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Abstract

Fix positive integers p and q with 2 < ¢ < (12’) An edge coloring of the complete graph K, is
said to be a (p, ¢)-coloring if every K, receives at least ¢ different colors. The function f(n,p,q)
is the minimum number of colors that are needed for K, to have a (p, ¢)-coloring. This function
was introduced about 40 years ago, but Erdés and Gyarfas were the first to study the function
in a systematic way. They proved that f(n,p,p) is polynomial in n and asked to determine
the maximum ¢, depending on p, for which f(n,p,q) is subpolynomial in n. We prove that the
answer is p — 1.

1 Introduction

The Ramsey number r(p) is the smallest natural number n such that every k-coloring of the edges
of the complete graph K,, contains a monochromatic K,. The existence of 74(3) was first shown
by Schur [?] in 1916 in his work on Fermat’s Last Theorem and it is known that r;(3) is at least
exponential in k£ and at most a multiple of k!. It is a central problem in graph Ramsey theory
to close the gap between the lower and upper bounds, with connections to various problems in
combinatorics, geometry, number theory, theoretical computer science and information theory (see,
e.g., [7, 7).

The following natural generalization of the Ramsey function was first introduced by Erddés and
Shelah [?, ?] and studied in depth by Erdds and Gyérfas [?]. Let p and ¢ be positive integers with
2<qg< (1’2’) An edge coloring of the complete graph K, is said to be a (p, ¢)-coloring if every K,
receives at least ¢ different colors. The function f(n,p,q) is the minimum number of colors that
are needed for K, to have a (p, ¢)-coloring.
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To see that this is indeed a generalization of the usual Ramsey function, note that f(n,p,2) is the
minimum number of colors needed to guarantee that no K, is monochromatic. That is, f(n,p,2)
is the inverse of the Ramsey function r(p) and so we have

1
08T < f(n,3,2) < clogn.

¢ log logn

Erdés and Gyérfas [?] proved a number of interesting results about the function f(n,p,q), demon-
strating how the function falls off from being equal to (g) when ¢ = (72’) and p > 4 to being at
most logarithmic when ¢ = 2. In so doing, they determined ranges of p and ¢ where the function
f(n,p,q) is linear in n, where it is quadratic in n and where it is asymptotically equal to (g) Many
of these results were subsequently sharpened by Sarkézy and Selkow [?, ?].

One simple observation made by Erdés and Gyérfas is that f(n,p,p) is always polynomial in n.
To see this, it is sufficient to note that if a coloring uses fewer than n/®=2 — 1 colors then it
necessarily contains a K, which uses at most p — 1 colors. For p = 3, this is easy to see since one
only needs that some vertex has at least two neighbors in the same color. For p = 4, we have that

1/2 peighbors in some fixed color. But, since there are fewer than

any vertex will have at least n
n'/2 — 1 colors on this neighborhood of size at least n'/2, the case p = 3 implies that it contains a

triangle with at most two colors. The general case follows similarly.

Erdés and Gyarfas [?] asked whether this result is best possible, that is, whether ¢ = p is the smallest
value of ¢ for which f(n,p,q) is polynomial in n. For p = 3, this is certainly true, since we know
that f(n,3,2) < clogn. However, for general p, they were only able to show that f(n,p, [logp])
is subpolynomial, where here and throughout the paper we use log to denote the logarithm taken
base 2. This left the question of determining whether f(n,p,p — 1) is subpolynomial wide open,
even for p = 4.

The first progress on this question was made by Mubayi [?], who found an elegant construction
which implies that f(n,4,3) < eVIogn  This construction was also used by Eichhorn and Mubayi
[7] to demonstrate that f(n,5,4) < e°VI°€" More generally, they used the construction to show
that f(n,p,2[logp] — 2) is subpolynomial for all p > 5.

In this paper, we answer the question of Erdds and Gyérfas positively for all p. That is, we prove
that f(n,p,p — 1) is subpolynomial for all p. Quantitatively, our main theorem is the following.

Theorem 1.1. For all natural numbers p >4 andn > 1,

F(n,p,p — 1) < 216p(logn)! /=2 loglogn
s s < )

In Section ??, we define our (p,p — 1)-coloring by a recursive procedure. We begin by reviewing
Mubayi’s (4, 3)-coloring, as it is the base case of our recursion. The formal proof of the fact that
our coloring is indeed a (p, p — 1)-coloring is quite technical and thus we first give an outline of the
proof in Section ?7. Then, in Section 77, we establish some properties of the coloring. Finally, in
Section 7?7, we prove that the coloring given in Section ?? is a (p,p — 1)-coloring. We will conclude
with some further remarks.



Notation. For vectors v € X1+ v € X% vy € X2, we will often use the notation

v = (v1,v2)

in order to indicate that the i-th coordinate of v is equal to the i-th coordinate of v1 for 1 <1 < #;
and the (t; + j)-th coordinate of v is equal to the j-th coordinate of ve for 1 < j < ty. We will use
similar notation for several vectors. Throughout the paper, log denotes the base 2 logarithm. For
the sake of clarity of presentation, we systematically omit floor and ceiling signs whenever they are
not essential.

2 The coloring construction

The purpose of this section is to define the coloring used to prove Theorem ?7?. The coloring can be
considered as a generalization of (a variant of) Mubayi’s (4, 3)-coloring. We therefore first introduce
this coloring and then redefine it in a way that can be naturally extended. We then present the
coloring used to prove Theorem ?7?7. As it is a rather involved recursive definition, we give an
example to illustrate it. We conclude the section by establishing a bound on the number of colors
used in this coloring. In the following sections, we will show that this coloring is a (p, p—1)-coloring,
completing the proof.

2.1 Mubayi’s (4, 3)-coloring

Let N = m! for some integers m and t. Suppose that we are given two distinct vectors v, w € [m]*
of the form v = (v1,...,v) and w = (wy, ..., w;). Define

c(v,w) = ({vi,wit, a1, ..., a),

where 4 is the least coordinate in which v; # w; and a; = 0 if v; = w; and a; = 1 if v; # w;. If
v = w, define
c(v,v) = 0.

Note that ¢ is a symmetric function. This is a variant of Mubayi’s coloring and can be proved to
be a (p,p — 1)-coloring for small values of p.

