Infinite locally random graphs

Pierre Charbit∗ and Alex D. Scott†

Abstract

Motivated by copying models of the web graph, Bonato and Janssen [3] introduced the following simple construction: given a graph G, for each vertex x and each subset X of its closed neighbourhood, add a new vertex y whose neighbours are exactly X. Iterating this construction yields a limit graph $↑G$. Bonato and Janssen claimed that the limit graph is independent of G, and it is known as the infinite locally random graph. We show that this picture is incorrect: there are in fact infinitely many isomorphism classes of limit graph, and we give a classification. We also consider the inexhaustibility of these graphs.

1 Introduction

The Rado graph \mathcal{R} is the unique graph with countably infinite vertex set such that, for any disjoint pair X, Y of finite subsets of vertices, there is a vertex z that is joined to every vertex in X and no vertex in Y. If $0 < p < 1$, and G is a random graph in $\mathcal{G}(\mathbb{N}, p)$, then with probability 1 we have $G \cong \mathcal{R}$. For this reason, the Rado graph is also known as the infinite random graph (see [5] for a survey).

The Rado graph can be obtained deterministically by beginning with any finite (or countably infinite) graph G and iterating the following construction:

$[E1]$ For every finite subset X of $V(G)$ add a vertex y with neighbourhood $N(y) = X$.

∗Laboratoire Camille Jordan, Université Claude Bernard, Lyon 1, France (email : charbit@univ-lyon1.fr)
†Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK (email : scott@maths.ox.ac.uk)
Here $N(x) = \{ y \in V(G) : xy \in E(G) \}$ is the \textit{neighbourhood} of x; we also write $N[x] = N(x) \cup \{x\}$ for the \textit{closed neighbourhood} of x.

Motivated by copying models of the web graph, Bonato and Janssen [3] (see also [1] and [4]) introduced the following interesting construction. For a finite graph G, the \textit{pure extension} $PE(G)$ of G is obtained from G by the following construction:

\[\text{(E2) For every } x \in V(G) \text{ and every finite } X \subseteq N[x] \text{ add a vertex } y \text{ with neighbourhood } N(y) = X. \]

Iterating this construction, we obtain a limit graph, denoted by $\uparrow G$.

Bonato and Janssen ([3], Theorem 3.3) claimed that $\uparrow G \cong \uparrow H$ for every pair G, H of finite graphs. The (claimed) unique limit graph, which has become known [1] as the \textit{infinite locally random graph} (see Proposition 1 below for the reason for this name). As we show below, Bonato and Janssen’s claim is incorrect. There are in fact infinitely many limit graphs G (for instance, $\uparrow C_5$, $\uparrow C_6$, $\uparrow C_7$, … are all distinct), and we give a simple criterion that determines when $\uparrow G \cong \uparrow H$.

In the next section, we give a few simple properties of limit graphs $\uparrow G$; we prove our classification result in section 3. Finally, in section 4, we prove that for every finite G, $\uparrow G$ is inexhaustible, that is $(\uparrow G) \setminus x \cong \uparrow G$ for all $x \in V(\uparrow G)$. This corrects another result from [3].

\section{Simple properties of $\uparrow G$}

We begin with some notation. We shall refer to the vertices y that are introduced in [E2] above with neighbourhoods contained in $N[x]$ as \textit{clones} of x. Thus a vertex of degree d in G has 2^{d+1} clones in $PE(G)$ (note that we take all subsets of the \textit{closed} neighbourhood $N[x]$), and $PE(G)$ contains $|G|$ isolated vertices, each one a clone of a different vertex from G. As indicated above, iterating construction [E2] gives a sequence of graphs $G \subseteq PE(G) \subseteq PE^2(G) \subseteq \cdots$, where $PE^n(G) = PE(PE^{n-1}(G))$; we write $\uparrow G$ for the limit of this sequence. We define the \textit{level} $L(x)$ of a vertex of $\uparrow G$ to be the least integer k such that it is contained in $PE^k(G)$ (where $L(x) = 0$ for all $x \in V(G)$), and for a finite subset $X \subseteq V(\uparrow G)$, we write $L(X) = \max_{x \in X} L(x)$. We also write $L^{(k)}(\uparrow G)$ for the vertices of level k in $\uparrow G$, and $L^{(\leq k)}(\uparrow G)$ for the vertices of level k or less. Note that, by the construction, $L^{(k)}(\uparrow G)$ is an independent set for every $k \geq 1$.

2
Given a graph H, a graph G is locally H if, for every vertex x of G, the graph induced by the neighbourhood $N(x)$ of x is isomorphic to H.

Bonato and Janssen note the following property of the construction defined above.

Proposition 1. [3] For every finite graph G, $\uparrow G$ is locally \mathcal{R}

Proof. For every $x \in V(\uparrow G)$, and every X and Y finite disjoint subsets of $N(x)$, we want to find a vertex z such that z is adjacent to every vertex in X and to none in Y. This is possible by the definition of $\uparrow G$ by taking a suitable vertex z of level $L(X \cup Y) + 1$.

Since \mathcal{R} is the (unique) infinite random graph, it therefore makes sense to refer to $\uparrow G$ as an infinite locally random graph.

Corollary 2. Let G be a finite graph. Then $\uparrow G$ is \aleph_0-universal (that is, $\uparrow G$ contains every countable graph H as an induced subgraph).

Another easy but important remark concerns the distance between vertices.

Proposition 3. Let G be a finite graph and x and y two vertices of $PE^k(G)$, for some integer $k \geq 0$. Then the distance between x and y is the same in $PE^k(G)$ and in $\uparrow G$.

Proof. It is sufficient to note that the pure extension construction [E2] does not change the distance between vertices.

We also note the following simple property.

Lemma 4. Let G be a finite graph and x a vertex of $\uparrow G$. Let X be a finite subset of $N(x)$. Then there exists a vertex y with $L(y) \leq L(X)$ such that $X \subseteq N[y]$.

Proof. Let x_0 be a vertex of minimal level with $X \subseteq N[x_0]$. If $L(x_0) \leq L(X)$ then we can take $y = x_0$. Otherwise, $L(x_0) > L(X)$ and so $x_0 \not\in X$. But x_0 was constructed on level $L(x_0)$ as the clone of some vertex x_1 with $L(x_1) < L(x_0)$. In particular, $N(x_0) \cap L^{<L(x_0)}(\uparrow G) \subseteq N[x_1]$ and so $X \subseteq N[x_1]$, which contradicts the minimality of $L(x_0)$.

3
For \(x \in V(\uparrow G) \), we write

\[
N^-(x) = N(x) \cap L^{(<L(x))}(\uparrow G).
\]

Note that \(N^-(x) \) is the set of neighbours assigned to \(x \) at time \(L(x) \), when \(x \) is first introduced. We say that a subgraph \(G_1 \) of \(G \) is good if it is an induced subgraph of \(G \) and, for all \(x \) in \(V(G_1), N^-(x) \subseteq V(G_1) \). Equivalently, \(G_1 \) is an induced subgraph such that \(N(y) \cap V(G_1) \subseteq N^-(y) \) for all \(y \in V(G) \setminus V(G_1) \).

In this context, Lemma 4 gives the following result.

Lemma 5. Let \(G \) be a finite graph and suppose that \(H \) is a good subgraph of \(\uparrow G \). Then

\[
\forall x \in V(\uparrow G), \exists y \in V(H) \text{ such that } N(x) \cap V(H) \subseteq N[y] \cap V(H)
\]

Proof. We can assume that \(x \notin V(H) \). Let \(X = N(x) \cap V(H) \). Then \(X \subseteq N^-(x) \), and by Lemma 4 there exists \(y \) of level at most \(L(X) \) with \(X \subseteq N[y] \). If \(L(y) = L(X) \) then, since the levels are independent sets and \(X \subseteq N[y] \), \(y \) must belong to \(X \), and thus to \(H \). If \(L(y) < L(X) \), then \(y \) belongs to \(H \) as \(H \) is a good subgraph of \(\uparrow G \). \(\square \)

3 Classification

We now investigate when \(\uparrow G \) and \(\uparrow H \) are isomorphic. In [3], the authors claim that \(\uparrow G \cong \uparrow H \) for any pair of finite graphs \(G \) and \(H \) (this is their Theorem 3.3). Here we disprove this. Their proof seems to fail on page 209 at the end of the first paragraph: the equality \(H_{n+1} - S \cong G_1 \cup \overline{K_m} \) does not hold because these vertices can be linked by edges. Moreover, it is not clear why this equality would imply \(H - S \cong \uparrow(G_1 \cup \overline{K_m}) \) on the following line, as some vertices in \(H \) can be constructed by cloning elements in \(S \).

