
AUTOMATIC DETERMINATION OF THE FETAL CARDIAC CYCLE IN ULTRASOUND
USING SPATIO-TEMPORAL NEURAL NETWORKS

Lok Hin Lee and J. Alison Noble

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK

ABSTRACT

The characterization of the fetal cardiac cycle is an im-
portant determination of fetal health and stress. The
anomalous appearance of different anatomical structures
during different phases of the heart cycle is a key indica-
tor of fetal congenital hearth disease. However, locating
the fetal heart using ultrasound is challenging, as the
heart is small and indistinct. In this paper, we present
a viewpoint agnostic solution that automatically charac-
terizes the cardiac cycle in clinical ultrasound scans of
the fetal heart. When estimating the state of the car-
diac cycle, our model achieves a mean-squared error of
0.177 between the ground truth cardiac cycle and our
prediction. We also show that our network is able to lo-
calize the heart, despite the lack of labels indicating the
location of the heart in the training process.

Index Terms— Fetal ultrasound, fetal echocardiog-
raphy, deep learning

1. INTRODUCTION

Congenital heart diseases may be detected in routine
monitoring ultrasound scans of the fetus. However, this
is difficult, as the sonographer is required to locate the
heart and perform diagnosis in real time. Furthermore,
ultrasound imagery is subject to significant artefacting in
the form of speckle, enhancement and shadowing, which
further increase the difficulty of diagnosis. Sonographers
therefore rely on standard views in a typical ultrasound
screening, where the visibility of certain anatomical
structures are fixed. However, the relative location of
the fetus and the ultrasound probe is not fixed, due to
the mobility of the fetus within the womb. There has
therefore been prior work on detecting the overall motion
of the fetal heart in video [1] as well as standard view
identification using fully convolutional neural networks
[2]. Bridge also used a particle-filtering based method
to predict heart dynamics, including cardiac phase and
view [3].
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Fig. 1. Two examples of a fetal heart going through a
cardiac cycle. As the frame images go clockwise, the
heart undergoes systole in the top two frames and dias-
tole in the bottom two frames respectively. (a) shows a
heart in the three-vessel view, and (b) shows a heart in
the four chamber view.

In this work, we use an end-to-end neural network
framework to directly predict the cardiac cycle from the
cardiac video for the first time. We use a spatio-temporal
model, which takes into account multiple frames of infor-
mation to estimate the cardiac cycle, and we show that
this has superior performance to a spatial convolutional
neural network only model. We also show that models
trained in this way can be used to weakly localize the
heart, despite not having labels of the location of the
heart during the training process.

2. METHODS

2.1. Clinical fetal cardiac video data

A dataset of 91 ultrasound videos of the fetal heart was
used, drawn from routine clinical scans which were per-
formed using a Voluson E8 ultrasound system. These
ultrasound videos were drawn from 12 healthy subjects.
Videos varied in length from 2 to 10 seconds, and var-
ied in frame rate from 25 frames per second to 76 frames
per second. Each video may contain up to three standard
viewpoints, but include significant variations in orienta-
tion and magnification as the probe was moved during
the clinical scan between standard views. The gesta-
tional age of the fetus varied from 20-35 weeks. Frames



Spatial Network / Feature Extractor Network
Input(100x130x3)
CONV(K3, S1, O64), CONV(K3, S2, O64), PL, BN
CONV(K3, S1, O128), CONV(K3, S2, O128), PL, BN
CONV(K3, S1, O256), CONV(K3, S2, O256), BN
FC(2048), FC(1000)
FC(1), Loss

Temporal Aggregation Network
Input(1000x30)
RNN(O1024), Dropout(0.25)
RNN(O512), Dropout(0.25)
RNN(O256), Dropout(0.25)
RNN(O128), Dropout(0.25)
Channel-wise Average, Loss

Table 1. An overview of the network architectures inves-
tigated. CONV represents a convolutional layer, BN rep-
resents Batch Normalization, PL represents a 2-D Max
Pooling operation with a pool size of 2x2, FC represents
a fully connected layer, and RNN represents a bidirec-
tional LSTM layer. (K3, S2, O256) implies a layer with
a kernel size of 3x3, a stride of 2 and 256 channels. Ex-
cept for the final layer, all CONV and RNN layers are
followed by a ReLU activation.

were resized to be 100 by 130 pixels, and the frame rates
of the videos were standardized at 75 frames per second.

The frames containing a heart at maximum contrac-
tion and relaxation were then labelled with yi =

π
2 and

yi = 3π
2 respectively. This was then verified by a clin-

ician experienced in the interpretation of clinical fetal
echo videos (Fig. 1). Frames in between were then lin-
early interpolated between the two labels, and a sinu-
soidal curve simulating the cardiac cycle was fitted by
using sin yi and used as the ground truth.

2.2. Network Architecture

We experiment with two network architectures in order
to find the architecture that is most suited to this task,
an overview of which is provided in Table 1.

We define the first, the purely spatial network as the
Spatial Network. This network is purely spatial and
frame-based. It does not take into account temporally
adjacent frames during the training and inference pro-
cess.

The second is a spatio-temporal network. The spatial
feature extractor network is the same as the spatial net-
work. However, the features from the penultimate fully
connected layer FC(1000) are concatenated and further
processed in a temporal aggregation network. This tem-
poral aggregation network uses these features and pre-

dicts the phase, taking into account features extracted
from multiple adjacent frames. In all layers of the tem-
poral aggregation network, we return the hidden state
of the network and pass it onto the next layer. The fi-
nal layer then takes a channel-wise average of the hidden
states in order to determine the inferred phase angle.

All networks trained were randomly initialized and
trained with the ADAM optimization algorithm with a
learning rate of 1e-6 and a batch size of 6. Networks
were trained until validation error did not decrease for 10
epochs. K-Fold cross-validation was used during train-
ing with folds being set for each patient and the best-
performing model was used for evaluation for each fold.

2.3. Data Pre-processing

During the training process, as a method of data aug-
mentation, video clips were subject to random horizontal
and vertical flipping, zooming of up to ±20% and rota-
tions of up to ±20 degrees. We also employ a form of
temporal augmentation wherein video clips were sped up
or slowed down by up to ±20%. The zooming factor is
chosen such that the fraction of the image that was taken
up by the heart would not exceed half of the frame. The
temporal augmentation factor was chosen such that the
heart beat frequency that the neural network would en-
counter during training varied from 100 beats per minute
to 190 beats per minute, which would allow the network
to be trained on artificial instances of brachycardia and
tachycardia, increasing clinical utility [4]. We also pre-
calculate the optical flow between input frames to the
neural network and include the calculation as two addi-
tional image channels, one for the vertical direction and
one for the horizontal.

We investigated the effect of varying the temporal
length of the video clip that is used in training the spatio-
temporal network. Due to memory limitations, we are
limited to 30 input images for the temporal aggregation
network; however, we select these thirty frames by se-
lecting {180, 90, 30} consecutive frames from input data
and only using every {6, 3, 1} frames during the training
and inference process. This represents a clip duration of
{2.4s, 1.2s, 0.4s} respectively.

3. RESULTS AND DISCUSSION

3.1. Network Decision Process Visualization

We find that in general, the spatio-temporal neural net-
work performed better than the spatial-only feature ex-
tractor network, with an difference in mean squared er-
ror of 0.400 between the best performing spatio-temporal
network and the spatial-only network.

In order to help explain the difference in perfor-
mance between the spatial only network and the spatio-



Fig. 2. The figure shows the saliency heatmaps generated
by following the gradient flows into the FC(1000) layer
for the (a) purely spatial network and (b) the spatio-
temporal network (90 frames). We qualitatively find that
(b) localizes the heart better during the feature extrac-
tion process, despite identical network architectures up
to FC(1000), leading to more accurate phase detection.

temporal networks, we use Grad-CAM [5] to generate a
heat map to visualize the explanation for the difference
in performance. The Grad-CAM algorithm computes
the gradients of the final extracted features in the penul-
timate fully connected layer with respect to the input
image, and thereby generates a localization map of the
input frame which is important to the final features
extracted.