One might suspect that this is a (p, p — 1)-coloring for large integers p as well, but, unfortunately,
it fails to be a (26, 25)-coloring (and a (p,p — 1)-coloring for all p > 26) for the following reason.
Consider the set {1,2,3}3. This set has 3% = 27 elements and at most 3 - 2% = 24 colors are
used in coloring this set. Therefore, we can find 26 vertices with at most 24 colors within the set.
Moreover, for every fixed p and large enough N, letting s = [/logp], the set S = {1,2,...,25}°
has cardinality 25" > p and uses at most (2;)25 < 235 < 26V108P colors and, for large enough m
and t, is a subset of [m]’. Hence, this edge coloring of the complete graph on [N] fails to be a
(p, 26v1°8P)_coloring.



2.2 Redefining Mubayi’s coloring

Before proceeding further, let us redefine the coloring given above from a slightly different per-
spective. We do this to motivate the (p,p — 1)-coloring which we use to establish Theorem ?7.
Let m = 2™ and, abusing notation, identify the set [m] with {0,1}". Let ro = rit for some
positive integer t. Suppose that we are given two vectors v,w € [m]t = {0,1}"¢. We decompose
vasv = (vgl), ... ,v,gl)), where vz(l) € {0,1}" for i = 1,2,...,t and similarly decompose w. The
function ¢ was defined as follows:

C(’U,'LU) = ({Uz(l),w,(l)}7a1a ER) at)v

where ¢ is the least coordinate in which UZ(I)

v§1) = wJO) or not. If v = w, then c(v,v) = 0.

Define hy as the first coordinate of c¢. That is, hi(v,w) = {vz(l),w,gl)} (we let hi(v,v) = 0 for
convenience). Note that h; takes a pair of vectors of length ro = r;t as input and outputs a pair of

* wgl) and, for j = 1,2,...,t, a; represents whether

vectors of length 7.

For two vectors x,y € {0,1}" of the form = = (z1,...,2,), y = (Y1,-..,Yr, ), define the function
ho as follows. We have ho(z,z) = 0 for each = and, if = # y, then ho(x,y) = {x;,y;}, where 7 is the
minimum index for which z; # y;. Since all x; and y; are either 0 or 1, there are only two possible
outcomes for hg, 0 if the two vectors are equal and {0, 1} if they are not equal. Note that hg takes
a pair of vectors of length r as input and outputs a pair of vectors of length r9 = 1. Thus, both
h1 and hg are functions which record the first ‘block’ that is different. The difference between the
two functions lies in their interpretation of ‘block’: for h; it is a subvector of length 71 and for hg
it is a subvector of length rg.

Summarizing, we see that c is equivalent to the coloring ¢’ given by
d(v,w) = (hl(v,w), ho(vgl),wg)), ey ho(vt(l),wt(l)))

Informally, we first decompose the given pair of vectors v and w into subvectors of length ro and
apply hi (we observe only a single subvector in this case since v and w themselves are vectors
of length r3). Then we decompose v and w into subvectors of length r; and apply hg to each
corresponding pair of subvectors of v and w.

2.3 Definition of the coloring

In this section, we generalize the construction given in the previous section to obtain a (p,p — 1)-
coloring.

For a positive integer «, we will describe the coloring as an edge coloring of the complete graph
over the vertex set {0,1}*. Let rg,71,... be a sequence of positive integers such that ro = 1 and
rq—1 divides rg4 for all d > 1.



The key idea in the construction is to understand vectors at several different resolutions. Suppose
that we are given two vectors v,w € {0,1}%. For d > 0, let ag and b, be integers satisfying ag > 0
and 1 < bg < rg such that a = agrq + bg. For each d > 0, we may then write v in the form

o= (s, 0®,),

where vi(d) € {0,1}" fori =1,2,...,aq and U((lZ)H € {0, 1}%. We refer to the vectors vlgd) as blocks
of resolution d. We similarly decompose w as w = (wgd),wéd), ey wé‘?,wiﬁrl) for d > 0.

We first define two auxiliary families of functions 74 and &; over the domain (J,>,{0,1}*. For
notational convenience, we will simply fix some « and provide the values 74(v, w) and £;(v, w) for

two vectors v,w € {0,1}*. For d > 0, if v # w, define
77d(”7 w) = <i7 {vz'(d) ) wz(d)}> ’
where ¢ is the minimum index such that vl(d) % wgd). If v = w, define

na(v,v) = 0.

Note that 74 is a symmetric function. Further note that 7, is slightly different from hy defined in
the previous subsection since we add an additional coordinate which records the index i as well.
The main theorem is valid even if we do not add this index, but we choose to add it as it simplifies
the proof. We refer the reader to Subsection ?? for a further discussion of this point.

For d > 0, let

£alw) = (o0, ol 0,

Note that the function £; decomposes the vectors into blocks of resolution d + 1 and outputs a
vector containing information about blocks of resolution d.

For d > 0, let

cd =& X &d—1 X ... X &p.

Note that the coloring ¢y depends on the choice of the parameters rg,r1,...,7r¢41-

We prove our main theorem in two steps: we first estimate the number of colors and then prove
that it is a (p, p — 1)-coloring.

Theorem 2.1. Let p and 3 be fized positive integers with 3 # 1. For the choice r; = [° for
0 < i < p+1, the edge coloring c, of the complete graph on n = 2871 yertices uses at most
24(logn)1_1/(p+1)loglogn colors.

Theorem 2.2. Let p and « be fixed positive integers. Then, for every choice of parameters

T1,-..,Tpt1, the edge coloring ¢, is a (p+ 3, p + 2)-coloring of the complete graph on the vertex set

[0, 1}



For integers n of the form n = 25P+1, Theorem ?? follows from Theorems ?? and ??7. For general
n > p+3 > 4, first notice that if n? < 916p(logn)!~ 1/ (P
as we may color each edge with a different color. Hence, we may assume that the inequality does
not hold, from which it follows that

loglogn “then the statement is trivially true,

2logn > 16p(log n)l—l/(P-i-l) loglogn > 16p(log n)l—l/(p-i-l)

and n > 2(8p)P Hence, there exists an integer of the form 28" which is at most n(1+1/82)"*! < n?.
Therefore, there exists a (p+ 3, p + 2)-coloring of the complete graph on the vertex set [n] using at

most
24(210gn)1*1/(1"+1> log(2logn) 24~2(logn)1*1/(1’+1>(1+log10gn) < 216(10gn)1*1/(p+1) loglogn

colors (in the second inequality we used the fact that loglogn > loglog4 > 1). Thus we obtain
Theorem ??7. Theorem ?7? is proved in Subsection 7?7, while Theorem 77 is proved in Section 77
and builds on the two sections leading up to it.

