Conference item icon

Conference item

Anchor diffusion for unsupervised video object segmentation

Abstract:
Unsupervised video object segmentation has often been tackled by methods based on recurrent neural networks and optical flow. Despite their complexity, these kinds of approach tend to favour short-term temporal dependencies and are thus prone to accumulating inaccuracies, which cause drift over time. Moreover, simple (static) image segmentation models, alone, can perform competitively against these methods, which further suggests that the way temporal dependencies are modelled should be reconsidered. Motivated by these observations, in this paper we explore simple yet effective strategies to model long-term temporal dependencies. Inspired by the non-local operators, we introduce a technique to establish dense correspondences between pixel embeddings of a reference "anchor" frame and the current one. This allows the learning of pairwise dependencies at arbitrarily long distances without conditioning on intermediate frames. Without online supervision, our approach can suppress the background and precisely segment the foreground object even in challenging scenarios, while maintaining consistent performance over time. With a mean IoU of 81.7%, our method ranks first on the DAVIS-2016 leaderboard of unsupervised methods, while still being competitive against state-of-the-art online semi-supervised approaches. We further evaluate our method on the FBMS dataset and the video saliency dataset ViSal, showing results competitive with the state of the art.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Files:
Publisher copy:
10.1109/ICCV.2019.00102

Authors


More by this author
Institution:
University of Oxford
Department:
Engineering Science
Role:
Author
More by this author
Institution:
University of Oxford
Department:
Engineering Science
Role:
Author


Publisher:
IEEE
Host title:
Proceedings of the IEEE International Conference on Computer Vision
Pages:
931-940
Publication date:
2020-02-27
Acceptance date:
2019-07-22
Event title:
2019 IEEE/CVF International Conference on Computer Vision (ICCV)
Event series:
Computer Vision (ICCV), International Conference on
Event location:
Seoul, Korea
Event website:
http://iccv2019.thecvf.com/
Event start date:
2019-10-27
Event end date:
2019-11-02
DOI:
EISSN:
2380-7504
EISBN:
978-1-7281-4803-8
ISBN:
978-1-7281-4803-8


Keywords:
Pubs id:
pubs:1064290
UUID:
uuid:b3dbdac5-a183-4639-a7c0-591f21b8c901
Local pid:
pubs:1064290
Source identifiers:
1064290
Deposit date:
2019-10-24

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP