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We classify the ‘‘fully tight’’ simply laced Coxeter groups, that is, the ones whose
iji-avoiding Kazhdan]Lusztig basis elements are monomials in the generators B .si

We then investigate the basis of the Temperley]Lieb algebra arising from the
Kazhdan]Lusztig basis of the associated Hecke algebra, and prove that the basis

Ž .coincides with the usual monomial basis. Q 1997 Academic Press

1. INTRODUCTION

Let W be a Weyl group which we shall view as a Coxeter group with
simple generators S. Every w g W may be written as a product s ??? si i1 l

where s g S. If l is minimal, we say this product is a reduced expressioni k
Ž .for w and we define the length of w to be ll w s l.

Let HH be the Hecke algebra associated with the Weyl group W. We
w y1 x Žunderstand this to be the AA [ Z ¨ , ¨ algebra where ¨ is a square root

. � 4of the indeterminate q associated with HH with basis T : w g W andw
Ž . 2 Ž . Ž . Xmultiplication satisfying 1 T s q y 1 T q q for s g S, and 2 T T ss s w w
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Ž X. Ž . Ž X.XT whenever ll ww s ll w q ll w . There is a unique automorphismw w
y1 y1

y1: HH ª HH which sends ¨ to ¨ and T to T .w w
w xAccording to Kazhdan and Lusztig 9 , there is a unique basis B of HHw

such that

yll Žw .B s B s ¨ P q T ,Ž .Ýw w y , w y
yFw

Ž . Ž . w xwhere F denotes the strong Bruhat order, and P q g Z q is ay, w
1 Ž Ž . Ž . . Ž .polynomial of degree F ll w y ll y y 1 for y - w and P q s 1.w , w2

X w xThis basis is the basis denoted C in 9 .w
y1Ž .Notice that for simple generators s, B s ¨ T q 1 .s s

Let I be the two-sided ideal in HH generated by elements of the form

T ,Ý w
wgP2

where P is a rank 2 proper parabolic of W not isomorphic to A = A .2 1 1
When the Hecke algebra is of type A, the quotient HHrI is the Temper-

w x w xley]Lieb algebra which has been studied in, for instance, 15 and 8 .
When the Dynkin diagram is simply laced, the quotient has been studied in
w x w x w x w x3 and 4 , and the general cases have been tackled in 5 and 14 .

The involution induces an involution on the quotient HHrI, and HHrI is
equipped with a nice basis E . This basis is parametrized by the so-calledw

Ž w x.‘‘fully commutative’’ elements as defined in 14, Section 0 . In the simply
laced cases, this is the subset W of elements in W whose reducedc
expressions avoid substrings of the form iji where i and j are noncommut-
ing simple generators. Such elements will be called iji-a¨oiding.

Because there are many properties of the E basis which mirrorw
properties of the Kazhdan]Lusztig basis B , one might ask to what extentw
the two bases agree.

In particular, since the E are monomials in the E for s g S, we ask,w s
which B are monomials in the B for s g S? This is the subject ofw s
Section 2. Here we give a criterion for B to be a monomial in the B andw s
determine explicitly which of the simply laced W have B consisting of thew

Ž .‘‘maximal’’ number of monomials see Section 2 for a precise statement .
Also, we ask, does the basis B project to the basis E ? This is thew w

subject of Section 3. In general, the ideal I is not compatible with the basis
B . However, in type A, it is, and here, E is indeed the projection of B .w w w

Finally, we remark that if one is willing to use the positivity results
concerning the structure constants of the basis B , some of our proofs canw
be simplified, for example, those in Section 3.7. However, since the
positivity property is a deep result arising from the theory of perverse



FAN AND GREEN500

sheaves which would only help slightly in any case, we will prefer to use
more elementary techniques instead.

2. TIGHT MONOMIALS IN HECKE ALGEBRAS

2.1. General Results

w xMotivated by Lusztig’s paper 12 , we say that B is a tight monomialw
and w is tight if B is a monomial in the B , s g S. Denote by T ; W thew s
set of w g W for which B is a tight monomial.w

First, we give a criterion for determining whether B is a tight mono-w
mial.

PROPOSITION 2.1.1. Let w s s ??? s be a reduced expression for w.i i1 l
Ž .Define Q q byy

B ??? B s ¨yll Žw .Q q T .Ž .Ýs s y yi i1 l
yFw

w x Ž Ž . Ž ..Then B is tight if and only if Q g Z q and deg Q - ll w y ll y r2w y y
for y / w and Q s 1.w

Proof. Since is an automorphism and B s B for s g S, we see thats s
B ??? B is fixed by . By the uniqueness properties of B , we can haves s wi i1 l Ž .B s B ??? B if and only if the Q q are polynomials of a naturew s s yi i1 l

Ž .consistent with the nature of the P q .y, w

We remark that this is equivalent to smallness of the standard desingu-
Žlarization map of the Schubert variety corresponding to w. This follows

.easily from the relevant definitions.

LEMMA 2.1.2. Let w g W. Let w s s ??? s be a reduced expression fori i1 n

Žw. Assume that there exists 1 F k F n such that s ??? s s ??? s prod-i i i i1 ky1 kq1 n

uct of simple generators in the reduced expression in order, but omitting the
.kth term is not reduced. Then w is not tight.