To maintain equality between the heat map compar-
ison between the spatial-only network and the spatio-
temporal network, we use the gradients flowing into the
penultimate fully connected layer in the spatial extractor
network.

Qualitatively, the spatial feature extractor network
in the spatio-temporal network appears to perform bet-
ter at localizing the heart than the spatial-only network
(Fig. 2), despite both networks only having access to
per-frame level information at this level of the neural
network architecture. This may be because of the fact
that the spatial feature extractor network is trained in
the spatio-temporal network through gradients that have
been back-propagated through the temporal aggregation
network. This allows gradients to back-propagate with
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Fig. 3. A comparison of the performance between the
spatial model and the spatial-temporal models between
all 12 folds. Spatio-Temporal networks had 30 frames of
input extracted from a video clip, but the clip duration
varied. S-T0.4 denotes a Spatio-Temporal network with
a clip duration of 0.4s.

respect to time as well as space, and may therefore aid
in the training process. On the other hand, the spatial-
only network does not have the temporal aggregation
network at the end, and therefore gradients are only
back-propagated with respect to each input frame.

3.2. Phase Angle Prediction

In Table 3, we show the mean squared error with respect
to human annotated ground truth from both the spatial-
only network and the spatio-temporal networks.

The best results were achieved in S-T1.2 where the
network saw a clip duration of 1.2s for each input clip.
The outperformance compared to S-T0.4 may be due to
the increased number of cardiac cycles seen per input
clip. At a fetal heart rate of 100 beats per minute, S-
T0.4 would only be able to see approximately 2/3rds of
the cardiac cycle per clip, thus hindering performance.

On the other hand, despite seeing more cardiac cy-
cles per input clip than S-T1.2, S-T2.4 would have in-
put images sampled at a rate of 80ms per frame. This
may have been too temporally sparse to accurately esti-
mate movement between each frame, which would have
been compounded by the freehand probe movement in
the routine clinical scan between each frame.

We empirically found that performance on test clips
varied, with a majority of clips achieving a low normal-
ized phase error but some clips experiencing high errors.
We investigate this difference in the performance of the
model by qualitatively evaluating clips where the phase
error was high.

We found that in general, clips where the architec-
ture experienced high degrees of phase error were clips
where there was significant probe motion relative to the
subject, obstructions in the visibility of the heart cham-
bers due to significant ghosting and shadowing, or where
the heart chambers were not visible due to probe mis-
placement. The difference in performance can be seen in
Figure 3.2, which is indicative of a type of failure mode in
the architecture. When the heart chamber is not clearly
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Fig. 4. (a) shows an example of a test clip with a mean squared normalized phase error of 0.11. (b) shows an
example of a test clip with an mean squared normalized phase error of 0.66. Inferred and ground truth cardiac phase
is located below each clip in red (dotted) and green (solid) respectively. In (b), the heart chambers are not visible
until frame 24, leading to the failure of the network to infer phase information. A localization heat map is overlaid
on each frame, indicating the areas where the spatial feature extractor network is focused on.

visible, phase angle inference fails and the spatial fea-
ture extractor network is unable to clearly identify the
location of the heart.

4. CONCLUSIONS

This paper describes a novel method of characterizing
the cardiac cycle using a spatio-temporal model. We in-
vestigated the improvement that the additional tempo-
ral element in the architecture brought, and achieved a
mean squared error of 0.177. Using a temporal element in
the network architecture led to better weakly-supervised
training of the localization in the spatial feature extrac-
tor network which could be seen in the heart localization
heat maps. By localizing the heart and estimating phase,
this architecture therefore forms a basis for ultrasound
heart characterization. It would be interesting to see if
this model could be extended to include the full clini-
cal parameterization of an ultrasound fetal heart scan,
including orientation and view, and how it performs on

congenital heart cases.
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