The Activation of Small Molecules using Frustrated Lewis Pairs

by

Hasna Zaher

A thesis submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Oxford

New College
Oxford
August 2012
The work described in this thesis was carried out in the Chemistry Research Laboratory, Mansfield Road, Oxford from October 2008 to August 2012 under the supervision of Professor Dermot O’Hare. All the work is my own unless stated to the contrary and has not been previously submitted for any degree at this or any other university.

Hasna Zaher
New College
August 2012
ABSTRACT

The Activation of Small Molecules using Frustrated Lewis Pairs

Hasna Zaher

New College

This thesis describes the activation of small molecules using frustrated Lewis pairs, in particular investigating their use to reduce CO2 to methanol, thus producing a new route towards a renewable fuel.

Chapter One summarises the requirement for a renewable fuel source, the alternative methods currently available and previous research conducted into converting CO2 to methanol using FLPs and other reducing agents.

Chapter Two describes the synthesis of a new family of electron-deficient tris(aryl)boranes, B(C6F5)3-x(C6Cl5)x (x = 1-3), allowing the electronic effects, resulting from the gradual replacement of C6F5 with C6Cl5 ligands, to be studied. The novel Lewis acids have been fully characterised and their Lewis acidities have been determined using NMR spectroscopy, electrochemistry and DFT studies.

Chapter Three discusses the synthesis of nine novel FLPs and their use to successfully split H2. Each borohydride salt has been spectroscopically fully characterised and five of the salts have been characterised using single crystal X-ray diffraction. To determine the exact positions of the H atoms, single crystal neutron diffraction and DFT experiments were carried out on [1-H][H-TMP].

Chapter Four details attempts to use the borohydride salts, synthesised in Chapter Three, to reduce CO2 to methanol. Each experiment was been fully investigated and their catalytic viability was determined. The X-ray crystal structure of [1-OCHO][H-TMP] is described and each formatoborate and methoxyborate salt were fully characterised.

Chapter Five describes experimental procedures and characterisation data. Crystallographic data in the form of CIF files may be found in the Electronic Appendix, found on the compact disc at the back of this thesis.
ACKNOWLEDGEMENTS

Firstly my thanks must go to my supervisor, Prof. Dermot O’Hare for his guidance, help and support over the last four years. I would also like to thank Dr. Andrew Ashley for his guidance and supervision in the lab and for initiating this project, especially all the advice you provided, it was invaluable. Thank you to the two Part II’s who also worked on this project; Thomas Herrington and Samantha Binding, your contributions will never be forgotten.

Many thanks must go to everyone who assisted me during this research project. Dr. Amber Thompson and Mark Irwin helped me with crystal structure determinations and in collaboration with Dr. Matthias Gutmann successfully collected a single crystal neutron diffraction structure. Dr. Nick Rees was incredibly patient, always available to help and trained me to use the NMR spectrometers. Dr Gregory Wildgoose ran every electrochemistry experiment. Mr. Colin Sparrow and Mr. James Wickens ran all my mass spectrometry samples. Dr Tobias Krämer provided me with extremely efficient DFT studies, thank you so much for putting up with my emails.

During my D.Phil. I had many obstacles to overcome (including surgery) and I would not have survived if it was not for the support from my friends both in the lab and outside. Thank you to Dr. Chengle ‘Sexy Joyce’ Wang and Anchalee Wongariyakawee for the close friendships we had. A huge thanks to my D.Phil. lab mates, Dr. Charles ‘Sporcle’ Markland, Tom Arnold, Samantha Binding, Henry Fisher, Saul Moorhouse and Hannah Buckley. Thank you to the post docs that have helped me; Dr. J-C Buffet, Dr. Ian Casely and Dr. Zoe Turner, the guidance and support you provided was priceless. Thanks to Dr. Qiang Wang, Dr. Gareth Williams and Dr. Andrew Jupe. Part II’s are a special, memorable group of people and thank you to Aran, Rosie, Tom, Bully, Chio, Emily, Ali, George, Jamie and Dan for all the entertainment you provided. To some older lab members, Dr. Paul Ransom and Dr. Paulina Aguirre, thank you for the advice and support you provided in the short time we spent together, I really should have listened to you Paulina.

I have made many friends in the CRL, in particular Rob ‘Relissa’ Tubervill, Mike ‘Kellykings’ Kelly, Gabby Quintero, Dr. Josh Bates, Vicky Chislett and the Mountford Group, especially the weekend dream team, Matt Blake and my little sister Guun. Thank you being my weekend buddies and for the fun times we had.
Now for those outside the lab. I have had a fantastic time in Oxford over the last four years and made so many wonderful friends. I loved my time at New college, especially all the guest nights I attended.

Thank you to Bonolo ‘Danolo’ Mathibela, Malebogo Ngoepe, Evgenia Ivanova, Laura Schaposnik, Kate Greasley, Tom Adcock, Nicole Milligan and Isabelle Ouwehand. You have all been amazing and I hope to stay close to all of you. I have had many friends come and go and you will all be remembered. A huge thanks to my London and Edinburgh friends, you have all been an important part of my life.

My family have supported me throughout my academic career and without their encouragement to finish my D.Phil. I might not have made it this far. I would especially like to thank my mum, she is an amazing woman and her strength has been my inspiration.

Last but by no means least, I would like to thank Mark Irwin. I am glad I continued with my D.Phil. otherwise I would never have met you. Thank you for your support and keeping me going.

Finally, thank you to everyone who kindly proof read my thesis.
TABLE OF CONTENTS

CHAPTER ONE – Introduction

1.1 Overview ... 1
1.2 The Battle for Renewable Fuels ... 1
1.3 Methanol Economy .. 4
1.4 Reduction of CO₂ ... 7
1.5 Frustrated Lewis Pairs ... 8
1.6 Activation of H₂ using FLPs ... 10
1.7 Theoretical Studies of H₂ Activation using FLPs ... 13
1.8 Proposed Mechanism for the Heterolytic Splitting of H₂ using FLPs 16
1.9 CO₂ Reactions with FLP Systems ... 23
1.10 Reduction of CO₂ to Methanol using an FLP System 25
1.11 Proposed Mechanism for the Reduction of CO₂ to Methanol using [(C₆F₅)₂B-H][H-TMP] ... 28
1.12 Structure Function Relationship of the Lewis Acid ... 31
1.13 Aims of Research .. 35
1.14 References ... 35

CHAPTER TWO - Synthesis and Characterisation of Three Novel Tris(aryl)boranes

2.1 Introduction ... 41
2.2 Synthesis of Novel Lewis Acids .. 43
2.2.1 Synthesis of C₆Cl₅Li .. 43
2.2.2 Synthesis of B(C₆F₅)₂(C₆Cl₃); 1 ... 44
2.2.3 Synthesis of B(C₆F₅)(C₆Cl₃)₂; 2 ... 47
2.2.4 Synthesis of B(C₆Cl₃)₃; 3 .. 48
2.3 NMR Spectroscopy ... 49
2.4 Structural Characterisation ... 52
2.5 Lewis Acidity Measurements .. 58
2.6 Electrochemical Studies ... 62
2.7 Electronic Structure Analysis .. 68
2.8 Kinetics of H₂O Dissociation from H₂O,[1] ... 68
2.9 Conclusions .. 72
2.10 References .. 73
CHAPTER THREE - Synthesis and Reactions of Novel Frustrated Lewis Pairs with H₂ ..78

3.1 Introduction...78
3.2 Synthesis of Novel Frustrated Lewis Pairs and Reactions with H₂79
3.3 NMR Spectroscopy ...83
3.4 Monitoring H₂ Reactions using B(C₆F₅)₂(C₆Cl₃) FLP Systems85
 3.4.1 H₂ Activation using [I][DABCO]...85
 3.4.2 H₂ Activation using [I][TMP] ...91
 3.4.3 H₂ Activation using [I][Lut] ...95
3.5 Side Reactions Observed using the DABCO FLP Systems99
 3.5.1 Single X-ray Crystal Structures of the DABCO Side Products101
3.6 Structural Characterisation of the Borohydride Salts105
 3.6.1 Structural Characterisation of the [B-H][H-DABCO] Systems105
 3.6.2 Structural Characterisation of the [B-H][H-TMP] Systems111
3.7 Mechanism of H₂ Activation ..116
 3.7.1 Single Crystal Neutron Diffraction of [I-H][H-TMP]117
 3.7.2 Electronic Structure Analysis of [I-H][H-TMP]122
 3.7.3 NMR Studies of [I-H][H-TMP] ...122
3.8 FT-IR Spectroscopy ..124
3.9 Conclusions ..125
3.10 References ..127

CHAPTER FOUR – Conversion of CO₂ to Methanol using the [B-H][H-N] Salts .129

4.1 Introduction..129
4.2 Reducing CO₂ to Methanol ...131
4.3 Reduction of 13CO₂ using [(C₆F₅)$_2$B-H][H-DABCO]133
4.4 Attempts to Reduce 13CO₂ to Methanol using [I-H][H-N]137
 4.4.1 [I-H][H-DABCO] ...139
 4.4.2 [I-H][H-Lut] ...139
 4.4.3 [I-H][H-TMP] ...144
 4.4.3.1 Single X-ray Crystal Structure of [I-OCHO][H-TMP]147
4.5 Attempts to Reduce 13CO₂ to Methanol using [2-H][H-N]150
 4.5.1 [2-H][H-DABCO] ...151
 4.5.2 [2-H][H-Lut] ...153
 4.5.3 [2-H][H-TMP] ...154
5.4 Experimental Details for Chapter Two

- 5.4.1 Synthesis of [3-H][H-DABCO] ... 155
- 5.4.2 [3-H][H-Lut] .. 157
- 5.4.3 [3-H][H-TMP] .. 158

5.5 Conclusions .. 160

5.6 References .. 163

CHAPTER FIVE – Experimental Details and Characterising Data .. 165

- 5.1 General Procedures and Physical Measurements ... 165
 - 5.1.1 General Procedures .. 165
 - 5.1.2 Elemental Analysis .. 166
 - 5.1.3 Mass Spectrometry ... 166
 - 5.1.4 NMR Spectroscopy ... 166
 - 5.1.5 Infrared Spectroscopy .. 166
 - 5.1.6 Electrochemistry ... 166
 - 5.1.7 Crystal Structure Determinations .. 166
 - 5.1.8 Determination of Lewis Acidities .. 168
 - 5.1.9 Computational Details .. 169
- 5.2 Source of Starting Materials ... 169
 - 5.2.1 Commercially Available Starting Material .. 169
 - 5.2.2 Literature Preparations ... 170
- 5.3 Experimental Details for Chapter Two ... 171
 - 5.3.1 Synthesis of C₆Cl₅Br (2.1) ... 171
 - 5.3.2 Synthesis of C₆Cl₅Li .. 171
 - 5.3.3 Synthesis of Zn(C₆Cl₅)₂ (2.2) ... 172
 - 5.3.4 Synthesis of B(C₆Cl₅)Br₂ (2.3) ... 172
 - 5.3.5 Synthesis of 1; B(C₆Cl₅)(C₆F₅)₂ (2.4) ... 174
 - 5.3.6 Synthesis of B(C₆Cl₅)₂Cl (2.5) ... 175
 - 5.3.7 Synthesis of 2; B(C₆Cl₅)₂(C₆F₅)₂ (2.6) ... 176
 - 5.3.8 Synthesis of 3; B(C₆Cl₅)₃ (2.7) ... 177
- 5.4 Experimental Details for Chapter Three .. 178
 - 5.4.1 Synthesis of [(C₆F₅)₃B-H][H-DABCO] (3.1) .. 178
 - 5.4.2 Synthesis of (C₆F₅)₂BH.DABCO (3.2) .. 179
 - 5.4.3 Synthesis of [1-H][H-DABCO] (3.3) ... 180
 - 5.4.4 Synthesis of [2-H][H-DABCO] (3.4) ... 181
 - 5.4.5 Synthesis of (C₆F₅)(C₆Cl₅)BH.DABCO (3.5) ... 182
5.4.6 Synthesis of [3-H][H-DABCO] (3.6) ... 183
5.4.7 Synthesis of [1-H][H-TMP] (3.7) ... 183
5.4.8 Synthesis of [2-H][H-TMP] (3.8) ... 184
5.4.9 Synthesis of [3-H][H-TMP] (3.9) ... 185
5.4.10 Synthesis of [1-H][H-Lut] (3.10) ... 186
5.4.11 Synthesis of [2-H][H-Lut] (3.11) ... 187
5.4.12 Synthesis of [3-H][H-Lut] (3.12) ... 188
5.5 Experimental Details for Chapter Four ... 189
5.5.1 Synthesis of the Formatoborates using Route A1 189
5.5.2 Synthesis of the Formatoborates using Route B1 190
 5.5.2.1 Synthesis of [HCO$_2$][H-DABCO] (4.1) .. 190
 5.5.2.2 Synthesis of [(C$_6$F$_5$)$_3$B-OCHO][H-DABCO] (4.2) 190
 5.5.2.3 Synthesis of [1-OCHO][H-DABCO] (4.3) 191
 5.5.2.4 Synthesis of [2-OCHO][H-DABCO] (4.4) 192
 5.5.2.5 Synthesis of [3-OCHO][H-DABCO] (4.5) 193
 5.5.2.6 Synthesis of [H13CO$_2$][H-TMP] (4.6) 194
 5.5.2.7 Synthesis of [1-O13CHO][H-TMP] (4.7) 194
 5.5.2.8 Synthesis of [2-O13CHO][H-TMP] (4.8) 195
 5.5.2.9 Synthesis of [H13CO$_2$][H-Lut] (4.9) 196
 5.5.2.10 Synthesis of [1-O13CHO][H-Lut] (4.10) 197
 5.5.2.11 Synthesis of [2-O13CHO][H-Lut] (4.11) 198
5.5.3 Synthesis of the Methoxyborates using Route A2 199
5.5.4 Synthesis of the Methoxyborates using Route B2 199
 5.5.4.1 Synthesis of [(C$_6$F$_5$)$_3$B-OMe][H-DABCO] (4.12) 199
 5.5.4.2 Synthesis of [1-OMe][H-DABCO] (4.13) 200
 5.5.4.3 Synthesis of [1-OMe][H-TMP] (4.14) .. 201
5.6 References ... 202
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Acceptor Number</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>(^{t})Bu</td>
<td>n-Butyl</td>
</tr>
<tr>
<td>(^{t})Bu</td>
<td>tert-Butyl</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-diazobicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>esu</td>
<td>Estimated Standard Uncertainties</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>FLP</td>
<td>Frustrated Lewis Pair</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>HSAB</td>
<td>Hard Soft Acid Base</td>
</tr>
<tr>
<td>LA</td>
<td>Lewis Acid</td>
</tr>
<tr>
<td>LB</td>
<td>Lewis base</td>
</tr>
<tr>
<td>Lut</td>
<td>2,6-lutidine</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>Mes</td>
<td>2,4,6-trimethylphenyl</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MS(EI)</td>
<td>Mass Spectrometry (Electron Ionisation)</td>
</tr>
<tr>
<td>MS(ESI)</td>
<td>Mass Spectrometry (Electrospray Ionisation)</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>(^{i})Pr</td>
<td>iso-Propyl</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated Calomel Electrode</td>
</tr>
<tr>
<td>TBAF</td>
<td>tert-Butyl Ammonium Flouride</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TMP</td>
<td>2,2,6,6-tetramethylpiperidine</td>
</tr>
<tr>
<td>VT</td>
<td>Variable Temperature</td>
</tr>
</tbody>
</table>
1.1 Overview

This thesis investigates the activation of small molecules using frustrated Lewis pairs (FLPs), in particular the possibility of using them to catalytically reduce CO$_2$ to methanol, thus producing a new route towards a renewable fuel. The chapter summarises the requirement for a renewable fuel source, the alternative methods currently available and previous research conducted into converting CO$_2$ to methanol using FLPs and other reducing agents.

1.2 The Battle for Renewable Fuels

Ever since the industrial revolution, the combustion of coal, oil and natural gas has been the world’s major source of fuel, as well as having many other applications including the synthesis of plastics and in the pharmaceuticals industry. However, these fossil fuels are a finite resource and current estimates predict they will be exhausted in 40-200 years.1 Consumption of fossil fuels has had a major impact on the environment, in particular the release of CO$_2$, nitrogen oxides and heavy metals into the atmosphere upon combustion. With the global concern for the long-term availability of non-renewable fuels and their contribution to global warming, research is taking place into finding a renewable fuel.

Novel processes and reactions that will positively impact the global carbon balance are required, however converting CO$_2$ to a chemically useful feedstock presents a variety of challenges, essentially because the molecule is so kinetically and
Chapter One: Introduction

thermodynamically stable \(\Delta_G^\circ = -396 \text{ kJ mol}^{-1} \). This will first be accomplished by utilising the high concentrations (when compared to atmospheric concentrations of 380 ppm) of CO\(_2\)-rich flue gases produced from fossil fuel burning power plants and other industrial plants. Capture of CO\(_2\) can also be achieved using the CO\(_2\) produced with geothermal hot water and natural gas.\(^2\) However, in the future, technological advancements will hopefully allow for low concentrations of CO\(_2\) (e.g. atmospheric CO\(_2\)) to be captured and employed as a fuel. Current techniques for capturing CO\(_2\) primarily focus on membrane separation technology or selective absorption methods using a series of high surface area macro and microporous materials.\(^3\)-\(^6\) In the near future it might be possible to chemically recycle CO\(_2\) on the human time scale. In comparison, nature needs to first produce new plant life via photosynthesis and then undergo transformation over millions of years to produce fossil fuels.\(^7\)

Another alternative to the current fossil fuel economy is to use agricultural and natural product based biofuels. This requires relocating valuable food resources to fuel production, which has already resulted in rapidly increasing food prices and an increase in pollution.\(^8\),\(^9\) Renewable power sources (e.g. biofuel, hydrogen, solar, tidal, wave, and wind)\(^10\)-\(^12\) are increasingly being harnessed, however, they have yet to be developed on a scale that could replace fossil fuels.\(^13\) Nuclear power is another viable alternative to fossil fuels, however, due to the recent Fukushima incident in Japan, nuclear power has lowered in popularity.\(^14\)

Conversion of CO\(_2\) into useful chemicals for both energy production and as chemical feedstocks, preferably at low temperature and pressure, is the most desirable method of producing a renewable fuel. As a result catalytically reducing CO\(_2\) using H\(_2\) to selectively produce a fuel is of high interest. Currently H\(_2\) can successfully be produced from the electrolytic splitting of water to give H\(_2\) and O\(_2\); and as long as the
cell current is generated from a renewable fuel source the process is carbon neutral. Unfortunately once H\(_2\) is formed, it is not a convenient energy store for use as a fuel, as it is both highly volatile (boiling point –253 °C) and a potentially explosive gas demanding special storage and handling. As a replacement for petroleum, a completely new and different infrastructure would need to be built for commercial transportation. This process is further disadvantaged, as H\(_2\) has a third of the volumetric power density of petroleum (Table 1.1) and its compression is highly energy intensive.\(^{15}\) In comparison methanol production is the ideal alternative to fossil fuels, especially as it can easily be incorporated into the current infrastructure.\(^2\)

Table 1.1 Energy densities of various fuels by mass and volume.\(^{15}\)

<table>
<thead>
<tr>
<th></th>
<th>Energy density by mass (MJ kg(^{-1}))</th>
<th>Energy density by volume (MJ L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2(g))</td>
<td>143</td>
<td>0.01079</td>
</tr>
<tr>
<td>H(_2(l))</td>
<td>143</td>
<td>10.1</td>
</tr>
<tr>
<td>CH(_3)OH</td>
<td>19.7</td>
<td>15.6</td>
</tr>
<tr>
<td>Petroleum</td>
<td>46.4</td>
<td>34.2</td>
</tr>
</tbody>
</table>

The Nobel Prize winner George Olah has campaigned for a methanol economy since the early 1990s as a solution to our dependence on fossil fuels.\(^{16-18}\) Methanol is a more attractive alternative to fossil fuels as it is relatively easy to store and transport, can be converted to gasoline and be used as a precursor in the chemical industry.
1.3 Methanol Economy

Methanol was first produced industrially in the 19th century as a minor by-product from forming charcoal via the destructive distillation of wood and was therefore referred to as ‘wood alcohol’ and then subsequently used for cooking, heating and lighting until cheaper fuels were produced.2 At the time this was the only method of manufacturing methanol, until BASF developed a method of producing it from syngas (a mixture of CO/H\textsubscript{2}) on an industrial scale in the 1920s.19-21 Since World War II, syngas has been manufactured using natural gas, which is a finite resource and gives off CO\textsubscript{2} as a by-product. Today syngas is the primary raw material for the chemical industry.21 Methanol is manufactured on a huge scale (approximately 40 million tonnes in 2007) and is used as an intermediate for the production of other chemicals such as acetic acid, formaldehyde and methyl tert-butyl ether. These are subsequently used to produce many everyday items, e.g. adhesives, paints and plastics.21 Despite the huge number of advantages that methanol brings, there are also some disadvantages. Methanol is highly toxic when consumed in large amounts (30 – 100 mL), causing blindness and ultimately death.22 However, just like gasoline and diesel fuel, methanol is not designed to be consumed internally and has been used in a large variety of consumer products for many years. Therefore, no major safety problems are expected if methanol was to be used and dispensed as a fuel. Similarly to gasoline, methanol has outstanding combustion qualities as seen by its use in the internal combustion engine where it has been used in race cars since the 1960s.23

The current method of manufacturing methanol using syngas is not a long term solution to the shortage of renewable fuels, as it is produced from methane (sourced from CO) and the technique releases CO\textsubscript{2}. However, if the CO\textsubscript{2} could be recycled and
used to synthesise methanol, an economy could be generated which does not rely on a limited resource and reduces the greenhouse gas effect (Figure 1.1).²

![Carbon neutral cycle diagram]

Figure 1.1 Carbon neutral reduction of CO₂ to methanol. Image taken from Olah *et al.*, reference 2.

Figure 1.1 displays a hypothetical route that could be taken to produce a carbon neutral fuel. This begins with the capturing of CO₂, which is reduced either electrochemically or with H₂ (produced from renewable sources) to give methanol, which is utilised in various industrial processes. Combustion of methanol releases CO₂, which is released back into the atmosphere, after which there are various routes it can take, namely recapture or photosynthesis.

Although CO₂ is kinetically and thermodynamically inert, the reduction of CO₂ is possible.²⁴,²⁵ Thermodynamically, methane is the most favourable product from the
reduction of CO\textsubscript{2} using H\textsubscript{2} (Scheme 1.1), however, methanol is the more desirable product as it is easier to manage.26

\[
\text{CO}_2(\text{aq}) + \text{H}_2(\text{aq}) \rightarrow \text{CO}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \\
\Delta G^\circ = 11 \text{ kJ mol}^{-1}; \Delta H^\circ = 11 \text{ kJ mol}^{-1}; \Delta S^\circ = -0.8 \text{ J mol}^{-1} \text{ K}^{-1}
\]

\[
\text{CO}_2(\text{aq}) + 3\text{H}_2(\text{aq}) \rightarrow \text{CH}_3\text{OH}(\text{l}) + \text{H}_2\text{O}(\text{l}) \\
\Delta G^\circ = -79 \text{ kJ mol}^{-1}; \Delta H^\circ = -106 \text{ kJ mol}^{-1}; \Delta S^\circ = -88 \text{ J mol}^{-1} \text{ K}^{-1}
\]

\[
\text{CO}_2(\text{aq}) + 4\text{H}_2(\text{aq}) \rightarrow \text{CH}_4(\text{l}) + 2\text{H}_2\text{O}(\text{l}) \\
\Delta G^\circ = -193 \text{ kJ mol}^{-1}; \Delta H^\circ = -230 \text{ kJ mol}^{-1}; \Delta S^\circ = -125 \text{ J mol}^{-1} \text{ K}^{-1}
\]

Scheme 1.1 Thermodynamics of carbon dioxide reduction.27

The reduction of CO\textsubscript{2} using homogeneous catalysts has been studied for over 40 years but these methods usually produce formate and not methanol,28 and until recently, required metal ions as electrocatalytic reagents.29 The use of heterogeneous catalysts (Ru and Pd catalysts) results in the reduction of CO\textsubscript{2} and formate to methanol with considerable activity and selectivity.30,31 However, these methods require the use of rare and expensive metals which in many cases are highly toxic.
1.4 Reduction of CO\(_2\)

Reduction of CO\(_2\) can be achieved both electrochemically and chemically, and further progress has been made over the last 20 years with interests growing in Japan, China, Australia, the European Union, and other countries to recycle their CO\(_2\) output.\(^2\)

Electrochemical reduction can be administered catalytically and non-catalytically, with the majority of the methods producing carbon monoxide, formaldehyde, formic acid, hydrogen, methane, methanol and oxygen as the main products, but without selectively forming methanol.\(^3^3\) Advances have been made in developing various metal catalysts to successfully reduce CO\(_2\) to methanol that could rival the current method using the syngas catalyst Cu/ZnO. Reduction of CO\(_2\) to methanol, even though not the most favourable process, is thermodynamically possible (Scheme 1.1) and is driven by the production of H\(_2\)O. The hydrogenation of CO\(_2\) to methanol was reported by Tominaga et al. using the homogeneous catalyst Ru\(_3\)(CO)\(_{12}\) with halide salts which aided in the stabilisation of the Ru catalyst. However, as well as producing methanol this process also gave carbon monoxide and methane.\(^3^4\) Investigations have also been made into determining the active site in the syngas process and the role Cu/ZnO plays as a catalyst, as well as attempts to improve the catalyst by the addition of other components e.g. Al\(_2\)O\(_3\), Ga\(_2\)O\(_3\) and SiO\(_2\).\(^3^5\)-\(^3^7\) However, all of these methods require the use of highly expensive and in some cases toxic metals which are in limited supply.

Studies into the use of metal-free catalysts as reducing agents for the production of methanol from CO\(_2\) have seen a considerable amount of interest in the last 10 years. Recently Ashley et al. have shown that CO\(_2\) can be reduced using a metal-free species known as a frustrated Lewis Pair.\(^3^2\)
1.5 Frustrated Lewis Pairs

In 2006 the Stephan group uncovered the first metal-free system that reversibly splits \(\text{H}_2 \).\(^{38}\) They succeeded in activating \(\text{H}_2 \) using a frustrated Lewis pair (FLP). An FLP is defined as when a Lewis acid and a Lewis base are unable to form a ‘classical’ Lewis adduct due to steric hindrance on the acid and base.\(^{39}\) The now universally accepted molecular orbital-based principle for acid/base reactions that describes the dative donor-acceptor adducts was first proposed by Lewis in 1923.\(^{40}\) Since then Lewis acids and Lewis bases have played a major role in chemistry. Lewis acidic boranes are widely used in olefin polymerisation studies\(^{41-43}\) as well as a variety of organic reactions using Lewis acid catalysis.\(^{44-47}\) Lewis basic phosphine ligands are widely seen in transition metal chemistry and catalysis.

The ability of a Lewis acid to behave as an activator in olefin polymerisation has led to the investigation of simple donor-acceptor adducts and the impact of steric bulk on such activators. Stephan \textit{et al.} found that \(\text{B(C}_6\text{F}_5)_3 \) reacts with sterically hindered secondary phosphines \(\text{R}_2\text{PH} \) (\(\text{R} = \text{tBu, Mes} \)) \textit{via} nucleophilic aromatic substitution at the carbon \textit{para} to B to provide air and moisture stable zwitterions of the formula \(\text{R}_2\text{PH(C}_6\text{F}_4)\text{BF(C}_6\text{F}_5)_2 \) as shown in Scheme 1.2.\(^{48}\)
Scheme 1.2 First example of the reversible activation of H₂ using a metal-free system.³⁸

Addition of Me₂SiClH to R₂PH(C₆F₄)BF(C₆F₅)₂ resulted in B-F metathesis to the hydride to generate R₂PH(C₆F₄)BH(C₆F₅)₂. Thermolysis of R₂PH(C₆F₄)BH(C₆F₅)₂ at 150 °C led to the release of H₂ and the production of a unimolecular phosphino-borane, (Mes)₂P(C₆F₄)B(C₆F₅)₂. Intermolecular coordination of P to B is not witnessed in either solution or solid state. The loss of H₂ could be easily monitored by a colour change from colourless to an intense orange-red solution. Exposure of (Mes)₂P(C₆F₄)B(C₆F₅)₂ to H₂ at 25 °C resulted in rapid and facile regeneration of the zwitterionic salt and thus the system was determined to be reversible.

Subsequent studies have shown FLPs can activate other molecules such as CO₂,⁴⁹-⁵² nitrous oxide,⁵³ and unsaturated systems,⁵⁴-⁵⁶ they can effect the ring opening of cyclopropanes⁵⁷ and heterocycles,⁵⁸ and the cleavage of disulfide bonds.⁵⁹ A summary of some of these FLP reactions are shown in Scheme 1.3.
Scheme 1.3 Small molecule activation using tBu$_3$P/B(C$_6$F$_5$)$_3$ and (C$_6$F$_5$)$_2$BC$_2$H$_4$PMe$_2$
FLP system.

The examples provided in Scheme 1.3 have only taken into account the use of phosphine bases combined with boranes to form FLP systems. However, there are many examples of Al/P FLP systems which are also capable of activating alkynes, fixate CO$_2$, reduce CO$_2$ to CO, and even reduce CO$_2$ to methanol.

1.6 Activation of H$_2$ using FLPs

The Stephan group followed up their original findings with further research and discovered that the combination of the simple borane, B(C$_6$F$_5$)$_3$, and phosphines, R$_3$P (R = tBu, Mes), do not exhibit the classical adduct formation and are able to heterolytically split H$_2$ (1 atm at 25 °C) to produce phosphonium hydridoborate salts.
[R₃PH][HB(C₆F₅)₃]. However, when these salts are heated above 100 °C, H₂ is not liberated unlike (Mes)₂PH(C₆F₄)BH(C₆F₅)₂.

Similarly, ¹Bu₃P and BPh₃ activate H₂ to furnish [¹Bu₃PH][HBPh₃] albeit in only 33% yield. The resulting H⁺/H⁻ pairs are able to hydrogenate imines, enamines and enol ethers. In comparison, combinations of PMes₃ and BPh₃, P(C₆F₅)₃ and B(C₆F₅)₃ or ¹Bu₃P and BMes₃ resulted in no reaction under identical conditions, which could be due to the change in Lewis acidity/basicity. FLPs have shown to be extremely useful synthetic reagents due to their ability to catalyse hydrogenation reactions under mild conditions. One of the most useful examples is the addition of H₂ to bulky imines, which has recently been carried out enantioselectively. FLPs can act as hydrogenation catalysts for nitriles (reduction of imines and nitriles being particularly important in the pharmaceutical industry as a route to primary and secondary amines), aziridines and enamines. There are many examples of FLPs containing boron or aluminium Lewis acids used in combination with either nitrogen or phosphine bases. B(C₆F₅)₃, as part of an FLP system, has over 200 known H₂ activation reactions and is one of the most widely used Lewis acids due to its ease of handling.

There has also been some research conducted into the use of N bases in FLP systems, in particular the use of substituted pyridines with B(C₆F₅)₃. Monosubstituted pyridines were mostly found to form classic adducts whereas 2,6-disubstituted pyridines were found to be sterically hindered enough to behave as FLPs. Using a 1:1 mixture of 2,6-lutidine (R=R'=Me, Lut) with B(C₆F₅)₃ (Scheme 1.4) gave rise to broad ¹H and ¹⁹F NMR resonances at room temperature, suggesting that in solution there is an equilibrium between free Lut/B(C₆F₅)₃ and the dative adduct. Formation of both the ‘classical’ adduct and the FLP proved these reaction pathways are not mutually exclusive, as long as a thermodynamic equilibrium between the two species is
established. Addition of H₂ (1 atm) to this solution led to the pyridinium salt [Lut-H][H-B(C₆F₅)₃].

\[
\text{Scheme 1.4 Effect of steric bulk on the formation of the adduct for pyridine-based FLP systems.}
\]

In looking to broaden the range of N bases, work by Sumerin et al. has included various inexpensive amines. Solutions of B(C₆F₅)₃ with 'Pr₂NEt and 'Pr₂NH gave 1:1 mixtures of the corresponding ammonium salts and zwitterionic products produced from amine H⁻ abstraction. In comparison, no dehydrogenation was observed when 2,2,6,6-tetramethylpiperidine (TMP), a bulky secondary amine lacking an α-NH(CH) moiety, was used. Addition of H₂ (1 atm) at 20 °C to the B(C₆F₅)₃/TMP system resulted in the formation of the ammonium-borate salt in 95% yield. However, replacing B(C₆F₅)₃ with BPh₃ resulted in no product formation, even at 110 °C. This is most likely due to the difference in Lewis acidities between B(C₆F₅)₃ and BPh₃. There are a few examples of TMP and Lut being used in an FLP system, however 1,4-diazabicyclo[2.2.2]octane (DABCO) has experienced limited use in FLP systems and when added to B(C₆F₅)₃ forms a classical Lewis adduct. Comparison of these Lewis bases shows that DABCO is less sterically hindered than TMP and Lut as it is able to form a classical Lewis adduct with B(C₆F₅)₃, whereas with Lut the system is in
equilibrium79 and TMP forms an FLP.84 However, [TMP-H]+ is more basic than [Lut-H]+ and [DABCO-H]+ (pK\textsubscript{a} = 11.07,85 6.7586 and 8.82,87 respectively). When considering both the sterics and the basicity of the Lewis bases, it can be concluded that upon combination of a Lewis acid with Lut a weaker FLP system is formed than when combined with TMP or DABCO. However, even though TMP is an extremely bulky base, its strong basicity allows its FLP system to successfully activate H\textsubscript{2} in high yields.80

1.7 Theoretical Studies of H\textsubscript{2} Activation using FLPs

The requirements for H\textsubscript{2} activation exist not only with steric preclusion but also electronically i.e. the cumulative Lewis acidity and basicity must exceed a threshold. Calculations have been conducted on various intermolecular and intramolecular donor-acceptor components, and the calculated free energies for H\textsubscript{2} activation correlate with the cumulative acid-base strengths displayed in Figures 1.2 and 1.3.88
Chapter One: Introduction

Figure 1.2 Calculated Gibbs free energies of (a) the proton attachment of the Lewis donors, and (b) of the hydride attachment to the Lewis acceptors, where $B = B(\text{C}_6\text{F}_5)_3$. D/A are unlinked FLPs and D~A are linked FLPs. Images taken from Rokob et al., reference 87.
Figure 1.3 Calculated Gibbs free energies for the hydrogen splitting reaction of Lewis pairs, where $B = B(C_6F_5)_3$ and $B' = B(C_6F_5)_2$. D/A are unlinked FLPs and D~A are linked FLPs. Image taken from Rokob et al., reference 87.

Rokob et al. showed that among the systems they studied; the inability for the systems to split H_2 is consistent with the unfavourable thermodynamics of the reaction. The calculations also showed that non-linked Lewis acid/base pairs (unable to form a ‘classical’ Lewis adduct) exhibit good correlation between the increasing acid/base
strength and the overall reaction free energy. The acidity, basicity and the stability of
the final product also contribute to the ability of the FLP system to split H_2 and in
particular when cleaving the acceptor-donor bond these factors should be considered
when trying to overcome the energetic cost of splitting the $H-H$ bond.\(^{88}\) A decrease in
the loss of entropy is observed with linked systems when compared to non-linked
systems. As a result, for linked systems, a lower acid-base strength may be enough to
produce a reactive system.

1.8 Proposed Mechanism for the Heterolytic Splitting of H_2 using FLPs

The definitive mechanism by which intermolecular FLPs activate H_2 is still under
investigation. Knowledge of the mechanistic and structural details of these FLP systems
are highly important in helping to improve future systems.

Following on from their success in discovering an intramolecular FLP that
reversibly activates H_2, Stephan \textit{et al.} hypothesised a mechanism based on the initial
signs of first-order kinetics upon the loss of H_2.\(^{75}\) However, trying to confirm this
experimentally only lead to misleading kinetic data. Attempts to experimentally
monitor the uptake of H_2 using borane/phosphine FLP systems proved challenging, in
particular it was difficult to control the concentration of H_2 in solution, which led to
diffusion controlled reactions. It was theorised that, based on early computational
studies, the activation of H_2 is initiated by the Lewis acid followed by the protonation of
the Lewis base.\(^{75}\)

Papai \textit{et al.} carried out computational experiments on the use of borane/phosphine
FLPs to activate H_2. They presented a comprehensive molecular orbital diagram
(Figure 1.4) of the reaction and found that the means to breaking the strong H-H bond is the simultaneous interaction of H₂ with a filled and a vacant orbital in the FLP system.⁸⁹

Figure 1.4 Molecular orbital diagram displaying the formation of the two dative bonds of the product. Image taken from Hamza et al. reference 88.

They proposed that due to the orbital symmetry, H₂ becomes polarised in the transition state, thus maximising the favourable interactions with the orbitals. Hamza et al. went on to say that the cleavage of the H-H bond and formation of the new B-H and P-H bonds occur at the same time and that the reactive intermediate is stabilised by the secondary interactions in the frustrated complex.⁸⁹

Further calculations by Tamm et al. studied the activation of H₂ using a carbene and borane which produced a carbene-borane “encounter complex” and showed that a transition state, similar to Papai et al., existed.⁹⁰
However, the theory that the breaking of the H-H bond is mediated by a linear [LA]-H···H-[LB] transition state has recently been discredited because the theory did not allow for the interaction between large substituents.91 Grimme and Erker proposed a bimolecular process, demonstrated for the FLP tBu₃P and B(C₆F₅)₃, whereby the reaction is thought to be asymmetric-concerted with the LA-H bond forming a little earlier than that of H-LB, similar to the idea proposed by Stephan. This suggests that using the electric field created by the donor/acceptor atoms in the FLP, activation of H\textsubscript{2} occurs \textit{via} polarisation of the molecule (Figure 1.5).92

![Figure 1.5 Postulated electric field polarisation of the H\textsubscript{2} molecule involving FLPs. Image taken from Grimme \textit{et al.} reference 91.]

Stephan \textit{et al.} have concluded that a certain cumulative Lewis acid and base strength is necessary for successful activation of H\textsubscript{2} and thermodynamic considerations suggest that ΔG^\ddagger of activation needs to be lower than +41.8 kJ mol-1.39 To better understand the hydrogen splitting reaction, it has been split into five hypothetical steps (Figures 1.6 and 1.7).88
Figure 1.6 Division of the free energy of the H$_2$ splitting reaction of FLPs. Image taken from Rokob et al. reference 87.

\[\Delta G = \Delta G_{HH} + \Delta G_{\text{prep}} + \Delta G_{\text{pa}} + \Delta G_{\text{ha}} + \Delta G_{\text{stab}} \]

Figure 1.7 A breakdown of the reaction steps involved for splitting H$_2$ using intermolecular FLP systems.\(^{88}\)
According to the breakdown of energy processes proposed in Figures 1.6 and 1.7, the first step of the thermodynamic cycle is the heterolytic splitting of H\textsubscript{2} into H+ and H- ions (in a toluene solution). This process is rather endergonic with a calculated free energy of \(\Delta G_{\text{HH}} = +538.9 \text{ kJ mol}^{-1} \), which is higher than the dissociation energy of H\textsubscript{2} (432 kJ mol-1)93 and is not dependent on the FLP94. For most of the systems examined, which contained no dative bond between the Lewis centres, this is the only uphill step in free energy. Nevertheless, if the active sites are quenched, i.e. a dative bond is present in the system, an additional amount of free energy (\(\Delta G_{\text{prep}} \)) is required to break the dative bonds, so that the acceptor and donor centres are prepared to accept the H+ and H- ions. With the non-linked systems, they adopted the Gibbs free energies of the attachment of a hydride (\(\Delta G_{\text{ha}} \)) and a proton (\(\Delta G_{\text{pa}} \)) ion to the acceptor or donor species, respectively. The final step (stabilisation of the product), a consequence of a non-linked system, is the formation of the product ion pair from the separated [DH]+ and [HA]- ions. The free energy, \(\Delta G_{\text{stab}} \), which is related to this step is simply the free binding energy of the ion pair. Whereas, for the linked FLPs, which are both electrophilic and nucleophilic molecules, the strengths of the acid and base sites are defined as the free energies of proton and hydride attachments to the D\textasciitilde A compounds (\(\Delta G_{\text{pa}} \) and \(\Delta G_{\text{ha}} \)). Therefore, in the last step of the reaction is the ionic [HD\textasciitilde A]+ and [D\textasciitilde AH]- species of the thermodynamic cycle which yields the zwitterionic [+HD\textasciitilde AH-] product and a neutral D\textasciitilde A molecule. The free energy of the final step (\(\Delta G_{\text{stab}} \)) is a measure of stabilising effects arising from the acid–base active centres cooperating together.88

It is essential to overcome the free energy cost of heterolytic H-H bond splitting by favourable free energy contributions for the proton attachment and hydride attachment. These favourable free energy contributions correlate with the cumulative acid-base
strength of the Lewis pairs. FLP systems capable of reversibly splitting H₂ have been found to have slightly favourable free energies of attachment (\(\Delta G_{pa}\) and \(\Delta G_{bh}\)) in favour of H₂ uptake at standard conditions, showing overall \(\Delta rG\) values typically within the region 0 and \(-41.8\) kJ mol\(^{-1}\); a value of \(-65.2\) kJ mol\(^{-1}\) has been determined for the FLP system \(B(C₆F₅)₃\) and TMP, which exhibits irreversible activation.\(^{95}\)

These theoretical studies so far have made great strides in trying to gain an understanding of the mechanism of these reactions. The computational studies have also revealed the importance of secondary interactions in the preorganisation of the reacting partners. The sterically hindered Lewis acid and base, which are incapable of forming a dative bond, may combine to a “frustrated complex” through non-covalent interactions. This reactive intermediate needs to be well prepared for a cooperative interaction with the incoming H₂ molecule (see Figure 1.8a).\(^{96}\) which assists in the process of splitting the molecule. The participation of a frustrated complex was also suggested for intramolecular FLPs where the link between the acidic and basic centres does not allow for intramolecular assistance (Figure 1.8b).\(^{96,97}\) On the other hand, if the reactive centres were able to arrange themselves appropriately, the linked FLPs may also be able to cleave H₂ intramolecularly (Figure 1.8c).\(^{88}\)
Figure 1.8 H\textsubscript{2} activation using (a) a non-linked acceptor/donor (A/D) pairs, (b) a disorganised linked pair, and (c) an organised linked pair. Image taken from Rokob et al. reference 85.

Schulz et al. demonstrated using single crystal neutron diffraction and NMR spectroscopy that the distance between the split H\textsubscript{2} molecule for an intramolecular FLP system (ansa-aminoborane; 1-N-TMPH-CH\textsubscript{2}-2-[HB(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}]C\textsubscript{6}H\textsubscript{4}) was 1.67 Å98. These findings have helped improve the understanding of the mechanism of H\textsubscript{2} splitting using intramolecular FLPS. On the other hand, H\textsubscript{2} activation using intermolecular systems (e.g. B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}/TMP) are still under investigation, as upon crystallisation there is possibility for the rearrangement of the salt thus extending the distance between the H atoms (N-H···H-B) to 2.97 Å80.
1.9 CO\textsubscript{2} Reactions with FLP Systems

FLPs can be used to activate a vast number of small molecules, in particular CO\textsubscript{2}. Following on from the success the splitting of H\textsubscript{2} using R\textsubscript{2}P(C\textsubscript{6}F\textsubscript{4})B(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}, Mömming et al. were able to show the reversible binding of CO\textsubscript{2} under mild conditions using a range of B-P FLPs.99

\[
\begin{align*}
\text{B(C}_6\text{F}_3)_3 + \text{P' Bu}_3 & \quad \text{CO}_2, 25 \degree \text{C} \\
& \quad 80 \degree \text{C}, \text{vacuum} \\
& \quad \text{CO}_2
\end{align*}
\]

Scheme 1.5 Reversible activation of CO\textsubscript{2} using an FLP.99

Mömming et al. were the first to successfully synthesise and characterise the carboxylic acid derivatives displayed in Scheme 1.5. They were also able to show that the CO\textsubscript{2} activation was reversible by either heating under vacuum or by altering the solvent of the reaction.99 In 2011 the Stephan group followed with another publication by Zhao reporting the use of bis-boranes to activate CO\textsubscript{2}. In this instance, they were able to successfully provide an effective method of producing a six-membered heterocycle via the chelate binding of CO\textsubscript{2} using a frustrated borane-phosphine Lewis pair.51

In 2011, the Stephan group took the research one step further with a publication by Peuser et al. where they investigated computationally and experimentally the binding of
CO₂ using a range of frustrated borane-phosphine Lewis pairs. They found the borohydride species; [tBu₃PH][RBH(C₆F₅)₂] (R = hexyl, Cy, norbornyl), successfully inserted CO₂ to give [((C₆F₅)₂BR)(μ-HCO₂)][tBu₃PH] as shown in Scheme 1.6.

Scheme 1.6 Activation of CO₂ using a bis-borane FLP. Scheme adapted from Peuser et al. Reference 100.

As Scheme 1.6 shows, the CO₂ molecule inserts into the B-H bond, then coordinates a second acid molecule to give a bis-borane species, which can be synthesised using the FLP and formic acid. They determined that even though hydride salts of FLPs can capture CO₂ and formate fragments, the thermal instability of the CO₂ adducts prevents the complete reduction, concluding that the FLP system required a stronger Lewis acid. Further work by the Stephan group has explored the use of aluminium/phosphorus based FLPs and their ability to fixate or reduce CO₂ to carbon monoxide.
1.10 Reduction of CO$_2$ to Methanol using an FLP System

In 2010, Ménard and Stephan were able to successfully show the reduction of CO$_2$ to methanol using an Al/P FLP and ammonia borane as the hydrogen source (Scheme 1.7).63

Scheme 1.7 Reduction of CO$_2$ to CH$_3$OH using ammonia borane as a hydrogen source.63

The weak Lewis adducts, AlX$_3$/PMes$_3$ (X = Cl, Br), were shown to doubly activate CO$_2$, which is a rare occurrence, with 2 Al-O bonds observed. Upon quenching the reaction with H$_2$O, ‘free’ methanol was observed in yields of 37-51%. However, since the fate of the Al species is unknown, they could not determine the catalytic viability of the system.63

Sgro et al. showed the use of a bis-borane-based frustrated Lewis pair to stoichiometrically reduce CO$_2$ to methanol.101 They demonstrated that using the bis-borane 1,2-C$_6$H$_4$(BCl)$_2$ in conjunction with PtBu$_3$, formed an FLP that can
asymmetrically bind CO₂. This allowed further stoichiometric reactions to take place using reducing agents as exhibited in Scheme 1.8.101

Scheme 1.8 Reduction of CO₂ to methanol using a bis-borane/phosphorus FLP.101

Scheme 1.8 shows after treatment of the formatoborate with a borohydride salt and then D₂O, methanol was successfully isolated in yields of 15-57\%. They found that the enhanced thermal stability provided by the bridging chlorine atom between the boron atoms enhances the Lewis acidity of the boron atom bonded to the oxygen atom of the CO₂. This could explain the increased stability that was observed for the formatoborate after CO₂ activation. Unfortunately they do not indicate the fate of the FLP system in their publication.101 However, this is not the first example of a non-metal mediated reduction of CO₂ to methanol.

In 2009, three years prior to Sgro et al.’s publication, Ashley et al. demonstrated the first selective homogeneous process for the reduction of CO₂ to CH₃OH, mediated by a non-metal system using the [(C₆F₅)₃B-H][H-TMP] system as displayed in Scheme
1.9. The reaction could be conveniently monitored using 1H, 19F, 11B and 13C NMR spectroscopy.32,80

As shown in Scheme 1.9, the reaction begins by splitting H_2, using an FLP, A, to give salt B. Addition of CO_2 (1 atm) to a solution of B in toluene produced the formatoborate complex [(C$_6$F$_5$)$_3$B-OCHO][H-TMP] C, even at room temperature (15% conversion is observed). Alternatively, C can be synthesised in high yield by the reaction of TMP and formic acid (HCO_2H) to give [TMP-H][HCO$_2$], followed by the
addition of B(C₆F₅)₃. The alternative method has the additional advantage of permitting regiospecific isotopic labelling of the formate group using H¹³CO₂H. Heating a solution of C (¹³C labelled) above 110 °C revealed an equilibrium between the formate complex, B and free ¹³CO₂. The temperature was increased to 160 °C for 5-6 days which led to a mixture containing C₆F₅H, the cyclic boroxin [OB(C₆F₅)]₃, while the only ¹³C-labelled products were ¹³CH₃O-B(C₆F₅)₂ and ¹³CO₂. Thus this reaction represents the disproportionation of HCO₂⁻ to CH₃O⁻ and CO₂; complete consumption of CO₂ can be achieved using a H₂/CO₂ mixture (> 3:1) in the presence of the FLP at 160 °C to form CH₃O-B(C₆F₅)₂ in 100% C₁ selectivity. Vacuum distillation of the solvent led to the isolation of methanol (17-25% yield), presumably via decomposition of the methoxyborate.²²

1.11 Proposed Mechanism for the Reduction of CO₂ to Methanol using [(C₆F₅)₃B-H][H-TMP]

After observing the reduction of CO₂ to methanol using [(C₆F₅)₃BH][HTMP] and the decomposition of the system, Ashley et al. proposed a possible mechanism for the disproportionation of the formatoborate to the methoxyborate. The mechanism proposed takes into consideration the experimental findings, where each reduction step depends on an equilibrium between the FLP, borohydride, formatoborate, H₂, and CO₂, as shown in Scheme 1.10.²²
Scheme 1.10 Proposed mechanism for the disproportionation of the formatoborate, C, into methoxyborate, H, and CO₂.32

Scheme 1.10 shows the attack of a free B(C₆F₅)₃ upon the acyl oxygen atom of C which produces the bis-borane intermediate D, an activated formate which was observed as a broad doublet at 174.5 ppm in the 13C NMR spectrum. Following hydride reduction of D with one equivalent of B leads to the formaldehyde acetal, E, and B(C₆F₅)₃. The instability of acetals in protic media is well established and the [TMPH]+ counterion acts as a source of H+ for the cleavage step, forming the formaldehyde intermediate F, TMP and G.46 The final hydride reduction of F using B liberates the methoxyborate salt H. Due to the absence of any reduction products between the formate and methoxide steps this indicated that the conversion of D to E is the rate determining step. This could be a consequence of the steric hindrance caused by the
three bulky $\text{B(C}_6\text{F}_5)_3$ molecules around a single formate in such a transition state. To definitely determine that G and H are formed, each of the species were synthesised independently by adding one equivalent of H_2O or CH_3OH, respectively, to a 1:1 mixture of $\text{B(C}_6\text{F}_5)_3$ and TMP. When solutions of these salts were heated in toluene at 160 °C, a product distribution matching that of the FLP reductive system was observed (Scheme 1.11).

\begin{equation}
\text{Scheme 1.11 Thermolysis of [TMP-H][HO-B(C}_6\text{F}_5)_3] (G) and [TMP-H][CH}_3\text{O-}
\text{B(C}_6\text{F}_5)_3] (H), \text{producing CH}_3\text{OH.}\end{equation}

As $[\text{TMPH}]^+$ is the only source of labile protons within the system, then recombination of the ions to produce TMP and ROH-B($\text{C}_6\text{F}_5)_3$ (R= CH$_3$, H) must take place. If this was an ideal system, dissociation of H_2O and CH_3OH (isolated by distillation) would regenerate the FLP, making the system catalytic. Unfortunately, at these elevated temperatures, H^+ attack on the $ipso$-C on the C_6F_5 ring is faster, thus causing the Lewis acid to decompose (Scheme 1.12).
Scheme 1.12 Decomposition of ROH-B(C₆F₅)₃ adduct via H⁺ attack on ipso-C₆F₅.

1.12 Structure Function Relationships of the Lewis Acid

It is well established that perfluoroaryl groups (C₆F₅) are powerfully electron-withdrawing groups via inductive electron withdrawal due to the high electronegativity of fluorine atom \[\chi(\text{Pauling}) = 3.98\], making the boron centre very Lewis acidic. Nevertheless, the π-system within the ring is activated towards electrophiles caused by mesomeric donation from the ortho- and para-F lone pairs. The 2p-2p overlap is particularly effective and makes the aromatic centre electron rich. This property is most likely the reason why protonation of the ipso-C₆F₅ occurs efficiently at elevated temperatures in H₂O-B(C₆F₅)₃ and other similar hydroxylic adducts. Ultimately protonolysis leads to decomposition of the Lewis acid.

Replacing the C₆F₅ groups with perchloroaryl groups (C₆Cl₅) \[\chi(\text{Pauling}) = 2.55, \text{Cl}\] may increase the hydrolytic stability of the Lewis acid while maintaining the electron withdrawing properties necessary for the activation of H₂.
Studies have shown that the methyl groups in mesityl (mes, 2,4,6-tri(methyl)phenyl) substituents have been able to block the binding of water to the boron in mesitylboranes. Chlorine substituents are considered to be sterically equivalent to methyl groups and in theory should be able to shield the boron centre from reacting with H_2O103. Despite the fact that Cl is less electronegative than F, the weaker (3p-2p) overlap should decrease mesomeric back-donation into the aromatic system, thus reducing the electron density of the C_6Cl_5 aromatic ring104.

Using the Hammett relationship, the degree of activation of the aryl ring can be determined. The Hammett equation obtains a free energy relationship between reaction rates and equilibrium constants for various meta- and para-substituted aromatic compounds105.

\[
\begin{align*}
\text{R}_p & \quad \text{R}_m \\
\text{R}_p & \quad \text{R}_m
\end{align*}
\]

Scheme 1.13 Ionisation of meta- and para-substituted benzoic acids.

Scheme 1.13 displays the ionization of benzoic acid, which can be used as a reaction standard. The relationship for a series of reactions with substituted benzene derivatives is defined in Equation 1.1.
Chapter One: Introduction

\[\log \frac{k}{k_0} = \rho \sigma \]

Where:

- \(k \) = rate (or equilibrium) constant for a meta- or para-substituted aromatic compound
- \(k_0 \) = rate (or equilibrium) constant for Ph\(\text{CO}_2\text{H} \)
- \(\rho \) = reaction constant (taken as unity for the ionization of Ph\(\text{CO}_2\text{H} \))
- \(\sigma \) = constant for a given substituent (taken as unity for Ph\(\text{CO}_2\text{H} \))

Equation 1.1 The Hammett Relationship.

The reaction constant, \(\rho \), defines the relative susceptibility of a reaction to the substituents. When \(\rho > 1 \), the reaction builds up a negative charge which indicates the reaction is more sensitive to substituents when compared to benzoic acid. A negative charge is also built up \(0 < \rho < 1 \), but the reaction is less sensitive to substituents. However, when \(\rho < 0 \), the reaction builds up a positive charge as it proceeds, facilitating the protonation upon the \(\text{C}_6\text{F}_5 \pi \)-system. To counteract this effect, incorporation of substituents more electron withdrawing than F would be ideal, i.e. substituents with highly positive \(\sigma \) values that deactivate the aromatic ring e.g. Cl.

The ionization of benzoic acid shows \((\rho = 1) \) that the rate for the forward reaction increases with \(\text{R}_p \) or \(\text{R}_m \) substituents which assist in the stabilisation of the carboxylate anion i.e. electron withdrawing (\(\sigma = \) positive) instead of electron donating (\(\sigma = \) negative). Halogen substituents remove electron density inductively, however, mesomeric donation can go towards partial cancellation. This is significant for F substituents which can form short C-F bonds and thus facilitate mesomeric donation. Therefore a difference in \(\sigma \) values is seen for para-F and para-Cl (0.062 and 0.227 respectively). This means Cl substituents are considerably more electron withdrawing.
in the para position. On the other hand, meta-F and meta-Cl substituents have similar σ values (0.337 and 0.373). This is due to the inability to establish a negative charge on the ipso-C by mesomeric donation in the canonical form (Scheme 1.14).

![Scheme 1.14 Canonical forms for meta and para-substituted aryl boranes with π-donors.](image)

Due to steric effects, σ values cannot be calculated reliably for ortho-substituents. The inclination to form a resonance canonical on the ipso-C via mesomeric donation also indicates that the ortho-Cl substituents are more deactivating, thus increasing the Lewis acidity.

Therefore, hypothetically, the synthesis of Lewis acids containing C₆Cl₅ moieties should produce a more Lewis acidic borane, which may suppress decomposition through protonolysis and at the same time promote dissociation of H₂O and methanol. Consequently producing a catalytic method of reducing CO₂ to methanol using a metal-free FLP system.
1.13 Aims of Research

The aims of the research are to synthesise and fully characterise a systematic series of novel tris(aryl)borane Lewis acids containing C_6Cl_5 groups: $\text{B}($$\text{C}_6\text{F}_5$$)_{3-n}(\text{C}_6\text{Cl}_5)$$_n$ ($n = 1-3$). The trends in the Lewis acidity of these new boranes will be determined using established donor-acceptor methods and electrochemical studies. New FLPs will then be synthesised using these Lewis acids and three Lewis bases ($\text{2,2,6,6-tetramethylpiperidine (TMP), 2,6-lutidine (Lut) and 1,4-diazobicyclo}[2.2.2]\text{octane (DABCO)}$). The activation of H_2 and reduction of CO_2 will be investigated using these FLPs, as well as the $\text{B}($$\text{C}_6\text{F}_5$$)_3$/DABCO adduct to complete the series.

1.14 References

(49) Mömming, C. M. O., Edwin; Kehr, Gerald; Fröhlich, Roland; Grimme, Stefan; Stephan, Douglas W.; Erker, Gerhard *Angew. Chem., Int. Ed.* **2009**, *48*, 6643-6646.

(85) http://evans.harvard.edu/pdf/evans_pka_table.pdf

CHAPTER TWO

Synthesis and Characterisation of Three Novel Tris(aryl)boranes

2.1 Introduction

In 1963, Massey et al. reported the synthesis of tris(pentafluorophenyl)borane (B(C₆F₅)₃). They noted its tendency to form a variety of strongly bound adducts with ammonia, ethers and phosphines.¹,²

Since then B(C₆F₅)₃ has found a number of applications in both inorganic chemistry (e.g. synthesis of weakly-coordinating anions, anion-binding, and activator in transition metal-mediated α-olefin polymerisations)³⁻¹⁰ and organic chemistry (e.g. silylation of alcohols, hydrosilylation of ketones and imines, and reductive cleavage of alcohols and ethers).¹¹⁻¹⁶ B(C₆F₅)₃ has many appealing features; not only is it a powerful Lewis acid (with it Lewis acidity measured between BF₃ and BCl₃),¹⁷,¹⁸ it is also a thermally robust solid (due to its strong B-C and C-F bonds) and is water-tolerant, making it easy to handle.¹⁹,²⁰ Therefore, it is not surprising that B(C₆F₅)₃ has been described as the ‘ideal boron-based Lewis acid, due to its high acid strength, and stability, even at elevated temperatures, combined with substantial steric bulk’.²⁰

The role of B(C₆F₅)₃ has changed significantly over the years and more recently it has been used as a Lewis acid partner in Frustrated Lewis Pair (or FLP) chemistry.²¹⁻²³ FLPs are formed when the steric hindrance between a Lewis acid and Lewis base prevents them from forming an adduct.²³ The unquenched energy in these molecules are able to facilitate the activation of small molecules, e.g. splitting of H₂,²⁴ and addition of CO₂.²³,²⁵⁻²⁷ addition of unsaturated systems,²⁸,²⁹ and addition of aldehydes.³⁰ Another useful application of FLPs is their ability to add H₂ to bulky imines,³¹⁻³⁴ which has been
carried out enantioselectively.\(^\text{35}\) The enhanced reactivity of H\(_2\) in the presence of B(C\(_6\)F\(_5\))\(_3\)-derived FLPs has been utilised to effect the metal-free hydrogenation of CO\(_2\) to CH\(_3\)OH.\(^\text{33}\)

Research has shown that in certain processes (e.g. the rate of epoxide ring-opening)\(^\text{17}\) the strength of the Lewis acid with the FLP system is linked to its chemical activity. So by simply changing the Lewis acid, B(C\(_6\)F\(_5\))\(_3\), in an FLP system to the bulkier B(C\(_6\)F\(_5\))\(_2\)(Mes) (Mes = 2,4,6-Me\(_3\)C\(_6\)H\(_2\)) the catalytic reactivity of the system is altered. In this example, the B(C\(_6\)F\(_5\))\(_2\)(Mes) system has recently shown to lead to orthogonal reactivity patterns in the FLP-mediated reduction of imines.\(^\text{36}\)

The vast majority of powerful boron-based Lewis acid systems have been built upon electron-withdrawing fluoroaryl ligands,\(^\text{37}\) which impart strong acidity at the acceptor site. This increase in acidity witnessed in these Lewis acids can be explained by the high electronegativity of F (\(\chi_{\text{Pauling}} = 3.98\)) which gives a potent inductive withdrawal via the \(\sigma\)-bonding framework from the boron centre. Effective mesomeric donation from ortho- and para-F lone pairs (2\(p\)-2\(p\) overlap) results in significant back-donation from the aromatic \(\pi\)-system into the acceptor orbital and can reduce the Lewis acidity. The scale to which \(\pi\)-electrons from aryl substituents are involved with the aromatic centre may be quantified using the Hammett equation, which derives a free energy relationship between reaction rates and equilibrium constants for various meta- and para- substituted aromatic compounds;\(^\text{38}\) higher values indicate increasingly powerful electron-withdrawing groups, in the absence of steric effects. Although F is more electronegative than Cl (\(\chi_{\text{Pauling}} = 3.16\)), its Hammett parameter (\(\sigma_{\text{para-F}} = 0.062\)) is considerably lower than Cl (\(\sigma_{\text{para-Cl}} = 0.227\)). This is as a result of weaker (3\(p\)-2\(p\)) \(\pi\)-overlap with Cl and the aromatic centre. As a result, substitution of C\(_6\)F\(_5\) for perchlorophenyl groups (C\(_6\)Cl\(_5\)) should increase the
natural electron-withdrawing properties of the ligands in the resultant organoboranes, thus increasing the Lewis acidity when considered alone.

This chapter describes the successful synthesis of a systematic series of new (perhaloaryl)borane Lewis acids, $\text{B(C}_6\text{F}_5)_3-n\text{C}_6\text{Cl}_5$ ($n = 1-3$), in order to systematically examine the effects on the electrochemical and spectroscopic properties upon replacement of C_6F_5 with C_6Cl_5 groups. Furthermore, the Lewis acidity of these boranes with the parent $\text{B(C}_6\text{F}_5)_3$ is examined.

2.2 Synthesis of Novel Lewis Acids

2.2.1 Synthesis of $\text{C}_6\text{Cl}_5\text{Li}$

At the beginning of this project, hexachlorobenzene was readily available from mainstream chemical suppliers at reasonable prices, which allowed for the facile synthesis of $\text{C}_6\text{Cl}_5\text{Li}$ following a literature procedure.\(^{39}\) However, as the project progressed it became more difficult for hexachlorobenzene to be obtained at a reasonable price as it was banned in 2005 under the Stockholm Convention on Persistent Organic Pollutants treaty,\(^{40}\) requiring an alternative route to be found to $\text{C}_6\text{Cl}_5\text{Li}$. While an obvious replacement would be $\text{C}_6\text{Cl}_5\text{Br}$, this is harder to obtain than hexachlorobenzene and far more expensive, whereas, $\text{C}_6\text{Cl}_5\text{H}$ is both readily available and much cheaper than any alternative starting material. Lithiation reactions were carried out using $^9\text{BuLi}$ in Et$_2$O but all attempts to lithiate the protio position on $\text{C}_6\text{Cl}_5\text{H}$ led to an intractable mixture of products with lithiation seen on both the chloro and protio positions. As $\text{C}_6\text{Cl}_5\text{H}$ has a history of reacting in an uncontrollable way,\(^{41}\) focus was turned to synthesising $\text{C}_6\text{Cl}_5\text{Br}$ from the deactivated $\text{C}_6\text{Cl}_5\text{H}$. After investigating a variety of different routes,\(^{42-45}\) a method of synthesising $\text{C}_6\text{Cl}_5\text{Br}$ was found by modifying a literature procedure\(^{46}\) (Scheme 2.1).
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

\[
\begin{align*}
C_6Cl_5H & \xrightarrow{Br_2, \text{Oleum, Fe (cat.), I}_2(\text{cat.})} C_6Cl_5Br \\
\end{align*}
\]

Scheme 2.1 Synthesis of C\textsubscript{6}Cl\textsubscript{5}Br.

C\textsubscript{6}Cl\textsubscript{5}Br was successfully synthesised as colourless crystalline needles, with a yield of 92%. Lithiation of C\textsubscript{6}Cl\textsubscript{5}Br successfully afforded C\textsubscript{6}Cl\textsubscript{5}Li.

2.2.2 Synthesis of B(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}(C\textsubscript{6}Cl\textsubscript{5}); I

Retrosynthetic analysis revealed two possible routes to B(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}(C\textsubscript{6}Cl\textsubscript{5}) (I), depending on which perhaloaryl groups were added first (Scheme 2.2). It was rationalised that B-X metathesis with the smaller C\textsubscript{6}F\textsubscript{5} moiety on a B(C\textsubscript{6}Cl\textsubscript{5})X\textsubscript{2} (X = F, Cl, Br) intermediate should be carried out at the final step of the synthesis in order to minimise potential side-reactions i.e. para-F substitution (S\textsubscript{N}Ar) on C\textsubscript{6}F\textsubscript{5} rings, which has been documented for B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3} in reactions with bulky nucleophiles.47

\[
\begin{align*}
\text{B(C}_6\text{Cl}_5)_2(\text{C}_6\text{Cl}_5) & \xrightarrow{\text{MC}_6\text{Cl}_5} \text{B(C}_6\text{Cl}_5)_2X_2 \xrightarrow{\text{MC}_6\text{Cl}_5} \text{BX}_3 \\
\text{B(C}_6\text{Cl}_5)_2(\text{C}_6\text{Cl}_5) & \xrightarrow{\text{X = F, Cl, Br}} \text{B(C}_6\text{F}_5)_2X \xrightarrow{\text{X = F, Cl, Br}} \text{BX}_3 \\
\text{M = Cu, Li or MgBr} & \xrightarrow{\text{X = F, Cl, Br}} \text{BX}_3 \\
\end{align*}
\]

Scheme 2.2 Retrosynthetic analysis of B(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}(C\textsubscript{6}Cl\textsubscript{5}).

Previously, (C\textsubscript{6}Cl\textsubscript{5})BCl\textsubscript{2} had been synthesised from C\textsubscript{6}Cl\textsubscript{5}SnMe\textsubscript{3} and BCl\textsubscript{3(g)} at 120 °C.48 However, attempts to carry out this reaction using a less hazardous solution-
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

phase method led to no reaction. An alternative route, avoiding the highly toxic organotin species, was thus developed.

Previous research showed the ability of Zn(C₆F₅)₂ to selectively transfer C₆F₅ groups to organoboron halides.⁴⁹ Base-free Zn(C₆Cl₅)₂ was synthesised in a facile manner from C₆Cl₅Li and ZnCl₂ and then used with an excess of BBr₃ to synthesise (C₆Cl₅)BBr₂ as an off-colourless powder, in good yield (70%) (Scheme 2.3).

\[
\begin{align*}
C₆Cl₅Li & \xrightarrow{1/2\text{ZnCl₂, Toluene, }-78 \degree \text{C}} 1/2\text{Zn(C₆Cl₅)₂} -2\text{LiCl} \\
& \xrightarrow{-1/2\text{ZnBr₂, Toluene, }100 \degree \text{C}} B(C₆F₅)₂(C₆Cl₅) \xrightarrow{2\text{CuC₆F₅, Toluene, }60 \degree \text{C}} (C₆Cl₅)BBr₂ -2\text{CuBr}
\end{align*}
\]

Scheme 2.3 Synthesis of B(C₆F₅)₂(C₆Cl₅); 1.

(C₆Cl₅)BBr₂ is an extremely moisture sensitive solid, producing HBr fumes when it makes contact with air. Attempts were made to enact the final step using C₆F₅MgBr in Et₂O. However, this led to products of solvent cleavage, which was identified by several quartet resonances between 3-4 ppm and corresponding triplets at higher field (¹H NMR spectroscopy), and by MS which revealed ion peaks attributable to B(C₆Cl₅)(OEt)₂ and B(C₆Cl₅)(C₆F₅)OEt. It was discovered afterwards that (C₆Cl₅)BBr₂ reacts with Et₂O alone to form various B-OEt containing species. Jäkle *et al.* reported the improved selectivity exhibited by CuAr (Ar = C₆F₅, 2,4,6-trimethyl-C₆H₂; Mes) in conjunction with BX₃ (X = Cl, Br) to form ArBX₂ or Ar₂BX, when compared to their lithium or Grignard analogues. In addition, these reactions can be carried out in donor-free solvents such as CH₂Cl₂ or

45
aromatics. Thus, CuC₆F₅ metathesis was employed in the final stage to successfully produce I as a colourless powdery solid in excellent yield (81%) for this step.

An alternative route generates (C₆F₅)₂BX first and then reacts with LiC₆Cl₅. Bochmann et al. generated (C₆F₅)₂BF.OEt₂ by reacting C₆F₅MgBr with BF₃.OEt₂ (Scheme 2.4).

![Scheme 2.4](image)

Isolation of (C₆F₅)₂BF.OEt₂ proved problematic due to its rapid decomposition, and thus the subsequent reaction with LiC₆Cl₅ led to a very low yield of I. Whereas, the in situ reaction of LiC₆Cl₅ with (C₆F₅)₂BF.OEt₂ at −78 °C led to a higher yield of I (64%) as a colourless solid.

Compound I is moderately soluble in aliphatic hydrocarbons and extremely soluble in chlorinated and aromatic solvents, and sublimes at 125 °C (1 x 10⁻³ mbar). I is also oxygen stable but binds H₂O forming the dative complex H₂O·[I] as shown by ¹⁹F NMR spectroscopy, which is a sensitive method in determining the coordination environment around the boron centre in C₆F₅-substituted boranes. In comparison to H₂O·B(C₆F₅)₃, the H₂O molecule can be rapidly and reversibly removed under vacuum, or in the solution phase upon addition of molecular sieves, forming I (Scheme 2.5). This difference is possibly the result of increased steric bulk around the boron centre due to the ortho-Cl substituents, as opposed to electronic effects (vide infra), resulting in a longer and thus weaker B-O interaction.
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

Scheme 2.5 Reversible coordination of H$_2$O by 1.

2.2.3 Synthesis of B(C$_6$F$_5$)(C$_6$Cl$_5$)$_2$; 2

As with 1, there were two possible routes to B(C$_6$F$_5$)(C$_6$Cl$_5$)$_2$ (2) (Scheme 2.6).

![Scheme 2.6 Retrosynthetic analysis of B(C$_6$F$_5$)(C$_6$Cl$_5$)$_2$; 2.](image)

Jäkle et al.50 synthesised (C$_6$F$_5$)BBr$_2$ by reacting base-free CuC$_6$F$_5$52 with excess BBr$_3$ in CH$_2$Cl$_2$ at -78 °C. This reaction is significant as the reaction of C$_6$F$_5$MgBr with BBr$_3$ does not selectively produce a mono-arylated borane.55 However, as (C$_6$F$_5$)BBr$_2$ is an oil, it proved difficult to handle. Therefore, focus was turned to synthesising (C$_6$Cl$_5$)$_2$BX. Previous use of C$_6$Cl$_5$Li as a route to (C$_6$Cl$_5$)BX$_2$ showed very poor selectivity, so it was quite a surprise when pale orange needles of (C$_6$Cl$_5$)$_2$BCl was synthesised by reacting BCl$_3$ with C$_6$Cl$_5$Li.(OEt)$_2$$_n$ affording a yield of 54%. C$_6$Cl$_5$Li.(OEt)$_2$$_n$ was made from the slow addition of hexane to solution of C$_6$Cl$_5$Li in Et$_2$O (Scheme 2.7).
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

\[
2C_6\text{Cl}_5\text{Li} + \text{BCl}_3, \text{Et}_2\text{O/Hexane}, -78^\circ\text{C} \rightarrow (C_6\text{Cl}_5)_2\text{BCl} - 2\text{LiCl}
\]

Scheme 2.7: Synthesis of \((C_6\text{Cl}_5)_2\text{BCl}\).

\((C_6\text{Cl}_5)_2\text{BCl}\) is a pale orange crystalline solid which fumes slowly in moist air (releasing HCl) and shows moderate solubility in chlorinated solvents, but is poorly soluble in aliphatics and aromatics.

After the successful use of CuC\(_6\)F\(_5\) in the synthesis of 1, its reaction with \((C_6\text{Cl}_5)_2\text{BCl}\) led to the synthesis of \(\text{B}(C_6\text{Cl}_5)_2(C_6\text{F}_5)\) (2) in good yield (70%), albeit after 72 h at 80 °C (Scheme 2.8). The slower rate of this reaction is likely due to the increased bulk of the starting haloborane \((C_6\text{Cl}_5)_2\text{BCl}\), and its replacement of a stronger B-Cl bond as opposed to B-Br, in \((C_6\text{Cl}_5)\text{BBr}_2\).

\[
(C_6\text{Cl}_5)_2\text{BCl} + \text{CuC}_6\text{F}_5, \text{Toluene, 80 °C} \rightarrow \text{B}(C_6\text{Cl}_5)_2(C_6\text{F}_5)
\]

\[\text{2} \]

Scheme 2.8 Synthesis of \(\text{B}(C_6\text{Cl}_5)_2(C_6\text{F}_5)\) (2).

2.2.4 Synthesis of \(\text{B}(C_6\text{Cl}_5)_3\); 3

Tris(perchlorophenyl)borane (3) was synthesised via the stoichiometric addition of BCl\(_3\) to \(C_6\text{Cl}_5\text{Li}\) (1:3). This is similar to the preparation of \((C_6\text{Cl}_5)_2\text{BCl}\), requiring the use of hexane as a co-solvent with Et\(_2\)O and \((C_6\text{Cl}_5)_2\text{BCl}\) is presumed to be an intermediate in the reaction. \(\text{B}(C_6\text{Cl}_5)_3\) (3) as pale yellow crystals was isolated in moderate yield, 42% (Scheme 2.9).
Scheme 2.9 Synthesis of B(C₆Cl₅)₃ (3).

After quenching the unreacted BCl₃ and C₆Cl₅Li with H₂O, the crude product was extracted with CH₂Cl₂ using ‘open bench’ techniques. The orange oil was recrystallised from boiling toluene which afforded 3·(toluene) as a pale yellow microcrystalline solid; the solvent was removed upon heating under vacuum. 3 is insoluble in aliphatic hydrocarbons, sparingly so in aromatics and moderately soluble in CH₂Cl₂. It is air and moisture stable and extraordinarily robust, remaining unchanged at temperatures up to 250 °C and does not sublime, even under high-vacuum (1 x 10⁻⁶ mbar), at these temperatures. Refluxing 3 in a toluene:H₂O mixture (1:1) for several days led to quantitative recovery of the compound and thus is remarkably hydrolytically stable.

2.3 NMR Spectroscopy

Solution phase ¹⁹F, ¹¹B{¹H} and ¹³C{¹H} NMR spectral data for 1, 2 and 3 have been summarised and compared with B(C₆F₅)₃ (Tables 2.1 and 2.2). Compounds 1 and 2 exhibit three resonances in their ¹⁹F NMR spectra in an intensity ratio 2:1:2 for the corresponding ortho, para and meta fluorine environments (to higher field respectively) for the C₆F₅ rings. The difference between the meta and para resonances, Δδₘₚ, were between 17-18 ppm, and in combination with ¹¹B NMR spectroscopy the data supports the idea that the boron retains the three coordinate geometry in the solution phase for all three species.
Table 2.1 19F and 11B\{1H\} NMR spectral data for B(C$_6$F$_5$)$_3$_n(C$_6$Cl$_5$)$_n$; n = 0-3.

<table>
<thead>
<tr>
<th>$\text{B(C}_6\text{F}_5\text{)}_3_n(C_6\text{Cl}_5\text{)}_n$</th>
<th>δ(19F NMR)/ppma</th>
<th>δ(11B{1H} NMR)/ppmb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ortho-F</td>
<td>para-F</td>
</tr>
<tr>
<td>$\text{B(C}_6\text{F}_5\text{)}_3$</td>
<td>-128.2</td>
<td>-143.9</td>
</tr>
<tr>
<td>1</td>
<td>-127.1</td>
<td>-142.8</td>
</tr>
<tr>
<td>2</td>
<td>-127.4</td>
<td>-143.1</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.2 13C\{1H\} NMR spectral data for B(C$_6$F$_5$)$_3$_n(C$_6$Cl$_5$)$_n$; n = 0-2 (C$_6$F$_5$ ligands only).

<table>
<thead>
<tr>
<th>$\text{B(C}_6\text{F}_5\text{)}_3_n(C_6\text{Cl}_5\text{)}_n$</th>
<th>δ(13C{1H} NMR)/ppma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ortho-C</td>
</tr>
<tr>
<td>$\text{B(C}_6\text{F}_5\text{)}_3$</td>
<td>148.7</td>
</tr>
<tr>
<td>1</td>
<td>149.6</td>
</tr>
<tr>
<td>2</td>
<td>149.1</td>
</tr>
</tbody>
</table>

aSolvent: CD$_2$Cl$_2$ reference (internal).

As the number of the C$_6$Cl$_5$ ligands coordinated to the boron centre increases, the resonance in the 11B NMR spectroscopy shifts to higher values. This indicates that the boron centre is becoming more electron deficient, which supports the hypothesis that a C$_6$Cl$_5$ groups are more electron withdrawing than C$_6$F$_5$. Upon addition of the first C$_6$Cl$_5$ group, a significant change is seen in the 19F NMR chemical shifts, however, after the further addition of a C$_6$Cl$_5$ group, a reduced effect is seen on the 19F NMR chemical shifts. It should be noted that 19F NMR resonances of each of the C$_6$F$_5$ rings in 1 exhibit an averaging of aryl substituents in solution at 298 K, which is confirmed by the inequivalent C$_6$F$_5$ groups in the X-ray crystal structure of 1 (see section 2.4).

The greatest change for the 11B\{1H\} NMR chemical shifts occurs between compounds 1 and 2. When one C$_6$F$_5$ ring is replaced by a C$_6$Cl$_5$ ring in B(C$_6$F$_5$)$_3$ to give 1, the B atom experiences a stronger electron-withdrawing effect. The ortho and para- F atoms in the remaining C$_6$F$_5$ rings on 1 compensate for this effect via increased π donation, therefore the resonances for these positions become deshielded (Figure 2.1).
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

Figure 2.1 C₆F₅-ring canonical forms involving ortho- and para-F positions, contributing to enhanced π electron density at boron in compounds B(C₆F₅)₃₋ₙ(C₆Cl₅)ₙ (n = 0-2).

The introduction of another bulky C₆Cl₅ group in 2 is likely to disrupt π donation through conjugation due to a sterically-induced twist of the C₆F₅ rings away from in-plane resonance with the B centre. The added inductive effect of the extra C₆Cl₅ group and a gain of electron density on the F atoms in 2 from greater electronic localisation (relative to those in 1) allows a balance to be achieved. In general the ¹⁹F NMR resonances experience a smaller change overall. This theory may be supported using the ¹³C{¹H} NMR data, by comparing the difference between the ipso-C₆F₅ resonance for 1 and 2 (∆δᵢ = +2.2), and the differences between the ipso-C₆F₅ resonance for B(C₆F₅)₃ and 1 (∆δᵢ = −1.0). This increase in ∆δᵢ can signify an enhanced inductive withdrawal that is not as adequately compensated for by B-C₆F₅ resonance in the former C₆Cl₅-C₆F₅ substitution. The corresponding changes in the ¹³C NMR shifts for the remaining C₆F₅
carbon atoms ($\Delta\delta_o$, $\Delta\delta_m$ and $\Delta\delta_p$; ortho, meta and para respectively) decreases as n increases, indicating that inductive effects, which become more important than resonance effects due to the ring twisting, dissipate faster with distance from the boron centre since they are mediated exclusively through the σ-framework.

2.4 Structural Characterisation

Colourless plates of 1 suitable for single crystal X-ray structure determination were grown by slow-cooling a saturated toluene solution to -35 °C. Slow evaporation of a toluene solution of 2 afforded small pale-yellow blocks. Whereas, for 3-toluene clear prisms were acquired from a saturated solution in boiling toluene (in air) that was slowly cooled to ambient temperature.

Crystallographic data was collected and solved by Dr. Amber Thompson. The solid-state structures are shown in Figures 2.2, 2.3 and 2.4 for 1, 2 and 3 respectively. Currently no structural data exists for $\text{B}(\text{C}_6\text{F}_5)_3$ even though the Lewis acid has found widespread use in many chemical applications. Compounds $\text{B}(\text{C}_6\text{F}_5)_3-\text{n}(\text{C}_6\text{Cl}_5)_\text{n}$ ($n = 1-3$) are the first structurally characterised compounds featuring the $\text{B}-\text{C}_6\text{Cl}_5$ motif. All three crystallise in centrosymmetric space groups so that both left and right-handed ‘propellers’ are present. The B atom shows trigonal planar coordination geometry as determined by the almost zero deviation of this atom from the plane of three ipso-C atoms, in spite of 1, 2 and 3 having different ligand sets. Selected bond lengths and torsion angles are shown in Table 2.3. The C-Cl bond lengths vary slightly and are comparable to those in C_6Cl_6 (range 1.713(2) - 1.724(3) Å), the longest are found in the ortho position and are likely to reflect the high steric crowding at these sites.
In 1, the two C₆F₅ rings are inequivalent (as mentioned in section 2.3), which is also found in the analogous ArB(C₆F₅)₂ (Ar = C₆H₅, Mes) species; the torsion angles between the best plane of a C₆F₅ ring and the plane of the remaining B- ipso(C₆X₃)₂ (X = Cl, F) fragment best represent this difference. For steric reasons, the lowest energy conformation (minimising non-bonding interactions between ortho-substituents on different rings) would be a ‘propeller’, for which each ArXBAr₂ = 60° (ArX = C₆Cl₅, C₆F₅). However, π-donation into the vacant B p-orbital from the C₆F₅ rings lowers the energy of the molecule and a compromise is achieved; for that reason the aryl group with the smallest torsion angle also has the shortest B-C ipso bond for each ArB(C₆F₅)₂ (Ar = C₆H₅, Mes, C₆Cl₅) examined. By comparison, the much larger torsion angle for C₆Cl₅ in 1 is likely to be due to the poorer π-donor ability of this substituent relative to C₆F₅, in addition to its larger size; for 3 the angles now approach D₃ symmetry. Each of the solid-state structures show a trigonal planar environment around the boron centre in all the compounds (C-B-C bond angles displayed in Table 2.3), regardless of the asymmetry of the ligand set in the complexes 1 and 2.
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

Figure 2.2 Structure of the right handed form of 1. Orthogonal (top) and side (bottom) views of 1 (with respect to BC₃ plane); thermal ellipsoids at 50 % probability (C atoms black, Cl atoms dark green, F atoms light green and B atoms spicy pink).
Figure 2.3 Structure of the right handed form of 2. Orthogonal (top) and side (bottom) views with respect to BC$_3$ plane; thermal ellipsoids at 50% probability (C atoms black, Cl atoms dark green, F atoms light green and B atoms spicy pink).
Figure 2.4 Structure of the right handed form of 3. Orthogonal (top) and side (bottom) views with respect to BC₃ plane; thermal ellipsoids at 50 % probability (C atoms blue, Cl atoms dark green and B atoms spicy pink). Disordered toluene molecule in asymmetric unit removed for clarity.
Table 2.3 Selected bond lengths and angles for B(C₆F₅)₃ and compounds 1, 2 and 3; numbers in parentheses are estimated standard uncertainties (esu). Computed values (B3LYP/TZVP) are shown in italics.

<table>
<thead>
<tr>
<th></th>
<th>B(C₆F₅)₃</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 – C1 (Å)</td>
<td>1.57</td>
<td>1.580(4)</td>
<td>1.589(4)</td>
<td>1.576(4)</td>
</tr>
<tr>
<td></td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
</tr>
<tr>
<td>B1 – C7 (Å)</td>
<td>1.577(4)</td>
<td>1.586(4)</td>
<td>1.587(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.57)</td>
<td>(1.59)</td>
<td>(1.59)</td>
<td>(1.59)</td>
</tr>
<tr>
<td>B1 – C13 (Å)</td>
<td>1.561(4)</td>
<td>1.552(4)</td>
<td>1.586(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.57)</td>
<td>(1.57)</td>
<td>(1.59)</td>
<td>(1.59)</td>
</tr>
<tr>
<td>Range C-F (Å)</td>
<td>1.333(3)– 1.352(4)</td>
<td>1.330(4)– 1.344(3)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.33 – 1.34)</td>
<td>(1.33 – 1.34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range C-Cl (Å)</td>
<td>-</td>
<td>1.712(3)– 1.732(3)</td>
<td>1.714(3)– 1.730(3)</td>
<td>1.711(3)– 1.732(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.74 – 1.76)</td>
<td>(1.74 – 1.76)</td>
<td>(1.74 – 1.75)</td>
</tr>
<tr>
<td>ArF^BAR₂(°)</td>
<td>40, 41, 40</td>
<td>24.4, 51.9</td>
<td>22.3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(24, 52)</td>
<td>(36)</td>
<td></td>
</tr>
<tr>
<td>ArCl^BAR₂(°)</td>
<td>-</td>
<td>69.7(74)</td>
<td>57.1, 62.0</td>
<td>54.5, 55.3, 58.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(57, 58)</td>
<td>(53, 53, 53)</td>
</tr>
<tr>
<td>C(1)-B(1)-C(7) (°)</td>
<td>-</td>
<td>118.1(3)</td>
<td>118.6(3)</td>
<td>120.0(2)</td>
</tr>
<tr>
<td>C(1)-B(1)-C(13) (°)</td>
<td>-</td>
<td>121.4(3)</td>
<td>119.0(2)</td>
<td>122.8(3)</td>
</tr>
<tr>
<td>C(7)-B(1)-C(13) (°)</td>
<td>-</td>
<td>120.4(3)</td>
<td>122.2(3)</td>
<td>117.2(2)</td>
</tr>
</tbody>
</table>

Ar^X^BAR₂ (Ar^Cl = C₆Cl₅; Ar^F = C₆F₅) is the torsion angle, as defined in Figure 2.5.

Figure 2.5 Calculation of the torsion angle for C₆F₅ ring in 2 (C₆F₅BAR₂; Ar = C₆Cl₅) and the B(C₆Cl₅)₂ unit, defined as the angle between the planes of blue (BAR₂) atoms and red (C₆F₅ ring) atoms. F atoms shown in green, Cl atoms have been omitted for clarity.
2.5 Lewis Acidity Measurements

There are a number of methods available to measure the relative Lewis acidity of compounds, which are mainly based on spectroscopic (IR, NMR) techniques.63-67 For (fluoroaryl)boranes, there are two commonly used methods based on NMR spectroscopy. The first of these methods focuses on Gutmann’s acceptor number (AN) for scaling solvent polarity, which measures the change in $^{31}\text{P}\{^1\text{H}\}$ NMR chemical shift ($\Delta\delta$) of uncoordinated Et$_3$PO vs that of the Lewis acid adduct. This method was subsequently modified by Beckett.67 The second method was developed by Childs and is based upon the downfield shift of the trans-crotonaldehyde H$_3$ resonance upon forming a complex to the Lewis acid.63 The H$_3$ site is considered sterically remote from the site of bonding yet electronically connected \textit{via} conjugation (Figure 2.6).

![Figure 2.6 The Gutmann-Beckett and Childs Lewis acidity test (LA, Lewis acid).](image)

The results obtained from both methods are summarised in Table 2.4; for comparison the Lewis acidity of B(C$_6$F$_5$)$_3$ has also been measured. The results from the Gutmann-Beckett method are presented in Figure 2.7, which shows that upon coordination of Et$_3$PO the difference in chemical shift ($\Delta\delta$ $^{31}\text{P}\{^1\text{H}\}$ NMR) decreases in the order B(C$_6$F$_5$)$_3$ > 1 > 2, thus the introduction of each C$_6$Cl$_5$ group has a linear effect on the
measured Lewis acidity. There is no indication of complexation for 3, and thus no data is reported.

![Figure 2.7](image)

Figure 2.7 Plot of Acceptor Number (AN) vs n in $\text{B(C}_6\text{F}_5)_3$-$\text{n(C}_6\text{Cl}_3)_n$ ($n = 0-2$).

Whereas, the Child’s method produced an alternative set of results with only $\text{B(C}_6\text{F}_5)_3$ and 1 showing complexation to the aldehyde. It was found that the upfield shift difference ($\Delta\delta$) in the adduct of 1 was noticeably smaller than that seen for $\text{B(C}_6\text{F}_5)_3$.

Recently Stephan *et al.* proposed the idea of tuning the Lewis acidity for a series of phosphine-borane/phosphinium-borane species $\text{R}_2\text{P(C}_6\text{F}_4)\text{B(C}_6\text{F}_5)_2$ and $[\text{R}_3\text{P(C}_6\text{F}_4)\text{B(C}_6\text{F}_5)_2]^+$, and observed a linear correlation between the two techniques.\(^{68,69}\)

As an environment consisting of only B-C bonds was maintained throughout, the steric factors about the borane centre remained effectively unchanged and the site of electronic modulation is remote (para-bound P on C_6F_4 ring), the results obtained can be considered self-consistent. On the other hand, Britovsek *et al.* synthesised the series
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

B(C₆F₅)₃ₓ(OC₆F₅)ₓ (x = 1-3), where systematic replacement of pentafluorophenyl moieties by harder pentafluorophenoxy ligands resulted in binding preference for Et₃PO over crotonaldehyde.⁷⁰ This was rationalized using Pearson’s HSAB principle where the largely covalent and softer C=O π-π bond is a preferable donor to B(C₆F₅)₃ compared to the harder, more ionic π-d P=O bond in Et₃P=O, which is favoured by B(OC₆F₅)₃.⁷¹

Table 2.4 ³¹P{¹H} and ¹H NMR spectral data derived for Lewis acidity measurements for 1, 2, 3 and B(C₆F₅)₃.

<table>
<thead>
<tr>
<th>Lewis Acid</th>
<th>³¹P{¹H} NMR/ppm</th>
<th>Δδ/ppm</th>
<th>¹¹B{¹H} NMR/ppm</th>
<th>AN</th>
<th>¹H NMR/ppm</th>
<th>Δδ/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>50.7</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>6.88</td>
<td>–</td>
</tr>
<tr>
<td>B(C₆F₅)₃</td>
<td>77.0</td>
<td>33.7</td>
<td>–2.5</td>
<td>78.1</td>
<td>7.93</td>
<td>1.05</td>
</tr>
<tr>
<td>1</td>
<td>75.8</td>
<td>32.5</td>
<td>–1.1</td>
<td>75.3</td>
<td>7.51</td>
<td>0.63</td>
</tr>
<tr>
<td>2</td>
<td>74.5</td>
<td>31.2</td>
<td>0.3</td>
<td>72.3</td>
<td>6.88</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>50.7</td>
<td>0.0</td>
<td>68.2</td>
<td>–</td>
<td>6.88</td>
<td>–</td>
</tr>
</tbody>
</table>

a Solvent: CD₂Cl₂. b See reference 69 for calculation of acceptor number (AN); δ = δ[Et₃PO(coordinated)] – δ[Et₃PO(hexane)]. c Δδ = δ[H₃(coordinated)] – δ[H₃(free)]

When only considering steric hindrance of the Lewis acids, the Britovsek study showed that as x increases there is a steady increase in the accessibility of the Lewis acid centre which allows for binding by both the donors examined. As a result this allows the Lewis bases to be distinguished by electronic factors caused by the replacement of B-C by B-O linkages. Examination of the space-fill diagrams for the solid-state structures of compounds 1, 2, and 3 (Figure 2.8) show greater screening of the boron acceptor site upon replacement of C₆F₅ moieties for C₆Cl₅.
When determining the Lewis acidity of the compounds, moving along the series from B(C₆F₅)₃ to B(C₆Cl₅)₃, another variable needed to be taken into consideration. As well as the increase in electrophilicity there is also, simultaneously, an increase in the steric crowding around the boron centre. Due to the increase in steric crowding, one can imagine that a steric threshold exists whereby the ortho-ring substituents obstruct the Lewis base from forming a dative interaction which overrides the electronic factors. This effect is probably more significant for crotonaldehyde (C=O bond length 1.21 Å) than the phosphine oxide (P=O 1.46(1) Å in Ph₃PO, for example) at the position of complexation. Thus, for Et₃PO the adduct formation is achieved for \(n = 0, 1, 2 \) and a linear relationship is present throughout the series, whereas crotonaldehyde can only bind to \(n = 0 \) and 1; nevertheless, the results show a decrease in Lewis acidity from B(C₆F₅)₃. Due to the steric hindrance provided by the three C₆Cl₅ groups on 3, neither Lewis base can successfully achieve coordination and the compound may be judged to have gone beyond the steric threshold with both Lewis bases.

Figure 2.8 Space-fill diagram of (a) 1, (b) 2 and (c) 3; (C atoms black, Cl atoms aquamarine, F atoms yellowgreen and B atoms spicy pink).
2.6 Electrochemical Studies

In collaboration with Dr. Gregory Wildgoose, the reduction potentials for 1, 2 and 3 were studied to determine the electron density at the boron acceptor orbital for each Lewis acid. As shown by Power et al., reduction of B(Mes)_3 and subsequent X-ray structure determination of the resultant radical anion showed that minimal structural reorganisation of the trigonal planar environment of the borane occurs upon electron transfer. Hence, the potentials may be viewed as an approximate measure of the Lewis acidity of B(C_6F_5)_3-n(C_6Cl_5)_n (n = 0-3) in the absence of steric effects. In spite of the prevalent use of B(C_6F_5)_3 as a powerful Lewis acid no report exists that claims to directly observe the voltammetric reduction of this species, even though evidence documents its use as a one electron oxidant.

An attempt was made to estimate the redox potential of B(C_6F_5)_3 (THF, 0.1 M [^6]Bu_4N][BF_4] electrolyte) by Cummings et al., using cyclic voltammetry (CV) on the series B(C_6F_5)_3-n(Mes)_n (n = 1-3). However, it has been documented that the mesityl-substituted boranes only weakly coordinate THF so it is reasonable that the observation of a reduction wave for these species is due to high enough concentrations of the free three-coordinate *tris*(aryl)borane electron acceptors in solution. However, the C_6Cl_5 substituted boranes were predicted to be substantially more electron-deficient, due to the C_6Cl_5 moieties being more electron withdrawing than the mesityl moieties, and indeed 1 strongly coordinates THF. The reduction of the 1.THF coordinated species was examined using the CV (under comparable conditions). The investigation only yielded poorly defined voltammograms with no distinct waves. However, when the experiments were conducted using the weakly coordinating solvent CH_2Cl_2, recording at various scan rates (50-500 mVs^{-1}); well-defined cyclic voltammograms for all compounds were observed (Figure 2.9). A plot of the reductive peak current vs the square root of the voltage scan
rate was created (Figure 2.9, insets) and in all cases a linear relationship was seen, thus confirming that the reduction was operating under diffusion control.76

Figure 2.9 Overlaid cyclic voltammograms recorded at scan rates of 50 to 500 mVs-1 in CH\textsubscript{2}Cl\textsubscript{2} (0.1 M [6Bu\textsubscript{4}N][BF\textsubscript{4}]) of (a) 1 (10 mM concentration); (b) 2 (10 mM concentration); (c) 3 (5 mM concentration). Insets show respective plots of reductive peak current vs square-root of voltage scan rate.

Initially, when the potential was scanned in a negative direction a single reduction wave was observed at every scan rate for each complex. At lower scan rates (e.g. 50 mVs-1) when the direction is later reversed the corresponding oxidation waves were observed to be quite broad and smaller in height than the reduction wave. At higher scan rates, the oxidative waves became more prominent and the ratio of the oxidative to
reductive peak current increased, but was always less than 1:1 even at scan rates of up to 10 Vs\(^{-1}\). The observed cyclic voltammetric behaviour is consistent with the reduction corresponding to an EC mechanism\(^{77}\) where ‘E’ denotes a heterogeneous electron transfer step and ‘C’ denotes a follow-up homogeneous chemical step, and is comparable to the behaviour observed by Cummings \textit{et al.} for B(C\(_6\)F\(_5\))\(_3\)\(_n\)(Mes)\(_n\). Once the radical anion of the parent complex had formed, the radical anion rapidly underwent further homogenous follow-up chemistry leading to decomposition of the radical anion produced at the electrode. At slow scan rates, the decomposition of the intermediate radical anion is sufficiently fast compared to the voltammetric timescale so that its corresponding re-oxidation is not observed. On increasing the scan rate, an increase in the kinetics of decomposition began to be outrun and a correspondingly larger oxidation wave is then observed until the ratio of \(i_{pOx}:i_{pRed}\) approached unity. The formal reduction potential of each compound 1, 2 and 3 is calculated using the mid-peak potential, \(E_{\text{mid}} = (E_{pOx} + E_{pRed})/2\), and are listed in Table 2.5. A trend is observable whereby the reduction peak potential of each complex was discovered to shift to increasingly less negative potentials, and the voltammetry seems to become more reversible as the number of C\(_6\)Cl\(_5\) substituents attached to the boron centre increases. These findings support the NMR spectral data that a C\(_6\)Cl\(_5\) group is more electron-withdrawing than a C\(_6\)F\(_5\) substituent, thus causing the boron centre to become more oxidising and shows a strong relationship with the more positive Hammett parameter for aryl-bound Cl \textit{vs} F. Additionally, the larger size of the Cl group (especially in the \textit{ortho} position) reflects an increased shielding of the boron-centred radical anion upon reduction, which inhibits bimolecular decomposition pathways and hence increases the stability/reversibility of the voltammetry; a similar strengthening effect is attributed to the stability, and consequently the persistence of the isoelectronic [C(C\(_6\)Cl\(_5\))\(_3\)]\(^+\).\(^{78,79}\) Thus, assuming that a linear
relationship exists between these potentials and the number of C_6Cl_5 substituents attached to each boron centre gives an estimate of the reduction potential for $B(C_6F_5)_3$ of $-1.92 \pm 0.1 \text{ V (vs } Cp_2Fe^{0+/+})$.

Table 2.5 Average values of E_{mid} measured from CV data for complexes $B(C_6F_5)_{3-n}(C_6Cl_5)_n$ ($n = 0-3$).

<table>
<thead>
<tr>
<th>$B(C_6F_5)_{3-n}(C_6Cl_5)_n$</th>
<th>$E_{\text{mid}}/\text{V}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(C_6F_5)_3$</td>
<td>-1.97 ± 0.10</td>
</tr>
<tr>
<td>1</td>
<td>-1.87 ± 0.05</td>
</tr>
<tr>
<td>2</td>
<td>-1.55 ± 0.05</td>
</tr>
<tr>
<td>3</td>
<td>-1.48 ± 0.02</td>
</tr>
</tbody>
</table>

aPotentials are reported vs $Cp_2Fe^{0+/+}$ (CH$_2$Cl$_2$) at a Pt macrodisc electrode.

Prior attempts to witness the direct reduction of $B(C_6F_5)_3$ have employed either CH$_2$Cl$_2$ or THF solvent (despite the fact that $B(C_6F_5)_3$·THF is known to be a strongly bound adduct80 and commonly used electrolytes such as $[^nBu_4N][ClO_4]$ or $[^nBu_4N][BF_4]$; at best produced ill-defined curves.74,75 $B(C_6F_5)_3$ has demonstrated rich oxo-anion binding chemistry which could possibly extend to ClO$_4^-$ (reported to be more coordinating than BF$_4^-$)81 and since the Lewis acidity of $B(C_6F_5)_3$ has been judged to be similar to that of BF$_3$, it is probable that F$^-$ abstraction from BF$_4^-$ to form $[FB(C_6F_5)_3^-]$ occurs82 in both these examples the supporting electrolyte would quench the acceptor orbital and hence inhibit reduction. With these potential drawbacks in mind; instead the $[^nBu_4N]^+$ salt of the weakly coordinating anion $[BArF_{24}]^-$ in CH$_2$Cl$_2$ was used as an electrolyte ($BArF_{24} = B[3,5-(CF_3)_2C_6H_3]_4$). Figure 2.10 shows the resulting cyclic voltammetry of $B(C_6F_5)_3$, successfully obtained for the first time. At modest scan rates
(< 1 V s\(^{-1}\)) a reduction wave is observed which corresponds to a one-electron reduction forming the \([\text{B(C}_6\text{F}_5)_3]^-\) radical anion, at \(-1.97 \pm 0.1\) V. The rate of decomposition of \(\text{B(C}_6\text{F}_5)_3\) continues the trend observed for \(\text{B(C}_6\text{F}_5)_3\cdot_n(\text{C}_6\text{Cl}_5)_n\) complexes \((n = 1-3)\) and is the fastest of the series, such that a back peak corresponding to the re-oxidation of the radical anion is only observed at scan rates in excess of 1 V s\(^{-1}\).

Figure 2.10: Overlaid cyclic voltammograms of \(\text{B(C}_6\text{F}_5)_3\) in CH\(_2\)Cl\(_2\) (5 mM, 0.1 M \([^9\text{Bu}_4\text{N}][\text{BARF}_{24}]; 1-5\) V s\(^{-1}\) scan rate).

Figure 2.11 combines the measured \(E_{\text{mid}}\) potentials of all complexes \(\text{B(C}_6\text{F}_5)_3\cdot_n(\text{C}_6\text{Cl}_5)_n\) complexes \((n = 0-3)\) vs the number of \(\text{C}_6\text{Cl}_5\) groups in the molecule and shows a clear linear trend. The estimated value of the reduction potential of \(\text{B(C}_6\text{F}_5)_3\) is very close to the measured value. It is also interesting to compare the estimated values from the \(\text{B(C}_6\text{F}_5)_3\cdot_n(\text{Mes})_n\) series used by Cummings et al. to estimate the potential of \(\text{B(C}_6\text{F}_5)_3\), and to compare their estimate with our measured value.\(^{75}\) To do this, the IUPAC convention of referencing non-aqueous potentials to the \(\text{Cp}_2\text{Fe}^{0/+}\) couple in the solvent system of choice rather than the practice of referencing potentials to the aqueous SCE reference electrode was employed.\(^{83}\) The data shows that the estimated reduction potential of \(\text{B(C}_6\text{F}_5)_3\) in the work of Cummings et al. is encouragingly close to the measured value; the difference in values may be accounted for by appreciating the fact
that the studies were conducted in different solvents (CH$_2$Cl$_2$ and THF). The difference in shift of $ca. \pm 200$ mV per C$_6$Cl$_5$ introduced compared with $ca. \pm 500$ mV obtained for the mesityl series may be understood in that for the former case C$_6$F$_5$ (a σ-acid and π-donor) is replaced by a group of greater electron-withdrawing ability (predominantly σ-acid) whereas in the latter it is replaced by a strongly electron-donating ligand (a σ-donor); the effect on the electrode potentials is therefore appreciably greater.

Figure 2.11 A plot showing the E_{mid} potentials of complexes B(C$_6$F$_5$)$_{3-n}$(C$_6$Cl$_5$)$_n$ ($n = 0-3$; denoted \times) vs the number of substituent C$_6$Cl$_5$ groups in the complex, and also the E_{mid} values determined for the series B(C$_6$F$_5$)$_{3-n}$(Mes)$_n$ ($n = 0-3$) and their estimated value for the reduction potential of B(C$_6$F$_5$)$_3$ (▲). The *measured* potential, E_{mid}, for B(C$_6$F$_5$)$_3$ in CH$_2$Cl$_2$ (●) has also been included.

2.7 Electronic Structure Analysis

In collaboration with Dr. Tobias Krämer, the electronic consequences of the successive replacement of C$_6$F$_5$ with C$_6$Cl$_5$ were explored. The structures have been optimised for all four members of the series, B(C$_6$F$_5$)$_{3-n}$(C$_6$Cl$_5$)$_n$ ($n = 0-3$) using density functional theory (DFT) (B3LYP/TZVP). The bond lengths and angles at the minimum
energy structures (shown in parentheses in Table 2.3) are all fully consistent with the experimental data. Most appreciably in the context of the present study, the B-C₆F₅ distances across the series are uniformly 0.02 Å shorter than their B-C₆Cl₅ counterparts. Computed 11B shielding constants also replicate the experimental trend almost quantitatively, with shifts (relative to B(C₆F₅)₃, n = 0) of −0.4, 4.5 and 6.6 ppm (for n = 1, 2 and 3, respectively) c.f. values of 0.3, 4.9 and 7.1 ppm from experiment (Table 2.1). The encouraging level of agreement with both structural and spectroscopic observables gives us confidence that the chosen methodology is capturing the essential variations in electronic structure across the series. The computed natural charges on the boron centre increase in the order n = 0 (0.81) < n = 1 (0.89) < n = 2 (1.02) < n = 3 (1.16), supporting the hypothesis that Lewis acidity increases with increasing substitution of C₆F₅ with C₆Cl₅.

2.8 Kinetics of H₂O Dissociation from H₂O.[1]

It has been shown that H₂O forms a number of aqua complexes with B(C₆F₅)₃, [H₂O-B(C₆F₅)₃]·(H₂O)$_n$, involving H₂O molecules hydrogen-bonded together beyond the primary coordination sphere of the dative 1:1 adduct.⁸⁴-⁸⁶ Although coordinated water in H₂O-B(C₆F₅)₃ is tightly bound and difficult to remove under vacuum (e.g. negligible loss at 10⁻³ mbar) or through heating (exceeding 60 °C results in hydrolysis to (C₆F₅)$_2$BOH and C₆F₅H),⁸⁷ the kinetics of water dissociation have been studied by observing degenerate aqua ligand transfer between H₂O-B(C₆F₅)₃ and free B(C₆F₅)₃ using Variable Temperature 19F NMR.⁸⁸ Since 1 exhibits the ability to reversibly coordinate H₂O under similar conditions it was thought prudent to determine comparable data for H₂O dissociation from H₂O-1; such a property is likely to be of use in true Lewis acid catalysis under aqueous regimes, in contrast to the Brønsted acidic properties of H₂O-B(C₆F₅)₃.
resulting from strong activation of the water molecule. Due to such facile decoordination of H₂O, an analogous equilibrium was achieved by combining 1 with H₂O in a 2:1 ratio in toluene-d₈ solution.

\[
\text{B}(\text{C}_6\text{F}_3)_2(\text{C}_6\text{Cl}_5) + \text{H}_2\text{O} \xleftrightarrow{k_1 \quad k_{-1}} \text{H}_2\text{O}^+ \text{B}(\text{C}_6\text{F}_3)_2(\text{C}_6\text{Cl}_5)
\]

Figure 2.12 Dissociative exchange between H₂O and 1.

At 200 K sharp resonances in the ¹⁹F NMR spectrum are observed with separate resonances corresponding to a mixture of H₂O·1 and 1, whereas at room temperature dynamic averaging reflects fast exchange (Figures 2.12 and 2.13). With Dr. Nick Rees, line-shape analysis of the ¹⁹F NMR spectra as a function of temperature enabled the rate constants, and subsequent thermodynamic parameters ΔH‡ and ΔS‡, to be obtained from an Eyring plot (Table 2.7).

Table 2.7 Activation parameters for H₂O dissociation from H₂O-[B] ([B] = B(C₆F₅)₃, and 1) as determined by Variable Temperature ¹⁹F NMR (toluene-d₈ solution); errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>ΔH‡/kJ mol⁻¹</th>
<th>ΔS‡/J K⁻¹ mol⁻¹</th>
<th>ΔG‡₃₀⁰/kJ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O·B(C₆F₅)₃</td>
<td>79.50(3)</td>
<td>100(1)</td>
<td>47.49(4.5)</td>
</tr>
<tr>
<td>H₂O·1</td>
<td>41.4(0.3)</td>
<td>13.4(1.2)</td>
<td>37.2(1)</td>
</tr>
</tbody>
</table>

As expected, ΔH‡ for dissociation of H₂O from 1 is less than that for B(C₆F₅)₃ which is consistent with the increased size of the borane, leading to a weaker B-O interaction. The considerably larger entropic value for H₂O·B(C₆F₅)₃ may be rationalised by
hydrogen-bonding between the hydroxyl protons and the ortho-F substituents. This effect will be emphasised by the strong polarisation of the O-H bonds in the H₂O molecule from the powerfully Lewis acidic organoborane fragment, and indeed O-H···F bonding is observed in the solid-state structure of this compound. In the ground state of the complex such organised bonding would more than likely restrict free rotation of bonds within the H₂O moiety, thus lowering the total entropy of the system. However, on the dissociation of H₂O, loss of ordered H-bonding leads to an overall greater entropy change than that expected for a unimolecular to bimolecular conversion alone. In comparison, for H₂O·1 the degree of O-H···F interactions is anticipated to be smaller due to fewer C₆F₅ moieties in the borane and poorer O-H polarisation from weaker H₂O-B binding. Thus upon dissociation the entropy gain significantly diminishes in relation to that found for H₂O·B(C₆F₅)₃.
Figure 2.13 Variable-temperature 19F NMR spectra (simulated and experimental) for exchange of water between $\text{H}_2\text{O} \cdot 1$ and 1 (toluene-d_8 solution).
Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

2.9 Conclusions

The complete series of perchloroaryl Lewis Acids B(C₆F₅)₃₋ₙ(C₆Cl₅)ₙ (n = 1-3; 1, 2 and 3) have been successfully synthesised and comprehensively characterised. Perchlorination of all the aryl substituents bestows substantial thermal and hydrolytic stability to 3. The solid-state structures reveal a trigonal planar environment for boron in all the compounds, despite the asymmetry of the ligand set in the complexes 1 and 2. Solution ¹¹B{¹H}, ¹³C{¹H} and ¹⁹F NMR spectroscopy studies reveal a trend of B-C₆F₅ resonance interactions being replaced by predominantly inductive effects arising from the increasing number of C₆Cl₅ groups. A decrease in Lewis acidity has been established upon sequential substitution of C₆F₅ with C₆Cl₅ in B(C₆F₅)₃ for n = 0-2, as demonstrated by the Gutmann-Beckett method, and corroborated by the Childs method despite only being successful for n = 0 and 1; the acceptor properties of 3 could not be determined using either of these techniques. On the other hand, electrochemical studies show that the boron centre becomes more electron deficient (oxidising) travelling along the series, demonstrating a C₆Cl₅ substituent to be more electron withdrawing than a C₆F₅ substituent. The optimised structures of all the Lewis acid, B(C₆F₅)₃₋ₙ(C₆Cl₅)ₙ (n = 0-3) using density functional theory (B3LYP/TZVP) agree fully with the experimental structural data. Computed ¹¹B shielding constants are also consistent with the experimental trend almost quantitatively, and the computed natural charges on the boron centre increase in the order n = 0 (0.81) < n = 1 (0.89) < n = 2 (1.02) < n = 3 (1.16), supporting the hypothesis that Lewis acidity should parallel electrophilicity trends upon increasing substitution of C₆F₅ with C₆Cl₅. All the results can rationalised by realising that various measurements of Lewis acidity may be dominated by either steric and/or electronic effects. While electrochemistry provides a physio-chemical measure of the electron affinity of the B centre in these compounds, it does not consider the steric cost of
B sp^2-sp^3 rehybridisation which is important for bulky boranes upon coordination of Lewis bases. In comparison, the Gutmann-Beckett/Childs’ methods include both factors in their measurement and give a more reliable indication of ‘chemical’ Lewis acidity. Therefore, when considering these novel Lewis acids as a whole, the Lewis acidity decreases when substituting the C_6F_5 groups with C_6Cl_5 groups.

2.10 References

Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

(30) Mömming, C. M. O., Edwin; Kehr, Gerald; Fröhlich, Roland; Grimme, Stefan; Stephan, Douglas W.; Erker, Gerhard Angew. Chem., Int. Ed. 2009, 48, 6643-6646.

(53) Confirmation of the formation of a four coordinate complex is revealed by measuring \(\Delta \delta_{m,p}\), the difference of the chemical shifts between the para-F and meta-F resonances, which decrease from 18.9 ppm to ca. 9 ppm upon rehybridisation from a 3- to 4-coordinate complex.

(56) Crystals of 3 had to be manipulated at temperatures below 0°C in order to inhibit dissolution in either Paratone® or perfluoropolyether oil.

(57) For consistency, the right-handed propeller is shown in all crystallographic figures.

(58) A common test for planarity is to sum all angles around a central atom and comparing with the ideal 360°; in this case however the sum of the angles about B is 360°. However, the sum-of-all-angles test this can be extremely insensitive to planarity and the reader is directed to reference [59] for examples of such situations.
Using the method applied in the text, the largest deviation is seen for 2 (0.0028 Å), confirming a planar assignment.

Chapter Two: Synthesis and Characterisation of Three Novel Tris(aryl)boranes

CHAPTER THREE

Synthesis and Reactions of Novel Frustrated Lewis Pairs with H₂

3.1 Introduction

In 1996, Welch and Stephan showed the first example of a metal-free system that reversibly cleaves hydrogen using a frustrated Lewis pair (FLP). This was done using the zwitterionic phosphonium hyridoborate salt \((\text{Mes})_2\text{PH(C}_6\text{F}_4\text{)BH(C}_6\text{F}_5\text{)}_2\). FLPs have gained more prominence in recent years and are formed when the steric hindrance between a Lewis acid and Lewis base prevents them from forming an adduct. The unquenched reactivity in these molecules have the ability to facilitate the activation of small molecules, e.g. splitting of \(\text{H}_2\), addition of \(\text{CO}_2\), addition of unsaturated systems, and addition of aldehydes. Amongst the useful applications of FLPs is their ability to add \(\text{H}_2\) to bulky imines, which has been carried out enantioselectively and to reduce \(\text{CO}_2\) to methanol.

Due to their capacity to reduce \(\text{CO}_2\) to methanol and their promise in the field of hydrogen storage via dehydrogenation and rehydrogenation processes, the use of metal-free FLPs as a method of activating \(\text{H}_2\) has grown in popularity over the last 5 years. There are many examples of FLPs containing boron or aluminium Lewis acids used in combination with either nitrogen or phosphine bases. \(\text{B}(\text{C}_6\text{F}_5)_3\), as part of an FLP system, has over 200 known \(\text{H}_2\) activation reactions and thus is one of the most widely used Lewis acids due to its facile synthesis, steric bulk and high Lewis acidity. As one can imagine, a large number of reactions are possible with a vast array of Lewis bases that can be used in conjunction with \(\text{B}(\text{C}_6\text{F}_5)_3\), for this study three Lewis bases...
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with \(H_2 \)

were selected; 2,2,6,6-tetramethylpiperidine (TMP), 2,6-lutidine (Lut) and 1,4-diazabicyclo[2.2.2]octane (DABCO). These bases encompass a wide range of steric demands and basicity that exhibit interesting reactivity. \(\text{B(C}_6\text{F}_5\text{)}_3 \) has already been used in combination with TMP\(^{21,22} \) and Lut\(^ {22-24} \) as FLP systems and each has shown the ability to successfully activate \(H_2 \). However, DABCO has experienced limited use in FLP systems\(^ {25} \) and when added to \(\text{B(C}_6\text{F}_5\text{)}_3 \) forms a classical Lewis adduct.\(^ {26} \)

In Chapter Two a new family of electron-deficient \(\text{tris(aryl)boranes}, \) \(\text{B(C}_6\text{F}_5\text{)}_{3-x}(\text{C}_6\text{Cl}_5)_x \) (\(x = 1-3 \)) were synthesised, allowing for an exploration of the subtle interplay of electronic and steric effects, resulting from the gradual replacement of \(\text{C}_6\text{F}_5 \) with \(\text{C}_6\text{Cl}_5 \) ligands, to be studied.\(^ {27} \) These novel Lewis acids have been used with TMP, Lut and DABCO to create and evaluate the reactivity of novel FLP systems.

3.2 Synthesis of Novel Frustrated Lewis Pairs and Reactions with \(H_2 \)

Using the Lewis acids \(\text{B(C}_6\text{F}_5\text{)}_2(\text{C}_6\text{Cl}_5) \), \(\text{B(C}_6\text{F}_5)(\text{C}_6\text{Cl}_5)_2 \) and \(\text{B(C}_6\text{Cl}_5)_3 \) (1, 2 and 3, respectively) together with a stoichiometric amount of TMP, Lut or DABCO, nine FLP systems were synthesised in either toluene or THF. \(\text{B(C}_6\text{F}_5)_3 \) and DABCO were combined in toluene to form a classical Lewis adduct that was isolated according to the literature.\(^ {26} \) The propensity of these 10 systems to split \(H_2 \) was evaluated (Scheme 3.1).
Initially the reactions were carried out on NMR scale, using 30 mg of the Lewis acid and one equivalent of the Lewis base and placed under one atmosphere of H$_2$ via three freeze-pump-thaw degas cycles. This allowed each of the reactions to be monitored using 1H and 11B{1H} NMR spectroscopy and where relevant 19F NMR spectroscopy. Following splitting of H$_2$ a four-coordinate borohydride species is formed which gives a distinct resonance in the 11B{1H} NMR spectrum which appears at approximately −18 ppm, −13 ppm and −8 ppm, for Lewis acids 1, 2, and 3 respectively. These characteristic resonances remain constant for the Lewis acid regardless of which Lewis base is used and only shift approximately 1 ppm when the reaction is carried out in a different solvent (e.g. toluene, THF).

Upon the addition of H$_2$ to the B(C$_6$F$_5$)$_3$.DABCO adduct, a resonance at −25 ppm in the 11B NMR spectrum was observed. This resonance is characteristic of the four-coordinate borohydride species of [(C$_6$F$_5$)$_3$B-H]$^-$. Thus, when in solution,
B(C₆F₅)₃,DABCO is able to successfully activate H₂, although there are very few examples in the literature of H₂ activation using B-N adducts. ²⁸⁻⁴⁰

Each system activates H₂ at different temperatures and in many of the systems H₂ splitting is observed after 24 h at 22 °C using ¹¹B{¹H}NMR spectroscopy (the ¹¹B nuclei couples to the H with ¹JBH ~ 90 Hz), a broad quartet is also observed in the ¹H NMR spectrum, however, initially this is difficult to detect due to the broadness and weakness of the resonance. Attempts were made to improve the B-H resonance using ¹H{¹¹B} NMR spectroscopy, however, the signal observed was still weak and ¹¹B{¹H} NMR spectroscopy proved to be the best method of monitoring H₂ activation. Even though the splitting of H₂ is observed at 22 °C for a number of these systems, the maximum rate of reaction/borohydride yield is usually achieved at an elevated temperature. Some of the systems required prolonged heating at 110 °C before H₂ activation was observed and the reaction conditions are summarised in Table 3.1.

Table 3.1 Summary of H₂ splitting reactions.

<table>
<thead>
<tr>
<th>FLP/Adduct System</th>
<th>% Yield of Isolated [B-H][H-N] Salt</th>
<th>Reaction Temperature/ °C</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C₆F₅)₃B.DABCO¹</td>
<td>86</td>
<td>65</td>
<td>Side reaction seen T > 65 °C</td>
</tr>
<tr>
<td>[1][DABCO]¹</td>
<td>77</td>
<td>75</td>
<td>Side reaction seen T > 75 °C</td>
</tr>
<tr>
<td>[2][DABCO]¹</td>
<td>45</td>
<td>25</td>
<td>Side reaction seen T > 25 °C</td>
</tr>
<tr>
<td>[3][DABCO]¹</td>
<td>33</td>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>[1][TMP]¹</td>
<td>76</td>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>[2][TMP]¹</td>
<td>77</td>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>[3][TMP]¹</td>
<td>61</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>[1][Lut]¹</td>
<td>35</td>
<td>65</td>
<td>Releases H₂ T > 65 °C</td>
</tr>
<tr>
<td>[2][Lut]¹</td>
<td>18</td>
<td>65</td>
<td>Releases H₂ T > 65 °C</td>
</tr>
<tr>
<td>[3][Lut]¹</td>
<td>16</td>
<td>70</td>
<td>Releases H₂ T > 70 °C</td>
</tr>
</tbody>
</table>

¹Solvent: Toluene. ²Solvent: THF.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with \(\text{H}_2 \)

As Table 3.1 illustrates, the yield of the borohydride salt decreases upon substituting the perfluoro groups with perchloro groups. This can be ascribed to the increase of steric bulk in the Lewis acids, which prevents the \(\text{H}_2 \) molecule entering between the Lewis acid and base. It would be expected that increasing perchloro substitution would increase the Lewis acidity and thus should split \(\text{H}_2 \) more efficiently (as described in Chapter Two). Unfortunately, the reactivity of 3 is hindered by its very poor solubility. Initially all reactions using 3 were carried out in toluene at 120 °C (3 is soluble in boiling toluene). It was found that only [3][DABCO] split \(\text{H}_2 \) in toluene with the resultant salt isolated with a modest yield of 33 %. As [3][TMP] and [3][Lut] were unable to split \(\text{H}_2 \) in toluene, the reactions were carried out successfully in THF and isolated with varying yields (Table 3.1). The efficiency of \(\text{H}_2 \) activation is also affected when adjusting the Lewis base in the FLP systems.

There is an increase in steric bulk exhibited on progressing from DABCO to Lut and TMP, as DABCO is able to form a classical Lewis adduct with B(C\(_6\)F\(_5\))\(_3\), whereas with Lut the system is in equilibrium and TMP forms an FLP. \(^{23}\) Jiang et al. found a correlation between the steric hindrance on the Lewis base and the reactivity of the FLP and concluded that TMP had a larger cone angle than Lut (169° and 164°, respectively) which prevents the formation of a TMP-B(C\(_6\)F\(_5\))\(_3\) adduct. \(^{22}\) However, steric bulk is not the only factor that needs to be considered; the basicity also plays a major role in the reactivity of the FLP system. [TMP-H]\(^+\) is more basic than [Lut-H]\(^+\) and [DABCO-H]\(^+\) (pKa = 11.07, \(^{32}\) 6.75\(^{33,34}\), and 8.82, \(^{33}\) respectively). When considering both the sterics and the basicity of the Lewis bases, it can be concluded that upon combination of a Lewis acid with Lut, a less reactive FLP system is formed than when combined with TMP or DABCO, as is observed in the lower isolated yield of the borohydride salts from the Lut systems. However, even though TMP is an extremely bulky base, its
strong basicity allows its FLP system to successfully activate H$_2$ in high yields. In contrast, DABCO is a much weaker base but due to it being less sterically hindered, H$_2$ has easier access within the FLP and therefore is still able to split H$_2$ with higher yields than the Lut FLP systems. When combining DABCO, a weak sterically less demanding base, with 3 (a strong bulky acid) the reactivity of the FLP decreases, as witnessed in the yield of the borohydride salt.

The Lut FLP systems exhibit even more interesting reactivity. Unlike the TMP and DABCO systems, the Lut systems have shown to reversibly split H$_2$ when heated above 65 °C, i.e. H$_2$ is released back into the system above this temperature. As this trend is not observed for the TMP and DABCO systems it can be presumed that this is due to the weak basicity and larger steric bulk of the Lut molecule. Using the isolated [1-H][H-Lut], 1H, 11B{1H} and 19F NMR spectroscopy experiments were carried out on the release of H$_2$ at temperatures 65 – 110 °C which is discussed later.

3.3 NMR Spectroscopy

Solution phase 11B{1H} and 19F NMR spectral data for [1-H][H-N], [2-H][H-N] and [3-H][H-N] have been summarised and compared with B(C$_6$F$_5$)$_3$ (Table 3.2). Compounds [1-H][H-N] and [2-H][H-N] exhibit three resonances in their 19F NMR spectra in an intensity ratio 2:1:2 for the corresponding ortho, para and meta fluorine environments (to higher field respectively) for the C$_6$F$_5$ rings. This is consistent for all three bases. The difference between the meta and para resonances, $\Delta \delta_{m,p}$ in the 19F NMR spectra of the FLP were between 17-18 ppm. However, upon splitting H$_2$, the meta resonance shifts upfield decreasing the difference between the meta and para resonances, $\Delta \delta_{m,p}$ to 2-3 ppm, which is indicative of a four-coordinate anionic boron
centre and is consistent with previously published findings by Piers et al.34,35 The corresponding NMR data of the FLP is shown in italics.

Table 3.2 19F and 11B\{1H\} NMR spectral data for the Borohydride Salts; [B-H][H-N], where B = B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}, 1, 2, 3.