Proof. Let s , . . . , s be any sequence of generators. Writej j1 l

T T ??? T s R q T .Ž .Ýs s s y yj j j1 2 l

We claim that whenever R / 0, both the coefficient of qdeg R y in R isy y
Ž Ž ..positive and deg R G l y ll y r2. We proceed by induction on l, they

case where l s 0 or l s 1 being clear.
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Ž . Ž . ŽBy definition, we have T T s T if ll sw ) ll w and T T s q ys w sw s w
. Ž . Ž .1 T q qT if ll sw - ll w . For notational simplicity, we let s s s . Letw sw j1X Ž .T ??? T s ÝR q T . We haves s z zj j2 l

R q s d q y 1 RXŽ . Ž .y ll Ž s y .q1, ll Ž y . y

q RX q qRX .Ý Ýw w
Ž . Ž . Ž . Ž .w , swsy , ll w -ll y w , swsy , ll w )ll y

By induction, we know that the coefficient of qdeg R y
X

in RX is positive.y
Therefore, since the sum of polynomials in q which tend to infinity as q
tends to infinity also tends to infinity with q, we see that the coefficient of
qdeg R y in R is positive as well. Also, since multiplication of an element iny
W by a simple generator changes its length by "1, we compute that

Ž Ž ..deg R G l y ll y r2.y
Now consider the product expansion

¨ ll Žw .B ??? B s Q q T .Ž .Ýs s y yi i1 n
yFw

This product is also a positive sum of monomial in the T where thes
monomials are indexed by subsequences of s ??? s . Consider the mono-i i1 n

mial

T ??? T T ??? T .s s s si i i i1 ky1 kq1 n

Ž .After performing some braid relations if necessary , we see that

T ??? T T ??? T s q y 1 T ??? T q qT ??? T .Ž .s s s s s s s si i i i j j k k1 ky1 kq1 n 1 ny2 1 ny3

Recall that we are assuming s ??? s s ??? s is not reduced. By thei i i i1 ky1 kq1 n

claim, there exists y for which the coefficient of T in the expansiony
Ž Ž . Ž ..T ??? T is greater than or equal to ll w y 2 y ll y r2. But thiss sj j1 ny2

Ž . Ž Ž .implies that there exists y such that deg Q q G 1 q ll w y 2 yy
Ž .. Ž Ž . Ž .. Ž Ž . Ž .ll y r2 s ll w y ll y r2. Recall that if f q and g q are polynomial

Ž . .which tend to infinity with q, then deg f q g s max deg f , deg g .
By Proposition 2.1.1, this implies that w is not tight.

PROPOSITION 2.1.3. We ha¨e T ; W , where W is the set of iji-a¨oidingc c
elements.

Proof. Suppose w f W . Then there exists a reduced expression s ???c i1

iji ??? s of w which involves a substring of the form iji where i and j arei l

simple generators which do not commute. Consequently, the subsequence
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of length l y 1 which omits j is not reduced. By Lemma 2.1.2, w is not
tight.

By the weak Bruhat order, we mean the order generated by the preorder
Ž . Ž . Ž .on W defined by w - ws if ll ws s ll w q 1 and w - sw if ll sw s

Ž .ll w q 1.

PROPOSITION 2.1.4. The set T is an order ideal in the weak Bruhat order
on W.

Proof. Consider the case where w g W and s g S are such that
Ž . Ž .ll sw s ll w q 1. Suppose that w f T. Let w s s ??? s be a reducedi i1 l

expression for w. Let

B ??? B s ¨yll Žw .Q q T .Ž .Ýs s y yi i1 l
yFw

Ž . w xNote that Q q lies in Z q ; this can be seen by renormalizing B byy si1

w xmultiplying by ¨ and using the fact that the structure constants lie in Z q .
We therefore know from Proposition 2.1.1 that there exists y such that

Ž Ž . Ž ..deg Q G ll w y ll y r2. By properties of the Hecke algebra multiplica-y
Ž .tion, this implies that the coefficient of T respectively, T has degrees y y

Ž . Ž . Ž Ž . Ž ..which violates if ll sy ) ll y respectively, ll sy - ll y the conclusion
of Proposition 2.1.1. Consequently, sw is not tight.

2.2. Fully Tight

ŽSince we know that T is an order ideal with respect to weak Bruhat
.order of W and we know that W is also such an order ideal, it is naturalc c

to wonder whether T s W . We say W is fully tight if this is the case.c

PROPOSITION 2.2.1. Among all simply laced Coxeter groups, A , A , A ,1 2 3
A , A , A , D , and D are the only fully tight ones.4 5 6 4 5

Proof. We used a computer to check that all the groups listed are fully
tight.

To see that these are the only ones, we proceed as follows.
First note that if W is not fully tight, then no Coxeter group whose

Coxeter graph contains a subgraph corresponding to the Coxeter graph of
W is fully tight.

Let w s s ??? s be a reduced expression. By the expansion of w, wei i1 n

Žshall mean T ??? T . Note that this is independent of the reduceds si i1 n.expression.
In type A , we label the generators 1 through 7 in the standard way.7

ŽConsider w s 4567 3456 2345 1234. This is the longest element in W seec
w x.3 . Consider the product X s T T T T T T T T T T T T formed by a4 5 7 3 4 5 3 4 5 1 3 4
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subsequence of the given reduced expression for w. Note that 345 345 is
the longest element of an A parabolic subgroup of A so that 3, 4, and 53 7
shorten it when multiplied on either side. One sees that the coefficient of

ŽT in the expansion of X is therefore of degree at least 4 G 16 y7 345 345 1
. Ž .8 r2. In fact, the degree is equal to 4. Therefore w is not tight.
In D , we label the generators 1, 1, and 2 through 5 in the standard way6

Ž .so 1 and 1 commute with each other, but not with 2 . A similar argument
Žto the case for A shows that w s 1 21 321 4321 54321 is not tight. This w7

.is one of the two longest elements in W . The coefficient T hasc 1 21 1 34321
Ž .degree 3 G 15 y 9 r2.

In E , we label the generators 0 through 5 so that 1 through 5 generate6
an A parabolic subgroup. A similar argument to the case for A and D5 7 6

Žshows that w s 5430213243054321 is not tight. This w is again one of the
.two longest elements in W . The coefficient of T has degreec 0345430213

Ž .3 G 16 y 10 r2.
ˆIn D , we label the generators m, 1, 2, 3, and 4, where 1, 2, 3, and 4 all4

commute with each other, but none of which commute with m. Let
w s 1m23m41m23m1. Note that w g W . However,c

1m23m1m23m1 s 1m123m321m1
s m1m2m3m2m1m
s m12m232m21m
s m12m3m21m.

Therefore, by Lemma 2.1.2, w is not tight.
ˆFinally, in A , for n ) 2, we label the generators 1 through n in theny1

Ž . Žstandard way. Let ¨ s 1234 ??? n y 1 . Let w s ¨n¨ . Then w g W inc
.fact, w has a unique reduced expression . However, we claim that ¨¨ is not

y1 y1Ž .reduced. To see this, note that ¨ ¨ ya s ya where a and1 ny1 1
a are the roots which define the simple reflections 1 and n y 1.ny1
Therefore, by Lemma 2.1.2, w is not tight.

To summarize, we have shown that if W is fully tight with simply laced
Coxeter graph G, then

1. G contains no loops,

2. G contains no string of length 7,

3. G contains no node with more than three branches,

4. G does not contain a subgraph of type D or E .6 6

These eliminate all simply laced graphs not listed in the statement of
Proposition 2.2.1.
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3. THE MAIN RESULTS

3.1. The Kazhdan]Lusztig Basis for the Temperley]Lieb Algebra

From now on we consider only the Temperley]Lieb algebra TL corre-r
sponding to a Dynkin diagram of type A . This is given by generatorsry1
E , . . . , E and defining relations1 ry1

2 w xE s 2 E ,i i

< <E E s E E if i y j ) 1,i j j i

E E E s E .i i"1 i i

w x y1Here, the symbol 2 denotes the Laurent polynomial ¨ q ¨ .
� 4Using the basis B : w g W of the Hecke algebra HH in Section 2, wew
� 4can obtain a basis F : w g W ; W of the Temperley]Lieb algebra HHrI.w c

In general, I is not spanned by the basis elements B it contains.w
However, in type A we have the following result.

Ž . Ž .PROPOSITION 3.1.1. The kernel of s : HH A ª HH A rI is spannedry1 ry1
by the elements

� 4B : w f W ,w c

where W is as defined in Section 1. In fact, W is a union of two-sidedc c
Kazhdan]Lusztig cells in type A.

Proof. The first assertion follows from the second. The second part
w xfollows from 3, Proposition 6 and the fact that the two-sided Kazhdan]

Lusztig cells in type A agree with the Robinson]Schensted correspon-
Ž w xdence. This latter fact can be deduced from results in 10, Theorem 3.8 ,

and details of the Robinson]Schensted correspondence may be found in
w x .13 . Here, W corresponds to pairs of tableaux with strictly fewer thanc
three columns, and all such pairs of tableaux turn up in this way.

� 4 � 4DEFINITION 3.1.2. The elements F : w g W are given by F [ s B .w c w w

� 4It is clear that the elements F : w g W form a basis for TL .w c r

3.2. The r-Diagram Calculus

We now recall the r-diagram calculus for the Temperley]Lieb algebra.
w xFull details may be found in 16, Sect. 1 .

An r-diagram consists of two rows of r nodes together with r edges
linking pairs of nodes. Each node is the endpoint of exactly one edge, and
the edges must not intersect. An example of an r-diagram for r s 5 is
given in Figure 1.
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Ž .FIG. 1. An r-digram r s 5 .

The r-diagrams can be thought of as basis elements for the Temperley]
Lieb algebra. The multiplication is given in a natural way as follows.
Suppose A and B are r-diagrams. Place the A above B, identifying the
lower row of A with the upper row of B, and then remove all the nodes in
this new combined row. This will produce x closed loops, where x is
possibly zero. Remove these closed loops to form a new r-diagram, C.

w x xThen the product AB in the algebra is given by 2 C.
We call edges joining points in the same row horizontal, and edges

joining points in different rows ¨ertical. It is clear that the number of
horizontal edges in the top row equals the number of horizontal edges in
the bottom row.

The generator E of the algebra TL is identified with the diagram ini r
which the i and i q 1 positions in both rows are joined by horizontal
edges, and the other points are joined by vertical edges. Figure 2 shows the
example of E in the case r s 5.3

We now show that the basis of r-diagrams may naturally be parametrized
by the elements of W as follows.c

DEFINITION 3.2.1. For each w g W , we define E g TL to be E ???c w r i1

E , where s ??? s is a reduced expression for w.i i il 1 l

Notice that since w g W , this definition does not depend on thec
reduced expression taken for w g W , because in this case any reducedc
expression for w can be obtained from any other by repeated application

Ž < < .of the relation s s s s s for i y j ) 1 , and in this case, E E s E Ei j j i i j j i
also holds.

FIG. 2. The generator E for r s 5.3
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� 4PROPOSITION 3.2.2. The set E : w g W coincides with the basis ofw c
r-diagrams.

w x � 4Proof. It was shown in 3, Sect. 2 that the elements t : w g W formw c
ll Žw . �a free AA-basis for TL , where t s ¨ E . So clearly the set E :r w w w

4w g W forms a free AA-basis.c
By considering the representation of the algebra generators E ass

w xr-diagrams, we see that each E is equal to a power of 2 multiple of somew
w xr-diagram. Since 2 is not a unit and both the set of r-diagrams and the set

� 4E : w g W are free AA-bases for TL , we deduce that all the powers ofw c r
w x2 occurring are trivial, and that the two bases coincide.

Ž .From now on, we will refer to the basis E i.e., the basis of r-diagramsw
as the monomial basis. The main aim of Section 3 is to prove that the basis
F coincides with the monomial basis.w

3.3. Two-Sided Cells

An important feature of the Temperley]Lieb algebras which is empha-
sized by properties of either the E or the F basis is that they are cellularw w

Ž w x.algebras in the sense of 6 .
� 4The two-sided cells with respect to the basis F : w g W are definedw c

via the Robinson]Schensted correspondence. Under this correspondence,
the elements of W correspond to pairs of standard tableaux of the samec
shape with at most two columns. The shapes of these tableaux are clearly
determined by the length of the second column, which is an integer

? @between 0 and rr2 inclusive. The term ‘‘cell’’ on its own should be
understood to mean a two-sided cell.

The two-sided cells for Hecke algebras of symmetric groups, such as
F-cells we have been studying, are well known to be the disjoint union of
left cells and also the disjoint union of right cells, as one finds from the

Ž wRobinson]Schensted correspondence. For the definitions, see 7, Sect.
x .7.15 . All the left and right cells are the same size as each other, and any

given left cell and right cell in the same two-sided cell intersect in a unique
element. We use the usual notation w ; w , w ; w , and w ; w1 L 2 1 R 2 1 L R 2

Žto mean that two elements of the group or their associated basis elements
.in the algebra w and w are in the same left cell, right cell, and two-sided1 2

cell, respectively.
Ž wWe will use the fact due to Lusztig and mentioned, for example, in 1,

x.Sect. 1.3 that if x F y then there exists h g HH such that B appears inL x
the expansion of the product hB with respect to the B-basis. Here, F isy L
a certain natural order on the elements of a Coxeter group, and the
property we have just cited may be regarded as the definition of the order.
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? @DEFINITION 3.3.1. For each integer k between 0 and rr2 , we define
the k th F-cell to be the set of F where w lies in the two-sidedw
Kazhdan]Lusztig cell corresponding to pairs of tableaux with at most two
columns and exactly k boxes in the second column. One sees easily from
the Robinson]Schensted correspondence that the elements w g W arising
from this procedure lie in W , and that each element of W turns up in thisc c
way for a suitable k.

We will say that the ith F-cell is greater than the jth F-cell if and only
if i ) j.

� 4The two-sided cells with respect to the basis E : w g W may bew c
w xunderstood in terms of the parenthesis diagrams of 16, Sect. 2 .

Ž .DEFINITION 3.3.2. An r, p -parenthesis diagram consists of a row of r
Ž .points imagined to be on the x-axis of the plane and a set of p edges,

each of which lies in the lower half of the plane, joins exactly two of the
points, and does not intersect any of the other edges. If points a, b, c
satisfy a - b - c and a is connected to c, then b is required to be
connected to some other point.

The motivation behind this definition is that any r-diagram, A, now
Ž .corresponds naturally to a pair of r, p -parenthesis diagrams, where p is

half the number of horizontal edges in A. This can be seen by removing all
Ž .the vertical edges from A: the upper half of the diagram is an r, p -

Ž . Ž .parenthesis diagram call it a , and the lower half is an inverted r, p -1
Ž .parenthesis diagram call this a . Note that the diagram A can be2

Ž .recovered from the ordered pair a , a corresponding to it because of the1 2
Žrequirement that the edges of A do not intersect meaning that there is a

.unique way of connecting the endpoints of vertical edges .
w xFollowing Westbury’s use 16, Sect. 5 of the Dirac ‘‘dyadic’’ notation, we

< :² <denote the diagram with a on top and a on the bottom by a a .1 2 1 2

? @DEFINITION 3.3.3. For each integer k between 0 and rr2 we define
< :² <the kth E-cell to be the set of basis elements a b where a and b are

Ž .r, k -parenthesis diagrams. We order the E-cells in the obvious way based
on the values of k.

Ž .We write a ; b to mean that a and b are r, k -parenthesis diagrams
for the same values of r and k.

< :² < < :² <We say that x y and a b are in the same left E-cell if and only if
y s b, and we say that are in the same right E-cell if and only if x s a.

DEFINITION 3.3.4. We denote by L the number of standard tableauxk
having at most two columns with r y k entries in the first column and k
entries in the second column.
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LEMMA 3.3.5. The size of the kth E-cell and the size of the kth F-cell are
both gï en by L2 .k

w xProof. Westbury explains in 16, Sect. 2 how to associate to each
Ž .r, p -parethesis diagram a pair of standard tableaux with r boxes, at most
two rows, and p entries in each of the second rows. Clearly the same holds

Ž .for the transpose of these tableaux i.e. those with at most two columns .
This means that the size of the kth E-cell is L2 . One sees from thek
Robinson]Schensted correspondence that this is also the size of the k th
F-cell.

3.4. Ideals and Modules o¨er a Field

In this section, we change the base ring of the Temperley]Lieb algebra
Ž . Ž . Ž .from AA to Q ¨ , and study Q ¨ m TL , where Q ¨ is the field ofr

fractions of AA. We then study certain two-sided ideals and modules in TLr
over the field.

ŽDEFINITION 3.4.1. For each integer k indexing one of the cells with
. Ž . Ž .respect to either basis , we define the r, k -parenthesis diagram ll k to

be that in which the nodes labelled 2 i q 1 and 2 i q 2 are joined by an
< Ž .:² Ž . <edge if and only if i - k. We denote the E-basis element ll k ll k by

Ž . ŽD k . It is also equal to F where w [ s s ??? s meaning w is thew k 1 3 2 ky1 kk
.identity when k s 0 ; this follows from the definition of the F-basis

because each s occurring in the expression for w occurs at most once.i k

Ž . � 4Using the elements ll i from above, we now define a set I ofk
Ž Ž ..two-sided ideals of TL over Q ¨ as follows.r

DEFINITION 3.4.2. Let k be the label of one of the cells of TL . Ther
Ž .ideal I of Q ¨ m TL is defined to bek r

² X X :D k : k G k .Ž .

Next, we use the ideals introduced above to define a certain left module
for TL over the field.r

DEFINITION 3.4.3. Let k be the label of one of the cells. We denote by
Ž .M the TL -submodule of TL rI generated by ¨ [ D k q I . Wek r r kq1 k kq1

understand I to mean 0 if k q 1 is not the label of one of the cells.kq1

LEMMA 3.4.4. The dimension of I is gï en by Ý X L2 , where L is thek k G k k k
number of standard tableaux with at most two columns and k boxes in the
second column.

The ideal I is spanned by the F lying in the kth and higher F-cells, andk w
also by the E lying in the kth and higher E-cells.w
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Proof. One may easily check from the definition for the E-cells and the
Ž X. Ž X .F-cells that the elements D k where k G k are elements of both the

Ž X. XE-basis and the F-basis. Moreover the element D k lies in the k th
X w xE-cell and the k th F-cell. It follows from 6, Sect. 1.2 that the F-basis is a

w xcellular basis, and it was shown in 6, Theorem 6.7 that the E-basis is a
Ž X. Žcellular basis. This means that the ideal generated by the D k for

X .k G k is contained in the span of the union of the cells as stated in the
statement of the lemma. Hence it is enough to prove that any E lying inw
the k th or higher E-cells is in the ideal I , because then the dimensionk

Ž .will be as asserted by Lemma 3.3.5 , and the statement for the F-basis will
follow, also by Lemma 3.3.5.

< :² <To prove this assertion, let a b be a typical element of the k th E-cell.
The proof follows from the observation that

2 k :² :² :² < < :²w x2 ¬ a b ¬s¬ a ll k ¬ =¬ ll k ll k = ll k b ¬ .Ž . Ž . Ž . Ž .
Ž . w x2 kSince we are working over Q ¨ , 2 is invertible, and the proof follows.

3.5. The a-Function

We now recall the a-function on the Weyl group W. This was studied
w xextensively in the series of papers 11 , but there using a basis for the

Ž .Hecke algebra HH W which differs somewhat from ours. Our approach is
w xmore similar to that followed in 2 , which uses the B basis of HH.w

DEFINITION 3.5.1. Let g be one of the structure constants for thex, y, z
� 4 Ž .basis B : w g W of HH W , namelyw

B B s g B .Ýx y x , y , z z
z

Define, for z g W,

a z s max deg g .Ž . Ž .x , y , z
x , ygW

w xThe following properties of the a-function were proved in 11 and turn
out to have important consequences for the F-basis:

Ž .PROPOSITION 3.5.2. a The a-function is constant on two-sided cells.
Ž . Ž . Ž .b For all z g W, a z F ll z .
Ž . Ž .c The bound max deg g can only be achië ed when x ;x, y g W x, y, z L

y1 Ž . Ž . Ž .y , y ; z, x ; z, and a x s a y s a z .L R

Ž . Ž .d There is a unique in¨olution d such that d ; x. Then g d, x, xR
has largest possible degree, and no other in¨olution dX ; x has this property.L R

Ž .Furthermore, g d, x, x has leading coefficient 1.
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Ž . Ž .e There is a unique in¨olution d such that d ; x. Then d x, d, xL
has largest possible degree, and no other in¨olution dX ; x has this property.L R

Ž .Furthermore, g x, d, x has leading coefficient 1.
Ž . Ž y1 .f For each x there is a unique in¨olution d such that g x, x , d has

maximum degree and leading coefficient 1.

Ž . Ž . w xProof. Proofs of a and c appear in 11, I , and proofs of the other
w xstatements appear in 11, II .

Since the homomorphism s respects the two-sided cells, we can define
an a-function for the F-basis in a natural way. This leads to the following
result:

LEMMA 3.5.3. Consider the two-sided cell of HH corresponding to the kth
F-cell. The a-function takes ¨alue k on this cell.

Proof. The k th F-cell contains the element w , where w is as ink k
Ž . Ž . Ž .Definition 3.4.1. By Proposition 3.5.2 b , a w F ll w s k. Conversely,k k

2 w xk w xk Ž . Ž .B s 2 B , and 2 has degree k. So a w G k, forcing a w s k. Thew w k kk k

Ž .assertion follows from Proposition 3.5.2 a .

DEFINITION 3.5.4. An element E is called involutory if and only if it isw
< :² <of the form a a . It is clear that there is a unique involutory element in

each left E-cell and in each right E-cell. If E is involutory, we denote itw
by E , where the symbols d are in bijection with the left cells. We writed, d

E X for the element of the E-basis in the same right cell as the involutoryd, d
element corresponding to d and the same left cell as the involutory
element corresponding to dX. Any element E may thus be written in thex
form E X .d, d

This a-function can also be applied to the E-basis of TL , where wer
have a result analogous to Proposition 3.5.2:

Ž .LEMMA 3.5.5. a Let E , E , E be elements of the E-basis in the cellsx y z
numbered k , k , k , respectï ely. Writex y z

E E s g X E X .Ýx y x , y , z z
Xz

Ž .Then deg g F k , and the bound can be achië ed only if k s k s k .x, y, z z x y z

Ž . Xb Let E s E lie in the kth E-cell. Then E is the uniquex d, d d, d
in¨olutory element in the kth E-cell for which the product E E X producesd, d d, d
a Laurent polynomial of maximum allowable degree. Similarly, E X X is thed , d
unique in¨olutory element in the kth E-cell such that E X E X X produces ad, d d , d
Laurent polynomial of maximum allowable degree.
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Proof. The degree of a resulting polynomial g resulting from a multi-
plication is the number of loops formed by concatenation of the relevant
diagrams. The r-diagram of an element E from cell number k has twow
sets of k horizontal edges, so can form at most k loops when multiplied by
another element. The bound can only be achieved for products
< :² < < :² <a b a b where b s a .1 1 2 2 1 2

The proof follows easily from these observations.

3.6. Agreement of the Bases on Left Cells, up to Sign

Ž .In this section, we continue to work over Q ¨ , unless otherwise stated.

Ž .LEMMA 3.6.1. a There is a unique Q-linear anti-automorphism ) of TLr
sending ¨ to ¨y1 and F to F .s s

Ž . U < :² <y1b For all w g W , F s F . The image of a d under ) isc w w
< :² <b a .

Proof. There is an anti-automorphism j of HH which sends T to Ty1,y y
y1and hence sends B to B . Composing this map with the map sendingw w

y1 Ž Ž ..¨ to ¨ induces a map ) on HHrI as required in a , because I is stable
under and j. Uniqueness follows from the fact that the F are algebras
generators.

Ž . wThe first part of b follows similarly. For the second part, it is clear see
x < :² < < :² < y116, Sect. 5 that sending a b to b a and ¨ to ¨ is an anti-automor-

phism, and it is the same as ) because they agree on the base ring and on
Ž .the generators F . This completes the proof of b .s

LEMMA 3.6.2. The F-basis and the E-basis induce the same basis on the
module M up to sign. That is, the subset of M gï en byk k

� 4F q I : w ; ww kq1 L k

coincides with the subset of M gï en byk

:²"¬ a ll k ¬ qI : a ; ll k� 4Ž . Ž .kq1

Ž Ž . .for a suitable choice of signs. Recall that ll k appeared in Definition 3.4.1.

Proof. Consider a typical F satisfying w ; w . Then there existsw L k
f g TL such that F appears with nonzero coefficient in the expansion ofr w
f ? F with respect to the F-basis. Clearly we can choose f to be anw k

element of the E-basis, i.e. a monomial F F ??? F , where we write Fi i i is sy1 1 t
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for F for typographical convenience. Let us pick such an f where s is assi t

small as possible and consider the product

F ??? F F s fF .i i w ws 1 k k

It is enough to prove by induction on p that

F F ??? F F s "F mod I s "E mod Ii i i w y kq1 x kq1p py1 1 k

for a certain y ; w , and a certain element of the E-basis which weL k
denote by E X .x

The case p s 0 is obvious. We may now assume that the statement is
true for p and prove that F F s "F X mod I s "E X mod I ,i y x kq1 x kq1pq 1

where

F s "F ??? F F .y i i wp 1 k

Since F f I , the same is true for F and F F . Consideration of thew kq1 y i ypq 1

multiplication properties of the E-basis shows that E E can only equali xpq 1

w x X
X2 E modulo I or E modulo I for some suitable x . The formerx kq1 x kq1

w xX Xcase is impossible as it would imply F F s 2 F which is not the case,i x xpq 1

by minimality of s. So we have shown that

F F X s "E X mod I .i x x kq1pq 1

w x w xX XSince F F / 2 F mod I , it follows from 7, Sect. 7.14 thati x x kq1pq 1

F F X s F q m z , x F ,Ž .Ýi x z zpq 1 0
z

X Ž .where z s s x ) x and the scalars m z, x are integers. Using the fact0 i pq 1

w Ž .x11, I, Corollary 6.3 c that x F y and x ; y imply x ; y, we haveL L R L

F F X s m z , x F mod I , 1Ž . Ž .Ýi x z kq1pq 1
z; wL k

Ž .where we define m z , x s 1 if z ; w and 0 otherwise, for notational0 0 L k
convenience.