We begin with the following useful consequence of Lemma 5.

Theorem 6. Let \(G \) and \(H \) be finite graphs. Suppose that \(G_1 \supseteq G \) is a good subgraph of \(\uparrow G \) and \(H_1 \supseteq H \) is a good subgraph of \(\uparrow H \). If \(G_1 \cong H_1 \) then \(\uparrow G \cong \uparrow H \)

Proof. Let \(\phi : V(G_1) \rightarrow V(H_1) \) be an isomorphism (note that, as \(G_1 \) and \(H_1 \) are good, they are induced subgraphs of \(\uparrow G \) and \(\uparrow H \), respectively, so this is an isomorphism between induced subgraphs). Using a classical ‘back
and forth’ argument, we extend \(\phi \) one vertex at a time until, in the limit, we obtain an isomorphism between \(\uparrow G \) and \(\uparrow H \). Let \(x \in V(\uparrow G) \) be a vertex of minimal level with \(x \not\in V(G_1) \). By Lemma 5, there exists \(y \in V(G_1) \) such that \(N(x) \cap V(G_1) \subseteq N[y] \cap V(G_1) \). Let \(z \not\in V(H_1) \) be a clone of \(\phi(y) \) with

\[
N^-(z) = N(z) \cap V(H_1) = \phi(N(x) \cap V(G_1)).
\]

Such a clone is easily found: let \(k = L(V(H_1)) \), and take the clone of \(\phi(y) \) on level \(k + 1 \) with exactly this neighbourhood in \(L^{(\leq k)}(\uparrow H) \). Then \(V(H_1) \cup \{ z \} \) induces a good subgraph of \(\uparrow H \) and, by minimality of \(x \), \(V(G_1) \cup \{ x \} \) induces a good subgraph of \(\uparrow G \). We can therefore extend \(\phi \) by setting \(\phi(x) = z \). Repeating the construction in alternate directions we clearly obtain an isomorphism between \(\uparrow G \) and \(\uparrow H \).

We shall say that a vertex \(x \) of a graph \(G \) is \textit{inessential} if there exists \(y \in V(G) \), \(y \neq x \) such that \(N(x) \subseteq N[y] \). A graph is \textit{essential} if it contains no inessential vertices. Given a graph \(G \), a sequence of vertices \(x_1, \ldots, x_k \) is a \textit{maximal sequence of removals} if \(x_i \) is inessential in \(G \setminus \{ x_1, \ldots, x_{i-1} \} \) for each \(i \), and \(G \setminus \{ x_1, \ldots, x_k \} \) is an essential graph.

We shall show below that every maximal sequence of removals yields the same essential graph (up to isomorphism). However, we first prove a simple lemma. We say that two vertices \(x \) and \(y \) in a graph \(G \) are \textit{equivalent} if \(N(x) = N(y) \) or \(N(x) \subseteq N[y] \). Equivalently, \(N(x) \subseteq N[y] \) and \(N(y) \subseteq N[x] \). Clearly, if \(x \) and \(y \) are equivalent in \(G \) then \(G \setminus x \cong G \setminus y \), with the obvious isomorphism given by exchanging \(x \) for \(y \) and leaving the other vertices fixed.

Equivalent vertices play an important role in the removal of inessential vertices.

\textbf{Lemma 7.} Suppose that \(x \) and \(y \) are inessential in a graph \(G \), but \(x \) is not inessential in \(G \setminus y \). Then \(x \) and \(y \) are equivalent.

\textit{Proof.} Note first that since \(x \) and \(y \) are inessential in \(G \), there are \(x' \) and \(y' \) such that \(N(x) \subseteq N[x'] \) and \(N(y) \subseteq N[y'] \). If \(x' \neq y \) then considering the vertex \(x' \) in \(G \setminus y \) shows that \(x \) is inessential in \(G \setminus y \), a contradiction. So \(x' = y \), and \(N(x) \subseteq N[y] \).

Now consider \(y' \). If \(y' \neq x \) then \(N(x) \subseteq N[y] = \{ y \} \cup N(y) \subseteq \{ y \} \cup N[y'] \) implies that \(N(x) \setminus y \subseteq N[y'] \), and so \(y' \) shows that \(x \) is inessential in \(G \setminus y \), a contradiction. Thus we have \(y' = x \), and so \(N(y) \subseteq N[x] \). It follows that \(x \) and \(y \) are equivalent. \(\square \)
We now show that maximal sequences of removals define a unique graph up to isomorphism.

Theorem 8. Suppose that \(x_1, \ldots, x_k \) and \(y_1, \ldots, y_l \) are two maximal sequences of removals in a finite graph \(G \). Then \(G \setminus \{x_1, \ldots, x_k\} \cong G \setminus \{y_1, \ldots, y_l\} \).

Proof. We claim that we can modify the sequence \(\{y_1, \ldots, y_l\} \) to obtain the sequence \(\{x_1, \ldots, x_k\} \) without changing the isomorphism type of the resulting essential graph \(G \setminus \{y_1, \ldots, y_l\} \).

Suppose first that \(x_1 \notin \{y_1, \ldots, y_l\} \). Then (by maximality) \(x_1 \) is inessential in \(G \) but not in \(G \setminus \{y_1, \ldots, y_l\} \). Let \(i \) be maximal such that \(x_1 \) is inessential in \(G \setminus \{y_1, \ldots, y_i\} \). Then, by Lemma 7, \(x_1 \) and \(y_{i+1} \) are equivalent in \(G \setminus \{y_1, \ldots, y_i\} \), and so we can replace \(y_{i+1} \) by \(x_1 \) in the sequence \(y_1, \ldots, y_l \), without effecting the isomorphism type of \(G \setminus \{y_1, \ldots, y_l\} \) (the isomorphism is given by exchanging \(x_1 \) and \(y_{i+1} \)). We may therefore assume that \(x_1 \in \{y_1, \ldots, y_l\} \).

We now show that we can modify \(y_1, \ldots, y_l \) so that \(y_1 = x_1 \). Suppose that \(x_1 = y_{i+1} \) for some \(i \geq 1 \). If there exists some \(0 \leq j < i - 1 \) such that \(x_1 \) is inessential in \(G \setminus \{y_1, \ldots, y_j\} \) and not in \(G \setminus \{y_1, \ldots, y_{j+1}\} \), Lemma 7 implies that \(x_1 \) and \(y_{j+1} \) are equivalent in \(G \setminus \{y_1, \ldots, y_j\} \). Therefore we can exchange them in the sequence. We can repeat this operation as long as such an integer \(j \) exists, and thus we can assume that \(x_1 = y_{i+1} \) is inessential in \(G \setminus \{y_1, \ldots, y_j\} \) for all \(j \leq i \). Now, if \(y_i \) is not inessential in \(G \setminus \{y_1, \ldots, y_{i-1}, x_1\} \) then (as it is inessential in \(G \setminus \{y_1, \ldots, y_{i-1}\} \)) Lemma 7 shows that \(x_1 \) and \(y_i \) are equivalent in \(G \setminus \{y_1, \ldots, y_{i-1}\} \). It is clear that we may therefore exchange \(y_i \) and \(y_{i+1} = x_1 \) in the sequence \(y_1, \ldots, y_l \). Repeating this argument, we move \(x_1 \) forward in the sequence \(y_1, \ldots, y_l \) until \(x_1 = y_1 \).

Finally, if \(x_1 = y_1 \), we can work instead with the graph \(G \setminus x_1 \) and the sequences \(x_2, \ldots, x_k \) and \(y_2, \ldots, y_l \), continuing until one (and hence both) of the sequences is exhausted. \(\square \)

We shall denote the (isomorphism type of the) subgraph of \(G \) obtained by deleting a maximal sequence of removals \(\downarrow G \). For instance, \(\downarrow K_n = \downarrow C_4 = K_1 \), but \(\downarrow C_k = C_k \) for all \(k \geq 5 \).

We next show that inessential vertices have no effect on limit graphs.

