEFit,twinADENested)
APPENDIX 6 R SCRIPT (BIVARIATE CHOLESKY MODEL)

```r
# Program: DB_5var_chol
# based on MultivariateTwinSaturated_MatrixRaw.R by Hermine Maes
# Author: DVM Bishop
# Date: 17.3.10
#
# Multivariate Twin Saturated model to estimate means and (co)variances across multiple groups
# Multivariate Cholesky ACE model to estimate genetic and environmental sources of variance
# Matrix style model input - Raw data input
#
# Revision History
# 19th March 2010: added output for SE and attempted to compute SE for rg
# 31st May 2010: revised and streamlined output
# 5/6/10: revised to give xls output
#
require(OpenMx)
source("GenEpiHelperFunctions.R")
#
# Specify name for a .xls file to hold output
myfileout="file.xls"  #name for xls file
#
# Prepare Data
#
mydatafile='datafile.dat'

alldat=read.table(mydatafile, header = FALSE) #This command reads as .dat file
#Blanks must be replaced by NA before reading
#Put header = TRUE if first line has variable names
colnames(alldat)=c("family","zygo","ewr1","ewr2","evocab1","evocab2","epa1","epa2","epm1",
"epm2","eaxb1","eaxb2","cwr1","cwr2","cvocab1","cvocab2","cpa1","cpa2","ctone1","ctone2",
"cpm1","cpm2","caxb1","caxb2","ewr21","ewr22","evocab21","evocab22","epa21","epa22","epm21",
"epm22","eaxb21","eaxb22","cwr21","cwr22","cvocab21","cvocab22","cpa21","cpa22","ctone21",
"ctone22","cpm21","cpm22","caxb21","caxb22")

# colnames specified here because not read in as part of file; omit if you have header = TRUE
mycols=colnames(alldat)

#To find column number for variable of interest, run the 3 lines above, # and type mycols on console.
validmz=alldat$zygo==1
```

239
validdz = alldat$zygo == 2

Specify here the column numbers you want to use
NB. All variables for twin 1 THEN for twin 2
mycolnums = c(23, 45, 24, 46)
 # this format makes it easy to alter variables and rerun

mzData = alldat[validmz, mycolnums]
dzData = alldat[validdz, mycolnums]

nv = - 2 # number of variables per twin

selVars =
c(“twin1phenotype1”, “twin1phenotype2”, “twin2phenotype1”, “twin2phenotype2”)
ntv = nv * 2 # number of columns

datasetname = paste(mydatafile, “… columns:
 ”, paste(mycols[mycolnums], collapse = “,”)) # paste does string concatenation
 # datasetname used as output header to identify the variables used in analysis
originalname = colnames(mzData)
colnames(mzData) =
c(“twin1phenotype1”, “twin1phenotype2”, “twin2phenotype1”, “twin2phenotype2”)
need to use names without dots in them
colnames(dzData) = colnames(mzData)

meanstartvalue = 0 # can alter this value depending on scale of raw data
pathstartvalue = .6

Fit Multivariate Saturated Model
#--
multivTwinSatModel <- mxModel(“multivTwinSat”,
 mxModel(“MZ”,
 mxMatrix(type = “Lower”, nrow = ntv, ncol = ntv, free = TRUE,
 values = pathstartvalue, name = “CholMZ”),
 mxAlgebra(expression = chol(MZ) %*% t(chol(MZ)), name = “ExpCovMZ”),
 mxMatrix(type = “Full”, nrow = 1, ncol = ntv, free = T,
 values = meanstartvalue, name = “ExpMeanMZ”),
 mxData(observed = mzData, type = “raw”),
 mxFIMLObjective(covariance = “ExpCovMZ”, means = “ExpMeanMZ”,
 dimnames = selVars),
),
 mxModel(“DZ”,
 mxMatrix(type = “Lower”, nrow = ntv, ncol = ntv, free = TRUE,
 values = pathstartvalue, name = “CholDZ”),
 mxAlgebra(expression = chol(DZ) %*% t(chol(DZ)), name = “ExpCovDZ”),
 mxMatrix(type = “Full”, nrow = 1, ncol = ntv, free = T,
 values = meanstartvalue, name = “ExpMeanDZ”),
 mxData(observed = dzData, type = “raw”),
 mxFIMLObjective(covariance = “ExpCovDZ”, means = “ExpMeanDZ”,
 dimnames = selVars)
mxAlgebra(MZ.objective + DZ.objective, name="neg2sumLL"), #optimizes function and computes -2LL
mxAlgebraObjective("neg2sumLL")