< Ž .:² Ž . <We now consider the coefficient of F s ll k ll k inw k

Uyk yk
X X¨ F F ¨ F F .Ž . Ž .i x i xpq 1 pq1
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y1 w y1 xWe know this is equal to 1 mod ¨ Z ¨ because it is clear that
U w xk X

X XE E s 2 F . If z, z ; w then it follows from Proposition 3.5.2, partsx x w L kk

Ž . Ž . yk Ž .U yk
Xc and f , that the coefficient of F in ¨ F ¨ F is 0 modw z zky1 w y1 x X y1 w y1 x¨ Z ¨ unless z s z in which case the coefficient is 1 mod ¨ Z ¨ .

Ž .Using these observations and 1 , we find that only one F can appear inz
Ž .the expansion of 1 with nonzero coefficient, and that it appears with

coefficient "1.

3.7. Agreement of the Bases on the Two-Sided Cells, up to Sign

Ž .We continue to work over Q ¨ , and consider the TL -bimoduleAA r

T s I l TL q I .Ž .k k AA r kq1

LEMMA 3.7.1. The subset of T gï en byk

� 4F q I : w ; ww kq1 L R k

coincides with the subset of T gï en byk

:²"¬ a b ¬ qI : a ; ll k ; b� 4Ž .kq1

for a suitable choice of signs.

w xProof. It follows from 6, Sect. 1.2 that the F-basis is cellular, and it
w xwas shown in 6, Theorem 6.7 that the E-basis is cellular. The theory of

Ž w Ž .x.cellular algebras see 6, 2.4.1 now shows that T is a disjoint union ofk
left submodules, each of which is spanned by the images of the basis
elements which it contains, with respect to either basis. It is also a disjoint

Žunion of right submodules with similar properties. The left respectively
. Ž .right submodules are called left respectively right cells. Any given left

Žcell and any right cell arising from T which corresponds to a two-sidedk
.cell intersect in a one-dimensional space spanned by one of the basis

elements.
Since the anti-automorphism ) agrees with the cellular anti-automor-

w x w x Žphism ) in 16, Sect. 5 of 6, Theorem 6.7 provided we take the
w x .parameter to be 2 and not ¨ , one of the right cells with respect to the

F-basis can be easily seen to be

� 4F q I : w ; w ,w kq1 R k
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Ž .which is also by applying ) to Lemma 3.6.2 one of the right cells with
respect to the E-basis, up to sign, namely

:²"¬ ll k x ¬ qI .� 4Ž . kq1

< :² <Now consider an arbitrary element a b in the two-sided cell labelled
by k. This is of form

1
:² :²¬ a ll k ¬ ¬ ll k b ¬ qI ,Ž . Ž . kq1kw x2

and hence, by Lemma 3.6.2, of form

1
" F F q I ,w w kq1k 1 2w x2

< :² Ž . < < Ž .:² <where F q I s " a ll k q I and F q I s " ll k b qw kq1 kq1 w kq11 2

I . Since the F-basis is cellular, we must havekq1

1
F F q I s cF q Iw w kq1 w kq1k 1 2w x2

for some w ; w and a scalar c. Because the F-basis and the E-basisL R k
give the same AA-form, c g AA.

Applying the anti-automorphism ) to the above equation shows that c
is symmetric in ¨ and ¨y1. Regarding T as an algebra in the obvious way,k

Ž . Ž U . w xkand M considered over AA as a left ideal of T , we find that M M r 2k k k k
is equal to T ; this is clear with respect to the E-basis. Therefore c mustk
be a unit, and the other conditions force c s "1. This completes the
proof.

Now we have a canonical correspondence between the elements of the
F-cells and the elements of the E-cells. It will be convenient for the
purposes of the next section to introduce a parallel notation for these two
bases in terms of certain idempotents.

It follows from standard properties of the Robinson]Schensted corre-
spondence that each F-cell c has a subset of elements DD which corre-c
spond to involutions in the Weyl group. There is exactly one element of DDc
in each left cell, and exactly one in right cell. We can therefore denote Fw
by F X , where d is the involution in the same right cell as w, and dX is thed, d
involution in the same left cell as w. For d g DD , F s F , and FU s F .c d d, d d d
The element E corresponding to F in the sense of Lemma 3.7.1 alsow d
clearly satisfies EU s E , and is therefore involutory. We may thus takew w
the symbols d in Definition 3.5.4 to be the iji-avoiding involutions.
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3.8. Agreement of the Bases

Lemma 3.7.1, together with the fact that the a-function takes value k on
Ž .the k th cell for either basis , motivates the following definition:

w y1 xDEFINITION 3.8.1. We denote by LL the Z ¨ -lattice with basisk

¨yk F q I : w ; w ,� 4w kq1 L R k

Ž .or equivalently by Lemma 3.7.1 with basis

yk :²¨ ¬ a b ¬ qI : a ; ll k ; b ,Ž .� 4kq1

which is the same basis up to sign.

We are now ready to prove the main result of this section.