2.4 Example

Let us illustrate the coloring by working out a small example. Suppose that r;1 = 2 and ro = 4.
Let v = (0,0,1,0,1,1,0) and w = (0,0,1,1,1,0,0) be vectors in {0,1}7. Then

v =1(0,0,1,0,1,1,0) = (‘0,0’,‘1,0’,‘1,1’,‘0’) - (‘0,0,1,0’,‘1,1,0’),
where the quotation marks indicate the blocks of each resolution. Similarly,
w=(0,0,1,1,1,0,0) = (‘0,0’,‘1,1’,‘1,0’,‘0’) - (‘0,0,1,1’,‘1,0,0’).
The function 79 records the first pair of blocks of resolution 0 which are different. So
m(v, w) = (4,{0,1}),

where the value of the first coordinate, 4, indicates that v and w first differ in the fourth coordinate.
Similarly, the function 7y records the first pair of blocks of resolution 1 which are different. So

m(v,w) = (24(1,0), (1, D}),

Computing &y and &; involves one more step. To compute &, we apply 79 to each pair of blocks of

resolution 1. Therefore,

§ov,w) = (m0((0,0),(0,0)),m0((1,0), (1,1)), m((1,1), (1,0)),m0((0), (0)))
= (0,(2,{0,1}),(2,{1,0}),0),

which is a vector of length four.



Similarly, to compute &1, we apply 71 to each pair of blocks of resolution 2. Therefore,

€1 (v, w) = (nl((o,o,1,0),(o,o, 1,1))7771((1,1,0),(1,0,0)))
- ((2,{(1,0),(1,1)}), (1, {(1,1),(1,0)})),

which is a vector of length two.

2.5 Number of colors

In this subsection, we prove Theorem 77.

Proof of Theorem ??. Recall that 3 is a positive integer greater than 1 and rg = 8% for 0 < d < p+1.
Let a = BPTL. The goal here is to give an upper bound on the number of colors in the edge coloring
¢p of the complete graph with vertex set {0,1}* = {0, l}ﬁpﬂ. First, for 0 < d < p, the function 7y
outputs either zero or an index and a pair of distinct blocks of resolution d. Hence, there are at
most 14 - 2"4(2" — 1) < 228" possible outcomes for the function 74. Second, for 0 < d < p, the

e

e P~ outcomes of ny. Hence, there are at most

function &, is a product of
(- 22897 = glern)ar 928

possible outcomes for the function ;. Since ¢, is defined as &, x §,—1 x - -+ X &, the total number
of colors used in ¢, is at most

p
I1 (5<p+1>ﬁp—d , Qzﬁp) < BAPHBP QAP < gd(p+1)57 log B
d=0

Let n = 2% = 2" and note that 87 = (logn)'~Y/®+1) and log 8 = ﬁlog logn. Thus, we have

colored the edges of the complete graph on n vertices using at most

4(log n)1—1/(P+1) 100 1og n
94(log g log
colors, as claimed in Theorem ?77. O

As we saw in Subsection ?7, for large enough ¢, Mubayi’s coloring (which is similar to ¢;) is not
a (q,q — 1)-coloring or even a (g, ¢°)-coloring for any fixed € > 0. Similarly, we can see that the
same is true for the coloring ¢, for every fixed p (we will briefly describe the proof of this fact in
Subsection ??). This explains why we need to consider ¢, with an increasing value of p.



3 Outline of proof

In this section, we outline the proof of Theorem ?77. Assume that we want to prove that the edge
coloring of the complete graph on the vertex set {0, 1} given by ¢, is a (p + 3, p + 2)-coloring. We
will use induction on « to prove the stronger statement that the coloring is a (¢, q — 1) coloring for
all ¢ < p+ 3. To illustrate a simple case, assume that we are about to prove it for o = rp41 and
have proved it for all smaller values of .. Let S C {0,1}“ be a given set of size at most p + 3. We
wish to show that the edges of S receive at least |S| — 1 distinct colors.

Let o = rpq41 — 1p. For two vectors v, w € S satisfying v # w, let v = (v/,v") and w = (v, w"),
where v/, w’ € {0,1}% and v”,w"” € {0,1}*~*" = {0,1}"». Note that since o/ = 7,11 —7,, is divisible
by 7p, the first ff—; blocks of resolution p of v are identical to those of v' and a similar fact holds for
w and w’.

If v/ = w' then, by the observation above, the first % coordinates of &,_; are all zero. On the other
hand, if v' # w’, then the first block of resolution p on which v and w differ is one of the first ;’f—;
blocks. Hence, in this case, at least one of the first % coordinates of §,_1 is non-zero. Thus, if we
define sets A7 and Ag as
A= {cp(v,w) v # W, v,w e S}

and

Ag = {cp(v,w) v =w', v 4w, v,w e S},
then we have A; N Ag = (). Hence, it suffices to prove that |A;| + |Ag| > |S| — 1. The index ‘I’
stands for inherited colors and ‘E’ stands for emerging colors.

The coloring ¢, contains more information than necessary to prove that the number of colors is
large. Hence, we consider only part of the coloring c,. The part of the coloring that we consider for
A7 and A will be different, as we would like to highlight different aspects of our coloring depending
on the situation.

Define the sets C7 and CF as

Cr= {(Cp(vlvwl)a77p—1(v",w”)) v W, v,w e S}

and
Cg = {{v",w” v =w, v W v, w e S}.

We claim here without proof that |Cy| < |A;| and |CE| < |Ag|. Abusing notation, for two vectors
v,w € S, we will from now on refer to the color between v and w as the corresponding ‘color’ in
Cr or Cg. It now suffices to prove that |Cr| + |Cg| > |S| — 1.

To analyze the colors in C7 and Cg, we take a step back and consider the first o/ coordinates of
the vectors in S. Let S" = m,(S), where here and throughout what follows 7 : {0,1}* — {0,1}
is the projection map taking a vector v to its first ¢ coordinates. Note that S’ is the collection of
vectors v’ in the notation above. There is a certain ‘branching phenomenon’ of vectors and colors.



For a vector v' € S’ let Toy = {v : 7y (v) =, v € S}. Hence, T, is the set of vectors in S whose
first o/ coordinates are equal to v’. Note that

> Tl =15l (1)

v'es’

Consider two vectors v,w € S. If v and w are both in the same set T,/, then the color between v
and w belongs to Cr and if they are in different sets, then the color between v and w belongs to
Cp. For a color ¢ € Cf, note that the first coordinate of ¢ is of the form ¢, (v, w") for two vectors
v/, w’ € S'. Further note that ¢,(v',w’) is the color of an edge that lies within S’. Hence, ¢ is a
‘branch’ of some color of an edge that lies within S’. In particular, by induction on «a, we see that

G = 15| = 1. (2)

For a color ¢ € Cg, let p. be the number of (unordered) pairs of vectors v, w such that c is the
color between v and w. By counting the number of edges colored by a color in Cg in two different
ways, we obtain the equation

D pe= ) (’2”) > 3 (1T - 1), (3)

ceCg v'es’ v'es’

Let us first consider the simple case when p. = 1 for all ¢ € Cg (that is, there are no overlaps
between the emerging colors). In this case, we have |Cg| = ¢, tic- By (77), we have

Crl +|Cs| > (18" = 1)+ [Cr| = (1] = ) + > ey
ceCg

which by (??) and (?7) is at least
1=+ D (T 1) = (> ITwl) —1=15] -1
v'es’! v'esS’!
and thus the conclusion follows for the case when u. = 1 for all ¢ € Cg.

However, there might be some overlap between the emerging colors. Note that there are |Cg|
emerging colors instead of the ZCECE e which we obtain by counting with multiplicity. Thus,
there are } ..o, (ttc — 1) ‘lost’ emerging colors. Our key lemma asserts that every lost emerging
color will be accounted for by contributions towards |Cr|. Formally, we will improve (??) and
obtain the following inequality

Crl 2 (18] = 1)+ Y (ne —1). (4)

ceCp

Given this inequality, we will have

C1l +1CEl = (18 = D)+ Y (e =D +1Cel = (15| - 1) + 3 pies

ceCg ceCp



which, as above, implies that |C7| + |Cg| > |S| — 1.

We conclude this section with a sketch of the proof of (??). To see this, we further study the
branching of the colors. Define Cg as the set of colors that appear within the set S’ that is,

Cp = {cp(v,w') + v/, € §'},

where the index ‘B’ stands for base colors. Every color ¢ € C7 is of the form ¢ = (¢/,7), where ¢/ € Cp
and the question mark ‘7’ stands for an unspecified coordinate. Thus, we immediately have at least
|Cp| colors in C7 (this is the content of Equation (??)). Now take a color ¢/ = {v”,w"} € Cp and
suppose that ¢’ has multiplicity .. Then there exist vectors z; € S for i = 1,2, ..., uer such that
" is the color between (z;,v") and (z;,w”). Consider the colors of the two pairs ((z1,v"), (z2,v"))
and ((z1,v"”), (z2,w")) in Cj. These are

(cp(xl,xg),np_l(v",v")) = (c12,0) € C;r and
(Cp($17$2)7np—l(U”7w//)) = (01,27777)—1(0//)) € Cfv

respectively, where ¢; 2 € Cp (here we abuse notation and define 7,_1(c”) = np—1(v”,w"), which
is allowed since the right-hand side is symmetric in the two input coordinates). Note that by the
inductive hypothesis, there are at least p.» — 1 distinct colors of the form ¢; ; for distinct pairs
of indices ¢ and j. Hence, by considering these colors, we add colors of the types (¢;;,0) and
(¢ij,mp—1(c")) for at least por — 1 distinct colors ¢; ; € Cp. Even if one of these two colors equals
the color (c¢;,?) counted above, we have added at least po» — 1 colors to C7 by considering the
color ¢’ € Cg.

Now consider another color ¢/ € Cg. This color adds a further pey — 1 colors to Ct as long as
Np—1(¢") # np—1(c}). Therefore, if we can somehow guarantee that 7,_1(c¢”) is distinct for all ¢”,
then we have

C1l > CBl+ ) (e — 1),

ceCg
which proves (??), since |Cg| > |S’| — 1 by the inductive hypothesis.

Hence, it would be helpful to have distinct 7,_1(¢”) for each ¢ € Cg. Even though we cannot
always guarantee this, we can show that there exists a resolution in which the corresponding fact
does hold. This will be explained in more detail in Section ?7.

4 Properties of the coloring

In this section, we collect some useful facts about the coloring functions ¢4. Before listing these
properties, we introduce the formal framework that we will use to describe them.

10



4.1 Refinement of functions

For a function f : A — B, let Il; = {f~1(b) : b € f(A)}. Thus, Il is a partition of A into sets
whose elements map by f to the same element in B. For two functions f and g defined over the
same domain, we say that f refines g if Il; is a refinement of II,;. This definition is equivalent to
saying that f(a) = f(a') implies that g(a) = g(a’) and is also equivalent to saying that there exists
a function h for which ¢ = ho f. The term f refines g is also referred to as g factors through f in
category theory. This formalizes the concept that f contains more information than g.

For two functions f and ¢ defined over the same domain A, let f x g be the function defined over
A where (f x g)(a) = (f(a),g(a)). The following proposition collects several basic properties of
refinements of functions which will be useful in the proof of the main theorem.

Proposition 4.1. Let f1, fo, f3 and fi be functions defined over the domain A.
(i) (Identity) f1 refines fi.

(ii) (Transitivity) If fi refines fo and fo refines fs, then fi refines fs.

(iii) If f1 refines f3, then f1 X fo refines fs.

(i) If f1 refines both fo and fs, then fi refines fo X f3.

(v) If f1 refines f3 and fo refines fy, then fi X fo refines fs X fy.

(vi) If f1 refines fa, then, for all A" C A, we have |f1(A")] > |f2(4")].

Proof. Let II; = 11y, for i = 1,2, 3.
(1) This is trivial since IT; refines II;.

(ii) If fy refines fo and fo refines f3, then Iy refines Il and Il refines II3. Therefore, IT; refines
II3 and fi refines f3.

(iii) Since f; x fo clearly refines f1, this follows from (ii).

(iv) If f1(a) = f1(d’), then fa(a) = fa(a’) and f3(a) = f3(a’). Hence, (f2 x f3)(a) = (f2 x f3)(d’)

and we conclude that f; refines fo X fs.

(v) By (iii), f1 x fo refines both f3 and fy. Therefore, by (iv), f1 X fo refines f3 x fj.

(vi) For i = 1,2, let IL;|4» = {X NA" : X € II;, X N A’ # 0} and note that |f;(4")| = ’Hi|A/). Since
I1; is a refinement of Ily, we see that II; |4/ is a refinement of Ily| 4. Therefore, it follows that

A(A)] = [l = |f2(A),

as required. O

> ‘Hz\A/

Refinements arise in our proof because we often consider colorings with less information than the
full coloring. In the outline above, we considered several different sets of colors, namely, Ar, Ag,
Cr and Cg and we claimed without proof that |C7| < |A;| and |Cg| < |Ag|. If we can show that Af
is a refinement of C; and Ag is a refinement of C'g, then these inequalities follow from Proposition
?? (vi) above.
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4.2 Properties of the coloring

We developed our formal framework for a rigorous treatment of the following two lemmas. It may
be helpful at this stage to recall the definitions of 14, £; and ¢4 from Subsection ?7.

Lemma 4.2. Suppose that «, o and d are integers with d > 0 and 1 < o/ < a.. Then the following
hold (where all functions are considered as defined over {0,1}* x {0,1}%):

(i) na refines ng o (Ter X Tor).
(i) &4 refines Ego (Mo X Tor).

(7i) cq refines cqo (Mo X Tor).

Proof. The case o = « is trivial so we assume that o/ < a.

(i) Let v and w be vectors in {0,1}* and let v = 74/ (v) and w’ = o (w). We will show that one
can compute the value of ny(v',w’) based only on the value of ng(v,w). This clearly implies the
desired conclusion.

If ng(v,w) = 0, then v = w and it follows that ng(v',w’) = 0. Assume then that ng(v,w) =
(d) . (d)

(1, {de),w(d)}) for some index i and blocks v; ", w;" of resolution d. Let j be the first coordinate

3
in which the two vectors vi(d) and wgd) differ. Then the first coordinate x (note that 1 <z < «) in

which v and w differ is © = (i — 1) - 74 + j and satisfies
(1—1)-rg <z <minf{i-rq,a}.

Note that the values of ¢ and j can be deduced from 74(v,w) and hence = can as well. It thus
() ()

suffices to verify that ng(v’, w’) can be computed using only a, o/, rq, z, i, v;’ and w,

If o > i- 7y, then we have ng(v', w') = ng(v,w) = (i, {vgd),wgd)}) and the claim is true. On the
other hand, if o/ < i -ry, then there are two cases. If o/ < x, then we have v = w’. Therefore,

ng(v',w") = 0 and the claim holds for this case as well. The final case is when x < o/ <i-ry. In
this case, we see that

na(v',w') = (2 {W[auufl)rd] (W), T (i 1yra] (wgd))})

and the claim holds.
(ii) Let v and w be two vectors in {0,1}%. Then

d+1)  (d+1 d+1)  (d+1 d+1)  (d+1
gd(U,’LU) = (Ud(“i )awg ))’nd(vé )¢wé ))a---and(vz(z—l—l )7w((z+1 )))a
for some integer a > 0. Let v/ = 7y (v) and w’ = 7y (w). Suppose that (j — 1)rgr1 < o < jrgqs.

Then note that the j-th block of resolution d + 1 of v is w[a/_(j_l)wﬂ](vj(.dﬂ)) and that of w’
(d+1))

I8 Mol —(j-1)ras) (W5
coordinate is identical to the i-th coordinate of &;(v,w) and, for i = j, the j-th coordinate is

. Then &;(v',w’) consists of j coordinates, where for 1 < i < j the i-th

d+1 d+1
Td © (W[a’*(jfl)rdﬂl X W[a'*(J’*l)wﬂ})(Uj(' )’ wj(' ))‘

12



Thus the function &y refines £ o (1o X my) coordinate by coordinate (by part (i) of this lemma).
Hence, by Proposition ??7(v), we see that &; refines {; o (7o X o).

(iii) This follows from ¢4 = &g X - -+ X &, part (ii) of this lemma and Proposition ??(v). O

Lemma 7?7 seems intuitively obvious and might even seem trivial at first sight, but a moment’s
thought reveals the fact that it is nontrivial. To see this, consider the function

ha(v,w) = {o{® W},

2

which is the projection to the second coordinate of 74(v,w). Then the function hy fails to satisfy
Lemma ?7?(i). Moreover, if the functions £; and ¢4 were built using hg instead of 74, these would
also fail to satisfy the claim of Lemma 77.

The next lemma completes the proof of one of the promised claims, namely, that A; (or, rather, a
generalization thereof) refines Cf.

Lemma 4.3. Suppose that positive integers d,p,« and o' are given such that 1 < d < p+1 and
o’ is the maximum integer less than o divisible by rq. Let 4 be the function which takes a pair of

vectors v,w € {0,1}* as input and outputs
f)/d(vu 'LU) = (Cp(v/7 w/)a ndfl(U”? w”))7

where v = (v/,v") and w = (w',w") forv',w' € {0,1}* andv”,w" € {0,1}*=%". Then cy|; 11010 11e
pI{0,1}>x{0,1}

refines vq.

Proof. For brevity, we restrict the functions to the set {0,1}* x {0,1}* throughout the proof. By
Lemma ?7(iii), we know that c, refines ¢, o (7o X ) and hence ¢, refines the first coordinate
of 74. On the other hand, since o’ is the maximum integer less than « divisible by r4, the term
Ng—1(v”,w") forms the last coordinate of the vector ;_1(v,w). Hence, by Proposition ??(iii), {z_1
refines 7g_1(v”,w"). By the definition ¢, = §, X ... x & and Proposition ?7?(iii), we know that
¢p refines ;1. Therefore, by transitivity (Proposition ??(ii)), we see that ¢, refines n4_1(v”, w”).
Thus, ¢, refines both coordinates of 74 and hence, by Proposition ??(iv), we see that ¢, refines
Yd- O

5 Proof of the main theorem

In this section we prove Theorem 7?7, which asserts that for all & > 1 and p > 1, the edge coloring
of the complete graph on the vertex set {0,1}“ given by ¢, is a (p + 3,p + 2)-coloring. We will
prove by induction on « that every set S with |S| < p + 3 receives at least |S| — 1 distinct colors.
The base case is when a < r,. In this case, for two distinct vectors v,w € {0,1}“, we have
&p(v,w) = (np(’u,w)) = ((1, {U,w})). Hence, for a given set S C {0, 1}“, the edges within this set
are all colored with distinct colors, thereby implying that at least (lg |) > |S] — 1 colors are used.

