Journal article
Schur-Weyl duality for infinitesimal q-Schur algebras s(q)(2, r)(1)
- Abstract:
-
Using the result of [S.R. Doty, D.K. Nakano, K.M. Peters, Polynomial representations of Frobenius kernels of GL, in: Contemp. Math., vol. 194, 1996, pp. 57-67; S. König, C. Xi, When is a cellular algebra quasi-hereditary? Math. Ann. 315 (1999) 281-293], we prove that a non-semisimple infinitesimal Schur algebra s (2, r) is not cellular. Furthermore, we determine the structure of the endomorphism ring of tensor space as a module for the infinitesimal Schur algebra s (2, r), up to Morita equiva...
Expand abstract
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Version of record, pdf, 191.8KB)
-
- Publisher copy:
- 10.1016/j.jalgebra.2008.04.025
Authors
Bibliographic Details
- Publisher:
- Elsevier Publisher's website
- Journal:
- JOURNAL OF ALGEBRA Journal website
- Volume:
- 320
- Issue:
- 3
- Pages:
- 1099-1114
- Publication date:
- 2008-08-01
- DOI:
- EISSN:
-
1090-266X
- ISSN:
-
0021-8693
- Source identifiers:
-
14843
Item Description
- Language:
- English
- Keywords:
- UUID:
-
uuid:aaa28b9e-8e23-45fe-9217-713a2dbd3e85
- Local pid:
- pubs:14843
- Deposit date:
- 2012-12-19
Terms of use
- Copyright holder:
- Elsevier BV
- Copyright date:
- 2008
- Notes:
- Copyright 2008 Elsevier Inc. All rights reserved. Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www.elsevier.com/open-access/userlicense/1.0/
- Licence:
- Other
If you are the owner of this record, you can report an update to it here: Report update to this record