THEOREM 3.8.2. The F-basis and the E-basis are identical; that is, if
s ??? s is a reduced expression for w g W , theni i c1 m

F s F ??? F ,w i i1 m

where we write F for F .i s i

Ž .Proof. We proceed by induction on n s ll w , the cases of n s 0 and
n s 1 being trivial.

Otherwise we can write w s swX, where s is a simple reflection and
Ž X. Ž . X w xll w s ll w y 1. It is clear that w g W . From 7, Sect. 7.14 we see thatc

F F X s F X q m z , wX F ,Ž .Ýs w sw z
z

Ž X.where the m z, w are certain integers arising from the theory of Kazh-
Ž w xdan]Lusztig polynomials. Note that in 16, Sect. 7 , something similar is

considered, but the function m occurring there is defined in an ad hoc way,
.not from the Kazhdan]Lusztig theory. It is important for the proof that

the structure constants occurring are integers; this will be used implicitly
from now on.

We now argue that in fact F F X s F X s F .s w sw w
Ž .XWe wish to find the coefficient of F a basis element in the k th celld, d

in the product F F X . To do this, we consider the coefficient c of F X ,s w e, e
another typical element in the k th cell, in the product

P s ¨ya Žk .F ¨ya Žk .F q m z , w ¨ya Žk .F ¨ya Žk .F X X .Ž .Ýd , d w z d , dž /
z

It follows from the definition of the a-function that c is an element of
ya Žk . w y1 x¨ Z ¨ ; in other words, after quotienting by I , this expression lieskq1
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in the lattice LL . Let cX be the coefficient of ¨ya Žk . in the polynomial c,k
i.e. the coefficient of ¨ya Žk .F X after projection to the quotient latticed, d
LL r¨y1 LL .k k

Ž .By Proposition 3.5.2 c and Lemma 3.5.3, the only F appearing withz
nonzero coefficient in F F X which can contribute to cX are those in thes w

Ž . Ž .k th F-cell. By Proposition 3.5.2 d and e , the only F which can con-z
tribute is in fact F X itself, and furthermore, cX is the coefficient withd, d
which F X occurs in F F X .d, d s w

In the context of the quotient lattice LL r¨y1 LL , this means that thek k
image of P in the quotient lattice is well defined, and the coefficient of
the basis element of LL r¨y1 LL corresponding to F X is the coefficient ofk k d, d
F X in F F X .d, d s w

By Lemma 3.7.1, F s "E mod I and F X X s "E X X modd, d d, d kq1 d , d d , d

Ž .X XI , so it is also true that the coefficient of F in F F is the integerkq1 d, d s w
ya Žk . Ž . Xcoefficient of ¨ in the polynomial coefficient of F ind, d

"¨ya Žk .E ¨ya Žk .F q m z , w ¨ya Žk .F ¨ya Žk .E X X .Ž .Ýd , d w z d , dž /
z

Because F is not a scalar multiple of F F X , the induction hypothesisw s w
Ž w xXshows that F F is a member of the E-basis as opposed to being 2 timess w

.a member of the E-basis , which we denote by E .x
We now define the product

P
X s ¨ya Žk .E ¨ya Žk .E ¨ya Žk .E X X .Ž .d , d x d , d

We consider the coefficient of E X in this expression, where E X is ae, e e, e
typical element in the same E-cell as E X . Using similar techniques to thed, d
above, but using Lemma 3.5.5 instead of Proposition 3.5.2, we find that
again it makes sense to take the image of P

X in the quotient lattice, and
that the coefficient of E X in P

X is the same as the coefficient of the basise, e

element in the quotient lattice which corresponds to E X .e, e
It was remarked in Definition 3.8.1 that the E-basis and F-basis for the

quotient lattice are the same up to sign. Since we know only one E-basis
element occurs in the product F F X , it follows that only one F-basiss w
element can occur in the product F F X . But certainly F occurs, and withs w w

Xcoefficient 1. Thus F F s F as required, and the theorem is proved.s w w

A natural question to ask is whether Theorem 3.8.2 generalizes to the
Hecke algebra quotients HHrI for other types of Dynkin diagrams. Unfor-
tunately, Proposition 3.1.1 is in general false: it even fails for type D ,4
where the iji-avoiding elements are not a union of two-sided
Kazhdan]Lusztig cells. This means that there is no obvious generalization
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of Theorem 3.8.2 to the other simply laced cases. It is possible that there
may be an analogous result if we consider a slightly larger ideal I, which
we hope to investigate in a forthcoming paper.
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Ž .36 1989 , 297]328.
12. G. Lusztig, Tight monomials in quantized enveloping algebras, in ‘‘Quantum Deforma-

Ž .tions of Algebras and Their Representations,’’ Israel Math. Conf. Proc. 7 1993 , 117]132.
13. Shi Jian-yi, The Kazhdan]Lusztig cells in the affine Weyl group, Lecture Notes in Math.,

Vol. 1179, Springer-Verlag, New York, 1986.
14. J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic

Combinatorics, to appear.
15. H. N. V. Temperley and E. H. Lieb, Relations between percolation and colouring

problems and other graph theoretical problems associated with regular planar lattices:
some exact results for the percolation problem, Proc. Roy. Soc. London Ser. A 322
Ž .1971 , 251]280.

16. B. W. Westbury, The representation theory of the Temperley]Lieb algebras, Math. Z.
Ž .219 1995 , 539]565.