multivTwinSatFit <- mxRun(multivTwinSatModel)
multivTwinSatSumm <- summary(multivTwinSatFit)

Generate Saturated Output

parameterSpecifications(multivTwinSatFit)
expectedMeansCovariances(multivTwinSatFit)
tableFitStatistics(multivTwinSatFit)

Fit Multivariate ACE Model with RawData and Matrices Input

multiCholACEModel <- mxModel("multiCholACE",
mxModel("ACE",
 # Matrices a, c, and e to store a, c, and e path coefficients
 mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE,
 values=pathstartvalue, name="a"),
 mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE,
 values=pathstartvalue, name="c"),
 mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE,
 values=pathstartvalue, name="e"),
 # Matrices A, C, and E compute variance components
 mxAlgebra(expression=a %*% t(a), name="A"), #square by multiplying by trace
 mxAlgebra(expression=c %*% t(c), name="C"),
 mxAlgebra(expression=e %*% t(e), name="E"),
 # Algebra to compute total variances and standard deviations (diagonal only)
 mxAlgebra(expression=A+C+E, name="V"),
 mxMatrix(type="Iden", nrow=nv, ncol=nv, name="I"),
 mxAlgebra(expression=solve(sqrt(I*V)), name="sd"),
 ## Note that the rest of the mxModel statements do not change for bivariate/multivariate case
 # Matrix & Algebra for expected means vector
 mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=meanstartvalue,
 name="M"),
 mxAlgebra(expression=cbind(M,M), name="expMean"),
 # Algebra for expected variance/covariance matrix in MZ
 mxAlgebra(expression=rbind(cbind(A+C+E , A+C),
 cbind(A+C , A+C+E)),
 name="expCovMZ"),
 # Algebra for expected variance/covariance matrix in DZ, note use of 0.5, converted to 1*1 matrix
 mxAlgebra(expression=rbind(cbind(A+C+E , 0.5%x%A+C),
 cbind(0.5%x%A+C , A+C+E)),
 name="expCovDZ")
),
mxModel("MZ",
```
mxData( observed=mzData, type="raw" ),
mxFIMLObjective( covariance="ACE.expCovMZ", means="ACE.expMean",
dimnames=selVars ),
mxModel("DZ",
  mxData( observed=dzData, type="raw" ),
  mxFIMLObjective( covariance="ACE.expCovDZ", means="ACE.expMean",
dimnames=selVars ),
  mxAlgebra( expression=MZ.objective + DZ.objective, name="neg2sumLL" ),
  mxAlgebraObjective("neg2sumLL")
)
multiCholACEFit <- mxRun(multiCholACEModel)
multiCholACESumm <- summary(multiCholACEFit)

# Generate Multivariate Cholesky ACE Output
# parameterSpecifications(multiCholACEFit)  # uncomment this if you want to check
# model structure
expectedMeansCovariances(multiCholACEFit)  # commands from
# GenEpiHelperFunctions
tableFitStatistics(multiCholACEFit)

# Print Descriptive Statistics and create formatted table for xls
# Print Descriptive Statistics and create formatted table for xls
# Print Descriptive Statistics and create formatted table for xls
# Print Descriptive Statistics and create formatted table for xls
myNMZ=colSums(is.finite(as.matrix(mzData)))
myNDZ=colSums(is.finite(as.matrix(dzData)))
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
mysdMZ=round(sd(mzData,na.rm=TRUE),3)
mymeanDZ=round(colMeans(dzData,na.rm=TRUE),3)  # exclude those with missing
mysdDZ=round(sd(dzData,na.rm=TRUE),3)
mymeanMZ=round(colMeans(mzData,na.rm=TRUE),3)  # exclude those with missing
```
myhead=matrix(c("Expctd Cov", "MZ", ",", ",", ".", nrow=1)
myhead=cbind(blankbit,myhead,colnames(expcovM)) # put blank row above title and colnames
myhead=cbind(blankbit2,myhead) # insert blank column
write.table(myhead,myfileout,sep="\t",append=TRUE ,col.names=FALSE,row.names =FALSE)
write.table(round(expcovM,3), myfileout,sep="\t",col.names=FALSE,append=TRUE)