13



Now suppose that o > r, is given and the claim has been proved for all smaller values of a. Let
S C {0,1}* be a given set with |S| < p+ 3. For each 1 < d < p, let ag be the largest integer less
than a which is divisible by r;. Note that since r4_1 divides r4 for all 1 < d < p, we have

O‘pgapfl < "‘SOél-
For 1 < d < p, define sets Agd) and Agg) as

Agd) = {cp(v,w) : Moy (v) # Tay(w), v,w € S}

and
Al = {ep(v,w) t oy (v) = Tay(w), v # w, v,w € S}

Since ay is divisible by rq, if 74, (v) = mq,(w), then the first i‘—j coordinates of £;_1(v,w) will all
be zero. On the other hand, if 7y, (v) # 7o, (w), then this is not the case. Since {;4_; is part of
¢p, this implies that Agd) NnA g = (). Hence, for all d, the number of colors within S is exactly

\Agd)\ + \Ag)\. It therefore suffices to prove that \Agd)| + \Ag)| > |S| — 1 for some index d.

We would like to extract only the important information from the colors in Agd) and Agl). For
each 1 < d < p and a given pair of vectors v,w € S, let v = (v),v]) and w = (w),w}) for
vl wl € {0,1}%¢ and vjj, w)) € {0,1}*" 4. Define the sets C}d) and Cgl) as

d
0 = { (el wh), maa (v wh)) = vl # wly v,w € S}

and
(d) "oy roon "
CE = ’Ud,wd . ’Ud:wd, ”Ud#wd,'l),wes .

By Lemma ?? and Proposition ?7(vi), we see that \C}d)] < \Agd)\. We also have \C](;l)\ < \Agl)|.
To see this, suppose that a color {v/], w/} € Cg) comes from a pair of vectors v = (v}, v]) and
w = (w),wl) in S. Since v}, = w), and «aq is divisible by rq4, the function 1y applied to the last pair
of blocks of resolution d+1 of v and w is equal to (i, {v/], w]}) for some integer i. Therefore, the last
coordinate of &;(v, w) has value (i, {vj,w/}). This implies the existence of an injection from CSEd)
to Ag) and thus that \Cgl)\ < \Ag)\. Hence, it now suffices to prove that \C}d)\ + \Cgl)\ > S| -1
for some index 1 < d < p.

Assume for the sake of contradiction that we have \C}d)\ + ]ng)] <|S|—2foralll1<d<p. The
following is the key ingredient in our proof.

Claim 5.1. If \C}p)] + \Cg)\ < |S| — 2, then there exists an index d such that ng_1(c) is distinct
for each ¢ € C’gl).

The proof of this claim will be given later. Let d be the index guaranteed by the claim and let
Cr = C}d), Cg = C’J(Ed). Abusing notation, for two vectors v,w € S, we will from now on refer to
the color between v and w as the corresponding ‘color’ in C; or Cg.

14



Let 8" = m,,(S) and, for a vector v’ € S’, let T,y = {v : 7y, (v) =v', v € S}. Note that the sets
T, form a partition of S. Therefore,
> Tl =18]. (5)

v'es’!

Let Cp be the set of colors which appear within the set S” under the coloring ¢,. Since S’ C {0,1}*
and ag < «, the inductive hypothesis implies that

ICsl = 15| - 1. (6)

For a color ¢ € Cg, let u. be the number of (unordered) pairs of vectors v, w such that ¢ is the color
between v and w. Note that for each v' € S’, the set of colors that appear within T,/ is a subset
of Cg. Hence, by counting the number of edges colored by some color in C'g in two different ways,

D pe= ) (’2”) > (1T - 1), (7)

ceCg v'es’ v'es’

we get that

Together with the three equations above, the following bound on |Cy|, whose proof we defer for a
moment, yields a contradiction.

C1l > |CBl+ ) (e —1). (8)

ceCg

Indeed, if this inequality holds, then, by (?7?), (?7?) and (??), respectively, we have

ICHl+ 10 = [ (1S =D+ Y (e =1 | +1Cel = (I8 = 1)+ D ne

ceCg ceCp
2(‘5,‘_1)"’_ Z(’Tv"_l (Z ’Tv”>
v'eS’ v'es’

By (?7), we see that the right hand side is equal to |S|—1. Therefore, we obtain |C|+|Cg| > |S|—
which contradicts the assumption that |Cy| + |Cg| < |S| — 2.

To prove (??7), we examine the interaction between the three sets of colors C7, Cp and Cg. Note
that each color ¢ € C7 is of the form ¢ = (¢/,?) for some ¢’ € Cp, where the question mark ‘?’
stands for an unspecified coordinate. This fact already gives the trivial bound |C;| > |Cp|. To
obtain (??), we improve this inequality by considering the ‘7 part of the color and its relation to
colors in C'y. Take a color ¢’ = {v",w"} € Cg and suppose that ¢’ has multiplicity p.» > 2. Then
there exist vectors z,y € S” such that (z,v"), (z,w”) € T, and (y,v”), (y,w”) € T,. Consider the
color of the pairs ((z,v"”), (y,v"”)) and ((z,v"), (y,w")) in C;. These colors are of the form

(cp(a;y Na—1(v" U) ,0) € Cr and
(ep(@, ), na1 (0", w")) = ( )sna-1(c")) € Cr. (9)
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Here we abuse notation and define ny_1(¢”) = ng_1(v”,w"), which is allowed since the right-hand
side is symmetric in the two input coordinates. Therefore, having a color ¢ with u.» > 2 already
implies that |Cy| > |Cg| + 1. We carefully analyze the gain coming from these pairs for each color
in Cg. To this end, for each z € S’, we define

CE,x = {{’Uﬁv w” : (x’vll)7 (LL‘, w”) S Txa U” 7£ ’LU”}.

For each ¢ € Cp, we will count the number of colors of the form (¢/,?) € C;. There are two cases.
Case 1: For all z,y € S’ with ¢,(z,y) =, Cpa N Cpg,y = 0.

