Journal article icon

Journal article

Closed‐loop parameter optimisation for patient‐specific phrenic nerve stimulation

Abstract:

Background: Ventilator-induced diaphragm dysfunction occurs rapidly following the onset of mechanical ventilation and has significant clinical consequences. Phrenic nerve stimulation has shown promise in maintaining diaphragm function by inducing diaphragm contractions. Non-invasive stimulation is an attractive option as it minimizes the procedural risks associated with invasive approaches. However, this method is limited by sensitivity to electrode position and inter-individual variability in stimulation thresholds. This makes clinical application challenging due to potentially time-consuming calibration processes to achieve reliable stimulation.

Methods: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. A closed-loop system recorded the respiratory flow produced by stimulation and automatically adjusted the electrode position and stimulation amplitude based on the respiratory response. By iterating over electrodes, the optimal electrode was selected. A binary search method over stimulation amplitudes was then employed to determine an individualized stimulation threshold. Pulse trains above this threshold were delivered to produce diaphragm contraction.

Results: Nine healthy volunteers were recruited. Mean threshold stimulation amplitude was 36.17 ± 14.34 mA (range 19.38–59.06 mA). The threshold amplitude for reliable nerve capture was moderately correlated with BMI (Pearson's r = 0.66, p = 0.049). Repeating threshold measurements within subjects demonstrated low intra-subject variability of 2.15 ± 1.61 mA between maximum and minimum thresholds on repeated trials. Bilateral stimulation with individually optimized parameters generated reliable diaphragm contraction, resulting in significant inhaled volumes following stimulation.

Conclusion: We demonstrate the feasibility of a system for automatic optimization of electrode position and stimulation parameters using a closed-loop system. This opens the possibility of easily deployable individualized stimulation in the intensive care setting to reduce ventilator-induced diaphragm dysfunction.

Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1111/aor.14593

Authors


More by this author
Role:
Author
ORCID:
0000-0001-6549-5460


Publisher:
Wiley
Journal:
Artificial Organs More from this journal
Volume:
48
Issue:
3
Pages:
274-284
Publication date:
2023-06-14
Acceptance date:
2023-05-25
DOI:
EISSN:
1525-1594
ISSN:
0160-564X


Language:
English
Keywords:
Pubs id:
1357408
Local pid:
pubs:1357408
Deposit date:
2023-06-07

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP