A comment on “Amplification of endpoint structure for new particle mass measurement at the LHC”

A. J. Barra, C. Gwenlana, C.G. Lesterb, C. J. S. Younga.

aDept. of Particle Physics, Oxford University

bDepartment of Physics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

October 28, 2012

Abstract

We present a comment on the kinematic variable \(m_{\text{CT}2} \) recently proposed in \cite{1}. The variable is designed to be applied to models such as \(R \)-parity conserving Supersymmetry (SUSY) when there is pair production of new heavy particles each of which decays to a single massless visible and a massive invisible component. It was proposed in \cite{1} that a measurement of the peak of the \(m_{\text{CT}2} \) distribution could be used to precisely constrain the masses of the SUSY particles. We show that when Standard Model backgrounds are included in simulations, the sensitivity of the \(m_{\text{CT}2} \) variable to the SUSY particle masses is more seriously impacted for \(m_{\text{CT}2} \) than for other previously proposed variables.

If new physics is discovered at the Large Hadron Collider (LHC) \cite{2} we will wish to measure the masses of any new particles discovered. Several methods of measuring the masses of such new particles have been suggested (for a recent review see \cite{3}).

Here we comment on the mass measurement variable \(m_{\text{CT}2} \) recently proposed by Cho et al. \cite{1}. The variable introduced in that paper was employed to constrain the participating particles’ masses for events characterised by pair production of identical-mass heavy particles, \(Y \), each of which decays to a massive invisible \(\chi_0(p) \) and a single massless visible \(v(p) \) daughter, where the symbols in brackets label the momenta.

The experimental signature for this process

\[
\begin{align*}
q\bar{q}, gg & \rightarrow Y^{(1)} \bar{Y}^{(2)} \\
Y^{(i)} & \rightarrow \chi_0^{(i)}(p^{(i)}) + v(p^{(i)})
\end{align*}
\]

is therefore two visible particles (in this paper we assume these to be jets and those jets to be massless) and large missing momentum.

Cho et al. suggest constraining the masses by measuring the distribution of the variable \cite{1} \footnote{\(m_{\text{CT}} \) was originally proposed in \cite{4} for the case where both momenta correspond to visible particles and was motivated by particular invariance properties under back-to-back boosts in the transverse plane. The use of \(m_{\text{CT}} \) for the case where one input corresponds to a visible particle, but the other represents the hypothesised momentum of an invisible particle was an innovation of \cite{1}.}

\[
m_{\text{CT}2}(p_T^{(1)}, p_T^{(2)}, \bar{p}_T, \chi) \equiv \min_{\sum \theta_i^{(1)} = \bar{p}_T} \left(\max \left(m_{\text{CT}}(p_T^{(1)}, \theta_1^{(1)}), m_{\text{CT}}(p_T^{(2)}, \theta_2^{(2)}) \right) \right).
\]

This variable is a novel amalgam of two methods previously described in the literature. The procedure of minimising the larger of two quantities — over all partitions of the invisible particles’ transverse momenta consistent with the missing transverse momentum \(\bar{p}_T \) — has its origins in the ‘stransverse mass’ of \cite{4, 5}. However, whereas \cite{4, 5} take the larger of the two transverse masses \(m_T \) for each \(Y \) decay, in \cite{2} the quantities being evaluated at each possible partition of \(\bar{p}_T \) are the \textit{contransverse} mass functions \(m_{\text{CT}} \). These are defined (for \(m_v = 0 \)) by

\[
m_{\text{CT}}^2(p_T, \theta_T, \chi) = \chi^2 + 2E(p_T, 0)E(\theta_T, \chi) + 2p_T \cdot \theta_T,
\]

where the transverse energy of a particle with transverse momentum \(p_T \) and mass \(m \) is given by \(E(p_T, m) = \sqrt{p_T^2 + m^2} \), and \(\chi \) is a trial value for the \textit{(a priori unknown)} mass of the invisible particle. The + sign in front of the inner product of the momenta in \cite{5} distinguishes \(m_{\text{CT}} \) from the usual transverse mass.

The already bloated dictionary of transverse mass variable names is stretched nearer to (or perhaps beyond) breaking point by the addition of the term \textit{constransverse mass} for the quantity defined in \cite{2}.

It was suggested in \cite{1} that by measuring the kinematic end-point of the \(m_{\text{CT}2} \) distribution it should be possible to determine the mass of the parent particle \(Y \) accurately. This assertion is based on the observation \cite{1}

\[
\begin{align*}
\text{if } & \quad m_{\text{CT}}(p_T^{(1)}, \theta_1^{(1)}), m_{\text{CT}}(p_T^{(2)}, \theta_2^{(2)}) \\
\text{then } & \quad \chi = \sqrt{\sum \theta_i^{(1)} \cdot \sum \theta_i^{(2)}}
\end{align*}
\]
that under the condition\(^3\)

\[\psi_T = -p_T^{(1)} - p_T^{(2)}. \] (4)

the distribution of \(m_{CT2} \) is highly peaked at its maximal value (under that same condition),

\[(m_{CT2}^{\text{max}})^2 = \chi^2 + 2(E_T(p_0, \chi)|p_0| - |p_0|^2), \] (5)

where \(|p_0| \) is the absolute momentum of the daughter particle in the rest frame of the parent\(^4\).

The central observation of \([1]\) is that the \(m_{CT2} \) distribution has a sharply defined Jacobian peak at its kinematic endpoint \([5]\), so a good measurement of that endpoint position could provide a precise constraint on the parent particle mass. This statement is founded on the reasonable expectation that the systematic uncertainty in fitting a sharp peak ought to be smaller than in fitting other distributions which tend to have smaller numbers of events near their kinematic endpoints.

We perform simulations similar to those in \([1]\) but including the most important Standard Model backgrounds. We find that those backgrounds are peaked in the same region as the signal, so play a much more significant role for the process of interest \([1]\) than might be inferred from \([1]\). The end-point value \([5]\) is relatively insensitive to the physical parameter \(|p_0| \), so a rather precise measurement of the peak position would be required to constrain the parent particle masses. We suggest that fitting the endpoint position with the required precision is likely to be difficult when the systematic effect from uncertain residual Standard Model backgrounds is taken into account.

As is highlighted in \([1]\), a judicious choice of \(\chi \) is needed if the distribution of \(m_{CT2} \) is to be sensitive to the particle masses. Cho et al. show that if one selects a value \(\chi \gg |p_0| \) one loses the sharp peak in the \(m_{CT2} \) distribution.

The variation of the endpoint position \(\delta m_{CT2}^{\text{max}} \) with respect to \(|p_0| \) is

\[\frac{\delta m_{CT2}^{\text{max}}}{\delta |p_0|} = \frac{(m_{CT2}^{\text{max}})^2 - \chi^2)^2}{4m_{CT2}^{\text{max}}E_T(p_0, \chi)|p_0|^2}. \] (6)

so if one chooses the other extreme with \(\chi \ll |p_0| \), then

\[(m_{CT2}^{\text{max}})^2 \approx 2\chi^2 \left(1 - \frac{1}{8} \frac{\chi^2}{|p_0|^2} \right), \] (7)

which has very limited sensitivity to the physical parameter \(|p_0| \). Therefore the value of \(\chi \) that ought to be chosen should be close to \(|p_0| \) (rather than for example the true invisible particle mass). For \(\chi/|p_0| = \{0.5, 1, 1.5\} \), \(m_{CT2}^{\text{max}} \approx \{0.02, 0.1, 0.2\} \) respectively. As was recognised in \([1]\), even with a well-tuned \(\chi \) the peak position does not vary much with \(|p_0| \) so an accurate and precise measurement of \(m_{CT2}^{\text{max}} \) is required to constrain \(|p_0| \) (and from it the particle masses).

To study the effect that Standard Model backgrounds might have on the method proposed, we use a simulation similar to that described in \([1]\) including a parameterised detector response typical of a general-purpose LHC detector. Herwig++ 2.4.2 \([6]\) is used to produce samples of the following Standard Model backgrounds: QCD, \(t\bar{t} \), \(W \to \nu\bar{\nu}\) plus jets, \(Z \to l^+l^-\) plus jets and \(Z \to \nu\nu\) plus jets for proton-proton collisions at centre of mass energy 7 TeV. For a signal we use inclusive production of the SPS1a supersymmetry benchmark point \([10]\) with the spectrum and decay table calculated by SPheno 2.2.3 \([11]\). Jets are formed and smeared following the same procedure as described in \([7]\).

The expected peaking of the \(m_{CT2}(\chi = 300 \text{ GeV}) \) variable can be seen in Fig. 1(a) after applying only minimal selection cuts requiring at least two jets with \(p_T > 50 \text{ GeV} \) and with pseudorapidity, \(|\eta| < 2.5 \). We have chosen \(\chi = 300 \text{ GeV} \), close to \(p_0 \) (which ranges from 240 GeV to \(|p_0| \lesssim 300 \text{ GeV} \) depending on which squark mass is used). In the region of the SUSY signal, it can be seen that the Standard Model backgrounds are large.

It can also be seen from Fig. 1(a) that the dependence of the position of the peak in the \(m_{CT2} \) distribution on the physical parameter \(|p_0| \) that one is trying to measure is very small. This is shown by the different coloured arrows on that plot indicating expected signal peak positions corresponding to different parent particle masses. Even with large variations in the parent particle mass (up to 100%) little variation in the peak position is seen. This means that a very precise determination of the peak position would be required in order to get sensitivity to the parent particle mass\(^5\).

In Fig. 1(b) we show the \(m_{CT2}(\chi = 300 \text{ GeV}) \) distribution after the application of more selective SUSY cuts \([12]\) proposed by ATLAS. The backgrounds appear reduced but are still significant in the signal region, and they have a peaked structure similar to the signal. These backgrounds will therefore have to be well-understood for the successful extraction of the signal shape.

As was pointed out in \([1]\) it is possible to sharpen the end-point structure of the \(m_{CT2} \) distribution by selecting a subset of events for which the ‘upstream momentum’ is small; i.e. those for which \([13]\) is approximately satisfied. In Fig. 1(c) we show the \(m_{CT2} \) distribution after

\(^3\)For a two body decay \(|p_0| = \left((m_Y^{\text{true}})^2 - (m_Y^{\text{true}})^2 \right) / 2m_Y^{\text{true}} \) where \(m_Y^{\text{true}} \) and \(m_Y^{\text{true}} \) are the true masses of the parent and daughter SUSY particles respectively.

\(^4\)This is also true for other values of \(\chi \).
an additional selection requiring $|\delta| < 30$ GeV where the upstream momentum $\delta = -p_T^{(1)} - p_T^{(2)}$. The m_{CT2} endpoint position becomes better defined when this additional requirement is applied, but at the cost of a factor of ~ 10 in number of events, and even then the residual backgrounds are still not negligible (given the precision in the endpoint position that is required).

To investigate the effect of the Standard Model background on the precision with which $|p_0|$ can be determined we parameterised separately the signal s and the background b distributions from Fig. 1(c) by two-part piecewise Gaussian functions,

$$G(\mu^{s,b}, \sigma^{s,b}_1) : (x > \mu^{s,b}) \land G(\mu^{s,b}, \sigma^{s,b}_2) : (x < \mu^{s,b}).$$

Even with a high cross section SUSY model (such as the SPS1a point shown) a significant increase in the statistical uncertainty is found when the backgrounds are introduced. We also investigated the case when the SUSY cross-section is a fraction of that of the background b distributions from Fig. 1(c) by two-part piecewise Gaussian functions,

$$G(\mu^{s,b}, \sigma^{s,b}_1) : (x > \mu^{s,b}) \land G(\mu^{s,b}, \sigma^{s,b}_2) : (x < \mu^{s,b}).$$

Even with a high cross section SUSY model (such as the SPS1a point shown) a significant increase in the statistical uncertainty is found when the backgrounds are introduced. We also investigated the case when the SUSY cross-section is a fraction of that of the background b distributions from Fig. 1(c) by two-part piecewise Gaussian functions,

$$G(\mu^{s,b}, \sigma^{s,b}_1) : (x > \mu^{s,b}) \land G(\mu^{s,b}, \sigma^{s,b}_2) : (x < \mu^{s,b}).$$

In conclusion, while it is true that the sharply peaked nature of the m_{CT2} endpoint the m_{CT2} distribution shows more promise for the signal point investigated (Fig. 1(f)). In this paper the sum is over the two jets with the largest transverse momenta. Since heavy particles are produced near threshold, the effective mass is expected to have an endpoint around

$$m_{CT2}^\text{max} = 4|p_0|.$$

It can be seen from Fig. 1(e) that in contrast to m_{CT2}, the m_{eff} endpoint is at a value for which the Standard Model background is small and that its characteristic value changes rapidly as a function of $|p_0|$.

In conclusion, while it is true that the sharply peaked nature of the signal in the m_{CT2} distribution may lead to lower systematic errors in the fitting procedure, there are large backgrounds from Standard Model processes which also peak near this region. These backgrounds together with the weak dependence of the peak position on the physical parameter $|p_0|$ suggest that mass measurement using this variable will be difficult. We suggest that for the decay process studied here, other existing mass measurement variables show more promising characteristics for SUSY mass measurement.

References

(a) $m_{CT2}(\chi = 300 \text{GeV})$ distribution with just the dijet cuts applied.

(b) $m_{CT2}(\chi = 300 \text{GeV})$ distribution after the cuts of [12].

(c) $m_{CT2}(\chi = 300 \text{GeV})$ distribution after the cuts of [12] and an additional cut requiring $|\delta| < 30 \text{GeV}.$

(d) $m_{T2}(\chi = 0)$ distribution with just the dijet cuts applied.

(e) $m_{\tilde{\nu}}$ distribution after the cuts of [12].

(f) $m_{T2}(\chi = 0)$ distribution after the cuts of [12] and an additional cut requiring $|\delta| < 30 \text{GeV}.$

Figure 1: Results of the simulation described in the text for the SPS1a SUSY benchmark point and various backgrounds. For this signal point the squark masses are in the range $500 \lesssim m_{\tilde{q}} \lesssim 600 \text{GeV},$ the gluino mass is close to 600 GeV and the lightest neutralino mass is 97 GeV. The green (solid), blue (dotted) and red (dashed) arrows along the bottom of the plots show positions of the peaks [5] or end-points [10] [12] the distributions would be expected to have (under the condition [11]) for processes with masses $(m_{Y'} = 500 \text{GeV}, m_{\chi} = 97 \text{GeV}), (m_{Y'} = 1.1m_{Y}, m_{\chi})$ and $(m_{Y'} = 2m_{Y}, m_{\chi})$ respectively. (The green and blue arrows lie almost on top of one another in the m_{CT2} plots). All plots correspond to integrated luminosity of 1 fb$^{-1}.$