Numerical Analysis and Laboratory Test of Concrete Jacking Pipes

by

Jian-Qing Zhou

A thesis submitted for the Degree of Doctor of Philosophy at the University of Oxford

Linacre College Trinity Term, 1998
Numerical Analysis and Laboratory Test of Concrete Jacking Pipes

Jian-Qing Zhou
Linacre College, University of Oxford

A thesis submitted for the Degree of Doctor of Philosophy.
Trinity Term, 1998.

ABSTRACT

Pipe jacking is a trenchless construction technique for the installation of underground pipelines. Although pipe jacking is widely used, fundamental research is still needed to understand fully the factors affecting the process and to prevent unexpected failure. With the time and financial limitation, it is difficult to explore all aspects of these factors with experiments; and it is also difficult to study them by analytical methods because of the complexity of the problem. This thesis describes the use of the finite element technique to study the pipe performance under different environments and the laboratory tests of several different joint designs.

The emphasis of the current research is on the performance of the concrete pipes during jacking under working conditions and to seek possible improvements in the design of pipes and pipe joints by numerical modelling. In the finite element modelling, a simplified two-dimensional model is used for a preliminary study, then the analyses are carried out with three-dimensional models A, B and C representing a complete pipe, a pipe with surrounding soil and a symmetric three-pipe system respectively. Several factors affecting the pipe performance have been examined, for example, the properties of the packing material, the stiffness of the surrounding soil, the misalignment angle at the pipe joint, and the interaction between the pipe and surrounding soil.

The numerical results show that the misalignment of the pipeline is the dominating factor inducing both tensile stresses and localized compressive stresses in the concrete pipe, especially with a high misalignment angle which results in separation between the packing material and the pipe. The packing materials with high Poisson's ratio and high stiffness also induce higher tensile stresses in the pipe, and the influence of the Poisson's ratio is significant. Under 'diagonal' loading, both the stiffness of the surrounding soil and the interaction between the pipe and the surrounding soil have a significant effect on the stresses within the concrete pipe. Under 'edge' loading, the greatest potential damage is at the pipe joint due to the tensile stresses in the hoop direction; while under 'diagonal' loading, the damage is most likely the cracking on the external surface of the pipe along a line connecting the two diagonal loaded corners. The results also show that the Australian model gives somewhat good prediction about the maximum normal stress and the diametrical contact width at pipe joint.

Based on the numerical results, several different joint designs for improving the pipe strength have been proposed and tested in the laboratory. Both the laboratory tests and the back analyses suggest that the local reinforcement and the local prestressed band at the pipe joint will improve the pipe strength.
CONTENTS

ABSTRACT

Contents i
Acknowledgements V
Nomenclature Vi

CHAPTER 1 INTRODUCTION AND BACKGROUND 1-1

1.1 Pipe jacking 1-1
1.2 Concrete jacking pipes and pipe joints 1-3
1.3 The need for research and Oxford research 1-5
1.4 Stresses / strains in the pipe 1-7
 1.4.1 Experimental study 1-7
 1.4.2 Numerical analysis 1-8
1.5 Pipe jacking loads 1-10
1.6 Load transfer at pipe joints 1-13
1.7 Scope of the current research 1-14
Figures

CHAPTER 2 DEVELOPMENT OF FINITE ELEMENT MODEL 2-1

2.1 Introduction 2-1
2.2 Mesh generation program -- DATAIN 2-1
2.3 Interaction between structures 2-2
 2.3.1 Two-dimensional interface element 2-2
 2.3.2 The Mohr-Coulomb frictional model 2-6
 2.3.3 Update of displacements, strains and stresses 2-8
 2.3.4 Example analysis 2-10
2.4 Numerical model of concrete 2-12
 2.4.1 Literature review 2-12
 2.4.2 Formulation of the modified Matsuoka model 2-14
 2.4.3 Example analysis 2-17
2.5 Numerical model of reinforcement 2-18
 2.5.1 Literature review 2-19
 2.5.2 Curved bar elements 2-20
 2.5.3 Example analysis 2-23
CHAPTER 3 PRELIMINARY TWO-DIMENSIONAL STUDY

3.1 Introduction 3-1
3.2 Two-dimensional model 3-1
3.3 Effect of packing material properties 3-3
3.4 Effect of the pipeline misalignment 3-6
3.5 Conclusion 3-7
Figures

CHAPTER 4 THREE-DIMENSIONAL ANALYSIS
-- NUMERICAL MODEL A 4-1

4.1 Introduction 4-1
4.2 Numerical model A 4-1
4.3 Effect of load distribution 4-2
 4.3.1 Edge loading with thick wall pipe 4-2
 4.3.2 Diagonal loading with thick wall pipe 4-4
4.4 Effect of the thickness of the pipe wall 4-6
 4.4.1 Edge loading with thin wall pipe 4-6
 4.4.2 Diagonal loading with thin wall pipe 4-7
4.5 Conclusion 4-8
4.6 Back analysis of Ripley's experiment 4-10
Figures

CHAPTER 5 THREE-DIMENSIONAL ANALYSIS
-- NUMERICAL MODEL B 5-1

5.1 Introduction 5-1
5.2 Numerical model B 5-1
5.3 Analysis with elastic soil 5-2
 5.3.1 Edge loading 5-3
 5.3.2 Diagonal loading 5-4
5.4 Interaction between the pipe and the surrounding soil 5-6
 5.4.1 Edge loading with interface elements 5-7
 5.4.2 Diagonal loading with interface elements 5-8
5.5 Analysis with plastic soil 5-10
 5.5.1 Edge loading with plastic soil 5-11
 5.5.2 Diagonal loading with plastic soil 5-12
5.6 Conclusion 5-13
5.7 Back Analysis of Norris’ experimental data 5-14

Figures

CHAPTER 6 THREE-DIMENSIONAL ANALYSIS
-- NUMERICAL MODEL C

6.1 Introduction 6-1
6.2 Numerical model C 6-2
6.3 Effect of the properties of the packing material 6-3
 6.3.1 Effect of the Poisson’s ratio 6-4
 6.3.2 Effect of the shear modulus 6-6
6.4 Effect of the pipeline misalignment 6-7
 6.4.1 Analysis with soft packing material 6-8
 6.4.2 Analysis with stiff packing material 6-10
6.5 Conclusion 6-11

Figures

CHAPTER 7 JOINT DEFORMATION AND COMPARISON
WITH ANALYTICAL RESULTS

7.1 Introduction 7-1
7.2 Analytical models 7-1
 7.2.1 The Australian model 7-1
 7.2.2 Haslem’s flexible pipe model 7-4
7.3 Joint deformation of numerical model B 7-5
7.4 Results of numerical model C 7-8
 7.4.1 Deformation of the bottom pipe 7-8
 7.4.2 Misalignment angles at pipe joint 7-9
 7.4.3 Maximum stress and diametrical contact width at pipe joint 7-11
7.5 Conclusion 7-13

Figures
CHAPTER 8 LABORATORY TEST OF PIPE JOINTS 8-1

8.1 Introduction 8-1
8.2 Pipe casting and characteristic tests 8-1
8.3 Test apparatus 8-4
8.4 Effect of packing material 8-5
8.5 Effect of pipe end geometry 8-8
8.6 Effect of local prestressing 8-9
8.7 Effect of local reinforcement 8-11
8.8 Further investigations of combining factors 8-12
8.9 A few comments 8-13
Figures

CHAPTER 9 BACK ANALYSIS OF TEST DATA 9-1

9.1 Numerical model of back analysis 9-1
9.2 Back analysis of local reinforcement 9-2
9.3 Back analysis of local prestressing 9-4
9.4 Discussion 9-6
Figures

CHAPTER 10 SUMMARISATION AND RECOMMENDATIONS 10-1

10.1 Pipeline misalignment 10-1
10.2 Packing material 10-3
10.3 Surrounding soil 10-4
10.4 Pipe wall thickness and load distribution 10-5
10.5 Improvement of pipe design 10-6
10.6 Recommendations 10-6

REFERENCE R-1
Acknowledgements

This research is the outcome of much effort and encouragement from many interested parties. First of all, I wish to express my sincere thanks to Dr H. J. Burd and Dr G.W.E. Milligan for their excellent supervision and guidance during the course of this study.

The financial support from EPRSC for a research assistantship in Oxford University and part of my admission fee from the Pipe Jacking Association are gratefully acknowledged.

I would like to thank Professor G. T. Houlsby for his kindness to let me use his program OXMESH and 2CAN for the mesh generation and stress contours in the preliminary study. I would also like to thank Professor D. R. Hayhurst at UMIST to allow me to use the computer facilities in his research group to produce the stress contours in this thesis.

My thanks also go to Dr C. E. Augarde, Dr G. Liu and Dr C. L. Ngo-Tran for the cooperation in updating the finite element program, OXFEM, to its three-dimensional version, Mr R. C. Sawala for his assistance during the laboratory test. The Civil Engineering Research Group at Oxford provided an enjoyable atmosphere to work and study as one of its members. The friendship of other members of the group was and will be a continuing source of inspiration in my life.

Finally, I would like to thank my wife, Cui-Ling, and my daughter, Wen-Qian, for their support over many years. Without their encouragement, it is impossible for me to finish this thesis after away from the university over a year.
Nomenclature

- a: Initial packing material thickness
- Δa: Compression of the pipe joint
- Δa_p: Compression of the packing material
- c: Cohesion of soil or interface
- $[D]$: Material matrix
- E: Young's modulus
- E_c: Young's modulus of concrete
- E_p: Young's modulus of packing material
- E_s: Young's modulus of soil
- f: Yield function
- $f_1 \ldots f_s$: Element shape function
- f_c: Compression strength of concrete
- f_t: Tensile strength of concrete
- g: Plastic potential
- G: Shear modulus
- G_c: Shear modulus of concrete
- G_p: Shear modulus of packing material
- I_1, I_2, I_3: Stress invariant
- I_c: Second moment of cross-section area of concrete pipe
- K_n, K_s: Normal and shear stiffness of interface
- $[K]$: Stiffness matrix
\(L \) Pipe length
\(M \) Bending moment at pipe joint
\(P \) Total applied load
\(\{P\} \) Vector of applied load
\(\{dP\} \) Vector of increments of applied load
\(q \) Intensity of pressure
\(R \) External radius of pipe
\(\{R\} \) Vector of unbalanced / residual force
\(r \) Internal radius of pipe
\(t \) Wall thickness of pipe
\(u,v,w \) Displacements
\(du, dv, dw \) Increments of displacements
\(\{U\} \) Vector of displacements
\(\{dU\} \) Vector of displacement increments
\(x,y,z \) Co-ordinates of a node / point in Cartesian system
\(r,\theta,z \) Co-ordinates of a node / point in cylindrical system
\(Z \) Diametrical contact width at pipe joint
\(\beta \) Angular deflection at pipe joint
\(\beta_c \) Angular deflection of concrete pipe at pipe joint
\(\beta_p \) Angular deflection of packing material at pipe joint
\(\gamma \) Shear strain
\(\varepsilon \) Normal strain
\(\{\varepsilon\} \) Vector of strains
\{ \Delta e \} \quad \text{Vector of strain increments}

\sigma \quad \text{Normal stress}

\sigma_{\text{max}} \quad \text{Maximum normal stress at pipe joint}

\{ \sigma \} \quad \text{Vector of stresses}

\{ d\sigma \} \quad \text{Vector of stress increments}

\sigma_1, \sigma_2, \sigma_3 \quad \text{Principal stresses}

\sigma_x, \sigma_y, \sigma_z \quad \text{Normal stresses in Cartesian co-ordinate system}

\tau \quad \text{Shear stress}

\tau_{xy}, \tau_{yz}, \tau_{zx} \quad \text{Shear stresses in Cartesian co-ordinate system}

\phi \quad \text{Frictional angle of soil or interface}

\psi \quad \text{Dilation angle of soil or interface}

\mu \quad \text{Poisson's ratio}

\mu_c \quad \text{Poisson's ratio of concrete}

\mu_p \quad \text{Poisson's ratio of packing material}

\mu_s \quad \text{Poisson's ratio of soil}

\xi, \eta \quad \text{Isoparametric co-ordinates of a node / point}