expcovD=multiCholACEFit@submodels[["ACE"]}@algebras[["expCovDZ"]}@result
myhead=matrix(c("Expctd Covs", "DZ", ",", ",", ".", nrow=1)
myhead=cbind(blankbit,myhead,colnames(expcovD)) # put blank row above title and colnames
myhead=cbind(blankbit2,myhead) # insert blank column
write.table(myhead,myfileout,sep="\t",append=TRUE ,col.names=FALSE,row.names =FALSE)
write.table(round(expcovD,3), myfileout,sep="\t",col.names=FALSE,append=TRUE)

Find values for expected means and write to xls file
meanbit=multiCholACEFit@submodels[["ACE"]}@algebras[["expMean"]}@result
myhead=matrix(c("Expctd Means", ",", ",", ",", ".", nrow=1)
myhead=cbind(blankbit,myhead,colnames(meanbit)) # put blank row above title and colnames
myhead=cbind(blankbit2,myhead) # insert blank column
write.table(myhead,myfileout,sep="\t",append=TRUE ,col.names=FALSE,row.names =FALSE)
write.table(round(meanbit,3), myfileout,sep="\t",col.names=FALSE,append=TRUE)

Find values for model fit, and write to xls file
estparams=sum(multiCholACEFit@submodels[["ACE"]}@matrices[["a"]}@free)+
sum(multiCholACEFit@submodels[["ACE"]}@matrices[["c"]}@free)+
sum(multiCholACEFit@submodels[["ACE"]}@matrices[["e"]}@free)+
sum(multiCholACEFit@submodels[["ACE"]}@matrices[["M"]}@free)
NObs=sum(myNDZ)+sum(myNMZ)
myDF=NObs-estparams
myLL= round(multiCholACEFit@objective@result,2)
AIC=round(myLL-2*myDF,2)
mytablefit=matrix(c("multiCholACE",estparams,myLL,myDF,AIC))
mytablefit=t(mytablefit) # t is transpose
colnames(mytablefit)=c("model","N params","-2LL","DF","AIC")
myhead="Model Fit"
write.table(myhead,myfileout,quote=F,append=T,row.names=F)
write.table(mytablefit,myfileout,sep = "\t",quote=F,append=T,row.names=FALSE)

Find values for a, c and e
mya=multiCholACEFit@submodels[["ACE"]}@matrices[["a"]}@values # same as X in original MX
myc=multiCholACEFit@submodels[['ACE']][@matrices[['c']]][@values] # same as Y in original MX
mye=multiCholACEFit@submodels[['ACE']][@matrices[['e']]][@values] # same as Z in original MX
myi=multiCholACEFit@submodels[['ACE']][@matrices$1][@values]
myA=mya%^*%t(mya) # same as A matrix in original Mx
myC=myc%^*%t(myc)
myE=mye%^*%t(mye)

Standardize values for a, c and e

myv=myA+myC+myE # same as V matrix in original Mx; sum of squared paths
mystanda=(solve(sqrt(myi*myv))%*%mya) #standardized unsquared a path
mystandc=(solve(sqrt(myi*myv))%*%myc) #standardized unsquared c path
mystande=(solve(sqrt(myi*myv))%*%mye) #standardized unsquared e path