Apply the trivial bound asserting that there is at least one color of the form (¢, ?) in C7.

Case 2 : There exists a pair z,y € S’ with ¢,(z,y) = ¢ such that Cg, N Cgy # 0.

If we have ¢’ € Cg, N CEg,y for some z,y € S’ with ¢,(z,y) = ¢, then, by the observation made in
(?7?), we have both (¢/,0) and (¢/,ng—1(¢”)) in Cy. This shows that the number of colors in C of
the form (¢/,?) is at least

’{(c/,O)} U{(d ma-1(") : Fm,y € 9, ep(m,y) =, ' € Cpan CE,y}‘ .
By Claim 77, the function 7ny4_1 is injective on Cg and thus the above number is equal to

1+ |{" : Fm,ye s cpz,y)=c, " €CraNCry}|.

By combining cases 1 and 2, we see that the number of colors in C7 satisfies

ICil = [CBl+ > {"€Cp:Awyes, cplz,y)=C, ' € CranNCry}

ceCp
=|Cpl+ |{(¢,")€CrxCk : Fx,ye S, ep(w,y) =¢, " €CpaNCry}
= |Cp|+ Z Hc’ €Cp: 3Jx,ye s, cp(x,y) = d, e CgaN CEQ}’ .

'eCg

For a fixed color ¢ € Cg, there are precisely p.» vectors x € S’ for which the color ¢’ is in Cg 4.
Since S” C {0,1}%¢, by the induction hypothesis (recall that our induction is on «), for each fixed

c’, we have
HCI € CB : Ex,y € Slv Cp<(12‘,y) - Cl: ' € CE,ac N CE,yH > Merr — 1.

Thus we obtain

Cr| > |CBl+ Y (ner = 1),

c'eCg

which is (?77?).
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5.1 Proof of Claim 77

Claim ?? asserts that there exists an index d such that ny_1(c) is distinct for each ¢ € CJ(Ed).

It will be useful to consider the function hy, which is defined as follows: for distinct vectors v and
w, define

ha(v,w) = {0l W},
(d) . (d)

where v; "/, w; ’ are the first pair of blocks of resolution d for which UZ@ #* wgd).

Also, define
hq(v,v) = 0 for all vectors v. Note that we can also define hy over unordered pairs {v,w} of
vectors as hg({v,w}) = hg(v,w), since hg(v,w) = hg(w,v) for all pairs v and w. Throughout
the subsection, by abusing notation, we will be applying hy to both ordered and unordered pairs
without further explanation.

Recall that n4(v, w) = (i, {vgd), wl(d)}) and n4(v,v) = 0 and, therefore, n4 refines hy (both considered
as functions over the domain Cj(Ed)). Hence, to prove the claim, it suffices to prove that hg_;(c) is
distinct for each ¢ € Cgi). Another important observation is that for all 1 < d < p, we can redefine
the sets C(Ed) as

Cgl) = {hq(v,w) : T, (V) = Ta, (W), v # w, v,w € S},
because v, = o, (vq) = Ta,(wq) = W), and hq(v,w) is simply the second coordinate of n4(v, w).

We first prove that there is a certain monotonicity between the sets CJ(Ed) for 1 <d<p.

Claim 5.2. For all d satisfying 2 < d < p, there exists an injective map jq : Cgi_l) — Cg) which
(d—1)
maps {x,y} € Cp;~ "/ to

sala.y) = {(v.a), (v.9) } € O,

for some vector v € {0,1}%-17% depending on the color {x,y}. Furthermore, hq_1 o jq is the

identity map on C’glil).

Proof. Take a color {x,y} € C’gi_l) and assume that {z,y} = hq_1(ve,vy) for vy, v, € S. By the

definition of ng_l), we may take v, and v, of the form
vy = (vo,z) and v, = (vo,V),

for some vector vg € {0,1}%4-1. Fix an arbitrary such pair (v, v,) for each {z,y} € C’gl_l).
Let vg = (v1,v2) for vy € {0,1}% and vy € {0,1}*4-17%_ Then v, = (vi,v2, ) and vy = (v1,v2,¥).
Since

Tay(Vz) = 01 = Tay(vy),

we see that

hag(vg, vy) = {(vg,x), (vg,y)} € C’gl).
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Define yq(z,y) = ha(vg,vy) = {(vg,:c), (vg,y)}. Note that the range of j4 is Cgi) and that j4 is
injective. Moreover, since vy is a vector of length ay_1 — ag which is divisible by r4_1, we see that

ha1(a(@.y)) = a1 ((v2.2), (v2,9)) = {9}

The claim follows. O

In particular, Claim ?7 implies that

eV <ic@<...<1c?).

If \Cg)] < 1, then d = 1 trivially satisfies the required condition. Hence, we may assume that
\C’ (1) | > 2. On the other hand, recall that we are assuming that |C’}p)\ + \Cg)| <|S|—-2<p+1.1If

\C | = 0, then there exists at most one element v, € 74, (5) and all elements of S are of the form
(vp, z) for some z € {0,1}**. But then

S
c1= (1) 21811, (10)

contradicting our assumption. Therefore, we may assume that |C | > 1, from which it follows
that |C’gj)] < p. Hence,

2<lof)| <|CP| < <[P <p.
If p = 1, this is impossible. If p > 2, then, by the pigeonhole principle, there exists an index d such
that \Cgi_l)] = ]C’gj)]. For this index, the map j4 defined in Claim ?? becomes a bijection. Then,
since hg_1 0 j4 is the identity map on C’giil), we see that hg_1(c) is distinct for each ¢ € C'](;d). This
proves the claim.

6 Concluding Remarks
6.1 Better than (p + 3,p + 2)-coloring

Let r = \/@ . We can in fact prove that ¢, is a (p + |r| + 1,p + |r|)-coloring. This improvement
comes from exploiting the slackness of the inequality (??) used in Subsection ?7. To see this, we
replace the bound on S by |S| < p+r + 1 in the proof given above. Since we have already proved
the result for |S| < p + 3, we may assume that |S| > p + 4.
If ]C’}p)] > r — 1, then we have

CE < IS —2-10{"| <p

and we can proceed as in the proof above. We may therefore assume that |C | < r—1. Let
Sp = Ta, (S). Then, since
|Sp |—1<]C |<r—1

18



we know that |S,| < r. Since
> Ima )l =18],
vES)

150

there exists a v € S}, such that ]7@}}(1})\ > 15- Note that every pair of vectors wy,wy € 7r;p1 (v)

gives a distinct emerging color. Moreover, by the inductive hypothesis, we have at least |Sp| — 1
inherited colors. Hence, the total number of colors in the coloring ¢, within the set S is at least

] 115 (15]
S —1+< o )2 S —1+<—1),
’ p| 9 | P‘ 2‘5p| ‘Sp’

[p+4 /S|
= < —_—
|Spl <7 5 = 5

is minimized when |Sy| is maximized. Thus the number of colors within the set S is at least

151 B8 g
SISl -y =8l -

which, since

This concludes the proof.

