Conference item
Channel assignment on graphs of bounded treewidth.
- Abstract:
- The following 'constraint matrix span problem' arises in the assignment of radio channels in cellular communications systems. Given a graph G with a positive integer length l(xy) for each edge xy, and given a positive integer B, can we assign to each vertex x a channel φ(x) from 1,...,B such that |φ(x) - φ(y)|≥l(xy) for each edge xy? We show that this problem is NP-complete for graphs of treewidth at most 3, but there is a fully polynomial time approximation scheme for the problem on graphs of bounded treewidth. We see also that it is NP-complete for graphs which can be made bipartite by deleting a single vertex. © 2003 Elsevier B.V. All rights reserved.
- Publication status:
- Published
Actions
Authors
- Host title:
- Discrete Mathematics
- Volume:
- 273
- Issue:
- 1-3
- Pages:
- 183-192
- Publication date:
- 2003-01-01
- DOI:
- ISSN:
-
0012-365X
- Keywords:
- Pubs id:
-
pubs:102297
- UUID:
-
uuid:9793acba-8dbe-4042-ba68-ecd5c6197f96
- Local pid:
-
pubs:102297
- Source identifiers:
-
102297
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2003
If you are the owner of this record, you can report an update to it here: Report update to this record