<table>
<thead>
<tr>
<th>[B-H]−</th>
<th>(\delta(19F\text{NMR})/\text{ppm}a</th>
<th>ortho-19F</th>
<th>para-19F</th>
<th>meta-19F</th>
<th>(\Delta\delta_{m,p}c)</th>
<th>(\delta(11B{1H}\text{NMR})/\text{ppm}b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}B-H]−</td>
<td>-135</td>
<td>-165</td>
<td>-168</td>
<td>3</td>
<td>-25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-128.2)</td>
<td>(-143.9)</td>
<td>(-161.1)</td>
<td>(17.2)</td>
<td>(61.2)</td>
<td></td>
</tr>
<tr>
<td>[1-H]−</td>
<td>-134</td>
<td>-165</td>
<td>-168</td>
<td>3</td>
<td>-19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-127.1)</td>
<td>(-142.8)</td>
<td>(-161.1)</td>
<td>(18.3)</td>
<td>(61.5)</td>
<td></td>
</tr>
<tr>
<td>[2-H]−</td>
<td>-134</td>
<td>-165</td>
<td>-168</td>
<td>3</td>
<td>-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-127.4)</td>
<td>(-143.1)</td>
<td>(-160.6)</td>
<td>(17.5)</td>
<td>(66.1)</td>
<td></td>
</tr>
<tr>
<td>[3-H]−</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(-8)</td>
<td></td>
</tr>
</tbody>
</table>

aSolvent: CD\textsubscript{3}CN, CFCl\textsubscript{3} reference (external). bSolvent: CD\textsubscript{3}CN, BF\textsubscript{3}OEt\textsubscript{2} reference (external). cDifference between 19F NMR meta and para resonances (ppm).

Both the 11B\{1H\} and 19F NMR spectra suggests that the borane species becomes a four-coordinate anionic borohydride species upon cleaving H\textsubscript{2} and is consistent with the literature.34,35 A trend is witnessed in the 11B\{1H\} NMR spectra, upon stepwise substitution of the C\textsubscript{6}F\textsubscript{5} groups with C\textsubscript{6}Cl\textsubscript{5} groups, the 11B\{1H\} resonance shifts approximately 5-6 ppm downfield,27 which is consistent with the boron centre becoming more deshielded. This is due to the increase in electrophilicity at the boron centre caused by the addition of the more electron-withdrawing C\textsubscript{6}Cl\textsubscript{5} groups, thus confirming that the Lewis acidity increases in the series; B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3-n}(C\textsubscript{6}Cl\textsubscript{5})\textsubscript{n} n = 0-3. The 1H NMR spectra confirms the presence of a borohydride species with quartet resonance due to coupling with the quadrapolar 11B (I = \frac{3}{2}) at 3.5 – 4 ppm, which also shifts downfield when progressing along the series.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

3.4 Monitoring H_2 Reactions using $B(C_6F_5)_2(C_6Cl_5)$ FLP Systems

Attempts were made to determine the activation energy of three FLP systems consisting of [1][DABCO], [1][TMP] and [1][Lut]. The aim was to monitor the activation of H_2 using 1H, ^{19}F and $^{11}B\{^1H\}$ NMR spectroscopy, plot the concentration of the borohydride species against time and using the Eyring plot to determine the activation energy of each system. Each of the experiments were carried out with 30 mg of 1 and one equivalent of the appropriate base in 0.7 ml of toluene-d_8 in a J-Young NMR tube. Each sample was heated within the NMR spectrometer under one atmosphere of H_2 and monitored over time to observe the formation of the borohydride salt.

3.4.1 H_2 Activation using [1][DABCO]

The [1][DABCO] system was held at temperatures between 40 – 110 °C, at equally spaced increments and the reactions were monitored over 10 h at each temperature. When the [1][DABCO] system was held between 40 – 75 °C, only the FLP system and the borohydride salt were observed in the NMR spectra. However, once this reaction was heated above 75 °C, new resonances were detected in both the $^{11}B\{^1H\}$ and ^{19}F NMR spectra. Heating the reaction at 110 °C did not produce the resonances which were characteristic to the borohydride salt; only the resonances attributable to the side product (DABCO-$BH(C_6F_5)_2$) were evident (Scheme 3.2). The formation of [1-H][H-DABCO] is observed in both the ^{19}F ($-133\ (o),\ -161\ (p)\ and\ -165\ ppm\ (m))$ (Figure 3.1) and $^{11}B\{^1H\}$ NMR spectroscopy ($-19\ ppm$) (Figure 3.6).
Scheme 3.2 Reactions observed using the [1][DABCO] FLP system and H₂.

Figure 3.1 19F NMR spectra of (a) [1][DABCO] and the formation of (b) [1-H][H-DABCO] at 75 °C in toluene-d_8.

Figure 3.1 shows that when the reaction mixture of [1][DABCO] in toluene-d_8 (under one atmosphere of H₂) is heated at 75 °C, the production of [1-H][H-DABCO]
can be monitored using 19F NMR spectroscopy. Initially a steady growth of the product can be observed, however, after approximately 1 h, the amount of [1-H][H-DABCO] begins to decrease. There could be many reasons for this, for example the reaction is reversible or the product could be insoluble in toluene-d_8. When the reaction was left at room temperature in toluene-d_8, X-ray quality single crystals of [1-H][H-DABCO] grew, thus the borohydride salt is only partially soluble in toluene, as shown in Figure 3.2. This could explain the inconsistent growth of the borohydride salt resonance in the 19F NMR spectra. Further heating at 75 °C allowed for the [1-H][H-DABCO] resonance to increase again at a steady rate. Another explanation for the inconsistent growth could be that due to the presence of the FLP in solution, the borohydride salt experiences low solubility. Once a certain amount of the FLP is consumed, this allows more of the borohydride salt to be observed in solution. To determine if the reaction was First Order or Second Order, ln[1] and 1/[1] were plotted against time (Figures 3.3 and 3.4, respectively).

![Figure 3.2](image_url)
Figure 3.2 Solution of [1][DABCO] (left) and precipitate of [1-H][DABCO] (right) in toluene-d_8.

87
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

Figure 3.3 Plot of $\ln[1]$ vs t to determine if the $[1][\text{DABCO}]$ reaction with H_2 is First Order ($[1] = \text{concentration of 1 in M}$ and $t = \text{time in hours}$).

Figure 3.4 Plot of $1/[1]$ vs t to determine if the $[1][\text{DABCO}]$ reaction with H_2 is Second Order ($[1] = \text{concentration of 1 in M}$ and $t = \text{time in hours}$).
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H₂

If the splitting of H₂ using [1][DABCO] was either First Order of Second Order, a linear plot would be expected. However, as this is not observed in Figures 3.3 and 3.4, it can be concluded that this reaction is neither First Order nor Second Order.

The plot (Figure 3.4) is in agreement with the initial observations of the ¹⁹F NMR spectra, i.e. the borohydride salt does start to form, however the concentration of the salt decreases after 1 h. After approximately two hours, the concentration of the borohydride salt in solution begins to increase again. Hypothetically, precipitation could occur until enough of the FLP has been consumed which then allows for a higher concentration of the borohydride salt to be observed in solution.

When the reaction is heated at temperatures > 75 °C a resonance at approximately −8 ppm is seen in the ¹¹B{¹H} NMR spectrum (Figure 3.6) and in the ¹⁹F NMR spectrum (−128 (o), −157 (p) and −163 ppm (m)) (Figure 3.5).

![Figure 3.5](image)

Figure 3.5 ¹⁹F NMR spectra of (a) [1][DABCO] and the formation of (b) DABCO-BH(C₆F₅)₂ at 110 °C in toluene-d₈.
Figure 3.6 11B-1H NMR spectra of [1][DABCO] reacting with H$_2$ at various temperatures displaying the formation of (a) [1-H][H-DABCO] and the side product (b) DABCO-BH(C$_6$F$_5$)$_2$ after 10 h in toluene-d$_8$.

The resonances displayed in the 11B-1H NMR spectrum for the side product, DABCO-BH(C$_6$F$_5$)$_2$, were similar to those of TMP-BH(C$_6$F$_5$)$_2$ and Lut-BH(C$_6$F$_5$)$_2$, with resonances at -11.82 ppm36 and -7.4 ppm37 respectively and when coupled to 1H, produced a doublet (1J$_{BH} = 91$ Hz). Recrystallisation of the side product from boiling toluene generated single X-ray quality crystals, thus confirming the structure of the side product as DABCO-BH(C$_6$F$_5$)$_2$. Attempts to synthesise DABCO-BH(C$_6$F$_5$)$_2$ from [1-H][H-DABCO] in toluene-d$_8$ at 110 °C did not yield the side product. Ménard et al. recently showed a similar rearrangement was caused by an excess of the FLP system; Al(C$_6$F$_5$)$_3$/PtBu$_3$, present in the reaction.38 Therefore, to determine if this is the route taken by (C$_6$F$_5$)$_2$BH.DABCO, one equivalent of 1 and DABCO were placed in a J-Young NMR tube containing [1-H][H-DABCO] in toluene-d$_8$. The system was held at
110 °C for 16 h and analysis using 11B NMR spectroscopy showed only the presence of [1-H][H-DABCO], 1 and DABCO. This suggests that the borohydride salt is not an intermediate in this reaction and thus elimination of the C$_6$Cl$_3$H group occurs quite soon after splitting H$_2$.

3.4.2 H$_2$ Activation using [1][TMP]

The [1][TMP] FLP system was placed under H$_2$ and heated between 65 – 110 °C equally spaced increments for 10 h at each temperature. It has been established that the borohydride can be observed using 1H, 11B{1H} and 19F NMR spectroscopy. However, as the resonance in the 1H NMR spectrum is broad and weak and it is not possible to determine the ratio of the FLP to the borohydride in the 11B{1H} NMR spectrum; the formation of the borohydride, [1-H][H-TMP], was monitored using 19F NMR spectroscopy (Figure 3.7).

To determine if the reaction was First Order or Second Order, ln[1] and 1/[1] were plotted against time (Figures 3.8 and 3.9, respectively).
Figure 3.7 The 19F NMR spectra of the (a) [1][TMP] and the formation of (b) [1-H][H-TMP] at 110 °C in toluene-d_8.

Figure 3.8 Plot of ln[1] vs t to determine if the [1][TMP] reaction with H$_2$ is First Order ([1] = concentration of 1 in M and t = time in hours).
Figure 3.9 Plot of $1/[1]$ vs t to determine if the $[1][\text{TMP}]$ reaction with H_2 is Second Order ($[1]$ = concentration of 1 in M and t = time in hours).

Figure 3.7 shows a stack plot of ^{19}F NMR spectra, which illustrates the formation of the borohydride species; $[1-\text{H}][\text{H-TMP}]$. This demonstrates that as time increases the yield of the product increases. To determine the order of the reaction $\ln[1]$ (concentration of 1) was plotted against time (hours), to give Figure 3.8, which illustrates that the splitting of H_2 using $[1][\text{TMP}]$ is not a First Order reaction as the plots are not linear. Whereas, Figure 3.9 ($1/[1]$ vs t) shows linear plots thus indicating that the reaction is Second Order. The plots show that the reaction steadily proceeds and that the rate of borohydride formation increases with increasing temperature, with the greatest yield found after heating at $110 \, ^\circ\text{C}$ for 7 h. These findings corroborate the hypothesis that increasing the bulk of the Lewis acid requires more energy to activate H_2 (with a high yield) than previously seen with TMP and the less bulky $\text{B(C}_6\text{F}_5)_3$.21

Therefore, even though 1 is a stronger Lewis acid then $\text{B(C}_6\text{F}_5)_3$,27 the FLP system is
less reactive, which shows the steric bulk of the Lewis acid (and base) contributes greatly to reactivity of the FLP system.

The rate constant, k, was determined from the gradient of each plot in Figure 3.9 and then $\ln(k/T)$ was plotted against $1/T$, where T is the temperature in K.

However, even though the data in Figure 3.10 looked promising it was unreliable as the initial plots in Figure 3.9 were not completely linear and the integrals taken from the 19F NMR spectra also have a degree of error. Therefore it was not possible to reliably calculate the activation energy of the TMP system.

Figure 3.10 $\ln(k/T)$ vs $1/T$, where k is the rate constant and T is temperature (K) of the splitting of H_2 using [1][TMP].

Upon splitting H_2 it was observed that the colour of the solution changes from colourless to pale pink (Figure 3.11).
3.4.3 H₂ Activation using [1][Lut]

As mentioned before, the FLP systems containing Lut are unlike the others because they alone are all able to activate H₂ reversibly. This was first observed when the activation of H₂, using the [1][Lut] system, was monitored with 19F and 11B(1H) NMR spectroscopy. As with the previous experiments, these were also carried out in toluene-d_8 and the reactions were monitored between 40 – 110 °C. As with the previous systems 1/[1] was plotted against time (Figure 3.12).
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

Figure 3.12 Plot of $1/\left[1\right]$ vs t to determine if the $[1][\text{Lut}]$ reaction with H_2 is Second Order ($[1] = \text{concentration of } 1 \text{ in M and } t = \text{time in hours}$).

It was observed that when the system was heated between 40 – 75 °C the yield of the $[1-H][\text{H-Lut}]$ increased with increasing temperature, however, none of the plots appeared to be linear thus confirming that the order of the reaction could not be determined for this system. Once the system was heated above 75 °C the yield of the borohydride salt decreased (Figure 3.12). It was hypothesised, that as with some FLP systems, this system might be able to reversibly split H_2. To confirm this theory, release experiments were conducted by heating 30 mg of $[1-H][\text{H-Lut}]$ in toluene-d_8 at 85, 95 and 110 °C over 5 h and were monitored using $^{19}\text{F NMR spectroscopy (Figure 3.13).}$
Figure 3.13 The 19F NMR spectra of the production of [1][Lut] (a) and the loss of [1-H][H-Lut] (b) at 110 °C in toluene-d_8.

As Figure 3.13 shows, the borohydride resonances in the 19F NMR spectra decrease over 10 h when heated at 110 °C, whilst the parent FLP increases in intensity. It was also observed that upon releasing H$_2$, the colourless solution develops a vibrant pink colour (Figure 3.14).

Figure 3.14 Release of H$_2$ from [1-H][H-Lut] (left) to give [1][Lut] (right).
The presence of H₂ was confirmed in the 1H NMR spectrum with a resonance at 4.5 ppm, which is consistent with the literature. The results of the H₂ release experiments were plotted against time and are shown in Figure 3.15.

![Figure 3.15 Plot of the concentration of [1-H][H-Lut] (in M) against t (in hours).](image)

As displayed in Figure 3.15 the concentration of [1-H][H-Lut] initially decreases when heated above 75 °C for 5 h. After 30 minutes at 110 °C the concentration of the borohydride salt begins to increase which indicates that reaction has reached equilibrium. Thus this reaction does not go to completion, unlike [(C₆F₅)₃B-H][H-Lut] where complete loss of H₂ is seen when heated at 100 °C.

The results from these NMR experiments show that attempts to experimentally determine the activation energy for the splitting of H₂ using these FLP systems was far more difficult than originally imagined and therefore could not be reliably determined.
3.5 Side Reactions Observed using the DABCO FLP Systems

As mentioned previously (Table 3.1) the DABCO FLP systems show unique and interesting reactivity. Unlike the other FLP systems, these systems show the formation of a side product. However, the side product is not observed when the [3][DABCO] system is used to activate H₂. The data was consistent with a four-coordinate boron side product that was first observed in the NMR scale reactions using ¹¹B{¹H} NMR spectroscopy (Figure 3.6). Each borohydride salt shows a distinctive resonance in the ¹¹B{¹H} NMR spectrum ([H-B(C₆F₅)₃]⁻ −25 ppm; [1-H]⁻ −18 ppm; [2-H]⁻ −14 ppm; [3-H]⁻ −8 ppm), regardless of the base used. However, when some of the reactions are either heated above a certain temperature or in the case of B(C₆F₅)₃, the concentration was tripled (from 30 mg to 90 mg in 0.7 ml of toluene-d₈) the side product was seen (Table 3.3).

Table 3.3 Summary of the side products observed using the DABCO systems.

<table>
<thead>
<tr>
<th>FLP System</th>
<th>Side Product</th>
<th>Conditions</th>
<th>¹¹B{¹H} NMR Resonance (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[B(C₆F₅)₃][DABCO]</td>
<td>DABCO-BH(C₆F₅)₂</td>
<td>T > 65 °C 90 mg in 0.7 ml</td>
<td>−8</td>
</tr>
<tr>
<td>[1][DABCO]</td>
<td>DABCO-BH(C₆F₅)₂</td>
<td>T > 75 °C</td>
<td>−8</td>
</tr>
<tr>
<td>[2][DABCO]</td>
<td>DABCO-BH(C₆F₅)(C₆Cl₃)</td>
<td>T > 25 °C</td>
<td>−3</td>
</tr>
<tr>
<td>[3][DABCO]</td>
<td>-</td>
<td>T > 75 °C</td>
<td>-</td>
</tr>
</tbody>
</table>

The resonances in the ¹¹B{¹H} NMR spectrum for the side products were analogous to those of TMP-BH(C₆F₅)₂ and Lut-BH(C₆F₅)₂, with resonances at −11.82 ppm and −7.4 ppm, respectively, indicating that a perfluoroaryl group had been eliminated to produce the four-coordinate boron species. Examination of the NMR spectra for each of the side products reveals that both the products from
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

$[\text{B(C}_6\text{F}_5)_3]\text{[DABCO]}$ and $[1]\text{[DABCO]}$ exhibit similar resonances in the $^{11}\text{B}\{^1\text{H}\}$ and
^{19}F NMR spectra. Whereas, the product from $[2]\text{[DABCO]}$ showed a resonance at
$−3\text{ ppm}$, indicating that due to the downfield shift (5 ppm), the boron centre is more
Lewis acidic as mentioned previously in Table 3.2. Therefore, it can be concluded, with
some certainty, that the side product of $[2]\text{[DABCO]}$ is $\text{DABCO-BH(C}_6\text{F}_5)(\text{C}_6\text{Cl}_3)$ via
the elimination of $\text{C}_6\text{Cl}_3\text{H}$. This is confirmed by the ^1H NMR spectrum, which showed a
resonance at 7.78 ppm, indicative of $\text{C}_6\text{Cl}_3\text{H}$, confirmed by the $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum
showing a resonance at 128.9 ppm (in CD$_3\text{CN}$). The $\text{C}_6\text{Cl}_3\text{H}$ resonance is also
observed in the ^1H NMR spectrum of the side product from $[1]\text{[DABCO]}$, confirming
initial suspicions that $\text{DABCO-BH(C}_6\text{F}_5)_2$ was produced. Similarly, upon elimination of
$\text{C}_6\text{F}_5\text{H}$ from the $[\text{B(C}_6\text{F}_5)_3]\text{[DABCO]}$ reaction, a multiplet is observed at 5.84 ppm in
the ^1H NMR spectrum, which is consistent with the formation of $\text{C}_6\text{F}_5\text{H}$ (5.8 ppm
according to the literature). Attempts to synthesise these side products from the
appropriate borohydride salt at $110\,^\circ\text{C}$ in toluene-d_8 did not yield the side product. This
suggests that either the borohydride salt is not the intermediate species for the
production of the side products or the atmosphere of H_2 plays a crucial role in
producing the side product. The structure of these side products were confirmed using
single X-ray crystallography.
3.5.1 Single X-ray Crystal Structures of the DABCO Side Products

The structure of the side products were first confirmed when the crystal structure of DABCO-BH(C₆F₅)(C₆Cl₅) (Figure 3.16) was collected (from the [2][DABCO] reaction). X-ray quality single crystals of DABCO-BH(C₆F₅)(C₆Cl₅) were grown from a saturated solution of toluene layered with pentane at 22 °C.

The X-ray structure shows the DABCO is directly bonded to the B atom, after eliminating a C₆Cl₅H molecule. Unfortunately, the single X-ray crystal structures of TMP-BH(C₆F₅)₂ and Lut-BH(C₆F₅)₂ have not been published and due to the limited use of DABCO there are no published examples of which containing the DABCO group. Therefore the closest related structure to DABCO-BH(C₆F₅)₂ and DABCO-BH(C₆F₅)(C₆Cl₅) is iPr₂NH.BH(C₆F₅)₂. A summary of the selected bond lengths and bond angles for the structures are displayed in Tables 3.4 and 3.5.

The single crystals of DABCO-BH(C₆F₅)₂ suitable for X-ray diffraction were grown from slow cooling a toluene-d₈ reaction mixture and analysed using single X-ray diffraction (Figure 3.17).
Figure 3.16 X-ray crystal structure of DABCO-BH(C₆F₅)(C₆Cl₅). Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue). H atoms on the DABCO have been omitted for clarity.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

Figure 3.17 X-ray crystal structure of DABCO-BH(C$_6$F$_5$)$_2$. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue). H atoms on the DABCO have been omitted for clarity. The minor component of the model of the disorder in the C$_6$F$_5$ ring (F1-F5) has been omitted for clarity.
Table 3.4 Selected bond lengths for DABCO-BH(C₆F₅)₂, DABCO-BH(C₆F₅)(C₆Cl₅) and iPr₂NH.BH(C₆F₅)₂.⁴¹

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Bond Lengths/Å</th>
<th>DABCO-BH(C₆F₅)₂</th>
<th>DABCO-BH(C₆F₅)(C₆Cl₅)</th>
<th>iPr₂NH.BH(C₆F₅)₂</th>
<th>iPr₂NH.BH(C₆F₅)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>H11</td>
<td>1.08(2)</td>
<td>1.13</td>
<td>1.12(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>C1</td>
<td>1.618(10)</td>
<td>1.642(2)</td>
<td>1.640(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>C7</td>
<td>1.55(2)</td>
<td>1.640(2)</td>
<td>1.632(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>N30</td>
<td>1.649(18)</td>
<td>1.636(2)</td>
<td>1.628(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5 Selected bond angles for DABCO-BH(C₆F₅)₂, DABCO-BH(C₆F₅)(C₆Cl₅) and iPr₂NH.BH(C₆F₅)₂.⁴¹

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Bond Angles/°</th>
<th>DABCO-BH(C₆F₅)₂</th>
<th>DABCO-BH(C₆F₅)(C₆Cl₅)</th>
<th>iPr₂NH.BH(C₆F₅)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(7)</td>
<td>106.8(12)</td>
<td>112.89(12)</td>
<td>107.74 (19)</td>
<td></td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>N(30)</td>
<td>114.1(10)</td>
<td>111.29(11)</td>
<td>111.46(18)</td>
<td></td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>N(30)</td>
<td>115.7(12)</td>
<td>117.75(12)</td>
<td>117.91(18)</td>
<td></td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>97.7(15)</td>
<td>109.2</td>
<td>1.628(3)</td>
<td></td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>118.3(18)</td>
<td>104.5</td>
<td>106.8(11)</td>
<td></td>
</tr>
<tr>
<td>N(30)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>103.5(16)</td>
<td>99.8</td>
<td>107.10(11)</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of the bond lengths in Table 3.4 shows that DABCO-BH(C₆F₅)₂ has shorter B-H and B-C bonds when compared to iPr₂NH.BH(C₆F₅)₂. Due to the presence of different bases, the B-N bond for DABCO-BH(C₆F₅)₂ is longer than iPr₂NH.BH(C₆F₅)₂. The N-C bond lengths in both DABCO-BH(C₆F₅)₂ and DABCO-BH(C₆F₅)(C₆Cl₅) are longer than that reported for free DABCO (1.440(7) Å).⁴² Due to the H atom being geometrically placed in DABCO-BH(C₆F₅)(C₆Cl₅) it is not possible to compare the B-H bond length and angles. The B-C bond lengths in DABCO-BH(C₆F₅)(C₆Cl₅) are longer than those in DABCO-BH(C₆F₅)₂ which would be caused by the increased steric bulk provided by the C₆Cl₅ group.

Table 3.5 displays selected bond angles for DABCO-BH(C₆F₅)₂, DABCO-BH(C₆F₅)(C₆Cl₅) and iPr₂NH.BH(C₆F₅)₂. Examination of these bond angles
shows the borohydride have a pseudo-tetrahedral geometry around the boron centre. As mentioned before, the [3][DABCO] system does not undergo a side reaction. This is likely due to the steric hindrance on 3, which does not allow the DABCO to coordinate to the B atom.

3.6 Structural Characterisation of the Borohydride Salts

3.6.1 Structural Characterisation of the [B-H][H-DABCO] systems

Crystals of [(C₆F₅)₃B-H][H-DABCO] suitable for single crystal X-ray structure determination were grown from a saturated reaction mixture in C₆D₆ (Figure 3.18).

Crystals of [1-H][DABCO-H-DABCO] suitable for single crystal X-ray structure determination were grown from the slow diffusion on H₂ into a saturated solution of [1][DABCO] in toluene-d₈ at 22 °C (Figure 3.19).
Figure 3.18 X-ray crystal structures of [(C₆F₅)₃B-H][H-DABCO]. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue). H atoms on the DABCO molecules (except those bound to N atoms) have been omitted for clarity.
Figure 3.19 X-ray crystal structures of [1-H][DABCO-H-DABCO]. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue). Disorder and H atoms on the DABCO molecules (except those bound to N atoms) have been omitted for clarity.
Crystals of [3-H][DABCO-H-DABCO] suitable for single crystal X-ray structure determination were grown from a saturated solution of THF layered with pentane (Figure 3.20).

Figure 3.20 X-ray crystal structure of [3-H][DABCO-H-DABCO]. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue). Disorder and H atoms on the DABCO molecules (except those bound to N atoms) have been omitted for clarity.
Figure 3.18 displays that upon splitting H\textsubscript{2} using [B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}][DABCO], the B-H and N-H groups orientate in a manner so that they are pointing to one another, showing a possible hydrogen bond remaining between the two H atoms. Whereas, in the cases of both [1-H][DABCO-H-DABCO] and [3-H][DABCO-H-DABCO] (Figures 3.19 and 3.20, respectively), the structures seem to be stabilised by advantageous DABCO which coordinates to the [H-DABCO]+ group. It is also observed in these cases the B-H group does not coordinate to the DABCO groups.

A summary of the bond lengths and angles for [(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}B-H][H-DABCO], [1-H][DABCO-H-DABCO] and [3-H][DABCO-H-DABCO] are displayed in Tables 3.6 and 3.7, respectively.

Table 3.6 Selected bond lengths for [(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}B-H][H-DABCO], [1-H][H-DABCO] and [3-H][H-DABCO].

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Bond Lengths/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}B-H][H-DABCO]</td>
</tr>
<tr>
<td>B(1)</td>
<td>H(11)</td>
<td>1.238(13)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(1)</td>
<td>1.637(2)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(7)</td>
<td>1.640(2)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(13)</td>
<td>1.639(2)</td>
</tr>
<tr>
<td>N(30)</td>
<td>C(40)</td>
<td>1.497(2)</td>
</tr>
<tr>
<td>N(30)</td>
<td>C(42)</td>
<td>1.499(2)</td>
</tr>
<tr>
<td>N(30)</td>
<td>C(44)</td>
<td>1.498(2)</td>
</tr>
<tr>
<td>N(30)</td>
<td>H(301)</td>
<td>0.88(2)</td>
</tr>
<tr>
<td>H(11)</td>
<td>H(301)</td>
<td>1.797(2)</td>
</tr>
</tbody>
</table>

As Table 3.6 shows, the B-C bond lengths do not differ greatly, however they are longer than the parent Lewis acid, which is simply due to the three-coordinate boron centre becoming a four-coordinate species. The most notable difference in the bond lengths is that of the B-H. However, due to the disorder observed in the
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

[1-H][DABCO-H-DABCO] and [3-H][DABCO-H-DABCO] crystal structures it is not possible to discuss the B-H bond length.

Table 3.7 Selected bond angles for [(C₆F₅)₃B-H][H-DABCO], [1-H][H-DABCO] and [3-H][H-DABCO].

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Bond Angles/°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[(C₆F₅)₃B-H] [H-DABCO]</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(7)</td>
<td>111.95(12)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>115.61(11)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>110.26(12)</td>
</tr>
<tr>
<td>C(40)</td>
<td>N(30)</td>
<td>C(44)</td>
<td>109.48(12)</td>
</tr>
<tr>
<td>C(42)</td>
<td>N(30)</td>
<td>C(44)</td>
<td>109.39(13)</td>
</tr>
<tr>
<td>C(40)</td>
<td>N(30)</td>
<td>C(42)</td>
<td>110.74(14)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>101.3(6)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>107.2(6)</td>
</tr>
<tr>
<td>C(13)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>109.8(6)</td>
</tr>
</tbody>
</table>

When comparing the bond angles of [(C₆F₅)₃B-H][H-DABCO], [1-H][DABCO-H-DABCO] and [3-H][DABCO-H-DABCO], as shown in Table 3.7, it is observed that the bond angles around the boron centre (C-B-C) of [3-H][DABCO-H-DABCO] are noticeably larger than those on [(C₆F₅)₃B-H][H-DABCO] and [1-H][DABCO-H-DABCO]. This is most likely due to the presence of the larger C₆Cl₅ groups (when compared to C₆F₅) and thus greater steric repulsion is observed.

All three X-ray structures display a four-coordinate boron atom centre that adopts a pseudo-tetrahedral coordination geometry as seen from the C-B-H and C-B-C angle ranges illustrated in Table 3.7.
3.6.2 Structural Characterisation of the [B-H][H-TMP] Systems

Crystals of [1-H][H-TMP] and [2-H][H-TMP] suitable for single crystal X-ray structure determination were both grown from a saturated solution of toluene layered with pentane (Figure 3.21 and 3.22, respectively).

Table 3.8 and 3.9 show some selected bond lengths and angles of [1-H][H-TMP], [2-H][H-TMP] and [(C₆F₅)₃B-H][H-TMP], as comparison.
Figure 3.21 Crystal structure of [1-H][H-TMP]. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atom blue). H atoms on the TMP molecules (except those bound to N atom) have been omitted for clarity.
Figure 3.22 Crystal structure obtained from crystallising [2-H][H-TMP]. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue). H atoms on the TMP molecules (except those bound to N atoms) have been omitted for clarity.

Figure 3.22 shows the crystal structure obtained from a sample of [2-H][H-TMP] is not the ‘traditional’ borohydride salt when compared to those that have been published, for example [(C₆F₅)₃B-H][H-TMP]₁₄,₂₃,₄₃ and the previous example of [I-H][H-TMP]. The crystal structure of [2-H][H-TMP] shows that upon the splitting of H₂, Cl⁻ ions are formed and the [H-TMP]⁺ coordinates to the Cl⁻ ions, indicating either decomposition of the Lewis acid occurs when splitting H₂ or there is another source of Cl⁻ present in the reaction.
Table 3.8 Selected bond lengths for [(C₆F₅)₃B-H][H-TMP],[21] [1-H][H-TMP] and [2-H][H-TMP]. Computed values for [1-H][H-TMP] (BP86/Def2-TZVP) are shown in italics.

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Bond Lengths/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[(C₆F₅)₃B-H] [H-TMP][21]</td>
</tr>
<tr>
<td>B(1)</td>
<td>H(11)</td>
<td>1.18(2)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(1)</td>
<td>1.6413(3)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(7)</td>
<td>1.632(3)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(13)</td>
<td>1.639(3)</td>
</tr>
<tr>
<td>N(30)</td>
<td>H(301)</td>
<td>0.90(2)</td>
</tr>
<tr>
<td>N(30)</td>
<td>H(302)</td>
<td>0.92(2)</td>
</tr>
</tbody>
</table>

Table 3.9 Selected bond angles for [(C₆F₅)₃B-H][H-TMP],[21] [1-H][H-TMP] and [2-H][H-TMP].

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Bond Angles/°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>[(C₆F₅)₃B-H][H-TMP][21]</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(7)</td>
<td>115.10(18)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>111.71(17)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>107.57(17)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>106.4(10)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>108.2(10)</td>
</tr>
<tr>
<td>C(13)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>107.6(10)</td>
</tr>
</tbody>
</table>

Both X-ray structures display a four-coordinate boron atom which adopts a pseudo-tetrahedral coordination geometry as seen from the C-B-H and C-B-C angle ranges as illustrated in Figures 3.21 and 3.22 and Table 3.9. These observations are consistent with the ¹⁹F and ¹¹B {¹H} NMR spectra of [1-H][H-TMP] and [2-H][H-TMP] discussed earlier. Comparison of the B-C bond lengths in Table 3.8, shows that upon substituting a C₆F₅ moiety with a C₆Cl₅ moiety, the bond lengths increase. This is expected as there
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

is an increase in steric hindrance conferred by the Cl groups at the ortho-C atoms. The C-F and C-Cl bond lengths for all three structures are comparable, with average distances of 1.3 Å and 1.7 Å, respectively.

$[\text{1-H}][\text{H-TMP}]$ and $[\text{2-H}][\text{H-TMP}]$ are analogous to $[(\text{C}_6\text{F}_5)_3\text{B-H}][\text{H-TMP}]$. The structure of $[\text{1-H}][\text{H-TMP}]$ shows the H atoms pointing towards each other, suggesting that a H···H bond remains as also seen with $[(\text{C}_6\text{F}_5)_3\text{B-H}][\text{H-DABCO}]$ (section 3.6.1). Whereas the rearrangement of $[\text{2-H}][\text{H-TMP}]$, due to the stabilising presence of Cl$^-$, impedes the H atoms from being positioned across from another. This precludes comparison of the distances between the two hydrogen atoms of interest. $[\text{1-H}][\text{H-TMP}]$ exhibits a hydrogen bond distance (N-H···H) of 1.85 Å as demonstrated in Figures 3.16 and 3.17. Sumerin et al reports the distance between the two similar hydrogen atoms in $[(\text{C}_6\text{F}_5)_3\text{B-H}][\text{H-TMP}]$ (B-H···H-N) as 2.97 Å. This value is significantly longer than that measured for $[\text{1-H}][\text{H-TMP}]$ suggesting that $[(\text{C}_6\text{F}_5)_3\text{B-H}][\text{H-TMP}]$ undergoes rearrangement after splitting H_2.

Recently, Schulz et al., showed that by using Neutron diffraction, NMR spectroscopy and IR spectroscopy, that the distance between the split H_2 molecule was determined to be 1.67 Å using an ansa-aminoborane; 1-N-TMPH-CH$_2$-2-[HB(\text{C}_6\text{F}_5)\text{$_2$}]\text{C}_6\text{H}_4$. This result was very encouraging as it confirms the insertion of H_2 within the intramolecular FLP and that a hydrogen bond between the split H_2 molecule was still present. Promoted by this, and the crystal structures obtained of the borohydride salts showing the H atoms pointing towards each other, suggesting that a H···H interaction remains, the mechanism of H_2 activation using an intermolecular FLP was investigated by growing single crystals of $[\text{1-H}][\text{H-TMP}]$ suitable for neutron diffraction.
3.7 Mechanism of H₂ Activation

The exact mechanism by which intermolecular FLPs activate H₂ is still under investigation. The mechanistic and structural details of these FLP systems are highly important in helping to improve future systems. The theory that H-H bond cleavage is mediated by a linear [LA]-H···H-[LB] transition state has recently been discredited because the theory did not allow for the interaction between large substituents. Erker proposed a bimolecular process, demonstrated for the FLP system compiled of 1Bu₃P and B(C₆F₅)₃, whereby the reaction is thought to be asymmetric-concerted with the LA-H bond forming a little earlier than that of H-LB. This suggests that FLPs activate H₂ via polarisation due to the electric field created by their donor/acceptor atoms (Figure 3.23).

![Figure 3.23 Postulated electric field polarisation of the H₂ molecule involving FLPs.](image)

Schulz et al. demonstrated using single crystal Neutron diffraction and IR and NMR spectroscopy that a weak hydrogen bond interaction (1.67 Å) was present after H₂ was split using an intramolecular FLP system. These findings have helped improve the understanding of the mechanism of H₂ splitting using intramolecular FLPs. However, as their FLP system contains a bridge that forces the Lewis acidic and basic centres together, it can be argued that this H···H distance is not a true representative of the transition state. Therefore, H₂ activation using intermolecular FLP systems (e.g. B(C₆F₅)₃/TMP) are still under investigation, as upon crystallisation there is a greater possibility for the rearrangement of the salt.
3.7.1 Single Crystal Neutron Diffraction of [1-H][H-TMP]

The X-ray crystal structure of [1-H][H-TMP] has been determined (section 3.6.2) and shows that after splitting H₂ the orientation of the salt displays a possible hydrogen bond (B-H···H-N). However, as X-ray diffraction only allows one to see electron density and due to the low electron density on a H atom, it is not possible for the precise positions and distances of the H atoms to be determined. Therefore, to accurately determine the geometry of B-H···H-N, a neutron diffraction measurement was conducted using a single crystal grown from a saturated toluene solution layered with pentane (Figure 3.24).

![Figure 3.24](image-url) Single crystals of [1-H][H-TMP] in the neutron diffraction sample holder (left) and single crystals used for X-ray diffraction (right).

A difference map displaying the H atoms located using from the neutron diffraction experiment is shown in Figure 3.25.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

Figure 3.25 Difference map of the [1-H][H-TMP] Neutron structure.

The difference map in Figure 3.25 shows that unlike X-ray diffraction, where the diffracted X-ray intensity is bigger for atoms with a large atomic number, neutrons directly interact with the nucleus of the atom so that atoms with a low atomic number e.g. hydrogen, can strongly contribute to the diffraction intensity even in the presence of atoms with a large atomic number. Figure 3.26 shows the neutron diffraction structure of [1-H][H-TMP].

118
Figure 3.26 Neutron structure of [1-H][H-TMP] at 100 K. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atom blue). H atoms on the TMP molecules (except those bound to N atom) have been omitted for clarity.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with \(H_2 \)

The neutron structure (Figure 3.26) agrees well with the X-ray structure (Figure 3.21) displaying a four-coordinate boron atom which adopts a pseudo-tetrahedral coordination geometry as seen from the C-B-H and C-B-C angle ranges. Table 3.10 and 3.11 show selected bond lengths and bond angles from DFT and the X-ray and neutron diffraction studies carried out on [1-H][H-TMP]. The C-F and C-Cl bond lengths for both structures are comparable, with average distances of 1.3 Å and 1.7 Å, respectively.

Table 3.10 Selected bond lengths for [1-H][H-TMP] from DFT, X-ray diffraction and neutron diffraction experiments.

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>DFT</th>
<th>X-ray Diffraction</th>
<th>Neutron Diffraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>H(302)</td>
<td>1.766</td>
<td>1.85</td>
<td>1.8047(12)</td>
</tr>
<tr>
<td>B(1)</td>
<td>H(11)</td>
<td>1.230</td>
<td>1.35</td>
<td>1.203(9)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(1)</td>
<td>1.641</td>
<td>1.6402(17)</td>
<td>1.636(5)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(7)</td>
<td>1.633</td>
<td>1.6319(17)</td>
<td>1.632(5)</td>
</tr>
<tr>
<td>B(1)</td>
<td>C(13)</td>
<td>1.639</td>
<td>1.6486(18)</td>
<td>1.644(6)</td>
</tr>
<tr>
<td>N(30)</td>
<td>H(301)</td>
<td>1.030</td>
<td>0.88</td>
<td>1.030(8)</td>
</tr>
<tr>
<td>N(30)</td>
<td>H(302)</td>
<td>1.043</td>
<td>0.89</td>
<td>1.038(9)</td>
</tr>
</tbody>
</table>

Table 3.11 Selected bond angles for [1-H][H-TMP] from DFT, X-ray diffraction and neutron diffraction experiments.

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>DFT</th>
<th>X-ray Diffraction</th>
<th>Neutron Diffraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(7)</td>
<td>114.51</td>
<td>114.66(10)</td>
<td>115.0(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>109.67</td>
<td>106.44(9)</td>
<td>106.8(3)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>117.10</td>
<td>116.41(10)</td>
<td>116.0(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>106.25</td>
<td>108.7</td>
<td>108.9(5)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>104.80</td>
<td>105.3</td>
<td>105.4(6)</td>
</tr>
<tr>
<td>C(13)</td>
<td>B(1)</td>
<td>H(11)</td>
<td>103.14</td>
<td>104.7</td>
<td>104.1(7)</td>
</tr>
</tbody>
</table>

Using neutron diffraction the distances between the split \(H_2 \) atoms could be accurately be determined as 1.8047(12) Å. This distance is slightly longer than that predicted by DFT and shorter than the calculated distance using X-ray diffraction.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

(Table 3.10). The results from the neutron diffraction study also shows that the B-H bond length was overestimated with X-ray diffraction but is in good agreement with the DFT study. In the case of the N-H bond length, the neutron diffraction experiment shows that bond length is slightly longer than calculated using X-ray diffraction but just like the B-H bond length, is very similar to the result from the DFT study.

The B-H and N-H bond lengths (1.24 and 1.03 Å, respectively) for 1-N-TMPH-CH$_2$-2-[HB(C$_6$F$_5$)$_2$]C$_6$H$_4$ measured by Schulz et al. are comparable to those determined for [1-H][H-TMP] (1.20 and 1.03 Å). However, the distances between the H atoms for 1-N-TMPH-CH$_2$-2-[HB(C$_6$F$_5$)$_2$]C$_6$H$_4$ are significantly shorter than that determined for [1-H][H-TMP] (1.67 Å and 1.80 Å, respectively).45 One main reason for this could be that the bridge between the borane and N-base on 1-N-TMPH-CH$_2$-2-[HB(C$_6$F$_5$)$_2$]C$_6$H$_4$ only allows limited space for the H atoms to exist, with a B-N distance of 3.35 Å compared to [1-H][H-TMP] which has a B-N distance of 3.8228(5) Å. Therefore the FLP field for an intermolecular species is larger than that for an intramolecular FLP. The H to H distance measured for [1-H][H-TMP] is considerably shorter than that previously measured for [(C$_6$F$_5$)$_3$B-H][H-TMP] which displayed an elongated N-H···H-B distance of 2.97 Å.44 According to Steiner a “moderate” or “normal” hydrogen bond has a distance of 1.5 – 2.2 Å.47 Therefore the B-H···H-N measured for [1-H][H-TMP] is within the accepted range for a hydrogen bond and is the first B-H···H-N distance measured for an intermolecular borohydride salt.
3.7.2 Electronic Structure Analysis of [1-H][H-TMP]

In collaboration with Dr. Tobias Krämer, the electronic structure of [1-H][H-TMP] was explored. The structure has been optimised using density functional theory (DFT) (BP86/Def2-TZVP). The bond lengths and angles at the minimum energy structure (shown in Tables 3.10 and 3.11) are all fully consistent with the experimental data, displaying a four-coordinate pseudo-tetrahedral boron centre. The B-H···H-N intermolecular distance was determined to be 1.766 Å.

Analysis of the infra-red stretching modes show that the B-H frequency is at 2307 cm\(^{-1}\) and the N-H frequency is found at 3144 cm\(^{-1}\) (shown in parentheses in Table 3.12) This is in agreement with the solid state measurement of the IR spectrum of [1-H][H-TMP] (see section 3.8).

3.7.3 NMR Studies of [1-H][H-TMP]

To compare every variable discussed by Schulz et al. attempts were made to determine the H(11) to H(302) distance using T1 relaxation measurements and 1D NOE experiments as a collaboration with Dr. Nick Rees.

After trying the most common NMR solvents, it was found that the B-H and N-H resonances resolved best in CD\(_3\)CN. Unfortunately, the freezing point for CD\(_3\)CN is \(\sim\)40 °C, which limited the experiment to temperatures greater than \(\sim\)40 °C.

The \(^1\)H NMR spectrum of [1-H][H-TMP] in CD\(_3\)CN with well resolved N-H (6.22 ppm) and B-H (3.96 ppm) resonances is displayed in Figure 3.27.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H_2

Figure 3.27 1H NMR spectrum of [1-H][H-TMP] showing N-H a, B-H b, TMP c and d, in CD$_3$CN (*).

Schulz et al. conducted their 1D NOE experiments by pulsing two resonances (N-H and a methyl group) which have a known distance obtained from neutron diffraction and then extrapolating this information to give the B-H...H-N distance, which agreed with their previous measurements. Fortunately for them, their chosen resonances were well spaced and showed good resolution, which was aided by having a rigid structure. Regrettably the 1H NMR spectrum of [1-H][H-TMP] does not provide a fixed point to determine a calibration distance due to the fluxional TMP group.

Attempts were made to emulate the T1 experiments carried out by Schulz et al. unfortunately, just like with the 1D NOE experiment, the T1 experiment was found to be too complicated and difficult to resolve. Therefore, attempts to determine the H(11) to H(302) distance using NMR spectroscopy proved fruitless.
3.8 FT-IR SPECTROSCOPY

The FT-IR spectra of the borohydride salts were measured in the solid state to study the structure of the salts in attempt to further understand the hydrogen bonding in B-H--H-N. Recently Schulz et al. have successfully shown the use of FT-IR spectroscopy to support their findings from neutron diffraction. They demonstrated that the broadening of the vibration proves the existence of hydrogen bonding in the solid state, which additionally supports the findings of the neutron diffraction study.45,48 A summary of the frequencies observed for each of the borohydride salts are exhibited in Table 3.12.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Salt & \(v\ (B-H)\ (\text{cm}^{-1})\) & \(v\ (N-H)\ (\text{cm}^{-1})\) \\
\hline
\((\text{C}_6\text{F}_5)_3\text{B-H}[\text{H-DABCO}]\) & 2371 & 2972 \\
\hspace{1cm} [1-H][\text{H-TMP}] & 2262 & 2959 \\
& \hspace{1cm} (2307) & \hspace{1cm} (3144) \\
\hspace{1cm} [2-H][\text{H-TMP}] & 1959 & 2970 \\
\hspace{1cm} [3-H][\text{H-TMP}] & 2266 & 2959 \\
\hspace{1cm} [1-H][\text{H-DABCO}] & 2362 & 2972 \\
\hspace{1cm} [2-H][\text{H-DABCO}] & 2206 & 2945 \\
\hspace{1cm} [3-H][\text{H-DABCO}] & 2204 & 2943 \\
\hspace{1cm} [1-H][\text{H-Lut}] & 2345 & 2962 \\
\hspace{1cm} [2-H][\text{H-Lut}] & 2347 & 2978 \\
\hspace{1cm} [3-H][\text{H-Lut}] & 2258 & 2961 \\
\hline
\end{tabular}
\caption{Frequencies observed for the B-H and N-H \textit{infra-red} stretching modes in the solid state of the borohydride salts (cm-1).}
\end{table}

As Table 3.12 shows the B-H and N-H \textit{infra-red} stretching modes are in agreement with each other and the theoretical studies (section 3.7.2), as well as the literature.45 They display broad vibrational modes, which concurs with Schulz \textit{et al.} findings.
The stretching vibration of the hydrogen bond between B-H···H-N is assumed to be located between 600-100 cm\(^{-1}\), however, due to a large number of other stretches observed within this region, an exact assignment could not be made.

3.9 Conclusions

The synthesis of nine novel FLPs have been accomplished and have all shown to successfully split \(\text{H}_2 \) under various conditions as summarised in Scheme 3.2.

![Scheme 3.2 Summary of reactions.](image)

The FLP systems containing TMP exhibit the simplest reactions, by irreversibly splitting \(\text{H}_2 \) without any side reactions. Whereas the DABCO and Lut systems
demonstrate interesting reactivity, with the DABCO system showing the loss of a C₆X₅
(X = F or Cl) group and coordination of the DABCO to the B atom with H₂ activation,
once heated above 65 °C. Whereas the Lut FLP systems are all able to reversibly
activate H₂. Each borohydride salt has been fully characterised spectroscopically. Some
of the reactions were monitored using NMR spectroscopy in an attempt to experimen-
tally determine the activation of energy of splitting H₂ with these systems. The experiments gave a great insight into the ideal reaction conditions for each of the
systems.

Using five of the borohydride salts their structures were determined using single
crystal X-ray diffraction. The X-ray structures show that in some cases the H atoms
from the split H₂ molecules point to one another suggesting a hydrogen bond still exists
between the molecules. These could be the transition state of the reactions indicating
that upon polarising H₂, the molecule positions itself between the B and N atoms. To
determine the exact positions of the H atoms, single crystal neutron diffraction and DFT
experiments were carried out on [1-H][H-TMP]. Data from the single crystal neutron
diffraction and DFT experiments were consistent. It was determined from neutron
diffraction that the H(11) to H(302) distance was 1.8047(12) Å. This is much shorter
than what previously reported for [(C₆F₅)₃B-H][H-TMP] (2.97 Å)⁴⁴ and is the first B-
H···H-N distance to be measured for an intermolecular borohydride salt which is also
within the accepted range for a hydrogen bond.⁴⁷

This is a significant step towards the elucidation of the nature of the key transition
state in the splitting of H₂.
3.10 References

(14) Harhausen, M.; Fröhlich, R.; Kehr, G.; Erker, G. *Organometallics* **2012**.
Chapter Three: Synthesis and Reactions of Novel Frustrated Lewis Pairs with H\textsubscript{2}

(41) Jiang, C. B., Olivier; Berke, Heinz Organometallics 2009, 28, 5233-5239.
CHAPTER FOUR

Conversion of CO\textsubscript{2} to Methanol using the [B-H][H-N] Salts

4.1 Introduction

For the last 200 years, since the industrial revolution, the global concentration of atmospheric carbon dioxide has increased rapidly, thus contributing to global warming and climate change.1 This is a highly debated topic which has generated a considerable amount of attention internationally.2 Attempts are being made to reduce carbon dioxide emissions via various methods including capturing the non-polar CO\textsubscript{2} molecule3-5 with the use of high-surface-area macro- and microporous materials, for example, complex metal–organic frameworks (MOFs), organic materials (e.g. activated carbon materials), and inorganic materials (e.g. alumina, silicas, and zeolites).6-10 A more attractive result than capture and storage, would be converting CO\textsubscript{2} into useful chemicals which could be used both in energy generation and as chemical feedstocks. Not only would this sequester CO\textsubscript{2} from atmospheric release and help limit the effects of global warming, but it would also provide the planet with a renewable fuel. One idea that tackles both the capture of CO\textsubscript{2} and its utilisation as an alternative to fossil fuels is the methanol economy proposed by Olah.1,11-13 This approach allows for CO\textsubscript{2} to be “recycled” to a C1 fuel source, which in principle could result in a “carbon neutral” fuel, especially if “green” hydrogen, sourced from splitting water, is used.14

Homogeneous and heterogeneous processes have been studied, using transition metals, which employ CO\textsubscript{2} to produce CO as well as formic acid and its derivatives.15-17 However, these reactions are far from perfect as they exhibit poor selectivity and produce a mixture of products. Therefore further breakthroughs are required.
Recent studies have looked into exploiting the exciting reactivity of FLPs in the activation of small molecules to achieve the desirable reduction of CO\(_2\) to methanol.\(^{18-20}\)

Research by Tran \textit{et al.} showed that CO\(_2\) was able to insert into the B-H bond of \[(\text{C}_6\text{F}_5)_3\text{B}-\text{H}][\text{H-Lut}]\] at 22 °C.\(^{21}\) Ashley \textit{et al.} were able to take the reaction one step further using the B(\text{C}_6\text{F}_5)_3/TMP system and successfully reduce CO\(_2\) and isolate methanol; however, the reaction was low yielding.\(^{22}\) This method takes advantage of the equilibria that exist between the borane, borohydride, and formatoborate to activate the substrate and act as a hydride delivery source. It was found that major decomposition of the FLP system occurred which prevented any attempt for the system to be catalytic. A mechanism was proposed on the method of decomposition (Scheme 4.1).

Scheme 4.1 Proposed mechanism for the decomposition of the B(\text{C}_6\text{F}_5)_3/TMP system.\(^{22}\)

The decomposition products were identified using NMR spectroscopy.\(^{22}\) Due to the decay of the Lewis acid, it was concluded that if the Lewis acid could be hydrolytically stable then the system might become catalytic, thus finding an efficient method of reducing CO\(_2\).

In 2012, Sgro \textit{et al.} achieved the reduction of CO\(_2\) using a bis-borane-based FLP.\(^{23}\) They successfully synthesised methanol from CO\(_2\) with a yield of 57 % in 1 h. These
findings are extremely encouraging as this opens up alternative routes to finding a highly efficient method of catalytically reducing CO$_2$ to methanol.

4.2 Reducing CO$_2$ to Methanol

The main reason that the B(C$_6$F$_5$)$_3$/TMP system was unable to catalytically reduce CO$_2$ to methanol was due to the decomposition of the Lewis acid. Therefore, in attempt to make a more stable Lewis acid, three novel Lewis acids were synthesised (as described in Chapter Two). These were then used to synthesise nine new FLPs, as well as the B(C$_6$F$_5$)$_3$/DABCO adduct. All of these were able to successfully split H$_2$ (as described in Chapter Three), which is the first step in reducing CO$_2$ (Scheme 4.2).

![Scheme 4.2 Reduction of CO$_2$ using a borohydride salt.](image)

Reducing CO$_2$ using a borohydride species is a convenient route to synthesising methanol, as the reactions can easily be monitored using 1H, 11B(1H) and 13C(1H) NMR spectroscopy, especially when using 13CO$_2$. The formateborate and the methoxyborate can also be independently synthesised using formic acid and methanol, respectively (Scheme 4.3), providing a helpful guide to where these species would appear in the NMR spectra.
Scheme 4.3 Synthetic routes to the formatoborate and the methoxyborate species, where X = F or Cl and N is DABCO, TMP or Lut.

Using route B1 (Scheme 4.3) all of the FLPs containing B(C₆F₅)₃, 1 and 2, from Chapter Three, successfully reacted to give the formatoborate. Each of the salts were fully characterised using NMR spectroscopy and mass spectrometry. Synthesis of the methoxyborates via route B2 was only successful using FLPs B(C₆F₅)₃/DABCO, 1/TMP and 1/DABCO. FLPs containing 2 did not react with methanol to give the methoxyborates.

The borane 3 did react with [CO₂H][H-DABCO] to give the formatoborate, which was first established by ESI⁻ mass spectrometry followed by full characterisation. Unfortunately, 3 did not react with [¹³CO₂H][H-TMP], [¹³CO₂H][H-Lut] or methanol. Initial analysis of the isolated products using NMR spectroscopy showed confusing results as the integrals did not correspond to what was expected and some important resonances were missing. The measured mass spectra showed that the products contained only the ‘free borane’ and not the formatoborates or the methoxyborates.
This limited reactivity was an early indication that these systems were too bulky to form a B-O bond and thus is unlikely to reduce CO$_2$. However, to make certain that this is the case, all ten of the borohydride salts were reacted with CO$_2$.

4.3 Reduction of 13CO$_2$ using $\[(C_6F_5)_3B-H\][H-DABCO]\$

Upon addition of two equivalents of 13CO$_2$ to $\[(C_6F_5)_3B-H\][H-DABCO]$ in toluene-d_8 in a J-Young’s tap NMR tube, insertion of 13CO$_2$ was not observed at 22 °C. The reaction was heated overnight at 65 °C resulting in insertion of the 13CO$_2$ into the B-H bond to give the formatoborate species, as observed in the 1H, 11B{1H} and 13C{1H} NMR spectra (Table 4.1). Using 13C{1H} NMR spectroscopy, the relative distribution for B-O13CHO:13CO$_2$ was determined to be 3:7.

<table>
<thead>
<tr>
<th>Salt</th>
<th>1H</th>
<th>12C{1H}</th>
<th>11B{1H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[(C_6F_5)_3B-H][H-DABCO]$</td>
<td>3.60 (br. q)</td>
<td>-</td>
<td>−25.50</td>
</tr>
<tr>
<td>$[(C_6F_5)_3B-O^{13}$CHO$][H-DABCO]$</td>
<td>8.22 (d)</td>
<td>170.07</td>
<td>−2.57</td>
</tr>
<tr>
<td>$[(C_6F_5)_3B-O^{13}$CH$_3$][H-DABCO]</td>
<td>3.53 (br. d)</td>
<td>50.82</td>
<td>2.83</td>
</tr>
</tbody>
</table>

*aSolvent: toluene-d_8, BF$_3$OEt$_2$ reference (external).

With further heating at 65 °C for 48 h, the relative distribution changed to 1:1 for B-O13CHO:13CO$_2$, producing more of the formatoborate species. After 5 days, additional insertion of 13CO$_2$ was not observed and according to the 11B{1H} NMR spectrum, the borohydride had been completely utilised. Therefore, due to the lack of borohydride present in the system, the reaction was carried forward and H$_2$ was
admitted to the system to give a 13CO$_2$/H$_2$ atmosphere, in an attempt to reduce the formatoborate to the methoxyborate. Following heating at 65 °C for 48 h, and then at 95 °C for 24 h no reduction of the formatoborate was observed. Formation of the methoxyborate was finally seen in 13C{1H} NMR spectrum after heating the reaction at 100 °C for 48 h (Figure 4.1).

Figure 4.1 13C{1H} NMR spectra showing (1) the addition of ‘free’ 13CO$_2$, a to $[\text{(C}_6\text{F}_5)_3\text{B-H}[\text{H-DABCO}]]$; (2) 13CO$_2$ inserts into the B-H bond at 100 °C to produce the formatoborate species, b; (3) reduction of b with H$_2$ to give the methoxyborate, c, in toluene-d_8 (*).
Chapter Four: Conversion of CO₂ to Methanol using the [B-H][H-N] Salts

Figure 4.1 shows the resonances of 13CO₂ (120 ppm), B-O13CHO (170 ppm) and B-O13CH₃ (51 ppm) in the 13C{¹H} NMR spectra and how easily the reactions can be monitored. Unfortunately, with the production of the methoxyborate came the decomposition of the Lewis acid, producing (C₆F₅)$_₂$B-O13CH₃ and C₆F₅H as observed in the 1H, 13C{¹H} and 19F NMR spectra as shown in Figure 4.2, which is consistent with the literature.²⁴ This was an early but very strong indication that the reduction of 13CO₂ would not be catalytic with this FLP system.

![Figure 4.2](image)

Figure 4.2 (1) 1H, (2) 13C{¹H} and (3) 19F NMR spectra of the decomposition product, C₆F₅H in toluene-d_8.²⁴

The reaction was heated for one more week at 130 °C, until no change in the reaction was seen (by 13C NMR spectroscopy). The system underwent vacuum distillation at 130 °C, using Cp₂Fe as an internal reference, in an attempt to break the B-O bond and isolate any ‘free’ methanol present in the system. Analysis of the 1H, 13C{¹H} and 19F NMR spectra of the distillate showed only the presence of the 13CO₂, C₆F₅H, uncoordinated DABCO and Cp₂Fe as displayed in Figure 4.3.
Chapter Four: Conversion of CO$_2$ to Methanol using the [B-H][H-N] Salts

Figure 4.3 (1) 1H, (2) 13C(1H) and (3) 19F NMR spectra of the distillate from the reduction of 13CO$_2$ using [(C$_6$F$_5$)$_3$B-H][H-DABCO] reaction showing C$_6$F$_5$H, a Cp$_2$Fe, b and uncoordinated DABCO, c in toluene-d_8 (*).

Examination of the residue by NMR spectroscopy and mass spectrometry revealed the remaining B(C$_6$F$_5$)$_3$ complexes; [(C$_6$F$_5$)$_3$B-H]$^-$, [(C$_6$F$_5$)$_3$B-OCHO]$^-$ and [(C$_6$F$_5$)$_3$B-OMe]$^-$. The adduct B(C$_6$F$_5$)$_3$/DABCO behaved in a similar way to B(C$_6$F$_5$)$_3$/TMP, successfully reducing CO$_2$ to the methoxyborate species.22 However, unlike with B(C$_6$F$_5$)$_3$/TMP, methanol was not isolated from this FLP system.

136
4.4 Attempts to Reduce CO₂ to Methanol using [1-H][H-N]

As seen in Chapter Three, all FLPs containing 1 successfully split H₂. Therefore all three systems ([1-H][H-DABCO], [1-H][H-TMP] and [1-H][H-Lut]) were taken further and used to reduce CO₂ to the formatoborate. Addition of one equivalent of ¹³CO₂ to all three borohydride salts resulted in the production of the formatoborate species, as observed with new resonances in the ¹H, ¹¹B{¹H} and ¹³C{¹H} NMR spectra (Table 4.2). Analysis of the ¹⁹F NMR spectra showed similar resonances to that of the borohydride species.

Table 4.2 Selected resonances from the NMR spectra for the reduction of ¹³CO₂ using [1-H][H-N].

<table>
<thead>
<tr>
<th>Formatoborate Species</th>
<th>δ/ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>¹H</td>
</tr>
<tr>
<td>[1OCHO][HDABCO]</td>
<td>8.01</td>
</tr>
<tr>
<td>[1OCHO][HTMP]</td>
<td>8.19</td>
</tr>
<tr>
<td>[1OCHO][HLut]</td>
<td>8.24</td>
</tr>
</tbody>
</table>

The yield of the formatoborate and the reaction conditions for reduction of ¹³CO₂ vary with each borohydride salt.

4.4.1 [1-H][H-DABCO]

Due to the low solubility of [1-H][H-DABCO], the reduction of ¹³CO₂ was carried out in THF-d₈ in a J-Young NMR tube at 22 °C over two days. The progress of the reaction was monitored using ¹³C{¹H} NMR spectroscopy. As the B-O¹³CHO species was not observed at 22 °C, the system was heated at 60 °C for 18 h, however the
formate was still not observed. The reaction was heated further at 125 °C for 48 h, which yielded a colourless precipitate and the first evidence of the formatoborate species in the 1H, 11B{1H} and 13C{1H} NMR spectra. The development of the colourless precipitate coincided with observations in the NMR spectra suggesting that [1-OCHO][H-DABCO] has low solubility in THF and reaches an equilibrium. To push this equilibrium to produce more [1-OCHO][H-DABCO], the reaction was heated for one week at 145 °C. A great deal of decomposition was observed in the 1H and 19F NMR spectra, with the formation of both C$_6$Cl$_3$H and C$_6$F$_5$H, with resonances at 7.90 ppm and 7.16 ppm, respectively in the 1H NMR spectrum. As decomposition of the Lewis acid had already been observed at this early stage, it was concluded that despite reducing CO$_2$ to the formatoborate, the system could not operate catalytically.

