Abstract

In this paper, we present an algorithm and a tool for computing minimal, equivalent \(\mathcal{EL}\) concepts wrt. a given ontology. Our tool can provide valuable support in manual development of ontologies and improve the quality of ontologies automatically generated by processes such as uniform interpolation, ontology learning, rewriting ontologies into simpler DLs, abduction and knowledge revision. Deciding whether there exist equivalent \(\mathcal{EL}\) concepts of size less than \(k\) is known to be an NP-complete problem. We propose a minimisation algorithm that achieves reasonable computational performance also for larger ontologies and complex concepts. We evaluate our tool on several bio-medical ontologies with promising results.

Introduction

Logics allow equivalent facts to be expressed in many different ways. The fact that ontologies are developed by a number of different people and grow over time can lead to concepts that are more complex than necessary. For example, below is a simplified definition of the medical concept \textit{Clotting} from the Galen ontology (Rector et al. 1994):

\[
\text{Clotting} \equiv \exists \text{actsSpecificallyOn.} \\
(\text{Blood} \sqcap \exists \text{hasPhysicalState.} \\
(\text{PhysicalState} \sqcap \exists \text{hasState.Liquid})) \sqcap \\
\exists \text{hasOutcome.SolidBlood})
\]

Galen also defines concepts \textit{LiquidBlood} and \textit{LiquidState} by means of the following axioms:

\[
\text{LiquidBlood} \equiv \text{Blood} \sqcap \exists \text{hasPhysicalState.LiquidBlood} \\
\text{LiquidState} \equiv \text{PhysicalState} \sqcap \exists \text{hasState.Liquid}
\]

Using these two concepts, we can find a more concise definition for \textit{Clotting} and replace the initial one while preserving all logical consequences of the ontology:

\[
\text{Clotting} \equiv \exists \text{actsSpecificallyOn.LiquidBlood} \sqcap \\
\exists \text{hasOutcome.SolidBlood}
\]

The two definitions of \textit{Clotting} differ in various aspects. In addition to the fact that they use different sets of terms, we observe that the first is \textit{structurally more complex} -- it contains more occurrences of logical constructs such as intersection and existential quantification. Furthermore, we notice that the first definition introduces redundancy within the ontology. Both unnecessary structural complexity and redundancy complicate the maintenance of the ontology and hinder understanding.

Unnecessary structural complexity and redundancy are not unique to hand-crafted ontologies. On the contrary, they are a common side effect of processes that generate ontologies and concept expressions automatically. Examples of such processes include computing least common subsumers (Turhan and Zarrieß 2013), concept unification (Baader et al. 2012), uniform interpolation (Nikitina and Rudolph 2012; Lutz et al. 2012), ontology learning (Konev et al. 2016; Lehmann and Hitzler 2010), rewriting ontologies into less expressive logics (Carral et al. 2014; Lutz et al. 2011), abduction (Du et al. 2015; Klarman et al. 2011), and knowledge revision (Grau et al. 2012; Qi et al. 2006). Usually, such tools rely on heuristics that reduce the amount of redundancy within generated concepts.

In this paper, we present a method that can entirely eliminate redundancy from \(\mathcal{EL}\) concepts by computing equivalent concepts of minimal size, where concept size is defined as the number of occurrences of concept and role symbols. While approaches to related problems exist, including computing minimal subsets of ontologies (Grimm and Wissmann 2011), rewriting \(\mathcal{ALE}\) and \(\mathcal{ALN}\) concepts using terminologies (Baader et al. 2000) and computing minimal ontologies in a fragment of \(\mathcal{EL}\) (Nikitina and Schewe 2013b), to the best of our knowledge, this is the first method computing minimal equivalent concepts wrt. \(\mathcal{EL}\) ontologies.

While it is theoretically possible to compute minimal equivalent concepts using a naive brute-force approach that evaluates all possible concepts with the qualifying signature, it is challenging to compute the solution efficiently. In order to make concept minimisation feasible in practice, it is necessary to restrict the set of candidate concepts to those that are semantically related to the initial concept. The foundation of our method is a simple approach based on regular tree grammars in which we restrict candidate concepts to
subsumers of the concept in question. Thereby, we significantly reduce the number of candidates. We further narrow down the search space by using dynamic derivation rules—derivation rules that evolve during minimisation. Rather than applying the same set of rules to the same non-terminal over the entire course of minimisation, we compute an updated set of derivation rules on-demand for a particular context and a particular non-terminal based on the information gathered throughout the minimisation process. During the evaluation, we found that the average number of derivation rules applied to each non-terminal over the course of minimisation decreased by 8 orders of magnitude due to the use of dynamic derivation rules.

The evaluation confirms the feasibility of concept minimisation in practice. The computation of minimal equivalent concepts took on average 5 minutes for concepts from the SNOMED CT (Stearns et al. 2001), and just a few seconds for concepts from other ontologies including NCI Thesaurus (Sioutos et al. 2007) and Galen. We conclude that our tool would be a valuable new feature within ontology editors such as Protégé (Musen 2013).

Further details and proofs can be found in the extended version 1 of this paper.

Preliminaries

In this section, we formally introduce the description logic \mathcal{EL}. Let N_C and N_R be countably infinite and mutually disjoint sets called concept symbols and role symbols, respectively. \mathcal{EL} concepts C are defined by

$$C ::= A | C \sqcap C | \exists r.C$$

where A and r range over $N_C \cup \{ \top \}$ and N_R, respectively. In the following, C, D, E, F and G can denote arbitrary concepts, while A, B can only denote concept symbols or \top. An ontology consists of concept inclusion axioms $C \sqsubseteq D$ and concept equivalence axioms $C \equiv D$, the latter used as a shorthand for the mutual inclusion $C \sqsubseteq D$ and $D \sqsubseteq C$. The signature of an \mathcal{EL} concept C, an axiom α or an ontology \mathcal{O}, denoted by $\text{sig}(C), \text{sig}(\alpha)$ or $\text{sig}(\mathcal{O})$, respectively, is the set of concept and role symbols occurring in it.

To distinguish between the set of concept symbols and the set of role symbols, we use subscripts C and R, respectively. Further, we use sub(\mathcal{O}) to denote the set of all subconcepts in \mathcal{O} including \top.

Next, we recall the semantics of the description logic constructs introduced above, which is defined by the means of interpretations. An interpretation I is given by a set Δ^I, called the domain, and an interpretation function \cdot^I assigning to each concept $A \in N_C$ a subset A^I of Δ^I and to each role $r \in N_R$ a subset r^I of $\Delta^I \times \Delta^I$. The interpretation of \top is fixed to Δ^I. The interpretation of arbitrary \mathcal{EL} concepts is defined inductively via $(C \sqcap D)^I = C^I \cap D^I$ and $(\exists r.C)^I = \{ x \mid (x, y) \in r^I \text{ and } y \in C^I \text{ for some } y \}$. An interpretation I satisfies an axiom $C \sqsubseteq D$ if $C^I \subseteq D^I$. I is a model of an ontology \mathcal{O}, if it satisfies all axioms in \mathcal{O}.

We say that \mathcal{O} entails an axiom α (in symbols, $\mathcal{O} \models \alpha$), if α is satisfied by all models of \mathcal{O}. For \mathcal{EL} concepts C, D such that $\mathcal{O} \models C \sqsubseteq D$, we call C a subsumer of D and D a subsumer of C.

