Journal article
Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds
- Abstract:
-
Let X be a Calabi-Yau 3-fold, T=D^b(coh(X)) the derived category of coherent sheaves on X, and Stab(T) the complex manifold of Bridgeland stability conditions Z on T. It is conjectured that one can define rational numbers J^a(Z) for Z in Stab(T) and a in the numerical Grothendieck group K(T) generalizing Donaldson-Thomas invariants, which `count' Z-semistable (complexes of) coherent sheaves on X in class a, and whose transformation law under change of Z is known. This paper explains how to ...
Expand abstract
- Publication status:
- Published
Actions
Authors
Bibliographic Details
- Journal:
- Geom. Topol.
- Volume:
- 11
- Pages:
- 667-725
- Publication date:
- 2006-07-06
- DOI:
- EISSN:
-
1364-0380
- ISSN:
-
1364-0380
- Source identifiers:
-
29804
Item Description
Terms of use
- Copyright date:
- 2006
- Notes:
- 46 pages
If you are the owner of this record, you can report an update to it here: Report update to this record