Corollary 9. Let \(G \) be a finite graph and \(x \) an inessential vertex of \(G \). Then \(\uparrow G \cong \uparrow (G \setminus x) \)
Proof. Let $H = G \setminus x$. Since x is inessential, there exists y in G such that $N(x) \subseteq N[y]$ in G. In $\uparrow H$, y has a clone x' such that $N^{-1}(x') = N(x) \cap V(G)$. Clearly $G_1 = G$ is a good subgraph of $\uparrow G$ and $V(H) \cup \{x'\}$ induces a good subgraph H_1 of $\uparrow H$. Thus it suffices to apply Theorem 6 to G_1 and H_1. \qed

Corollary 9 implies the following theorem.

Theorem 10. Let G be a finite graph. Then $\uparrow G \cong \uparrow (\downarrow G)$

If H is an induced subgraph of $\uparrow G$, then we define two kinds of transformations on this subgraph, called reductions.

(i) Delete an inessential vertex of H.

(ii) For a pair of vertices $x \in V(H)$ and $y \notin V(H)$ with $N(x) \cap V(H) \subseteq N(y) \cap V(H)$, replace H by the subgraph of $\uparrow G$ induced by $(V(H) \setminus x) \cup \{y\}$.

Lemma 11. If H is a finite induced subgraph of $\uparrow G$, it is possible to apply a sequence of reductions to transform H into a subgraph of G.

Proof. Define the weight $w(H')$ of an induced subgraph of $\uparrow G$ by

$$w(H') = \sum_{v \in V(H')} L(v).$$

If $w(H) = 0$ then H is a subgraph of G. If $w(H) > 0$, then we look for a reduction that decreases the weight or the number of vertices. If H contains an inessential vertex, then delete it (this can occur at most $|H| - 1$ times). Otherwise, let $x \in V(H)$ be a vertex of highest level. Then $N(x) \cap V(H) = N(x) \cap V(H) \cap L^{<L(x)}(\uparrow G)$, as $L(L(x))(\uparrow G)$ is an independent set. Since x was built at level $L(x)$ as the clone of some vertex y that satisfies $N(x) \cap V(H) \cap L^{<L(x)}(\uparrow G) \subseteq N[y] \cap V(H)$ and $L(y) < L(x)$, we can replace x by y, to obtain H' with $w(H') < w(H)$. Repeating this process, we eventually obtain an induced subgraph of $\uparrow G$ with weight 0 which, as already noted, is a subgraph of G. \qed

We are now ready to prove our main result.

Theorem 12. Let G and H be finite graphs. Then $\uparrow G \cong \uparrow H \iff \downarrow G \cong \downarrow H$
Proof. By Theorem 10, we may assume that G and H do not contain any inessential vertices, that is $\downarrow G = G$ and $\downarrow H = H$. Suppose that $\uparrow G \cong \uparrow H$, and fix an isomorphism.

Let $\{1, 2, \ldots, n\}$ be the vertices of G. We partition the vertices of $\uparrow G$ into n classes in the following way. For $i = 1, \ldots, n$, let $A_{i,0} = \{i\}$, and for $j \geq 1$, let $A_{i,j}$ be the vertices of $\uparrow G$ which are clones of vertices in $A_{i,j-1}$. We then define $A_i = \bigcup_{j=0}^{\infty} A_{i,j}$. Thus A_i is the smallest set of vertices containing i and closed under taking clones. It is easy to see that, for $i \neq k$, there is an edge between class A_i and A_k if and only if there is an edge between i and k (as creating a clone cannot create adjacencies between a new pair of classes). We shall say that edges between classes respect G.

Now consider an isomorphic embedding ϕ of G into $\uparrow G$. We say that ϕ is good if $\phi(i) \in A_i$ for every $i \in V(G)$. Suppose that ϕ is good and let G' be the image of G under ϕ. If we apply a type (ii) reduction to some vertex of G', say $v_i := \phi(i)$, then it is replaced by a vertex x such that $N(x) \cap V(G') \supseteq N(v_i) \cap V(G')$. Let A_j be the class containing x. Since ϕ is good, there is an edge between A_j and A_k whenever $k \in N(i)$. Since edges between classes respect G, this implies $N[j] \supseteq N(i)$. But since we assumed that G contains no inessential vertices, this is possible only if $i = j$. Indeed, $N(x) \cap V(G') = N(v_i) \cap V(G')$, or else we would introduce edges between new pairs of classes. It follows that we obtain a good embedding ϕ' of G by setting $\phi'(i) = x$ and $\phi'(j) = \phi(j)$ otherwise. This remains true for any sequence of reductions starting from a good embedding. In particular, any sequence of reductions starting from G produces an induced copy of G (note that reductions of type (i) are not possible at any stage).

By Lemma 11, any induced subgraph of $\uparrow H$ isomorphic to G can be reduced to a subgraph of H. It follows that G must be isomorphic to a subgraph of H. Arguing similarly the other way round, we see that H is isomorphic to a subgraph of G, and so $G \cong H$. \hfill \Box

Now it is clear that $\uparrow G$ is not independent of G: it suffices to consider two circuits of different length (larger than 4). In fact, Theorem 12 immediately gives the following classification of possible limit graphs.

Corollary 13. The isomorphism classes of limit graphs $\uparrow G$ of finite graphs G are in bijective correspondence with the class of essential finite graphs.
4 Inexhaustibility

A graph G is *inexhaustible* if $G \setminus x \cong G$ for every vertex $x \in V(G)$. For instance, the infinite complete graph K_ω and its complement are trivially inexhaustible; the Rado graph \mathcal{R} is also inexhaustible. On the other hand, the infinite two-way path is not inexhaustible, as deleting any vertex increases the number of components. For results on inexhaustible graphs, see Pouzet [7], El-Zahar and Sauer [6] and Bonato and Delić [2].

Bonato and Janssen [3] consider the inexhaustibility of infinite graphs satisfying various properties, and claim a rather general result. Let us define two properties of (infinite) graphs as follows. We say that a graph G has Property A if it satisfies the following condition.

(A) For every vertex x of G, every finite $X \subseteq N[x]$, and every finite $Y \subseteq V(G) \setminus X$, there is a vertex $z \notin X \cup Y$ such that $X \subseteq N(z)$ and $Y \cap N(z) = \emptyset$,

and G has Property B if it satisfies the following.

(B) For every vertex x of G, every finite $X \subseteq N(x)$, and every finite $Y \subseteq V(G) \setminus X$, there is a vertex $z \notin X \cup Y$ such that $X \subseteq N(z)$ and $Y \cap N(z) = \emptyset$.

Note that the only difference between (A) and (B) is that (A) is concerned with closed neighbourhoods, while (B) is only concerned with neighbourhoods. Clearly Property A implies Property B; furthermore, for any finite G, it is clear from the constructive step [E2] that $\uparrow G$ has Property A (and therefore Property B).

Bonato and Janssen ([3], Theorem 4.1) claim that every graph with Property B is inexhaustible. However, there is a simple counterexample to this assertion: let G be the Rado graph \mathcal{R} with an additional isolated vertex x. Since the Rado graph is connected, and G is not, it is clear that $G \setminus x \not\cong G$. (The proof of Bonato and Janssen in [3] appears to fail with the definition of their sets S_i.)

In fact, even the stronger Property A does not imply that a graph is inexhaustible. Consider the graph G defined by starting from the path $x_1x_2x_3x_4$ of length 3, and alternating the pure extension construction [E2] with the following step.

[E3] For every pair of vertices $\{x, y\} \neq \{x_1, x_4\}$, add a vertex z with $N(z) = \{x, y\}$.

Note that x_1 and x_4 are at distance 3 in the initial graph. The pure extension step [E2] does not change the distance between vertices, while [E3] does not create a path of length 2 from x_1 to x_4. Thus x_1 and x_4 are at distance 3 in the limit graph. On the other hand, there are infinitely many paths of length 2 between any other pair of vertices. Thus $G \setminus \{x_1, x_4\} \not\cong G$, and so G cannot be inexhaustible (if G is inexhaustible, then clearly $G \setminus X \cong G$ for every finite $X \subseteq V(G)$).

On the positive side, we can show that for any finite G, the limit graph $\uparrow G$ is actually inexhaustible.

Theorem 14. For every finite graph G, $\uparrow G$ is inexhaustible.