Regular Tree Grammars

Next, we recall regular tree grammars on ranked ordered trees. A ranked alphabet is a pair $(\mathcal{F}, \text{Arity})$ where \mathcal{F} is a finite set and Arity is a mapping from \mathcal{F} into \mathbb{N}. We use superscripts to denote the arity of alphabet symbols if it is not 0, e.g., $f^2(g^1(a), a)$. The set of ground terms over the alphabet \mathcal{F} (which are also simply referred to as trees) is denoted by $T(\mathcal{F})$. Let X be a set of variables. Then, $T(\mathcal{F}, X)$ denotes the set of terms over the alphabet \mathcal{F} and the set of variables X. A term $C \in T(\mathcal{F}, X)$ containing each variable from X at most once is called a context. A regular tree grammar $G = (n_S, N, \mathcal{F}, \text{Set})$ is composed of a start symbol n_S, a set N of non-terminal symbols (of arity 0) with $n_S \in N$, a ranked alphabet \mathcal{F} of terminal symbols with a fixed arity such that $\mathcal{F} \cap N = \emptyset$, and a set Set of derivation rules, each of which is of the form $n \to t$ where n is a non-terminal from N and t is a term from $T(\mathcal{F} \cup N)$. Let X be a set of variables disjoint from the ranked alphabet $\mathcal{F} \cup N$ with $X \subseteq X$. Given a regular tree grammar $G = (n_S, N, \mathcal{F}, \text{Set})$, the derivation relation \to_G associated with G is a relation on terms from $T(\mathcal{F} \cup N)$ such that $s \to_G t$ if and only if there is a rule $n \to t' \in \text{Set}$ and there is a context $C \in T(\mathcal{F} \cup N, \{X\})$ such that $s = C[n/X]$ and $t = C[t'/X]$. The subset of $T(\mathcal{F} \cup N)$ which can be generated by successive derivations starting with the start symbol is denoted by $L_G = \{ t \in T(\mathcal{F} \cup N) \mid n_S \to_G t \}$ where \to_G is the transitive closure of \to_G. We omit the subscript G when the grammar G is clear from the context or is arbitrary. The language generated by G is denoted by $L(G) = T(\mathcal{F}) \cap L_G$. For further details on regular tree grammars, we refer the reader to (Comon et al. 2008).

Minimising Concepts

We define the size of concepts in an ontology \mathcal{O} as the number of role and concept symbol occurrences:

- $s(A) = 1$ for $A \in \text{sig}_{\mathcal{C}}(\mathcal{O}) \cup \{ \top \}$;
- $s(\exists r.C) = s(C) + 1$ for a concept C and a role $r \in \text{sig}_{\mathcal{R}}(\mathcal{O})$;
- $s(C_1 \sqcap C_2) = s(C_1) + s(C_2)$ for concepts C_1, C_2.

Given an \mathcal{EL} ontology \mathcal{O} and a concept C, deciding whether a concept of size less than k equivalent to C wrt. \mathcal{O} exists, is an NP-complete problem (Nikitina and Schewe 2013a). Thus, while it is possible to find a simple approach that works in theory, minimising \mathcal{EL} concepts wrt. an ontology within a reasonable time is challenging. Consider the following example:

Example 1. The ontology \mathcal{O}_{ex} consists of the following axioms:

$$A_1 \sqcap A_2 \sqcap A_3 \sqsubseteq \exists r. (\exists s. A_3 \sqcap A_4)$$

(1)

$$\exists r. A_4 \sqsubseteq A_1$$

(2)

$$A_1 \sqsubseteq A_3$$

(3)

2While ontologies in general can also include a specification of individuals with the corresponding concept and role assertions, in this paper we concentrate on concept inclusion and equivalence axioms.
Let $C_{ex} = A_2 \sqcap \exists r.(\exists s. A_3 \sqcap A_4)$. If we look for a minimal concept D_{ex} equivalent to C_{ex} wrt. O_{ex} for the purpose of substituting C_{ex} in an axiom $\alpha \notin O_{ex}$, we find $A_1 \sqcap A_2$.

In order to find D_{ex}, we could theoretically generate all concepts C' of size up to $s(C_{ex}) - 1$ from the ontology signature $\sigma(O_{ex})$ and test for each of those 265 concepts whether $O_{ex} \models C_{ex} \equiv C'$. While this would work in the case of our simple example concept and ontology, for larger concepts and ontologies with large signatures, this approach is not feasible in practice. For instance, in case of Snomed, generating concepts of size up to 10 increases the number of concepts within the ontology by 60 orders of magnitude. It would be impossible to classify such an ontology within a reasonable time using state-of-the-art reasoning software running on modern hardware.

In order to achieve higher efficiency, we need to restrict the set of candidate concepts to those that are semantically related to C_{ex}. Next, we discuss an approach in which every candidate concept is a subsumer of the concept to be minimised.

Computing Subsumers

Our computation of subsumers is inspired by the approach to uniform interpolation presented by Nikitina et al. (Nikitina and Rudolph 2014). We construct a set of regular tree grammars that generate subsumers of subconcepts of O. Since equivalent concepts have the same subsumers, we group subconcepts of O into equivalence classes $\mathcal{E}_O = \{E \subseteq \text{sub}(O) \cup \{\top\} \mid \forall C_1, C_2 \in E : O \models C_1 \equiv C_2\}$ and assign a non-terminal n_E and a subsumer grammar $G^E(\mathcal{O}, E)$ to each equivalence class from \mathcal{E}_O. We denote the entire set of non-terminals used in all subsumer grammars of \mathcal{O} by $N^\mathcal{O} = \{n_E \mid E \in \mathcal{E}_O\}$.

Within the subsumer grammars, we use the ranked alphabet $\mathcal{F}^{EL} = \{\text{sig}_C(\mathcal{O}) \cup \{\top\} \cup \exists r^1 \mid \text{sig}_R(\mathcal{O}) \cup \{\top^n \mid 2 \leq n\}$, where \top and concept symbols in $\text{sig}_C(\mathcal{O})$ are constants, $\exists r^1$ for $r \in \text{sig}_R(\mathcal{O})$ are unary functions and \top^n are functions of arity greater than 2. For brevity, omit the arity of the above functions if it is clear from the context. We use the notation $\prod(S)$ to refer to terms constructed from a set $S \subseteq \mathcal{E}_O$ as follows: $\prod(\top) = \top$, $\prod(S) = n_E$ if $S = \{E\}$ and $\prod(S) = \prod(n_{E_1}, \cdots, n_{E_n})$ if $S = \{E_1, \cdots, E_n\}$.

In the subsequent definition, we use the following two sets for constructing each subsumer grammar $G^E(\mathcal{O}, E)$:

1. The set $S^\mathcal{O}_E$ of subsumer successors — a set of equivalence classes that contain subsumers of concepts from E. Since equivalence classes consisting of a single conjunction are not required to guarantee completeness but make our computations more expensive, we exclude those equivalence classes from $S^\mathcal{O}_E$. The set $S^\mathcal{O}_E$ is given by $\{E' \in \mathcal{E}_O \mid E \neq E', E' \neq C_1 \sqcap C_2\}$ for some concepts C_1, C_2, and there exist $C \in E, C' \in E'$ such that $O \models C \equiv C'$. In Table 1, we show the values of $S^\mathcal{O}_E$ for each $E \in \mathcal{E}_{O_{ex}}$ with $O'_{ex} = O_{ex} \cup \{C_{ex} \subseteq \top\}$ from Example 1.

2. The set Ex_E of existentially qualified successors — a set of role and equivalence class pairs representing each existentially qualified expression from E. Ex_E is given by $\{(r, E') \mid r \in \text{sig}_R(\mathcal{O}), E' \in \mathcal{E}_O \text{ such that there exists a concept } C' \in E' \wedge \exists r.C' \in E\}$. In Example 1, there are three non-empty sets Ex_{E_5}, namely $\text{Ex}_{E_5} = \\{(r, E_3)\}$, $\text{Ex}_{E_6} = \\{(r, E_7)\}$ and $\text{Ex}_{E_9} = \\{(r, E_4)\}$.

We construct subsumer grammars from $S^\mathcal{O}_E$ and Ex_E for a particular \mathcal{E}_L ontology \mathcal{O} as follows:

Definition 1. Let \mathcal{O} be an \mathcal{E}_L ontology and $E_0 \in \mathcal{E}_O$. A subsumer grammar $G^E(\mathcal{O}, E_0)$ for E_0 wrt. \mathcal{O} is given by $(n_{E_0}, N^\mathcal{O}, \mathcal{F}^{EL}, R^E)$, where R^E includes the following rules for each $E \in \mathcal{E}_O$:

- **R1** $n_{E_0} \rightarrow A$ for each $A \in E \cap \{	ext{sig}_C(\mathcal{O}) \cup \{\top\}\}$;
- **R2** $n_{E_0} \rightarrow \prod(S)$ for each $S \subseteq S^\mathcal{O}_E$ with $S \neq \emptyset$;
- **R3** $n_{E_0} \rightarrow \exists r(n_{E_i})$ for each $(r, E_i) \in \text{Ex}_E$.

Rules of type R1 have a concept symbol or \top on the right-hand side and are used for deriving ground terms. Within R2, we introduce a rule for each element of $2^{S^\mathcal{O}_E} \setminus \emptyset$, thereby covering all possibilities to introduce a conjunction within a subsumer term or simply replace a non-terminal by another representing a more general term. Rules of type R3 generate existentially qualified terms for each element of E that is an existentially qualified expression. If we construct the set of derivation rules R^E from the values of $S^\mathcal{O}_E$ and Ex_E, given in Example 1, we can derive the term $t_{D_{ex}} = (\sqcap A_1, A_2)$ using the grammar $G^E(O'_{ex}, E_5)$ with $O'_{ex} = O_{ex} \cup \{C_{ex} \subseteq \top\}$ as shown in Fig. 1.

As stated in the lemma below, this grammar-based generation of subsumers for subconcepts of \mathcal{E}_L ontologies is sound and complete.

Table 1: Values of $S^\mathcal{O}_E$ for $E \in \mathcal{E}_{O_{ex}}$ with $O'_{ex} = O_{ex} \cup \{C_{ex} \subseteq \top\}$.

<table>
<thead>
<tr>
<th>E</th>
<th>elements of E</th>
<th>$S^\mathcal{O}_E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T</td>
<td>${\top}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>E_1</td>
<td>${A_1}$</td>
<td>E_T, E_3</td>
</tr>
<tr>
<td>E_2</td>
<td>${A_2}$</td>
<td>E_T</td>
</tr>
<tr>
<td>E_3</td>
<td>${A_3}$</td>
<td>E_T</td>
</tr>
<tr>
<td>E_4</td>
<td>${A_4}$</td>
<td>E_T</td>
</tr>
<tr>
<td>E_5</td>
<td>${C_{ex}, A_1 \sqcap A_2 \sqcap A_3}$</td>
<td>$E_T, E_1, E_2, E_3, E_8, E_9$</td>
</tr>
<tr>
<td>E_6</td>
<td>${\exists s. A_3}$</td>
<td>E_T</td>
</tr>
<tr>
<td>E_7</td>
<td>${\exists s. A_3 \sqcap A_4}$</td>
<td>E_T, E_4, E_6</td>
</tr>
<tr>
<td>E_8</td>
<td>${\exists r.(\exists s. A_3 \sqcap A_4)}$</td>
<td>E_T, E_1, E_3, E_9</td>
</tr>
<tr>
<td>E_9</td>
<td>${\exists r. A_4}$</td>
<td>E_T, E_1, E_3</td>
</tr>
</tbody>
</table>

Figure 1: Derivation of the term $t_{D_{ex}} = (\sqcap A_1, A_2)$ from n_{E_5} given in Example 1.
Lemma 1. Let \mathcal{O} be an \mathcal{EL} ontology and D a subconcept of \mathcal{O} with $D \in E$ for some $E \in E_{\mathcal{O}}$.

1. Let D' be a subsumer of D wrt. \mathcal{O}. Then, there exists a syntactic variant D'' of D' with the corresponding term representation $t_{D''}$ such that $t_{D''} \in L(G^{=1}(\mathcal{O}, E))$.

2. Let D' be an \mathcal{EL} concept with the corresponding term representation $t_{D'}$ such that $t_{D'} \in L(G^{=2}(\mathcal{O}, E))$. Then, D' is a subsumer of D wrt. \mathcal{O}.

Dynamic Derivation Rules

Since the above grammars compute all subsumers of a concept D, a large proportion of derived concepts is neither equivalent to D nor minimal in size. We can further reduce the number of candidates and the number of rules applied by making the set of derivation rules dynamic—allowing it to evolve during minimisation. Rather than applying the same set of rules to the same non-terminal over the entire course of minimisation, we compute a set of rules that is specific to a particular context and non-terminal and incorporates our requirements concerning size and equivalence to D.

For convenience, we extend the notion of size to terms and contexts as follows: $s(n_E) = 1$ for a non-terminal n_E, $s(X) = 1$ for a variable X, $s(\cap t_1, \ldots, t_n)) = \sum_{1 \leq i \leq n} s(t_i)$ for terms t_i and $s(\exists r(t)) = s(t) + 1$ for a role r and a term t.

Additionally, we use the notation $\text{con}^f(t)$ to refer to the concept representation of a term t wrt. a representative selection function $f : \mathcal{E}_{\mathcal{O}} \rightarrow \text{sub}(\mathcal{O}) \cup \{\top\}$ that assigns a representative $C \in E$ to each $E \in \mathcal{E}_{\mathcal{O}}$. If the choice of representatives from equivalence classes is irrelevant in a particular context, we omit the superscript f to indicate that the concept representation $\text{con}(t)$ is based on an arbitrary representative selection function.

Dynamic derivation rules are motivated by the following observations regarding subsumer grammars:

1. Terms never become smaller over the course of derivation. Thus, once an non-ground term t reaches an unacceptable size, we can discard all terms that can be derived from t due to their size. We refer to this property of subsumer grammars as size monotonicity and use it to filter out rules where the term on the right-hand side is too large. For instance, once we have derived the term $t = \cap(n_{E_2}, \exists r(\cap(n_{E_3}, n_{E_4})))$ from n_{E_6} in Example 1, we can skip the rule $n_{E_6} \rightarrow \exists r(n_{E_3})$, since the resulting term $t' = \cap(n_{E_2}, \exists r(\cap(r(n_{E_3}), n_{E_4})))$ would become as large as C_{ex}.

2. Terms never become more specific over the course of derivation. Thus, if we find that $\mathcal{O} \not\models D \equiv \text{con}(t)$ for the concept $D \in E$ to be minimised and some term t with $n_E \rightarrow^+ t$, we can discard all terms t' derived from t, since $\mathcal{O} \not\models D \equiv \text{con}(t')$. We refer to this property as subsumption monotonicity and use it to filter out rules where the term on the right-hand side is too general. For instance, we can skip the rule $n_{E_6} \rightarrow n_{E_3}$ in Example 1, since $\mathcal{O} \not\models \text{con}(n_{E_6}) \equiv \text{con}(n_{E_3})$.

We formalise the above monotonicity properties of subsumer grammars as follows:

Lemma 2. Let \mathcal{O} be an \mathcal{EL} ontology and $E \in E_{\mathcal{O}}$ with some $D \in E$. Further, let t_1, t_2 be two terms such that $n_{E_2} \rightarrow n_{E_3} \rightarrow^+ n_{E_6}$ and $n_{E_2} \rightarrow n_{E_3} \rightarrow^+ n_{E_6}$.

1. $s(t_1) \leq s(t_2)$.

2. If $\mathcal{O} \not\models \text{con}(n_E) \equiv \text{con}(t_1)$, then also $\mathcal{O} \not\models \text{con}(n_E) \equiv \text{con}(t_2)$.

Looking back at subsumer grammars, we can further observe that a large proportion of rules of type R2 introduce redundant conjuncts—conjuncts that are not necessary for preserving the equivalence between the concept D to be minimised and the derived concept D'. When computing minimal equivalent concepts, such rules can be skipped as they never lead to minimal terms preserving equivalence to D. For instance, when applying rules to the term n_{E_3} in Example 1, we can skip the rule $n_{E_3} \rightarrow n_{E_1}, n_{E_2}, n_{E_4}$, since $\mathcal{O}_{\text{ex}} \models \text{con}(\cap(n_{E_1}, n_{E_2}, n_{E_4})) \equiv \text{con}(\cap(n_{E_1}, n_{E_4}))$.

We formalise this observation within the following definition of irreducible sets of equivalence classes—sets that do not contain redundant elements:

Definition 2. Let \mathcal{O} be an \mathcal{EL} ontology and S a subset of $E_{\mathcal{O}}$. The set S is irreducible wrt. \mathcal{O} if and only if there is no subset $S' \subseteq S$ such that $\mathcal{O} \models \text{con}(\cap(S)) \equiv \text{con}(\cap(S'))$.

We now incorporate the above observations into a definition of dynamic derivation rules by imposing suitable restrictions onto the set of rules $R^=$ given in Definition 1.

Definition 3. Let \mathcal{O} be an \mathcal{EL} ontology, $E_0 \in E_{\mathcal{O}}$ and t a term such that $n_{E_0} \rightarrow n_{E_3}$ t. Let further $k \geq 1$ and let $C \in T(\mathcal{F} \mathcal{E}_{\mathcal{O}} \cup N_{\mathcal{O}}, \{X\})$ be a context containing the variable X such that $C[n_E/X] = t$ for some non-terminal n_E occurring in t. The dynamic set of derivation rules $R^{E,k,\mathcal{O}}_{\text{ex}}$ for E with size limit k preserving equivalence within C wrt. \mathcal{O} is then given by:

(DR1) $n_E \rightarrow A$ for each $A \in E \cap (\text{sig}_{E} \mathcal{O}) \cup \{\top\}$;

(DR2) $n_E \rightarrow \cap(S)$ for each $S \subseteq S_{\mathcal{E}}^k$ such that $S \neq \emptyset$, $|S| \leq k, \mathcal{O} \models \text{con}(t) \equiv \text{con}(\cap(S/X))$ and, unless $S = \{E\top\}$, S is irreducible wrt. \mathcal{O};

(DR3) $n_E \rightarrow \exists r(n_{E_1})$ for each $\langle r, n_{E_1} \rangle \in \text{Ex}_{\mathcal{E}}$ in case $k \geq 2$.

Algorithm 1 shows the computation of ground terms representing minimal equivalent concepts based on dynamic derivation rules. Given an \mathcal{EL} ontology \mathcal{O} and some concept $D \in E_0$ for some $E_0 \in E_{\mathcal{O}}$, we call the recursive function MINIMISE with \mathcal{O} as the ontology, the term representation t_D of D as the smallest known ground term t_{min}, and n_{E_0} as the starting point for further derivations t. In every call of MINIMISE, we first test whether the current term t is ground, in which case we return t as the new smallest known ground term. If t is not ground, we randomly pick a non-terminal n_E occurring in t and obtain the corresponding context C by replacing n_E with a variable X. We then compute the dynamic set of derivation rules R for E. The
1. In many cases, no equivalence-preserving subset of \(S_E \) exists. In order to avoid unnecessary computation, we test in lines 3-4 of Algorithm 2 whether the entire set \(S_E \) of conjuncts is sufficient to preserve equivalence within \(C \) wrt. \(O \) and, otherwise, return an empty set.

Algorithm 1: **MINIMISE** function computing a term representing a minimal equivalent concept.

Input: Ontology \(O \), smallest known ground term \(t_{\text{min}} \), starting point for further derivations \(t \)

1. if \(t \) is ground then
2. \[\text{return } t; \]
3. \((n_E, C) \leftarrow \text{pick a non-terminal occurring in } t \) and generate the corresponding context;
4. for \(\text{rule } R \in R^E_{s(t_{\text{min}}) - s(C)}, C, O \) do
5. \(t'_{\text{min}} \leftarrow \text{apply rule to } C; \)
6. \[\text{return } t_{\text{min}}; \]

size limit \(k = s(t_{\text{min}}) - s(C) \) ensures that terms produced by rules from \(R \) are always smaller than \(t_{\text{min}} \). Since the values \(E \) and \(C \) are used as arguments when computing \(R \), all rules from \(R \) preserve equivalence to \(\con(t) \). Since we start the computation with \(t = d \), all generated terms have concept representations equivalent to \(D \) wrt. \(O \). In lines 4-6, we apply each derivation rule from \(R \) and call the function **MINIMISE** with a potentially updated value of \(t_{\text{min}} \) and the new term \(t' \) as the starting point for further derivations.

We obtain the following result for computing terms representing minimal equivalent concepts using the function **MINIMISE**:

Theorem 1. Let \(O \) be an \(\mathcal{E} \mathcal{L} \) ontology and \(D \) an \(\mathcal{E} \mathcal{L} \) concept represented by a term \(d_D \). Further, let \(\mathcal{O}' = O \cup \{ D \subseteq \top \} \) and \(E \in \mathcal{E}_C \) such that \(D \in E \). **MINIMISE**(\(\mathcal{O}', d_D, n_E \)) computes a minimal ground term \(t \) such that \(\mathcal{O} \models D \equiv \con(t) \).

Computing Dynamic Derivation Rules

While computing rules of types DR1 and DR3 is straightforward and the corresponding computational effort is negligible, the challenging task is to efficiently compute rules of type DR2. Algorithm 2 shows the computation of the latter type of rules. Within the algorithm, we first compute for each rule the corresponding non-empty set of equivalence classes that form the right-hand side of that rule. The algorithm iteratively builds subsets of \(S_E^\mathcal{O} \), as required by Definition 3, starting with the smallest and extending the size of considered sets by one in each iteration. For each set, we enforce the size requirement in lines 8 and 12, the equivalence requirement in line 12, and the irreducibility requirement in line 26. The algorithm contains several optimisations based on observations from our experiments. These optimisations aim to reduce the number of considered sets as early within the computation process as possible.

1. **Algorithm 2:** **COMPUTERULES** function computing rules of type DR2 for \(R^E_{k, c, \mathcal{O}} \).

Input: Equivalence class \(E \), size limit \(k \geq 1 \), context \(C \subseteq T(J_{\mathcal{E} \mathcal{L}} \cup \mathcal{N}^C), \{ X \} \) containing the variable \(X \), ontology \(O \)

1. \[D \leftarrow \con(C[n_E/X]); \]
2. \[M_{\text{res}} \leftarrow \emptyset; \]
3. if \(O \neq D \equiv \con(C \sqcap [S_E^\mathcal{O}]/X) \) then
4. \[\text{return } \emptyset; \]
5. \(S_{\text{req}} \leftarrow \{ S_{\text{req}} \}; \)
6. \[S_{\text{test}} \leftarrow \{ S_{\text{test}} \}; \]
7. \[s \leftarrow \{ S_{\text{req}} \}; \]
8. while \(s \leq k \) and \(M_{\text{test}} \neq \emptyset \) do
9. \[s \leftarrow s + 1; \]
10. \[M_{\text{expand}} \leftarrow \emptyset; \]
11. for \(S \in M_{\text{test}} \) do
12. if \(S \neq \emptyset \) and \(O \models D \equiv \con(C \sqcap [S]/X) \) then
13. \[M_{\text{res}} \leftarrow M_{\text{res}} \cup \{ S \}; \]
14. else
15. reducible \(\leftarrow \text{false}; \)
16. for \(S' \in S \) with \((S', S) \in \text{SUCC} \) do
17. if \(O \models \con([S']) \equiv \con([S']) \) then
18. reducible \(\leftarrow \text{true}; \)
19. for \(S'' \in S' \) with \((S', S'') \in \text{SUCC} \) do
20. \[\text{EXCL} \leftarrow \text{EXCL} \cup \{ (S'', E') \} | E' \in S \setminus S' \}; \]
21. if reducible \(\neq \text{false} \) then
22. \[M_{\text{expand}} \leftarrow M_{\text{expand}} \cup \{ S \}; \]
23. \[\text{for } E' \in S_{\text{res}} \text{ do} \]
24. if \((S, E') \notin \text{EXCL} \) and \(E' \notin S \) and there is no \(S'' \in M_{\text{res}} \) with \(S' \subseteq S'' \subseteq E' \) then
25. \[M_{\text{res}} \leftarrow M_{\text{res}} \cup \{ S' \}; \]
26. \[\text{SUCC} \leftarrow \text{SUCC} \cup \{ (S, S \cup [E']) \}; \]
27. \[\text{EXCL} \leftarrow \text{EXCL} \cup \{ (S \cup [E'], E'') \} | E'' \in S_{\text{res}}^\mathcal{O}, \text{or } (S, E'') \in \text{EXCL}; \]
28. return \(\{ n_E \rightarrow C \sqcap [S]/X | S \in M_{\text{res}} \}; \)

2. There is often a **required** set of conjuncts—a set of conjuncts that is shared among all conjuctions preserving equivalence. By computing it in line 5 and using it as the starting point for the iterative part of the algorithm, we avoid subsets of \(S_E^\mathcal{O} \) that clearly do not preserve equivalence.

3. A large number of elements from \(S_E^\mathcal{O} \) are subsumer successors of other elements within \(S_E^\mathcal{O} \) or conjuctions thereof. Thus, adding those to the corresponding sets makes those sets reducible. In order to avoid creating sets that cannot be extended into irreducible ones, we record the corresponding relationships between subsets...
of S^α_E and equivalence classes by means of the relation $\text{EXCL} \subseteq 2^{S^\alpha_E} \times \mathcal{E}_O$. This relation is gradually constructed in lines 20 and 29. In line 26, we use known EXCL relations to avoid creating subsets of S^α_E that will lead to reducible sets only.

We obtain the following result for Algorithm 2:

Theorem 2. Let O be an EL ontology, $E_0 \in \mathcal{E}_O$ and t a term such that $\mathcal{E}_{E_0} \rightarrow^{+} \mathcal{E}_{G(O,E_0)} \cdot t$. Let further $k \geq 1$ and let $C \in T(\mathcal{F}^{\mathcal{E}_O} \cup \mathcal{N}^{\mathcal{O}_C}, \{X\})$ be a context containing the variable X such that $C[\mathcal{E}_X/X] = t$ for some non-terminal \mathcal{E}_X occurring in t. The function $\text{COMPUTE}_{R}(E,k,C,O)$ computes rules of type DR2 for $R^{E,k,C,O}$ in time exponential in the size of S^α_E in the worst case.

Evaluation

We evaluate our method on concepts from Snomed Clinical Terms (Snomed CT) (Searns et al. 2001), National Cancer Institute Thesaurus (NCIT) (Sioutos et al. 2007), Galen (Rector et al. 1994), Fission Yeast Phenotype Ontology (FYPO) (Harris et al. 2013) and Genomic Clinical Decision Support Ontology (Genomic CDS) (Samwald 2013). For each ontology O, we selected 100 EL concepts occurring in the axioms of O with the size at least 2. The order of the axioms was determined by the iterator over the set of axioms retrieved by the OWL API (Horridge and Bechhofer 2011). We then minimised each concept D with respect to the ontology $O \setminus \{\alpha\}$, where α is the axiom in which the concept D occurred. We set a timeout of 5 minutes for all ontologies except Snomed CT, for which we increased the time-out to 30 minutes due to longer reasoner response times.

In Table 2, we first list for each ontology the total number of axioms ($\#\text{Ax}$) and the average size of the 100 evaluated concepts ($s(C)$). We then separately show evaluation results for concepts of size at least 2, at least 5 and at least 10. For each size category, we include the average processing time in seconds (Time), the percentage of concepts for which a smaller equivalent concept existed (Red.), and the average achieved size difference for those concepts (Red.by).

We can see that, while the number of axioms and the average size of evaluated concepts differ significantly, we could find a smaller equivalent concept for a notable proportion of concepts from all ontologies. As expected, this effect is more prominent in the size categories $s \geq 5$ and $s \geq 10$. An exception is FYPO, which had only 1 concept of size at least 10, for which no smaller representation existed. In many cases, a notable reduction in size has been achieved.

We measured how the number of applied rules changes when the computation is based on a dynamic rather than static set of derivation rules. We found that, on average, the number of applied rules per non-terminal decreased by 8 orders of magnitude. We also found that, on average, the optimisations included within the function COMPUTE_{R} reduced the number of considered subsets of S^α_E by 5 orders of magnitude.

In terms of computation time, we observe that, while a timeout occurred for 1 concept in NCIT and 4 concepts in Snomed CT, on average, concept minimisation takes just a few seconds for all ontologies except Snomed CT. We conclude that, for ontologies of an average size and complexity, concept minimisation could be made available as a feature within interactive ontology editors such as Protégé (Musan 2013).

Summary

In this paper, we discussed the computation of minimal equivalent concepts wrt. \mathcal{EL} ontologies. We investigated the feasibility of concept minimisation in practice by exploring various ways of restricting the search space. We first discussed a grammar-based approach in which candidate concepts are restricted to subsumers of the concept in question. We then showed that we can further narrow down the search space by making the set of derivation rules dynamic—computing them on-demand for a particular context and a particular non-terminal while incorporating information gathered throughout the minimisation process.

We evaluated our method on 5 bio-medical ontologies and found that a smaller equivalent concept existed for a notable proportion of concepts from those ontologies. In many cases, a notable reduction in size has been achieved. For instance, for concepts of size at least 5, the achieved size reduction ranged between 26% and 90%. The evaluation also confirms the feasibility of concept minimisation in practice. For Snomed CT, most concepts could be processed within 30 minutes and, on average, within 5 minutes. For the other ontologies, the computation took on average just a few seconds. We conclude that our tool would be a valuable new feature for ontology editors.
References
Proofs

Proof for Lemma 1

Lemma 1 Let O be an \mathcal{EL} ontology and D a subconcept of O with $D \subseteq E$ for some $E \in \mathcal{E}_O$.

1. Let D' be a subsumer of D wrt. O. Then, there exists a syntactic variant D'' of D' with the corresponding term representation $t_{D''}$ such that $t_{D''} \in L(G^=(O, E))$.

2. Let D' be an \mathcal{EL} concept with the corresponding term representation $t_{D'}$ such that $t_{D'} \in L(G^=(O, E))$. Then, D' is a subsumer of D wrt. O.

Proof. We investigate the above two claims separately:

1. The completeness is proved by induction on the role depth of D' given by

$$D' = \prod_{1 \leq j \leq n} A_j \cap \prod_{1 \leq k \leq m} \exists n_k . C_k$$

where A_j are concept symbols, r_k are role symbols and C_k are arbitrary \mathcal{EL} concepts. W.l.o.g., we can assume that all A_j are pairwise different. For each A_j, we know that $O \models D \subseteq A_j$ and $A_j \in E_j$ for some $E_j \in \mathcal{E}_O$. Thus, each E_j is in $S \mathcal{E}_O$. Further, for each $\exists n_k . C_k$, we have $E_k, E_k' \in \mathcal{E}_O$ with $\exists r_k . C_k \in E_k'$ and $C_k \in E_k'$. Since $O \models D \subseteq \exists n_k . C_k$, we have $E_k \in S \mathcal{E}_O$.

- Assume a role depth of 0 so that $D' = \prod_{1 \leq j \leq n} A_j$.

 By (R2) of Definition 1, $n_E \rightarrow \prod_{S \in \mathcal{E}^=} S \in \mathcal{R}^= \text{ for each } S = \{E_1, \ldots, E_n\}$. Further, by (R1) of Definition 1, $n_{E_{j+1}} \rightarrow A_j \in \mathcal{R}^= \text{ for each } A_j$. By applying (R1) to each E_j within the term $\prod_{S \in \mathcal{E}^=} S$, we obtain a term $t_{D'}$. Thus, there exists a concept D'' such that $D' = D''$ and $t_{D''} \in L(G^=(O, E))$. We have shown that the theorem holds for role depth 0.

- Assume that the role depth is greater than 0 so that D' has the general form above. By (R2) of Definition 1, $n_E \rightarrow \prod_{S \in \mathcal{E}^=} S \in \mathcal{R}^= \text{ for any subset of } S \in S \mathcal{E}_O$. This includes the set $S \mathcal{D}_O = \{E_1, \ldots, E_n, E_1', \ldots, E_n'\}$. By (R3) of Definition 1, $n_{E_k} \rightarrow \exists r_m(n_{E_k})$ with $\exists r_m$ of C_k. Thus, we can derive the term $\exists(n_{E_1}, \ldots, n_{E_n}, \exists r_1(n_{E_1'}), \ldots, \exists r_m(n_{E_n'}))$ from n_{E_k}.

 By induction hypothesis, $t_{C_k} \in L(G^=(O, E_k'))$, where t_{C_k} represents some syntactic variant C'_k of C_k. Further, by applying (R1) to all E_j, we obtain the term $t_{D'}$. Thus, there exists a concept D'' such that $D' = D''$ and $t_{D''} \in L(G^=(O, E))$.

2. The proof of the soundness of $G^=(O, E)$ can be done by induction on the maximal nesting depth of functions in $t_{D'}$:

- Assume that the nesting depth of functions in $t_{D'}$ is 0, i.e., $t_{D'} = B$ is a concept symbol or \top. The term B can only be derived from n_E by n transitions (R2) with a single non-terminal on the right-hand-side, and, once $n_{E'}$ is derived with $B \in E'$, the rule (R1). Let E_1, \ldots, E_n be such that $n_E \rightarrow n_{E_1} \rightarrow \ldots \rightarrow n_{E_n} \rightarrow n_{E'}$. Then, by Definition 1, for each pair E_i, E_i' it holds that E_{i+1} is an \exists subsumer successor of E_i. The same holds for pairs E_1, E_1' and E_n, E_n'. It follows that E' is a subsumer successor of E and thus $O \models D \subseteq B$.

- Assume that $t_{D'} = \exists r(t')$ for some term t'. Then, the derivation of t from n_E starts with n transitions (R2) with a single non-terminal on the right-hand-side, such that $n_{E'}$ for some $E' \in \mathcal{E}_O$ is derived. As argued in the previous part of the proof, E' is a subsumer successor of E. Further, with a subsequent application of a transition (R3), we derive a term $\exists r(n_{E''})$ for some $E'' \in \mathcal{E}_O$ from $n_{E'}$. By Definition 1 (R3), there exists a concept C with $C \in E''$ such that $\exists r.C \in E'$. Therefore, $O \models D \subseteq \exists r.C$. Let $C' = \text{con}(t')$. Since $E'' \in \mathcal{E}_O$ and $n_{E''} \rightarrow t'$, by induction hypothesis, $O \models C \subseteq C'$.

Thus, $O \models D \subseteq \exists r.C'$ with $\text{con}(t_{D'}) = \exists r.C'$.

- Assume that $t_{D'} = \prod_{i=1}^n t_i$ for a set of terms t_1, \ldots, t_n. Then, the derivation of t from n_E starts with n transitions (R2) with a single non-terminal on the right-hand-side, such that $n_{E'}$ for some $E' \in \mathcal{E}_O$ is derived. As argued in the previous part of the proof, E' is a subsumer successor of E. Further, with a subsequent application of an (R2) rule with a conjunction on the right-hand-side, we derive $\prod_{i=1}^n n_{E_1}, \ldots, n_{E_n}$, where each t_i is in $L(G^=(O, n_{E_i}))$. By Definition 1, each E_i is a subsumer successor of E'. It follows that each E_i is a subsumer successor of E. Let $C_i \in E_i$ and $C'_i = \text{con}(t_i)$. Since each t_i is in $L(G^=(O, n_{E_i}))$, by induction hypothesis, $O \models C_i \subseteq C'_i$. Therefore, also $O \models D \subseteq \prod_{i=1}^n C'_i$ with $C_1 \cap \ldots \cap C_n = \text{con}(t_{D'})$. □

Proofs for Lemma 2 and Theorem 1

Lemma 2 Let O be an \mathcal{EL} ontology and $E \in \mathcal{E}_O$ with some $D \subseteq E$. Further, let t_1, t_2 be two terms such that $n_E \rightarrow t_1 \rightarrow t_2$. The following is true:

1. $s(t_1) \leq s(t_2)$.

2. If $O \not\models \text{con}(n_E) \equiv \text{con}(t_1)$, then also $O \not\models \text{con}(n_E) \equiv \text{con}(t_2)$.

Proof Sketch. The first claim can be shown by induction on the length of the derivation of t_2 from t_1, in which we examine the possibly applied rules and observe that $s(t_1)$ is not greater than $s(t_2)$ for each term t_1' with $t_1 \rightarrow^* t_1'$. For the second claim, we assume that $O \models \text{con}(n_E) \equiv \text{con}(t_2)$. Since $O \models \text{con}(n_E) \subseteq \text{con}(t_1)$ and $O \models \text{con}(t_1) \subseteq \text{con}(t_2)$ and $O \models \text{con}(t_2) \subseteq \text{con}(n_E)$, we obtain $O \models \text{con}(n_E) \equiv \text{con}(t_1)$. □

Theorem 1 Let O be an \mathcal{EL} ontology and D an \mathcal{EL} concept represented by a term t_D. Further, let $O' = O \cup \{D \equiv \top\}$ and $E \in \mathcal{E}_{O'}$ such that $D \in E$. MINIMISE(O', t_D, n_E) computes a minimal ground term t such that $O \models D \equiv \text{con}(t)$.

Proof. We need to show the three following properties of the computed term t: (a) t is ground; (b) $O \models D \equiv \text{con}(t)$; (c) t is minimal.

(a) t is ground: Assuming that MINIMISE is called according to its specification, i.e., with t_{min} being a ground term, it can only return ground terms. This can be shown by induction on the nesting depth of function calls with two base cases: (1) the starting point for further derivations
Algorithm 3: COMPUTEALL function computing a superset of all minimal ground terms equivalent to \(t'' \) and smaller than \(t_{\text{limit}} \).

Input: Ontology \(\mathcal{O} \), size limit term \(t_{\text{limit}} \), starting point for further derivations \(t'' \) with \(S(t'') < S(t_{\text{limit}}) \)

1. if \(t'' \) is ground then
 1.1. return \(\{t''\} \);
 1.2. \((n_E, C) \leftarrow \) pick a non-terminal occurring in \(t \) and generate the corresponding context;
 1.3. \(M_{\text{res}} \leftarrow \emptyset \);
 1.4. for rule \(\in R^E,s(t_{\text{min}}) - s(C),C,\mathcal{O} \) do
 1.5. \(t' \leftarrow \) apply rule to \(C \);
 1.6. \(M_{\text{res}} \leftarrow M_{\text{res}} \cup \text{COMPUTEALL}(\mathcal{O}, t_{\text{limit}}, t') \);
 1.7. return \(M_{\text{res}} \);

\(t'' \) is ground, and (2) \(R^E,s(t_{\text{min}}) - s(C),C,\mathcal{O} = 0 \). For the first base case, the condition is true, since we return \(t'' \) in line 2. For the second case, the condition is true, since we return \(t_{\text{min}} \) in line 7. Assume that the nesting depth of function calls is greater 0. Then, by induction hypothesis, the function MINIMISE in line 6 returns a ground term so that the new value of \(t_{\text{min}} \) is ground and the condition is true due to the return statement in line 7.

(b). \(\mathcal{O} \models D \equiv \text{con}(t) \); This is true if MINIMISE is called with terms \(t'', t_{\text{min}} \) such that \(\mathcal{O} \models D \equiv \text{con}(t_{\text{min}}) \) and \(\mathcal{O} \models D \equiv \text{con}(t'') \), where \(t'' \) is the starting point for further derivations. It can be shown by induction on the nesting depth of function calls that, if MINIMISE is called with terms \(t'', t_{\text{min}} \) such that \(\mathcal{O} \models \text{con}(t'') \equiv \text{con}(t_{\text{min}}) \), then the function returns a term \(t \) such that \(\mathcal{O} \models \text{con}(t) \equiv \text{con}(t_{\text{min}}) \) and \(\mathcal{O} \models \text{con}(t) \equiv \text{con}(t'') \). We have two base cases: (1) the starting point for further derivations \(t'' \) is ground, and (2) \(R^E,s(t_{\text{min}}) - s(C),C,\mathcal{O} = 0 \). For the first base case, the condition is true, since we return \(t'' \) in line 2. For the second case, the condition is true, since we return \(t_{\text{min}} \) in line 7. Assume that the nesting depth of function calls is greater 0. Then, as a consequence of Definition 3, for each term \(t \) derived in line 5, we have \(\mathcal{O} \models \text{con}(t_{\text{min}}) \equiv \text{con}(t) \). By induction hypothesis, the function MINIMISE in line 6 returns a new term \(t_{\text{min}} \) such that \(\mathcal{O} \models \text{con}(t_{\text{min}}) \equiv \text{con}(t_{\text{min}}) \). Thus, the condition is true due to the return statement in line 7. Since we initially call MINIMISE terms \(t'' \), \(t_{\text{min}} \) such that \(\mathcal{O} \models D \equiv \text{con}(t_{\text{min}}) \) and \(\mathcal{O} \models D \equiv \text{con}(t'') \), where \(t'' \) is the starting point for further derivations, it follows that \(\mathcal{O} \models D \equiv \text{con}(t) \).