H$_2$ was admitted to the system to give a 13CO$_2$/H$_2$ atmosphere in an attempt to reduce the formatoborate to the methoxyborate and to push the equilibrium further. After 24 h at 145 °C, the methoxyborate was observed in the 13C{1H} NMR spectrum, with a resonance at 54.27 ppm. The reaction was heated for a further 48 h at 145 °C, and growth of the resonance at 54.27 ppm was observed with the development of additional resonances due to decomposition products. The reaction was heated for one week, until no more change was observed in the NMR spectra. In an attempt to determine if ‘free’ methanol was present in the system, it underwent trap-to-trap distillation at 145 °C. Analysis of the NMR spectra of the distillate showed only the presence of THF-d_8 and 13CO$_2$ as presented in Figure 4.4 (1). Whereas, Figure 4.4 (2) shows the presence of various decomposition products as well as B-O13CH$_3$ and DABCO.
Chapter Four: Conversion of CO$_2$ to Methanol using the [B-H][H-N] Salts

4.4.1 [1-H][DABCO]

Figure 4.4 13C$\{^1$H$\}$ NMR spectra of (1) the distillate and (2) the residue from the trap-to-trap distillation of the [1][DABCO] system, showing 13CO$_2$, a, B-O13CH$_3$, b, and DABCO, c, in THF-d_8 (*).

Full analysis of the 1H and 11B$\{^1$H$\}$ NMR spectra and mass spectrum of the residue showed that the major species was [1-H][H-DABCO] with much smaller amounts of [1-OCO][H-DABCO], [1-OMe][H-DABCO] and the decomposition products C$_6$Cl$_5$H and C$_6$F$_3$H. It is not surprising that the majority of the residue consisted of the [1-H][H-DABCO] as the insertion reaction of 13CO$_2$ did not progress as far as observed with [(C$_6$F$_5$)$_3$B-H][H-DABCO].

4.4.2 [1-H][H-Lut]

Unlike the [1-H][H-DABCO] system the [1-H][H-Lut], was found to release H$_2$ when heated above 70 °C. Therefore, the reduction of 13CO$_2$ using the [1-H][H-Lut] system was limited to temperatures below 70 °C. Initially, the [1-H][H-Lut] was heated at 65 °C with one equivalent of 13CO$_2$ in toluene-d_8 for 24 h. Preliminary observations showed the presence of the formatoborate species in the 1H, 11B$\{^1$H$\}$ and 13C$\{^1$H$\}$ NMR spectra. The reaction was continued at 65 °C for 72 h under the assumption that the reaction would proceed further. However, monitoring of the reaction using 13C$\{^1$H$\}$
NMR spectroscopy showed that $^{13}\text{CO}_2$ was released back into the system upon sustained heating. Therefore it was decided to leave the reaction at 22 °C for 24 h and then determine the outcome of the reaction using NMR spectroscopy. As the formateborate resonance grew, the $^{13}\text{CO}_2$ resonance decreased in the $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum as illustrated in Figure 4.5.

![Figure 4.5](image-url)

Figure 4.5 $^{13}\text{C}\{^1\text{H}\}$ NMR spectra showing the reduction of $^{13}\text{CO}_2$ using $[\text{1-H}][\text{H-Lut}]$ to give the (1) formateborate, b, after 24 h at 65 °C, (2) 72 h at 65 °C and (3) 24 h at 22 °C in toluene-d_8 (*).

The system was left at 22 °C for a further 24 h to allow the reaction to proceed further. However, after recording the $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of the reaction, more $^{13}\text{CO}_2$ was observed, which suggests that the reaction is in equilibrium (Figure 4.6).
Figure 4.6 13C-1H NMR spectra showing the equilibrium between 13CO$_2$, a, and [1-OCHO][H-Lut], b, (1) after 24 h at 22 °C, (2) 48 h at 22 °C and (3) 72 h at 22 °C in toluene-d$_8$ (*).

As the salt [1-OCHO][H-Lut] exists at equilibrium with higher temperatures favouring the borohydride, it was concluded that any attempts to force the equilibrium by heating risked breaking the B-H bond and releasing H$_2$ to give the ‘free’ FLP. Therefore H$_2$ was added to the system give a 13CO$_2$/H$_2$ atmosphere. However, no reaction was observed after 16 h at both 22 °C and 65 °C. Heating at 125 °C in an attempt to push the formation of the methoxyborate and sacrifice any [1-H][H-Lut] still within the system. Overnight the reaction turned from a colourless solution to an orange/pink solution, consistent with the observation in Chapter Three, where H$_2$ is released from [1-H][H-Lut]. Analysis using NMR spectroscopy confirmed the presence
of the ‘free’ FLP along with products from the decomposition of the borane. The $^{13}\text{C}^{\text{1}H}$ NMR spectrum showed the loss of the formatoborate resonance (Figure 4.7).

Figure 4.7 $^{13}\text{C}^{\text{1}H}$ NMR spectra displaying $^{13}\text{CO}_2$, a, and [1-OCHO][H-Lut], b, (1) after 24 h at 65 °C under $^{13}\text{CO}_2$/H$_2$ atmosphere, (2) 24 h at 125 °C showing the decomposition products, c in toluene-d_8 (*).

Figure 4.7 displays the complete loss of the formatoborate resonance at 170 ppm and the development of two new resonances at 163.14 ppm and 161.54 ppm, suggesting the decomposition products contained a C=O group. The complimentary $^{11}\text{B}^{\text{1}H}$ NMR
spectrum showed a resonance at 21.88 ppm suggesting the decomposition products consist of a three-coordinate formateborate species via the loss of either a C₆F₅ or C₆Cl₅ group (Scheme 4.4).

Scheme 4.4 Decomposition routes of [1-O¹³CH][H-Lut] via loss of C₆Cl₅ or C₆F₅.

As there was no evidence in the NMR spectra for the reduction of the formateborate to the methoxyborate and any further heating would have yielded more of the ‘free’ FLP and H₂, the reaction was terminated. Full analysis using ESI⁻ mass spectrometry showed evidence of borohydride, hydroborate and methoxyborate species (Figure 4.8). This was surprising given their complete absence in the NMR studies.

Unfortunately due to the ‘messy’ ESI⁺ mass spectrum, the decomposition products cannot be confirmed.
Chapter Four: Conversion of CO$_2$ to Methanol using the [B-H][H-N] Salts

Figure 4.8 Select ESI$^-$ mass spectrum of the residue from the reduction of 13CO$_2$ using [1-H][H-Lut] displaying three species; [1-H][H-Lut] (594.8469), [1-OH][H-Lut] (612.8373), [1-OCH$_3$][H-Lut] (624.8574).

4.4.3 [1-H][H-TMP]

The [1-H][H-TMP] behaved in a similar way to [1-H][H-Lut], showing the ability to insert 13CO$_2$ at 22 °C with immediate precipitation of a colourless solid. However, unlike the Lut system, [1-H][H-TMP] does not release H$_2$ when heated (this was tested up to 160 °C in a closed system). The vast majority of ‘free’ 13CO$_2$ was consumed to give the formateborate species after reacting for 24 h at 22 °C as observed in the 11B1H and 13C1H NMR spectra displayed in Figure 4.9 (1).
Chapter Four: Conversion of CO\textsubscript{2} to Methanol using the [B-H][H-N] Salts

Figure 4.9 (1) 13C\{1H\} and (2) 11B\{1H\} spectra show the reduction of 13CO\textsubscript{2}, \textit{a}, and the production of [1-OCHO][H-TMP], \textit{b}, after 24 h at 22 °C. (3) 13C\{1H\} and (4) 11B\{1H\} NMR spectra show the full consumption after 7 days at 120 °C of the borohydride, \textit{c}, >95% consumption of 13CO\textsubscript{2} to produce the [1-OCHO][H-TMP], \textit{b}, in toluene-\textit{d}_8 (*).

Efforts to force the equilibrium in favour of the formatoborate required heating the reaction at 120 °C for 7 days. This resulted in stoichiometric conversion of the borohydride to the formatoborate, as shown in Figure 4.9 (3 and 4). Attempts to further reduce the formatoborate to the methoxyborate were made by admitting H\textsubscript{2} to the system. After 24 h at 22 °C, a large amount of colourless precipitate was found in the NMR tube. As the formatoborate salt was soluble in toluene-\textit{d}_8, this gave hope that the methoxyborate had been synthesised. The solvent was removed under vacuum and replaced with THF-\textit{d}_8 and further analysis showed that only the formatoborate salt was present and none had been reduced to the methoxyborate. Thus admission of H\textsubscript{2} could
have facilitated the precipitation of the formatoborate. The reaction was heated at 60 °C overnight and the first signs of the methoxyborate were observed in the 13C{1H} NMR spectrum. Upon increasing the temperature to 120 °C and heating for 16 h, 13CO$_2$ was released from the [1-OCHO][H-TMP] system giving back the ‘free’ 13CO$_2$ and the borohydride salt. Therefore, the reduction of 13CO$_2$ is reversible at 120 °C, which requires higher temperatures than [(C$_6$F$_5$)$_3$B-OCHO][H-TMP] (releases CO$_2$ at 80 °C),22 which suggests the B-O is stronger in [1-OCHO][H-TMP].

Repeating the reaction using the formatoborate species formed via route B1 (Scheme 4.3), [1-O13CHO][H-TMP] at 135 °C showed the subsequent reduction as witnessed by the formation of the methoxyborate. However, a three-coordinate methoxyborate was observed instead of four-coordinate species with either concomitant observations of C$_6$Cl$_5$H or C$_6$F$_5$H in the 1H and 19F NMR spectra, consistent with heating other FLP systems. The relative intensities for C$_6$F$_5$H and C$_6$Cl$_5$H were found to be 1:3, reflecting the differences in stability, observed previously in the decomposition experiment of 1.H$_2$O (Chapter Two). The reaction was monitored every 2 h until the concentration of methoxyborate in 13C{1H} NMR studies equilibrated at a final relative distribution of 13CO$_2$ to B-OCH$_3$ of 7:13. Unfortunately, 13CH$_3$OH could not be detected. This could be due to the experiment being performed in a closed system and the formation may have been inhibited which forces the decomposition, despite dissociation occurring. Attempts to force the conversion by suspending 4 Å molecular sieves (both a CH$_3$OH and H$_2$O scavenger)25 above the reaction medium using a glass wool plug as support, led to no change as it was found that the sieves also scavenged 13CO$_2$.

146
4.4.3.1 Single X-ray Crystal Structure of [1-OCHO][H-TMP]

A colourless solid precipitated immediately upon addition of CO$_2$ to [1-H][H-TMP], suggests facile insertion at ambient temperature. The reaction was stored at 22 °C under an atmosphere of CO$_2$ for 7 days, which gave colourless X-ray quality single crystals. Analysis of the crystal structure displayed a four-coordinate boron atom which adopts a pseudo-tetrahedral coordination geometry as seen from the C-B-O and C-B-C angle ranges as illustrated in Figure 4.10 and Table 4.4. These observations are consistent with the 19F and 11B{1H} NMR spectra of the [1-OCHO][H-TMP] discussed earlier.

![Crystal Structure](image)

Figure 4.10 Crystal structure of [1-OCHO][H-TMP]. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue, O atoms red). H atoms are omitted for clarity, except for those bound to C21 and N30. Disordered toluene molecule in asymmetric unit removed for clarity.
Table 4.3 Selected bond lengths/distances for [1-OCHO][H-TMP] and [(C₆F₅)₃B-OCHO][H-TMP].

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Bond Lengths/Distances (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H301</td>
<td>O22</td>
<td>1.889</td>
</tr>
<tr>
<td>B1</td>
<td>O20</td>
<td>1.533(3)</td>
</tr>
<tr>
<td>B1</td>
<td>C1</td>
<td>1.667(3)</td>
</tr>
<tr>
<td>B1</td>
<td>C7</td>
<td>1.656(3)</td>
</tr>
<tr>
<td>B1</td>
<td>C13</td>
<td>1.648(3)</td>
</tr>
<tr>
<td>C21</td>
<td>O20</td>
<td>1.295(3)</td>
</tr>
<tr>
<td>C21</td>
<td>O22</td>
<td>1.218(3)</td>
</tr>
<tr>
<td>C21</td>
<td>H211</td>
<td>0.935</td>
</tr>
<tr>
<td>N30</td>
<td>H301</td>
<td>0.877</td>
</tr>
</tbody>
</table>

Table 4.4 Selected bond angles for for [1-OCHO][H-TMP] and [(C₆F₅)₃B-OCHO][H-TMP].

<table>
<thead>
<tr>
<th>Atom 1</th>
<th>Atom 2</th>
<th>Atom 3</th>
<th>Bond Angles/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(7)</td>
<td>113.54(17)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>107.79(17)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>C(13)</td>
<td>115.21(18)</td>
</tr>
<tr>
<td>C(1)</td>
<td>B(1)</td>
<td>O(20)</td>
<td>113.72(17)</td>
</tr>
<tr>
<td>C(7)</td>
<td>B(1)</td>
<td>O(20)</td>
<td>104.21(16)</td>
</tr>
<tr>
<td>C(13)</td>
<td>B(1)</td>
<td>O(20)</td>
<td>101.90(16)</td>
</tr>
</tbody>
</table>

[1-OCHO][H-TMP] is analogous to [(C₆F₅)₃B-OCHO][H-TMP]²² and [(C₆F₅)₃B-OCHO][H-Lut], twenty-one which show a hydrogen bond distance (N-H–O) of 2.04 and 1.90 Å, respectively. Whereas, [1-OCHO][H-TMP] shows a hydrogen bond distance (N-H–O) of 1.889 Å as demonstrated in Figure 4.10 and Table 4.3. This closer packing of ions is surprising as 1 is bulkier than B(C₆F₅)₃, so one would expect the N-H–O to be longer. When comparing the equivalent bond lengths of [1-OCHO][H-TMP] with [(C₆F₅)₃B-OCHO][H-TMP] (Table 4.3) it can be seen that the B–O bond is shorter in [1-OCHO][H-TMP] as well as the C=O bond, supporting the idea that the boron centre in 1 is more electron deficient than B(C₆F₅)₃. An increase in the B-C bond lengths is observed in [1-OCHO][H-TMP], which is understandable due to the increase of steric bulk on the aryl groups. Overall the greatest difference is seen.
in the intermolecular hydrogen bond, which is much shorter and thus stronger in [1-OCHO][H-TMP] than in [(C₆F₅)₃B-OCHO][HTMP]. The range of C-F lengths of [(C₆F₅)₃B-OCHO][HTMP] (1.345(4)-1.357(3) Å) are all similar to [1-OCHO][H-TMP] (1.346(2)-1.353(2) Å).

Figure 4.11 Crystal structure of [1-OCHO][H-TMP] showing the N-H···O distance of 1.889 Å. Thermal ellipsoids at 50% probability (B atom spicy pink, C atoms black, Cl atoms dark green, F atoms light green, N atoms blue, O atoms red). H atoms are omitted for clarity, except for those bound to C21 and N30. Disordered toluene molecule in asymmetric unit removed for clarity.
4.5 Reduction of CO₂ Using [2-H][H-N]

All FLPs containing 2 successfully split H₂, as shown in Chapter Three. Therefore CO₂ reduction was attempted with all three systems ([2-H][H-DABCO], [2-H][H-TMP] and [2-H][H-Lut]). The formatoborate was successfully formed by the addition of 1 atm of ¹³CO₂ to all three borohydride salts, as observed with new resonances in the ¹H, ¹¹B{¹H} and ¹³C{¹H} NMR spectra (Table 4.5).

Table 4.5 Selected resonances from the NMR spectra for the reduction of ¹³CO₂ using [2-H][H-N].

<table>
<thead>
<tr>
<th>Formatoborate Species</th>
<th>¹H</th>
<th>¹³C</th>
<th>¹¹B{¹H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2-OCHO][H-DABCO]ᵃ</td>
<td>8.14 (dm)</td>
<td>165.62</td>
<td>0.67</td>
</tr>
<tr>
<td>[2-OCHO][H-TMP]ᵇ</td>
<td>7.92 (dm)</td>
<td>165.26</td>
<td>−0.61</td>
</tr>
<tr>
<td>[2-OCHO][H-Lut]ᵇ</td>
<td>7.96 (dm)</td>
<td>170.24</td>
<td>2.66</td>
</tr>
</tbody>
</table>

ᵃSolvent: CD₃CN, BF₃.OEt₂ reference (external).

Analysis of these salts by ¹⁹F NMR spectroscopy revealed two different ortho F-environments. Furthermore the ¹H NMR spectra for the B-OCHO proton appears as a doublet of doublets (approximately ¹JCH = 208 Hz and ¹JHF = 8 Hz) showing long-range coupling to F on the C₆F₅ ring (Figure 4.12).²⁶
Chapter Four: Conversion of CO\(_2\) to Methanol using the [B-H][H-N] Salts

![Proposed coupling of ortho-F in [2-OCHO])](image)

Figure 4.12 Proposed coupling of ortho-F in [2-OCHO]−.

4.5.1 [2-H][H-DABCO]

As with [1-H][H-DABCO], it was found that [2-H][H-DABCO] had modest solubility in toluene-\(d_8\), therefore THF-\(d_8\) was used for NMR reactions. One equivalent of \(^{13}\)CO\(_2\) was admitted to a J-Young NMR tube containing the borohydride solution, and the system was left at 22 °C for 24 h (which saw no reaction) and then heated at 95 °C for another 18 h. A new resonance at 2.52 ppm (\(^{11}\)B\(^{1}\)H), which could be indicative of insertion of \(^{13}\)CO\(_2\) appeared. However, neither the \(^1\)H nor the \(^{13}\)C\(^{1}\)H NMR spectra showed any evidence of the formatoborate. Examination of the \(^{19}\)F NMR spectrum displayed decomposition in the form of C\(_6\)F\(_5\)H, as previously observed with the B(C\(_6\)F\(_5\))\(_3\) and I systems.

The temperature was increased to 130 °C, in an attempt to force the insertion, and after 24 h showed precipitation of a colourless solid in the NMR tube; possibly the formatoborate as the amount of borohydride in system had decreased. Unfortunately, the \(^1\)H NMR spectrum showed the presence of more decomposition in the form of both C\(_6\)F\(_3\)H and C\(_6\)Cl\(_3\)H.\(^{24}\) This decomposition indicates that this [2-H][H-DABCO] is unstable and the system is unlikely to be catalytic. Continued heating at 140 °C for 5
days with regular monitoring by NMR spectroscopy, revealed an equilibrium had been reached with no apparent change in the concentration of the species of interest. The reaction was placed under a 13CO$_2$/H$_2$ atmosphere and heated at 140 °C for 24 h. Initial analysis of the 13C NMR spectrum showed the first signs of the methoxyborate at 54 ppm. It is likely this is formed once the precipitate of the formatoborate is dissolved by heating at 140 °C.

Figure 4.13 13C{1H} NMR spectra from the [2-H][H-DABCO]/13CO$_2$ reaction (1) before H$_2$ was added and (2) after heating at 140 °C, under a 13CO$_2$/H$_2$ atmosphere showing the methoxyborate, a and DABCO, b in THF-d_8 (*).

After 2 weeks of further heating the reaction at 140 °C, no significant change was observed in the NMR spectra, with both the borohydride and 13CO$_2$ present in large amounts in the system. The insolubility of the formatoborate in THF-d_8 made it very difficult to determine the percentage of 13CO$_2$ that was converted to the formatoborate. Therefore it was concluded that neither the insertion nor the subsequent reduction goes
Chapter Four: Conversion of CO₂ to Methanol using the [B-H][H-N] Salts

to completion. Both the ¹H and ¹³C NMR spectra show strong indications that methoxyborate decomposition products had been synthesised. The system was distilled under vacuum at 140 °C to irrefutably determine whether or not methanol had been formed.

Upon distillation, it was observed that some of the borohydride was transferred as well as the solution. Analysis of the distillate showed that as well as the borohydride, C₆Cl₃H and C₆F₅H were present in the system (in a ratio of 1:6; showing that the C₆F₅ group is more prone to protonation). Examination by ¹⁹F NMR spectroscopy showed only the presence of two species; C₆F₅H and [2-H][H-DABCO], consistent with degradation of the borane species via preferential loss of the C₆F₅ group. Further analysis by EI mass spectrometry displayed a m/z = 32.0376, consistent with CH₃OH. However, as the spectrometer is not calibrated to detect m/z below 100, it cannot definitely be said that the species detected is methanol. The ¹H NMR spectrum exhibited a range of multiplets from 3.4 to 3.7 ppm, symptomatic of a methanol species. However the very low intensity of these resonances in ¹H and ¹³C{¹H} NMR spectra led to the conclusion that if any methanol was produced it was an immeasurable amount.

Analysis of the residue displayed similar NMR spectra to the distillate, but with less decomposition.

4.5.2 [2-H][H-Lut]
The majority of the borohydride systems were synthesised with a decent yield, whereas [2-H][H-Lut] could only be obtained with a yield of 6%. Addition of ¹²CO₂ to [2-H][H-Lut] showed the successful ambient insertion of ¹²CO₂. However, due to the low yield of [2-H][H-Lut] it made it very difficult to add one equivalent of ¹³CO₂ to the
system. Therefore, as it had been determined that [2-H][H-Lut] inserts $^{12}\text{CO}_2$, the preformed formamidoborate, [2-O13CHO][H-Lut], was used in an attempt to produce methanol. A known amount of [2-O13CHO][H-Lut] and toluene-d_8 were placed in a J-Young NMR tube under an atmosphere of H$_2$ and heated at 140 °C. As with the previous reactions, all progress was monitored using ^1H, $^{11}\text{B}{^1\text{H}}$, and $^{13}\text{C}{^1\text{H}}$ NMR spectroscopy. Initial observations showed the presence of $^{13}\text{CO}_2$, which suggests decarboxylation occurs, releasing $^{13}\text{CO}_2$. Unfortunately, analysis did not show the formation of the methyleneborate. The closed system was heated at 160 °C for 7 days and following analysis using NMR spectroscopy it was determined that the system was unable to reduce the formamidoborate to the methyleneborate. Instead, the observation of [2-H]$^-$ and 2 in the $^{11}\text{B}{^1\text{H}}$ and ^{19}F NMR spectra reveal decarboxylation dominates at this temperature. Therefore this system was deemed unsuitable.

4.5.3 [2-H][H-TMP]

The use of [2-O13CHO][H-Lut], synthesised via route B1 (Scheme 4.3), as a method of monitoring the reduction of the formamidoborate was extremely useful due to the initial presence of only one salt in the system and only required an atmosphere of hydrogen and not $^{13}\text{CO}_2$/H$_2$. Therefore, even though [2-H][H-TMP] is produced with good yields, it was decided that it would be simpler to use [2-O13CHO][H-TMP]. The reaction was carried out in toluene-d_8 and initially heated at 80 °C under an atmosphere of H$_2$. Analysis of the reaction after 24 h gave a result analogous to the [2-O13CHO][H-Lut] system; decarboxylation dominated, producing the borohydride and releasing $^{13}\text{CO}_2$, as observed in the $^{11}\text{B}{^1\text{H}}$ (-14 ppm) and $^{13}\text{C}{^1\text{H}}$ (124.9 ppm) NMR spectra, respectively. The temperature was raised to 130 °C which showed subsequent reduction of the formamidoborate as evidenced by the development of
13C-coupled resonances centred at 3.3-3.6 ppm in the ¹H NMR spectrum characteristic of the ¹³CH₃O-B species. The reaction was monitored at 2 h intervals until no change was observed in the intensity ratio for ¹³CO₂ (δ = 124.9 ppm) and ¹³CH₃O-B species (δ ~ 57 ppm) by ¹³C{¹H} NMR spectroscopy.

For [2-O¹³CHO][H-TMP], termination was slower than witnessed with [1-O¹³CHO][H-TMP], occurring 24 h later. Similarly, the [2-O¹³CHO][H-TMP] reaction also gave two methoxy species (due to loss of C₆F₅H and C₆Cl₃H from the prospective CH₃OH-B(C₆F₅)(C₆Cl₅)₂). However, it was observed that the final C₆F₅H:C₆Cl₃H ratio was moving towards unity. The relative distribution of ¹³CO₂ to ¹³CH₃O-B was determined to be approximately 1:2 from the ¹³C{¹H} NMR spectrum. Unfortunately no ¹³CH₃OH could be isolated upon distillation of the reaction. Its formation may be inhibited by performing such an experiment in a closed system, such that decomposition is forced despite dissociation occurring.

4.6 Reduction of CO₂ Using [3-H][H-N]

4.6.1 [3-H][H-DABCO]

As with all the FLP systems previously discussed, attempts were made to synthesise [3-OCHO][H-DABCO] and [3-OMe][H-DABCO], however only [3-OCHO][H-DABCO] could be isolated. This is not surprising as the isolated yields of the methoxy salts previously discussed have been low. As the other DABCO systems showed low solubility in toluene-d₈, it was not surprising that the borohydride salt was found to be completely insoluble. As with all the isolated borohydride salts, full NMR characterisation was carried out in CD₃CN (see Chapter Five). A preliminary reaction was carried out using ¹²CO₂ and [3-H][H-DABCO] in CD₃CN. After 24 h at 22 °C, a precipitate was observed. As [3-H][H-DABCO] is soluble in CD₃CN, it is possible that
the formateborate is only partially soluble in CD$_3$CN and therefore the precipitate could contain the formateborate. To determine what was present in the system, CD$_3$CN was removed under vacuum and replaced with THF-d_8. Analysis using 1H and 11B-1H NMR spectroscopy revealed new resonances at 7.9 ppm and 2.12 ppm, respectively. The 7.9 ppm resonance in the 1H NMR is indicative of the formation of C$_6$Cl$_5$H, thus decomposition has occurred. Addition of 13CO$_2$ to the system with subsequent heating to 140 °C saw the release of H$_2$ as witnessed in the 1H NMR spectrum (Figure 4.14), reforming the original FLP as well as decomposition products.

![Figure 4.14 1H NMR spectrum of (1) the [3-H][H-DABCO]/13CO$_2$ system < 80 °C, showing C$_6$Cl$_5$H, a, and DABCO, b; (2) the [3-H][H-DABCO]/13CO$_2$ system after heating at 140 °C for 24 h releasing H$_2$, c, in THF-d_8 (*)](http://example.com/image)

This is the first observation of hydrogen being released from a borohydride salt containing DABCO. Further heating at 145 °C of the system saw only more H$_2$ released and without any indications of 13CO$_2$ inserting into the B-H bond. After a month of
heating, the reaction was terminated as a large amount of H₂ had been released and even more decomposition, as C₆Cl₅H, was observed without any of ¹³CO₂ inserting into the B-H bond. Therefore it was determined that the [3-H][H-DABCO] salt is unable to reduce ¹³CO₂. This could be due to the increased steric hindrance around the B-H bond, combined with the possibility of a stronger B-H bond in [3-H][H-DABCO] compared to [1-H][H-DABCO] or [2-H][H-DABCO], due to the stronger electron withdrawing C₆Cl₅ groups.²⁷

4.6.2 [3-H][H-Lut]

Efforts to synthesise the formatoborate and methoxyborate salts via route B1 (Scheme 4.3) using [3][Lut] proved to be unfruitful and therefore expectations were not high for [3-H][H-Lut] as a reducing agent. As with [2-H][H-Lut], [3-H][H-Lut] was also low yielding. However, due to the inability to synthesise the formatoborate, direct studies on its reduction required going via route A1 (Scheme 4.3). A known amount of the FLP system in THF-d₈ was placed in a J-Young NMR tube filled with H₂ via freeze-pump-thaw degas. The system was heated at 120 °C for one week and monitored using NMR spectroscopy. Once it was determined that the reaction had reached equilibrium, the H₂ atmosphere was replaced with one equivalent of ¹³CO₂. Unfortunately, before ¹³CO₂ was added, decomposition of the borohydride was observed as the C₆Cl₅H resonance was detected in the ¹H NMR spectrum at 7.9 ppm. Addition of ¹³CO₂ and subsequent heating of the system only produced more decomposition without reducing ¹³CO₂. The reaction was stopped and the residue analysed using ESI mass spectrometry, which revealed no presence of either the formatoborate or the methoxyborate species.
4.6.3 [3-H][H-TMP]

Originally, it was planned that [3-O13CHO][H-TMP] isolated via route B1 would be used in the same way as [2-O13CHO][H-TMP] to determine if methanol could be produced from the [3][TMP] system. However, just like [3-O13CHO][H-Lut], [3-O13CHO][H-TMP] could not be synthesised by this route. Unlike [3-H][H-Lut], [3-H][H-TMP] is produced with a higher yield and therefore was dissolved in THF-\textit{d}\textsubscript{8} in a J-Y Young NMR tube, followed by the addition of one equivalent of 13CO\textsubscript{2}. Heating the system at 100 °C for 24 h, the first hint of decomposition was detected in the 1H NMR spectrum at 7.9 ppm (C\textsubscript{6}Cl\textsubscript{5}H). Further heating at 130 °C produced more C\textsubscript{6}Cl\textsubscript{5}H and reduced 13CO\textsubscript{2} was not observed. After heating for two weeks at 140 °C, only three species were identifiable in the NMR spectra; [3-H][H-TMP], C\textsubscript{6}Cl\textsubscript{5}H and the [(C\textsubscript{6}Cl\textsubscript{5})\textsubscript{2}BH]\textsubscript{2} dimer which is consistent with the [(C\textsubscript{6}F\textsubscript{5})\textsubscript{2}BH]\textsubscript{2} dimer (Figure 4.15).

Once the reaction was terminated, analysis was carried out using ESI− mass spectrometry. Examination of the mass spectrum showed that the major species present was [3-H][H-TMP] (Figure 4.16).

Full analysis of the reaction residue shows that just like the other systems containing 3, this system is also unable to reduce 13CO\textsubscript{2} and shows major decomposition of the Lewis acid, producing C\textsubscript{6}Cl\textsubscript{5}H as the by-product.
Chapter Four: Conversion of CO_2 to Methanol using the [B-H][H-N] Salts

Figure 4.15 $^{11}\text{B}\{^1\text{H}\}$ NMR spectra (1) before addition of $^{13}\text{CO}_2$ showing [3-H][H-TMP], a; (2) two weeks after heating at 140°C displaying [3-H][H-TMP], a, and (C$_6$Cl$_5$)$_2$BH, b.

Figure 4.16 ESI$^+$ mass spectrum of the reaction residue showing the major species in the residue was [3-H][H-TMP].
4.7 Conclusion

Attempts to reduce 13CO$_2$ using the ten novel borohydride salts gave various results. The [(C$_6$F$_5$)$_3$B-H][H-DABCO], [1-H][H-DABCO], [1-H][H-Lut] and [1-H][H-TMP] systems all successfully insert 13CO$_2$ to give the formatoborate followed by further reduction to the methoxyborate, with varying degrees of success. However, attempts to isolate methanol by distillation did not yield any ‘free’ methanol as shown in Scheme 4.5.

Scheme 4.5 Summary of 13CO$_2$ reduction using [(C$_6$F$_5$)$_3$B-H][H-DABCO] and [1-H][H-N].

All systems were pushed to their limits by heating to high temperatures, which saw a large amount of decomposition to C$_6$F$_5$H or C$_6$Cl$_3$H, observed using 1H and 19F NMR spectroscopy, which were consistent with the literature.