Proof. Let v be any vertex of $\uparrow G$. We shall show that $\uparrow G \cong (\uparrow G) \setminus v$. Note that since $\uparrow G \cong \uparrow PE^L(v)(G)$, we can replace G by $PE^L(v)(G)$, and so we may assume that $v \in V(G)$.

On the first level above G, v has a clone v' with $N(v) \cap G = N(v') \cap G$. Thus we have an isomorphism between $G_1 = G$ and $G_2 = G \setminus v \cup \{v'\}$. It is clear that G_1 and $G_2 \cup \{v\}$ are good subgraphs. We will extend this isomorphism by a ‘back and forth’ argument.

Suppose we are given a partial isomorphism ϕ between two subgraphs G_1 and G_2 of $\uparrow G$, with the following properties:

1. G_1 and $G_2 \cup \{v\}$ are good subgraphs of $\uparrow G$

2. $V(G) \subseteq V(G_1)$, $V(G) \setminus v \subseteq V(G_2)$ and $v \not\in V(G_2)$

3. There is a vertex $\bar{v} \in V(G_2)$ such that $N(v) \cap V(G_2) \subseteq N(\bar{v}) \cap V(G_2)$

The vertex \bar{v} (in the third property) will change at each step of our construction. We begin by setting $\bar{v} = v'$, and note that our initial G_1 and G_2 satisfy the conditions above.

Let $x \in V(\uparrow G)$ be a vertex of minimal level with $x \not\in V(G_1)$. This property implies that $N^-(x) \subseteq V(G_1)$ and so $G_1 \cup \{x\}$ is still a good graph. By Lemma 5, there exists $y \in V(G_1)$ such that $N(x) \cap V(G_1) \subseteq N[y] \cap V(G_1)$ and we can define $\phi(x)$ by taking a clone of $\phi(y)$ of level greater than $L(V(G_1) \cup V(G_2))$ such that

$$N^-(\phi(x)) = N(\phi(x)) \cap V(G_2) = \phi(N(x) \cap V(G_1)).$$

This extends the isomorphism, implies that $G_2 \cup \{\phi(x), v\}$ is still a good graph and that the vertex \bar{v} still satisfies the desired property.
We now go in the opposite direction. Let z be a vertex of minimal level with $z \notin V(G_2) \cup \{v\}$: we attempt to define $\phi^{-1}(z)$.

We distinguish two cases:

- $zv \notin E(\uparrow G)$, or $zv \in E(\uparrow G)$ and $z\tilde{v} \in E(\uparrow G)$.

As before, we can apply Lemma 5 to get $y \in V(G_2) \cup \{v\}$ such that $N(z) \cap V(G_2) \subseteq N[y] \cap V(G_2)$. If $y = v$, we can instead choose $y = \tilde{v}$. We can then define $\phi^{-1}(z)$ as previously to be a suitable clone of $\phi^{-1}(y)$.

- $zv \in E(\uparrow G)$ and $z\tilde{v} \notin E(\uparrow G)$.

In this case we will have to change \tilde{v}, because we want the condition $N(v) \cap V(G_2) \subseteq N(\tilde{v}) \cap V(G_2)$ to hold after adding z to G_2. Let w be a clone of v such that $L(w) > L(V(G_1) \cup V(G_2))$ and $N^-(w) = (N(v) \cap V(G_2)) \cup \{z\}$. Such a vertex exists, since z is a neighbour of v.

The only reason why the subgraph induced by $V(G_2) \cup \{v, w\}$ might not be a good graph is the edge zw. We therefore extend the isomorphism to $G_2 \cup \{z, v\}$. Since G_2 is a good graph, we can use Lemma 5 as before to first extend the isomorphism to z. Since, by minimality of z, the subgraph induced by $V(G_2) \cup \{z, v\}$ is also a good graph, we can use Lemma 5 again to extend the isomorphism to w. Finally, the definition of w implies that $G_2 \cup \{z, w, v\}$ is a good graph, and we can choose the new \tilde{v} to be w, as it satisfies the desired property.

Repeating the argument gives, in the limit, an isomorphism between $\uparrow G$ and $(\uparrow G) \setminus v$. \hfill \Box

References