(c). \(t \) is minimal: Here, we first show that, for an ontology \(\mathcal{O}' \) and a term \(t'' \) such that \(n_E \rightarrow_{(G=(\mathcal{O}',E))} t'' \) for some \(E \in C_{\mathcal{O}} \), the function COMPUTEALL(\(t'' \), \(t_{\text{limit}} \), \(\mathcal{O}' \)) in Algorithm 3 computes a set of terms including all ground terms that are equivalent to \(t'' \) wrt. \(\mathcal{O}' \), minimal in size and smaller than a given term \(t_{\text{limit}} \) (if the smallest ground term equivalent to \(t'' \) wrt. \(\mathcal{O}' \) is not smaller than \(t_{\text{limit}} \), it returns \(\emptyset \)). Let \(t' \) be such a term—a minimal ground term that is equivalent to \(t'' \) wrt. \(\mathcal{O}' \) and that is smaller than a given term \(t_{\text{limit}} \). Since \(n_E \rightarrow_{(G=(\mathcal{O}',E))} t'' \), it follows by Lemma 1 that also \(t'' \rightarrow_{(G=(\mathcal{O}',E))} t' \), since \(\mathcal{O}' \models \text{con}(t') \equiv \text{con}(t'') \), and, therefore \(\mathcal{O}' \models \text{con}(n_E) \equiv \text{con}(t') \). We consider the derivation of \(t' \) using \(G=(\mathcal{O}',E) \). For every derivation step with a non-terminal \(n_E \) and a context \(C \), we show that the applied rule is contained in the set \(R^E,s(t'')-s(C) + 1.C,\mathcal{O}' \). Let \(\alpha \) be the rule applied to the non-terminal \(n_E \) within the context \(C \).

• Assume that \(\alpha \) is of type (R1) with \(A \) on the right-hand side. Then, \(A \in E' \cap \{\text{sig}_C(\mathcal{O}') \cup \{T\}) \) so that \(\alpha \in R^E,s(t'')-s(C) + 1.C,\mathcal{O}' \) by Definition 3 (DR1).

• Assume that \(\alpha \) is of type (R2) with \(\{\mathcal{S}\} \) on the right-hand side. Then, \(S \subseteq S_2 \) and \(S \neq \emptyset \). Further, it follows by Lemma 2 Claim 1 that \(s(C) \leq s(t'') - |S| + 1 \) for any order of derivation steps within the derivation of \(t' \) including the case that \(n_E \) was the last non-terminal to be picked in line 3. Therefore, \(s(t'') = s(C) + 1 \geq |S| \).

Assume that \(n_E \) is irreducible wrt. \(\mathcal{O}' \). Assume that \(S \neq \{E\} \) and \(S \) is reducible wrt. \(\mathcal{O}' \). Then, by Definition 2, there is a conjunct \(E_{i} \in S \) such that \(\mathcal{O}' \models \text{con}(\mathcal{S}) \equiv \text{con}(\mathcal{S} \setminus \{E\}) \). In that case, there is a conjunct within \(t' \) that can be removed to obtain a smaller term \(t'' \) such that \(\mathcal{O}' \models \text{con}(t') \equiv \text{con}(t'') \). This contradicts our assumption that \(t' \) is minimal. Thus, \(S \) has to be irreducible wrt. \(\mathcal{O}' \). As a consequence of the five fulfilled conditions of Definition 3 (DR2), \(\alpha \in R^E,s(t'')-s(C) + 1.C,\mathcal{O}' \) for any order of derivation steps within the derivation of \(t' \) including the case that \(n_E \) was the last non-terminal to be picked in line 3. Therefore, \(s(t'') \leq s(C) + 1 \geq 2 \) and, by Definition 3 (DR3), \(\alpha \in R^E,s(t'')-s(C) + 1.C,\mathcal{O}' \).

We conclude that the function COMPUTEALL in Algorithm 3 computes a set containing all minimal ground terms that are equivalent to a term \(t'' \) wrt. \(\mathcal{O}' \) and that are smaller than \(t_{\text{limit}} \).

Now, we show that, assuming \(s(t'') < s(t_{\text{min}}) \), the function MINIMISE(\(t'', t_{\text{min}}, \mathcal{O} \)) returns \(t_{\text{min}} \) in case COMPUTEALL(\(t'', t_{\text{min}}, \mathcal{O} \)) \(\equiv \emptyset \) and, otherwise, a term \(t \in \text{COMPUTEALL}(t'', t_{\text{min}}, \mathcal{O}) \), there is no \(t' \in \text{COMPUTEALL}(t'', t_{\text{min}}, \mathcal{O}) \) such that \(s(t'') < s(t) \). This is shown by induction on the nesting depth of function calls in MINIMISE(\(t'', t_{\text{min}}, \mathcal{O} \)). We have two base cases: (1) \(t'' \) is ground, and (2) \(R^E,s(t_{\text{min}}) - s(C),C,\mathcal{O} = 0 \). In the first case, COMPUTEALL(\(t'', t_{\text{min}}, \mathcal{O} \)) returns \(\emptyset \) in line 2 and MINIMISE(\(t'', t_{\text{min}}, \mathcal{O} \)) returns \(t'' \) in line 2 so that the induction hypothesis is true. In the second case, COMPUTEALL(\(t'', t_{\text{min}}, \mathcal{O} \)) returns \(\emptyset \) in line 8 and MINIMISE(\(t'', t_{\text{min}}, \mathcal{O} \)) returns \(t_{\text{min}} \) in line 7 so that the induction hypothesis is true. Assume that the nesting depth of function calls is greater 0. Let \(n = |R^E,s(t_{\text{min}}) - s(C),C,\mathcal{O}| \). Then, by induction hypothesis, for
each run $i \leq n$ of the for-loop, the value t_{i+1} returned by $\text{MINIMISE}(t_i, t_{i+1})$, line 6 is given by t_{i+1} in case $\text{COMPUTEALL}(t_i, t_{i+1}) = \emptyset$ and, otherwise, by a term from $\{t \mid t \in \text{COMPUTEALL}(t_i, t_{i+1}, O)\}$, there is no $t'' \in \text{COMPUTEALL}(t_i, t_{i+1}, O)$ such that $s(t'') < s(t)$. By induction on the length of the entire for-loop iteration, we can show that, after the application of each rule t, the value of t_{i+1} is the minimum of the values

\[\{ t_{i+1} \} \cup \bigcup_{S \in \mathcal{E}} \text{COMPUTEALL}(t_i, t_{i+1}, O) \].

Thus, in this case, the function $\text{MINIMISE}(t_i, t_{i+1}, O)$ returns t_{i+1} in case $\text{COMPUTEALL}(t_i, t_{i+1}, O) = \emptyset$ and, otherwise, a term from $\{t \mid t \in \text{COMPUTEALL}(t_i, t_{i+1}, O)\}$, there is no $t' \in \text{COMPUTEALL}(t_i, t_{i+1}, O)$ such that $s(t') < s(t)$. We can conclude that t in this theorem is indeed minimal. \square

Proofs for Theorem 2

Theorem 2 Let O be an $\mathcal{E}L$ ontology, $E_0 \in \mathcal{E}_O$ and t a term such that $\forall_{E_0} \rightarrow C \in \mathcal{E}_O(t)$. Let further $k \geq 1$ and let $C \in \forall (\exists E \cup \mathcal{N}_O, \{X\})$ be a context containing the variable X such that $C[n_E \rightarrow X] = t$ for some non-terminal n_E occurring in t. The function $\text{COMPUTERULES}(E, k, C, O)$ computes rules of type $DR2$ for $R^{E,k,C,O}$ in time exponential in the size of S_E^n in the worst case.