NB variance for variable 1 is sumsq(a11,c11 and e11)
variance for variable 2 is sumsq (a12, c12, e12, a22, c22, e22)
Standardisation involves dividing estimates by total variance for that variable

Compute genetic and env correlations

rg=solve(sqrt(myi*myA))%*%myA%*%solve(sqrt(myi*myA)) #genetic correlation
rc=solve(sqrt(myi*myC))%*%myC%*%solve(sqrt(myi*myC)) #shared env correlation
re=solve(sqrt(myi*myE))%*%myE%*%solve(sqrt(myi*myE)) #nonshared env correlation

Compute h2

SDmatrix=sqrt(vec2diag(diag2vec(myA+myC+myE))) #phenotypic standard dev. matrix
myM=solve(SDmatrix)%*%myA%*%solve(SDmatrix)
the diagonal of M contains h2, ie sum of all squared genetic terms leading to the phenotype
#(from matrix mystanda)
h2 is equivalent to the genetic path from correlated factors model

Compute standard errors

myest=multiCholACEFit@output$estimate
mySE=multiCholACEFit@output$standardErrors

mycounter=0
myestimate=matrix(c(1:(3*(nv^2))),nrow=3*nv)#create matrix to hold 3 blocks of nv x nv
dim(myestimate)=c(nv,nv,3) # turn into an array that is nv x nv x 3
myestimate2=myestimate #dimension for standardized estimate
mystanderr=myestimate #dimension for se
mystanderr2=myestimate #dimension for standardized se for (mysource in 1:3)
```r
for (thisrow in 1:nv)
  for (thiscol in 1:nv)
    if (thiscol<=thisrow)
      mycounter=mycounter+1
      myestimate[thisrow,thiscol,mysource]=myest[mycounter]
      mystanderr[thisrow,thiscol,mysource]=mySE[mycounter]
    else
      myestimate[thisrow,thiscol,mysource]=0  #will later change this to NaN, but needs to be numeric for the moment
      mystanderr[thisrow,thiscol,mysource]=NaN

allvar=matrix(c(0,0),nrow=1)
for (myn in 1:nv)
  allvar[myn]=sum(myestimate[myn,,]^2)  #total variance for each variable
  mystanderr2[myn,,]=mystanderr[myn,,]/allvar[myn]  #to standardize just divide by total var
  myestimate2[myn,,]=myestimate[myn,,]/allvar[myn]

mylower=round(myestimate2-1.96*mystanderr2,3)
myupper=round(myestimate2+1.96*mystanderr2,3)
myestimate2=round(myestimate2,3)  #round to 3 dec places
mystanderr2=round(mystanderr2,3)
myCI=paste(mylower,"to",myupper)
write.table("Standardized unsquared path estimates",myfileout,append=T,row.names=F)
header3=matrix(c(".","a1","a2","c1","c2","e1","e2"),nrow=1)
write.table(header3,myfileout,sep="\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)
write.table(myestimate2,myfileout,sep="\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)
header4="SEs"
write.table(header4,myfileout,sep="\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)
write.table(mystanderr2,myfileout,sep="\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)
```

Write Genetic and env correlations to xls
WRITE GENETIC AND ENV CORRELATIONS TO XLS
myhead="Genetic correlations"
write.table(myhead,myfileout,quote=F,append=T,row.names=F)
write.table(round(rg,3),myfileout,sep="\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)
myhead="Shared env. correlations"
write.table(myhead myfileout,quote=F,append=T,row.names=F)
write.table(round(rc,3),myfileout,sep = "\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)
myhead="Nonshared env. correlations"
write.table(myhead myfileout,quote=F,append=T,row.names=F)
write.table(round(re,3),myfileout,sep = "\t",quote=F,append=T,row.names=FALSE,col.names=FALSE)

print(paste("Estimates and CIs saved in ",myfileout))
print("This file can be opened in xls")