6.2 Using fewer colors

Recall that the coloring ¢, was built from the functions

where ¢ is the minimum index for which vl(d) % wz(d‘). The function 74 can in fact be replaced by
the function

ha(v,w) = {vgd), w,fd)}

(note that this is the function used in Section ?7). In other words, even if we replace all occurrences
of ng with hg in the definition of ¢, we can still show that ¢, is a (p + 3, p + 2)-coloring. Moreover,
there exists a constant a, such that the coloring of the complete graph on n vertices defined in this

way uses only

2ap(10gn)171/(p+1)

colors. That is, we gain a loglogn factor in the exponent compared to Theorem 7?. The tradeoff is
that the proof is now more complicated, the chief difficulty being to find an appropriate analogue
of Lemma 7?7 which works when 7, is replaced by hg.
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6.3 Top-down approach

There is another way to understand our coloring as a generalization of Mubayi’s coloring. Recall
that Mubayi’s coloring is given as follows: for two vectors v,w € [m]! satisfying v = (vq,...,v¢)
and w = (wy,...,w), let

c(v,w) = ({vi,wi},al,az, . ,at),
where ¢ is the minimum index for which v; # w; and a; = 0 if v; = wj and a; = 1 if v; # w;.
Suppose that we are given positive integers ¢t; and t3. For two vectors v,w € [m]tm, let v =
(v%l),...,vt(;)) and w = (wgl),...,wg)) for vectors vgl) € [m]"* and wgl) € [m]®*. Define the
coloring ¢ as
@ (v,w) = ({vi(l), wEl)}, C(Ugl), wgl)), e C(U(l) wt(;))),

to

where 7 is the minimum index for which vil) #* w,fl) .

Note that this can also be understood as a variant of ¢, where we record more information in
the (a1,...,a;) part of the vector (this is a ‘top-down’ approach and the previous definition is a
‘bottom-up’ approach). The coloring @ is essentially equivalent to co defined in Section 77 above
and can be further generalized to give a coloring corresponding to ¢, for p > 3. However, the proof
again becomes more technical for this choice of definition.

One advantage of defining the coloring using this top-down approach is that it becomes easier to
see why the coloring ¢, on K,, contains the coloring ¢, on K,,, where n; < ns, as an induced
coloring. To see this in the example above, suppose that n; = m*? and ny = n*%2 for m < n,
t1 < s1 and ta < s9. Then the natural injection from [m] to [n] extends to an injection from [m]"
to [n]*' and then to an injection from [m]"*2 to [n]*1*2. This injection shows that the coloring ¢(?)
on K, contains the coloring ¢!?) on K, as an induced coloring. As in Section ??, it then follows
that ¢ (and thus ¢y) fails to be a (g, ¢°)-coloring for large enough ¢. Similarly, for all fixed p > 3,
we can show that ¢, fails to be a (g, ¢°)-coloring for large enough g.

6.4 Stronger properties

We can show (see [?]) that Mubayi’s coloring, discussed in Section ??, actually has the following
stronger property: for every pair of colors, the graph whose edge set is the union of these two color
classes has chromatic number at most three (previously, we only established the fact that the clique
number is at most three). We suspect that this property can be generalized.

Question 6.1. Let p > 4 be an integer. Does there exist an edge coloring of the complete graph K,
with n°Y colors such that the union of every p — 1 color classes has chromatic number at most p?

We do not know whether our coloring has this property or not.
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6.5 Lower bound

Some work has also been done on the lower bound for f(n,p,p —1). As mentioned in the intro-
duction, for p = 3 it is known that 0’101{;)1% < f(n,3,2) < clogn. For p = 4, the gap between
the lower and upper bounds is much wider. The well-known bound 7(4) < k* on the multicolor
1
Toglog 7
bound of f(n,4,3) < e“V°8" The lower bound has been improved, first, by Kostochka and Mubayi
[?], to f(n,4,3) > clog%g% and then, by Fox and Sudakov [?], to f(n,4,3) > clogn, which is the
current best known bound.

Ramsey number of Ky translates to f(n,4,3) > ¢ while Mubayi’s coloring gives an upper

For p > 5, we can obtain a similar lower bound from the following formula, valid for all p and q.
f(nf(nap_lvq_l)apaQ> Zf(nap_laq_l) (11)

To prove this formula, put N = nf(n,p—1,¢—1) and consider an edge coloring of K with fewer
than f(n,p —1,q — 1) colors. It suffices to show that there exists a set of p vertices which uses at
most ¢ — 1 colors on its edges. If f(n,p—1,q—1) = 1, then the inequality above is trivially true. If
N—1
f(n,p—1,4-1)-1
to v by the same color. Since the edges within the set V' are colored by fewer than f(n,p—1,¢—1)

not, then for a fixed vertex v, there exists a set V of at least { —‘ > n vertices adjacent

colors, the definition of f(n,p —1,q — 1) implies that we can find a set X of p — 1 vertices with at
most ¢ — 2 colors used on its edges. It follows that the set X U {v} is a set of p vertices with at
most g — 1 colors used on its edges. The claim follows.

From (??) and the lower bound f(n,4,3) > clogn, one can deduce that
fn,p,p—1) 2 (1 +0(1))f(n,4,3) = (c+o(1)) logn
for all p > 5. On the other hand, since the best known upper bound on f(n,p,p —1) is
f(n,p.p—1) < gewllosm) 0,

the gap between the upper and lower bounds gets wider as p gets larger. It would be interesting
to know whether either bound can be substantially improved. In particular, the following question
seems important.

Question 6.2. For p > 5, can we give better lower bounds on f(n,p,p — 1) than the one which
follows from f(n,4,3)?
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