Proof. We divide the above theorem into three claims:

1. The function $\text{COMPUTERULES}(E, k, C, O)$ computes every rule $n_E \rightarrow \exists(S_n)$ of type $DR2$ from $R^{E,k,C,O}$.

2. The function $\text{COMPUTERULES}(E, k, C, O)$ computes only rules of type $DR2$ from $R^{E,k,C,O}$.

3. The function $\text{COMPUTERULES}(E, k, C, O)$ terminates within time exponential in the size of S_E^n.

We start by showing Claim 1: The function $\text{COMPUTERULES}(E, k, C, O)$ computes every rule $n_E \rightarrow \exists(S_n)$ of type $DR2$ from $R^{E,k,C,O}$. We can show by induction on the length of the set $S_n \times S_{\text{req}}$ that, if a subset $S' \subseteq S_n$ is an element of M_{test} in line 8, then S_n will be added to M_{res} after $|S_n \times S_{\text{req}}|$ iterations of the while-loop. Assume that there is a rule $n_E \rightarrow \exists(S_n)$ in $R^{E,k,C,O}$. Then, $S_n \subseteq S_{E^n,k}$ and, otherwise, $O \models \text{con}(t) \equiv \text{con}(C[S_n/X])$ and, unless $S_n = \{E_T\}$, S_n is irreducible wrt. O. In that case, the test in line 3 will be successful independent from the remaining elements of S_{E^n}. We compute S_{req} in line 5 and add it to M_{test}. The base case of induction is that $S = S_n$ is in M_{test}. In this case, $s \leq k$ and the set M_{test} is not empty so that the condition of the while-loop in line 8 is true. For S_n, the condition in line 12 is true since, by assumption, $O \models \text{con}(t) \equiv \text{con}(C[S_n/X])$, so that S_n is added to M_{res} within 1 iteration of the while-loop. Now, we assume that $S \neq S_n$ is in M_{test} in line 8. In this case, $s \leq k$ and the set M_{test} is not empty so that the condition of the while-loop in line 8 is true.

- In case $S = \emptyset$, the condition in line 12 is false and, since there is no S' with $(S', S) \subseteq \mathcal{S}_{\text{Suc}}$, we skip lines 16-20 so that \emptyset is added to M_{expand} in line 22. In line 24, one of the sets from M_{expand} is \emptyset and, in line 25, one of the processed elements of $S_{E^n}^{\mathcal{S}_{\text{Suc}}}$ is some $E' \in S_n$. All three conditions in line 26 are true, since $(\emptyset, E') \notin \mathcal{E}_{O}$ and $E' \notin \emptyset$ and $M_{\text{res}} = \emptyset$. In line 27, $\{E'\}$ is added to M_{test}. We reach line 8 with $\{E'\} \in M_{\text{test}}$. By induction hypothesis, S_n will be added to M_{res} after $|S_n \setminus \{E'\}| + 1$ iterations of the while-loop from now on. Thus, for $S = \emptyset$ it holds that S_n is added to M_{res} after $|S_n \setminus \emptyset|$ + 1 iterations of the while-loop.

- In case $S \neq \emptyset$, the condition in line 12 is false, since S_n is irreducible wrt. O. The condition in line 17 is false for every S' with $(S', S) \in \mathcal{S}_{\text{Suc}}$ since S_n is irreducible wrt. O so that the variable reduce is still false in line 21. Consequently, S is added to M_{expand}. In line 24, one of the sets from M_{expand} is S and, in line 25, one of the processed elements of $S_{E^n}^{\mathcal{S}_{\text{Suc}}}$ is some $E' \in S_n \setminus S$. All three conditions in line 26 are true: $\{S, E'\} \notin \mathcal{E}_{O}$ because S_n is irreducible wrt. O: $E' \notin S$ by assumption; M_{res} cannot contain any proper subsets of S_n because S_n is irreducible wrt. O. Consequently, in line 27, $S \cup \{E'\}$ is added to M_{test}. We reach line 8 with $S \cup \{E'\} \in M_{\text{test}}$. By induction hypothesis, S_n will be added to M_{res} after $|S_n \setminus (S \cup \{E'\})| + 1$ iterations of the while-loop from now on. Thus, for S it holds that S_n is added to M_{res} after $|S_n \setminus S| + 1$ iterations of the while-loop.

We now show Claim 2: The function $\text{COMPUTERULES}(E, k, C, O)$ computes only rules of type $DR2$ from $R^{E,k,C,O}$. We need to show for each set $S \in M_{\text{res}}$ that: (a) $S \neq \emptyset$; (b) $|S| \leq k$; (c) $O \models \text{con}(t) \equiv \text{con}(C[S/X])$; (d) unless $S = \{E_T\}$, S is irreducible wrt. O. Let $S \in M_{\text{res}}$.

(a). $S \neq \emptyset$: This is true, since, in line 12, we test whether $S \neq \emptyset$ immediately before including S into M_{res}.

(b). $|S| \leq k$: If we examine lines 9, 10, 22, 23, 27 of the algorithm, we can see that the value of s as well as the size of elements within the sets M_{test} and M_{expand} increase by 1. Since, immediately before the first run of the while-loop, in line 7, we set s to the size of the element S_{req} of M_{test}, in every run of the while-loop in line 13, we have $s = |S|$. Due to the condition $s \leq k$ in line 8, it holds for each set S' added to M_{res} in line 13, that $|S'| \leq k$. Consequently, $|S| \leq k$.

(c). $O \models \text{con}(t) \equiv \text{con}(C[S/X])$: In line 1, we define D as $\text{con}(C[n_E/X])$ and in Definition 3, we define $t = C[n_E/X]$ so that $D = \text{con}(t)$. In line 12, we test whether $O \models D \equiv \text{con}(C[S/X])$ immediately before adding S to M_{res}. Thus, $O \models \text{con}(t) \equiv \text{con}(C[S/X])$.

(d). Unless $S = \{E_T\}$, S is irreducible wrt. O. The irreducibility is a consequence of the third condition in line 26 and can be shown as follows. First, note that, as a consequence of the definition of \mathcal{E}_O, for every $E \in \mathcal{E}_O \setminus \{E_T\}$, we have $O \nexists \text{con}(E) \equiv \top$. Thus, all sets $\{E\} \subseteq (\mathcal{E}_O \setminus \{E_T\})$ are irreducible wrt. O. Assume that $S \neq \{E_T\}$ and that S is reducible wrt. O. By induction on the size of S, we can show that there is an irreducible, non-empty subset S'' of S such that $O \nexists \text{con}(C[S'']) \equiv \text{con}(C[S'/X])$. Then, $O \models \text{con}(t) \equiv \text{con}(C[S'/X])$.

Since $|S''| < |S|$, we have $|S''| \leq k$ so that S'' fulfills all conditions for rules of type (DR2) in Definition 3. Thus, as a consequence of Claim 1 of this proof, S'' must be an element of M^res at the point when S is being created. However, in line 26, immediately before creating S, we make sure that no set $S''' \subset S$ with $S''' \in M^\text{res}$ exists. Thus, our assumption was wrong and S must be irreducible wrt. O.

At last, we show Claim 3: The function \textsc{ComputeRules}(E, k, C, O) terminates within time exponential in the size of S^α_E. Computations in line 3 and 5 require 1 and $m = |S^\alpha_E|$ polynomial-time reasoning calls, respectively. The while-loop is executed at most k times. In every loop run, lines 12-22 are executed $|M^\text{test}|$ times and lines 25-29 $|M^\text{expand}|$ times. The maximum size of the two sets is $\binom{m}{k}$ and $\binom{m}{k+1}$, respectively. In lines 12-22, we need maximally k polynomial-time reasoning calls and k^2 constant-time insertions into EXCL. In lines 25-29, we only need a linear (in the size of m) number of constant-time operations including look-ups and insertions. Thus, overall, $\binom{m}{k}$ and $\binom{m}{k+1}$ are the dominating factor within the function \textsc{ComputeRules}(E, k, C, O). Since k only has effect on the computation up to the size of S^α_E, we conclude that \textsc{ComputeRules}(E, k, C, O) terminates within time exponential in the size of S^α_E.