Attempts to reduce 13CO$_2$ were repeated using [2-H][H-DABCO], [2-H][H-Lut] and [2-H][H-TMP] as displayed in Scheme 4.6.
Each system displayed varying reactivity, with [2-H][H-DABCO] showing the greatest success in producing methanol, which, due to the small amount generated, made it incredibly difficult to determine the yield. This system also showed a high degree of decomposition of the Lewis acid, confirming that the reduction of [2-H][H-DABCO] is not catalytic. Efforts were made to reduce [2-O13CHO][H-Lut], however, only the release of 13CO\textsubscript{2} was observed. Heating the system at higher temperatures only yielded more 13CO\textsubscript{2}, as well as [2-H], 2, and H\textsubscript{2}, determined by NMR spectroscopy. Therefore, it is not viable to use [2-H][H-Lut] to reduce 13CO\textsubscript{2} to methanol. Due to the ease of use of [2-O13CHO][H-Lut], the preformed formatoborate, [2-O13CHO][H-TMP], was successfully reduced to [2-O13CH\textsubscript{3}][H-TMP] with relative distribution of 1:2. Attempts were made to try and release methanol via vacuum distillation at 140 °C, but unfortunately ‘free’ methanol was not observed in the distillate after analysis using NMR spectroscopy and mass spectrometry. The production and isolation of methanol may be inhibited by performing such an experiment in a closed system, such that decomposition is forced despite dissociation occurring.
Finally, attempts to synthesise the formatoborate and methoxyborate species with 3 (Scheme 4.3, route B1 and B2) only produced \([3\text{-OCHO}][\text{H-DABCO}]\). Efforts were made to reduce \(^{13}\text{CO}_2\) to methanol using \([3\text{-H}][\text{H-DABCO}], [3\text{-H}][\text{H-Lut}]\) and \([3\text{-H}][\text{H-TMP}]\) in THF-\(d_8\) as shown in Scheme 4.7.

![Scheme 4.7](image)

Scheme 4.7 Summary of \(^{13}\text{CO}_2\) reduction using \([3\text{-H}][\text{H-N}]\).

However, unlike the other borohydride systems, none of these were able to insert \(^{13}\text{CO}_2\) into the B-H bond. In each case, decomposition was observed in the form of \(\text{C}_6\text{Cl}_5\text{H}\), consistent with the literature. When \([3\text{-H}][\text{H-DABCO}]\) was heated at 140 °C, \(\text{H}_2\) was released reproducing \([3][\text{DABCO}]\), making the system incompatible with \(^{13}\text{CO}_2\) reduction. This is the only system containing DABCO that releases \(\text{H}_2\) upon heating.

Unfortunately, none of the systems investigated were able to produce methanol with the same efficiency as those found by Ashley *et al.*\(^{22}\) and Sgro *et al.*\(^{23}\) Similarly to the \(\text{B(C}_6\text{F}_5)_3/\text{TMP}\) system,\(^{22}\) decomposition of the Lewis acid was observed with every system as either \(\text{C}_6\text{F}_5\text{H}\) or \(\text{C}_6\text{Cl}_5\text{H}\) in the \(^1\text{H}\) and \(^19\text{F}\) NMR spectra, leaving either the three-coordinate borohydride, formatoborate or methoxyborate by products.

While the borohydride salts of \(\text{B(C}_6\text{F}_5)_3\), \(1\) and \(2\) were able to reduce \(\text{CO}_2\) by insertion into the B-H bond, some (almost), quantitatively, subsequent reduction to the methoxyborate was severely hampered both by degradation of the borane species, and by reversal of the \(\text{CO}_2\) insertion at elevated temperatures. This lead to none of the ten FLPs investigated being successful candidates for the catalytic reduction of \(\text{CO}_2\) to methanol.
Chapter Four: Conversion of CO\textsubscript{2} to Methanol using the [B-H][H-N] Salts

4.8 References

CHAPTER FIVE

Experimental Details and Characterisation Data

5.1 General Procedures and Physical Measurements

5.1.1 General Procedures

All reactions and compounds were manipulated under N₂ using either an MBraun Unilab glovebox or using standard Schlenk line techniques on a dual manifold vacuum/inert gas line, unless stated otherwise. For the manipulation of moisture sensitive compounds, all glassware was heated to 170 °C before use. Solvents and solutions were transferred using a positive pressure of nitrogen through stainless steel or Teflon cannulae, or via plastic syringes for volumes less than 20 mL. Filtrations were performed using either glassware containing sintered glass frits or modified stainless steel cannulae fitted with glass microfiber filters. Hexane, pentane, toluene and dichloromethane were dried using an MBraun SPS-800 solvent purification system, whereas THF and Et₂O were distilled from purple Na/benzophenone diketyl; all except CH₂Cl₂ and THF were stored over K-mirrored ampoules. Methanol was purchased from Sigma Aldrich, dried and stored over activated 4 Å molecular sieves under N₂. Deuterated solvents for NMR spectroscopy of air sensitive materials were dried over the appropriate drying agent, and purified by trap-to-trap distillation: potassium (C₆D₆, C₇D₈), calcium hydride (THF-d₈). CD₃CN and CD₂Cl₂ were dried and stored over activated 4 Å molecular sieves under N₂.
5.1.2 Elemental Analysis

Elemental analyses for all samples were carried out by Mr. Stephen Boyer of the Elemental Analysis Service, London Metropolitan University, London.

5.1.3 Mass Spectrometry

Samples were analysed by Mr. Colin Sparrow and Mr. James Wickens of the Mass Spectrometry Service, Chemistry Research Laboratory, University of Oxford.

5.1.4 NMR Spectroscopy

1H and 13C NMR spectra were recorded on a Varian VX-Works spectrometer operating at 300 MHz or a Bruker AVII operating at 500 MHz with a 13C cryoprobe. 19F and 11B NMR spectra were recorded on a Varian VX-Works spectrometer operating at 300 MHz. 1H and 13C chemical shifts are given relative to SiMe$_4$ and referenced internally to the residual proton shift in the deuterated solvent employed. 11B, 19F and 31P chemical shifts were referenced externally to BF$_3$·OEt$_2$, CFCl$_3$ and 85% H$_3$PO$_4$.

5.1.5 Infrared Spectroscopy

All IR spectra were recorded on a Bio-Rad FTS 6000 FTIR Spectrometer equipped with a DuraSampIR II diamond accessory in attenuated total reflectance (ATR) mode in the range of 400 - 4000 cm$^{-1}$; 100 scans at 4 cm$^{-1}$ resolution were collected. The weak absorbance in the range 2200 - 1900 cm$^{-1}$ is from the DuraSampIR II diamond surface and therefore is not reported.
5.1.6 Electrochemistry

Electrochemical experiments were performed by Dr. Gregory Wildgoose, using an Autolab PGSTAT 30 computer-controlled potentiostat. Cyclic voltammetry (CV) was performed using a three-electrode configuration consisting of a Pt disc working electrode (GoodFellow, Cambridge, UK 99.99% area $1.7 \pm 0.3 \times 10^{-3} \text{ cm}^2$), a Pt gauze counter electrode and a Ag wire pseudoreference electrode. Pt working electrodes were polished between experiments using successive grades of alumina slurries from 1.0 to 0.3 µm rinsed in distilled water and subjected to brief ultrasonication to remove any adhered alumina microparticles. The electrodes were then dried in an oven at 120 °C to remove any residual traces of water. For either cell arrangement the potentials of the Ag wire pseudoreference electrodes were found to drift by as much as 100 mV between experimental runs and therefore calibrated to the ferrocene/ferrocnium couple in CH$_2$Cl$_2$ in the absence of any borane complexes at the end of each run. All electrochemical measurements were performed at ambient temperatures under an inert N$_2$ atmosphere containing either 0.1 M [4Bu$_4$N][BF$_4$] or 0.1 M [4Bu$_4$N][B(C$_6$H$_5$(CF$_3$)$_2$)$_4$] in CH$_2$Cl$_2$.

5.1.7 Crystal Structure Determinations

Data collection, structure determination and refinements, using X-ray diffraction, were undertaken by Dr. Amber Thompson, of the Chemical Crystallography Laboratory, Chemistry Research Laboratory, University of Oxford, and Mr. Mark Irwin. Crystals were mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 150 K in a stream of cold N$_2$ using an Oxford Cryosystems CRYOSTREAM unit. Data collection was performed using either: an Enraf-Nonius FR590 KappaCCD
diffractometer using graphite-monochromated MoKα X-ray radiation ($\lambda = 0.71073$ Å) and intensity data was processed using the DENZO-SMN package; or Single-crystal X-ray diffraction data were collected using an Oxford Diffraction Supernova dual-source diffractometer equipped with a 135 mm Atlas CCD area detector. Data were collected at 150 K using mirror monochromated Cu Ka radiation ($\lambda = 1.5418$ Å) and processed using the CrysAlisPro package, including unit cell parameter refinement and inter-frame scaling (which was carried out using SCALE3 ABSPACK within CrysAlisPro). 3 Equivalent reflections were merged and diffraction patterns processed with the CrysAlisPro suite. The structures were then solved using the direct-methods program SIR92. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite. 4,5 Neutron diffraction data were collected by Dr. Amber Thompson and Dr. Matthias Gutmann at 100 K using the time-of-flight Laue diffractometer SXD at the ISIS spallation neutron source. 6 The structure from the X-ray solutions were refined in each case, using SHELXL. 7 Crystallographic data and CIF files may be found in the electronic appendix.

5.1.8 Determination of Lewis Acidities

Assessment of Lewis acidity using the gutmann-Beckett method 8 followed a modification described by D.W. Stephan et al. 9 which used an excess of Lewis acid to Et₃PO (3:1), dissolved in CD₂Cl₂. For accuracy, the solution was placed in an NMR tube along with a sealed reference capillary containing uncoordinated phosphine oxide. The 31P NMR shifts were recorded at 298 K. The Childs Method was performed as described by Childs et al. 10 and Lewis acid and trans-crotonaldehyde were mixed in a 1:1 ratio and
placed in an NMR tube. The 1H NMR chemical shift of the H3 proton of crotonaldehyde was then recorded.

5.1.9 Computational Details

Calculations were performed by Dr. Tobias Krämer, using DFT with the B3LYP functional11-14 and the TZVP basis set15 of Ahlrichs \textit{et al.}, as implemented in gaussian03.16 The structures of stationary points were fully optimized without any symmetry constraints and confirmed to be minima by the absence of imaginary frequencies. Where crystallographic data were available, the experimental coordinates were used as the start point for the structure. 11B NMR shielding constants were calculated with the gauge-Independent Atomic Orbital (GIAO) method,17,18 using the geometries obtained at the B3LYP/TZVP level. These calculations employed the B3LYP functional in conjunction with a polarizable continuum model (PCM),19 using dichloromethane ($\varepsilon = 8.93$) as the solvent. The TZVP basis set on boron was replaced by a basis set optimized for shielding constants, aug-pcS-2(triple-ζ quality),20 while the TZVP basis set was retained for the other atoms (C, F, Cl). Relative chemical shifts (δ_{calc}) were obtained by referencing the isotropic nuclear magnetic shielding constant of the probe atom (σ_X) against the shielding constant (σ_{ref}) of the B atom in B(C$_6$F$_5$)$_3$ with δ_{ref} (11B NMR) = 61.2 ppm, thus $\delta_{\text{calc}} = \sigma_{\text{ref}} - \sigma_X + \delta_{\text{ref}}$.

5.2 Source of Starting Materials

5.2.1 Commercially Available Starting Material

H_2 gas ($>99.95\%$) was obtained from Sigma Aldrich and connected directly to a dual manifold Schlenk line. CO_2 gas (99.99\%) was obtained from ARGO International
Ltd. and 13CO$_2$ gas was purchased from Cambridge Isotope Laboratories Inc. (99%). Both gases were passed directly into a dual manifold Schlenk line.

Fe powder was purchased from East Anglia chemicals; Br$_{2(l)}$ and I$_2(s)$ were obtained from Fisher Scientific; BBr$_3$ (99.9%), BCl$_3$ (1.0 M in heptane), BF$_3$.OEt$_2$, C$_6$Cl$_3$H (98%), C$_6$Cl$_6$ (99.9%), nBuLi (2.5 M in hexanes), trans-crotonaldehyde (> 99%), triethylphosphine oxide, Oleum (20%), formic acid and [nBu$_4$N][BF$_4$] were purchased from Sigma Aldrich; C$_6$F$_5$Br was obtained from fluorochem; all were used as received. 2,6-lutidine (98%) was purchased from Alfa Aesar and was dried and stored over activated 4 Å molecular sieves under N$_2$. 2,2,6,6-tetramethylpiperidine (> 99%) and 1,4-diazabicyclo[2.2.2]octane were purchased from Sigma Aldrich. 2,2,6,6-tetramethylpiperidine (> 99%) was dried and stored over activated 4 Å molecular sieves under N$_2$. 1,4-diazabicyclo[2.2.2]octane was dissolved in toluene and dried over activated 4 Å molecular sieves. The solution was filtered and the solvent was removed under vacuum to give spectroscopically dry 1,4-diazabicyclo[2.2.2]octane which was stored under N$_2$.

5.2.2 Literature Preparations

CuC$_6$F$_5$ and B(C$_6$F$_5$)$_3$ were prepared according to literature procedures.
5.3 Experimental Details for Chapter Two

5.3.1 Synthesis of C₆Cl₅Br (2.1)

This is adapted from a literature procedure.²³ A solution of C₆Cl₅H (10 g, 40 mmol), bromine (4.0 mL, 77 mmol), and a catalytic amount of iron (5%, 220 mg) and iodine (5%, 220 mg) in oleum (50 mL, 25% SO₃) were stirred in a 100 mL RBF fitted with a condenser at 70 oC for 16 h. The mixture was poured into ice water and the precipitated solid was filtered and washed with aqueous NaHCO₃ (2 x 10 mL), aqueous Na₂S₂O₃ (2 x 10 mL) and H₂O (2 x 10 mL). Recrystallisation using a minimum quantity of hexane at 65 °C followed by rapid filtration through glass wool afforded C₆Cl₅Br (12 g, 92%) as colourless needles. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ 134.20, 132.98, 132.04 (s, ortho, para and meta-C₆Cl₅); δ 123.76 (s, ipso-C).

HRMS (FI, m/z): for C₆Cl₅Br Calcd: 325.7626. Found: 325.7617. IR (cm⁻¹): 1707 (w), 1506 (w), 1409 (s), 1327 (w), 1211 (w), 1078 (w), 922 (w), 727 (s), 689 (s), 652 (s).

5.3.2 Synthesis of C₆Cl₅Li

This is adapted from a literature procedure.²⁴ A 500 mL Schlenk was charged under a nitrogen flush with C₆Cl₆ (5.70 g, 20 mmol) or C₆Cl₅Br (6.58 g, 20 mmol) and placed under dynamic vacuum for 20 minutes to remove any moisture. Following the addition of Et₂O (150 mL), the slurry was cooled to –78 °C. With rapid stirring nBuLi (18.2 mL, 20.4 mmol, 2.5 M in hexanes) was added. The contents were allowed to warm to –10 °C until solid C₆Cl₆ or C₆Cl₅Br was no longer
visible, and a translucent amber solution of C\textsubscript{6}Cl\textsubscript{5}Li had formed \textit{in situ}. The contents were cooled to \(-78^\circ\text{C}\) and used \textit{in situ} as a source for [C\textsubscript{6}Cl\textsubscript{5}]− for later reactions.

\section*{5.3.2 Synthesis of Zn(C\textsubscript{6}Cl\textsubscript{5})\textsubscript{2} (2.2)}

C\textsubscript{6}Cl\textsubscript{5}Li (28 mmol) in Et\textsubscript{2}O at \(-78^\circ\text{C}\) was rapidly transferred via cannula to a stirred Et\textsubscript{2}O (100 mL) solution of ZnCl\textsubscript{2} (1.91 g, 14 mmol) at \(-20^\circ\text{C}\). The yellow reaction mixture was then slowly warmed to room temperature (22 °C) over the course of 3 h whereupon a precipitate began to form, which was stirred for a further 12 h. Filtration through Celite to remove LiCl, washing with Et\textsubscript{2}O (2 × 50 mL), and subsequent removal of the solvent under reduced pressure produced a pale yellow solid, which was washed with cold (\(-78^\circ\text{C}\)) Et\textsubscript{2}O (2 × 50 mL) until the washings became colourless. Drying \textit{in vacuo} for 12 h whilst slowly heating to 60 °C afforded base-free Zn(C\textsubscript{6}Cl\textsubscript{5})\textsubscript{2} as a colourless powder (6.51 g, 82%, 11.5 mmol). \textbf{HRMS (EI, m/z)}: for ZnC\textsubscript{12}Cl\textsubscript{10} \textbf{Calcd}: 557.6177. \textbf{Found}: 557.6163. \textbf{IR (Nujol, cm-1)}: 1700 (m), 1653 (m), 1559 (m), 1533 (m), 1465 (m), 1334 (s), 1311 (s), 1230 (m), 1128 (m), 982 (s), 659 (s), 524 (w). \textbf{Anal. Calcd.} for ZnC\textsubscript{12}Cl\textsubscript{10}: C 25.55. \textbf{Found}: C 25.43.
5.3.3 Synthesis of $\text{B(C}_6\text{Cl}_5\text{)}\text{Br}_2$ (2.3)

A 250 mL ampoule was charged with a magnetic stirrer bar, Zn(C_6Cl$_5$)$_2$ (6.51 g, 11.5 mmol), toluene (150 mL), and BBr$_3$ (7.20 g, 2.77 mL, 28.8 mmol). The sealed reaction mixture was heated to 100 °C for 12 h. The suspension was then cooled to room temperature and filtered through Celite, before stripping the solvent under vacuum to produce a solid. Washing this residue with pentane (2 × 50 mL) afforded B(C_6Cl$_5$)Br$_2$ as an off-colourless powder (6.78 g, 70%, 16.1 mmol). 13C(1H) NMR (CD$_2$Cl$_2$, 75 MHz): δ 135.6 (s, para-C_6Cl$_5$); 132.8, 130.0 (s, meta-C_6Cl$_5$ and ortho-C_6Cl$_5$). Resonance for ipso-C_6Cl$_5$ not observed. 11B NMR (CD$_2$Cl$_2$, 128 MHz): δ 55.8 (br. s). HRMS (EI, m/z): for BC$_6$Cl$_5$Br$_2$ Calcd: 415.6902. Found: 415.6912. IR (Nujol, cm$^{-1}$): 1700 (w), 1653 (w), 1539 (s), 1457 (s), 1377 (w), 1338 (s), 1303 (s), 1235 (s), 1132 (s), 976 (s), 920 (w), 888 (s), 861 (s), 814 (s), 715 (s). Anal. Calcd. for BC$_6$Cl$_5$Br$_2$: C 17.16. Found: C 17.23.
5.3.4 Synthesis of 1; B(C₆Cl₅)(C₆F₅)₂ (2.4)

Toluene (150 mL) was added to a stirred mixture of B(C₆Cl₅)Br₂ (6.78 g, 16.1 mmol) and CuC₆F₅ (7.61 g, 33.0 mmol), followed by heating to 60 °C for 4 h. The initially translucent solution rapidly became cloudy, producing a colourless precipitate of CuBr. Upon cooling, the solution was filtered through Celite and the residue washed with toluene (2 × 50 mL), before removing the solvent under vacuum. The resultant off-colourless solid was then sublimed (125 °C, 0.01 mbar) to produce analytically pure 1 (B(C₆Cl₅)(C₆F₅)₂) as a colourless powder (7.80 g, 81%, 13.1 mmol). Crystals suitable for X-ray diffraction were grown from slow-cooling of a toluene solution to –30 °C. ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz): δ 149.7 (dm, ¹J_CF = 251 Hz, ortho-C₆F₅); 145.9 (dm, ¹J_CF = 262 Hz, para-C₆F₅); 141.0 (br, ipso-C₆Cl₅); 138.0 (dm, ¹J_CF = 249.5 Hz, meta-C₆Cl₅); 135.1 (s, para-C₆Cl₅); 132.3, 131.3 (both s, meta-C₆Cl₅ and ortho-C₆Cl₅); 112.2 (br, ipso-C₆Cl₅). ¹¹B NMR (C₇D₈, 128 MHz): δ 63.6 (br. s). ¹⁹F NMR (C₇D₈, 282.2 MHz): δ –127.3 (d, 4F, ³J_FF = 22 Hz, ortho-C₆F₅), –141.0 (t, 2F, ³J_FF = 23 Hz, para-C₆F₅), –159.9 (m, 4F, meta-C₆F₅). HRMS (EI, m/z): for BC₁₈C₁₅F₁₀ Calcd: 591.8378. Found: 591.8376. IR (Nujol, cm⁻¹): 1700 (m), 1653 (m), 1646 (m), 1559 (m), 1549 (m), 1521 (s), 1507 (w), 1482 (s), 1437 (m), 1382 (m), 1336 (m), 1322 (m), 1235 (w), 1167 (m), 1142 (w), 1015 (w), 979 (s), 674 (m), 668 (m), 659 (w). Anal. Calcd. for BC₁₈C₁₅F₁₀: C 36.38. Found: C 36.27. X-ray data: HZ2_4.cif.
5.3.5 Synthesis of $\text{B(C}_6\text{Cl}_5\text{)}_2\text{Cl}$ (2.5)

Hexane (100 mL) was slowly added to a stirred solution of $\text{C}_6\text{Cl}_5\text{Li}$ (from 29.0 mmol of C_6Cl_6) at −78 °C, resulting in the formation of a precipitate. BCl_3 (14 mL, 14.0 mmol, 1.0 M in heptane) was then syringed into this suspension and the reaction mixture allowed to slowly warm up to room temperature (22 °C) in the CO_2/acetone cooling bath, followed by further stirring for 12 h. The solvent was then removed under vacuum and the orange residue extracted with CH$_2$Cl$_2$ (2 × 100 mL) and filtered through Celite. The solution was then reduced to minimum volume (approximately 30 mL) and cooled to −35 °C, affording an orange powder after washing with cold (−35 °C) CH$_2$Cl$_2$ (20 mL) and drying under vacuum. Two further crops were isolated from the mother liquor following the latter procedure. A final recrystallisation from slow-cooling a saturated CH$_2$Cl$_2$ solution to −35 °C afforded pale orange needles of $\text{B(C}_6\text{Cl}_5\text{)}_2\text{Cl}$, which were dried in vacuo (4.09 g, 54%, 7.5 mmol). $^{13}\text{C}$$\{^1\text{H}\}$ NMR (CD$_2$Cl$_2$, 75 MHz): δ 136.4 (s, para-C_6Cl_5); 134.7, 133.1 (s, meta-C_6Cl_5 and ortho-C_6Cl_5). Resonance for ipso-C_6Cl_5 not observed. ^{11}B NMR (CD$_2$Cl$_2$, 128 MHz): δ 62.9 (br. s). HRMS (EI, m/z): for BC$_{12}$Cl$_{11}$ Calcd: 539.6667. Found: 539.6660. IR (Nujol, cm$^{-1}$): 1700 (m), 1684 (m), 1653 (m), 1559 (w), 1540 (w), 1521 (w), 1457 (s), 1377 (s), 1322 (s), 1298 (s), 668 (w). Anal. Calcd. for BC$_{12}$Cl$_{11}$: C 26.45. Found: C 26.57.
5.3.6 Synthesis of 2; $\text{B(C}_6\text{Cl}_5)\text{Cl}_2(\text{C}_6\text{F}_5)\ (2.6)$

A ampoule was charged with a stirrer bar, $\text{B(C}_6\text{Cl}_5)\text{Cl}_2\ (4.09 \text{ g, 7.5 mmol})$, $\text{CuC}_6\text{F}_5\ (1.82 \text{ g, 7.9 mmol})$ and toluene (100 mL). The vessel was sealed and heated to 80 °C (temperatures above this result in decomposition of CuC_6F_5) with stirring for 72 h before being cooled and the solvent removed in vacuo. Extraction with $\text{CH}_2\text{Cl}_2\ (2 \times 50 \text{ mL})$ was followed by filtering through Celite and solvent removal in vacuo. The resultant residue was recrystallised from toluene/hexane (1:2) at −78 °C, producing an orange microcrystalline solid which was washed with cold (−78 °C) pentane ($2 \times 20 \text{ mL}$) and dried under vacuum to yield $2\ (\text{B(C}_6\text{Cl}_5)\text{Cl}_2(\text{C}_6\text{F}_5))\ (3.39 \text{ g, 70\%, 5.0 mmol})$. Crystals suitable for X-ray diffraction were grown from slow evaporation of a saturated toluene solution.

$^{13}\text{C}^{1}{\text{H}} \text{ NMR (CD}_2\text{Cl}_2, 75 \text{ MHz}): \delta \ 149.0 \ (\text{dm, } ^1J\text{CF} = 253 \text{ Hz, ortho-}\text{C}_6\text{F}_5); 145.9 \ (\text{dm, } ^1J\text{CF} = 261 \text{ Hz, para-}\text{C}_6\text{F}_5); 138.0 \ (\text{dm, } ^1J\text{CF} = 251 \text{ Hz, meta-}\text{C}_6\text{F}_5); 139.6 \ (\text{br, ipso-C}_6\text{Cl}_5); 136.6 \ (\text{s, para-C}_6\text{Cl}_5); 133.0 \ (\text{s, meta-C}_6\text{Cl}_5 \text{ and ortho-C}_6\text{Cl}_5); 114.5 \ (\text{br, ipso-C}_6\text{F}_5)$. $^{11}\text{B} \text{ NMR (C}_7\text{D}_8, 128 \text{ MHz}): \delta \ 64.1 \ (\text{br. s})$. $^{19}\text{F} \text{ NMR (C}_7\text{D}_8, 282.2 \text{ MHz}): \delta -127.2 \ (\text{d, } 2\text{F, } ^3J\text{FF} = 21 \text{ Hz, ortho-C}_6\text{F}_5); -141.4 \ (\text{t, 1F, } ^3J\text{FF} = 21 \text{ Hz, para-C}_6\text{F}_5); -159.7 \ (\text{m, 2F, meta-C}_6\text{F}_5)$. HRMS (EI, m/z): for BC$_{18}Cl_{10}F_{5}$ Calculated: 675.6899. Found: 675.6774. IR (Nujol, cm$^{-1}$): 1700 (m), 1653 (m), 1559 (m), 1540 (w), 1521 (m), 1507 (w), 1481 (s), 1465 (s), 1394 (m), 1332 (s), 1313 (s), 1237 (m), 1190 (w), 1147 (m), 1127 (w), 1104 (w), 973 (s), 876 (w), 668 (m), 642 (w). Anal. Calculed for BC$_{18}$Cl$_{10}$F$_{5}$: C 31.96. Found: C 32.27. X-ray data: HZ2_6.cif
5.3.7 Synthesis of 3; B(C₆Cl₅)₃ (2.7)

Hexane (100 mL) was added to a stirred solution of C₆Cl₅Li (from 31.2 mmol of C₆Cl₆) at –78 °C. To this slurry was added BCl₃ (10 mL, 10 mmol, 1.0 M in heptane) via syringe at –78 °C. The solution was allowed to warm slowly to –10 °C and stirred for 1 h before the cloudy orange suspension was allowed to warm to room temperature (22 °C) and stirred for a further 12 h. After quenching the reaction by addition of H₂O (0.5 mL), the solvent was removed in vacuo and subsequent work-up performed in air. CH₂Cl₂ (150 mL) was used to extract the crude product, the slurry being filtered through Celite and the filter pad washed with further CH₂Cl₂ (2 × 50 mL). Solvent was removed under reduced pressure to yield an amber solid. Recrystallisation using a minimum quantity of toluene at 100 °C followed by rapid filtration through glass wool and slow cooling to room temperature led to the formation of pale yellow crystals of B(C₆Cl₅)₃-(toluene). The toluene supernatant was decanted off and the crystals washed with pentane (2 x 40 mL), followed by drying for 16h under vacuum (1 x 10⁻³ mbar) to remove the co-crystallised toluene. Yield 3.26 g (42%, 4.3 mmol). X-ray quality crystals were produced by a second toluene recrystallisation. ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz): δ 140.6 (br, ipso-C₆Cl₅); 136.7 (s, para-C₆Cl₅); 135.3, 133.0 (both s, meta-C₆Cl₅ and ortho-C₆Cl₅). ¹¹B NMR (C₇D₈, 128 MHz): δ 65.6 (br. s). HRMS (EI, m/z): for BC₁₈Cl₁₅ Calcd: 751.5421. Found: 751.5177. IR (Nujol, cm⁻¹): 1700 (m), 1684 (m), 1652 (m), 1558 (m), 1540 (m), 1507 (m), 1468 (s), 1334 (m), 1313 (m), 1232
(m), 1130 (w), 991 (w), 668 (m), 636 (w). Anal. Calcd. for BC\textsubscript{18}Cl\textsubscript{15}: C 28.49. Found: C 28.63. X-ray data: HZ2_7.cif

5.4 Experimental Details for Chapter Three

5.4.1 Synthesis of [(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}B-H][H-DABCO] (3.1)

A 50 mL ampoule was charged with a magnetic stirrer bar, B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3} (500 mg, 0.97 mmol), DABCO (108 mg, 0.97 mmol) and toluene (15 mL). The reaction was freeze-pump-thaw degassed (x3) before H\textsubscript{2} (1 atm) was added to the ampoule and the reaction mixture was heated at 65 °C for 7 days with stirring. The precipitate was washed with pentane (2 x 10 mL), collected and dried under vacuum (10−2 mbar) at 80 °C to afford [(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}B-H][H-DABCO] as a colourless powdery solid (522 mg, 86%, 0.83 mmol). Single X-ray quality crystals were grown by recrystallisation using benzene (70 °C). ¹H NMR (CD\textsubscript{3}CN, 300 MHz): δ 7.41 (s, 1H, NH); 3.60 (br q, 1H, 1J\textsubscript{BH} = 94 Hz, BH); 3.03 (s, 12H, CH\textsubscript{2}N). ¹1B NMR (CD\textsubscript{3}CN, 128 MHz): δ −25.50 (d, 1J\textsubscript{BH} = 90 Hz). ¹3C{¹H} NMR (CD\textsubscript{3}CN, 75 MHz): δ 148.82 (dm, 1J\textsubscript{CF} = 234 Hz, ortho-C\textsubscript{6}F\textsubscript{5}); 138.76 (dm, 1J\textsubscript{CF} = 242 Hz, para-C\textsubscript{6}F\textsubscript{5}); 137.51 (dm, 1J\textsubscript{CF} = 245 Hz, meta- C\textsubscript{6}F\textsubscript{5}); 126.28 (s, ipso-C\textsubscript{6}F\textsubscript{5}); 45.98 (s, NCH\textsubscript{2}). ¹9F NMR (CD\textsubscript{3}CN, 282 MHz): δ −134.66 (d, 6F, 3J\textsubscript{FF} = 21 Hz, ortho-C\textsubscript{6}F\textsubscript{5}); −164.91 (t, 3F, 3J\textsubscript{FF} = 20 Hz, para-C\textsubscript{6}F\textsubscript{5}); −168.27 (m, 6F, meta- C\textsubscript{6}F\textsubscript{5}). HRMS (ESI, m/z): for C\textsubscript{18}HBF\textsubscript{15} Calcd: 512.9937. Found: 512.9941. IR (cm−1): 2972 (w), 2370 (w), 1703 (w), 1641 (w), 1510 (s), 1450 (s), 1373 (s), 1325 (w), 1055 (m), 995 (w), 960 (s), 893 (s), 837 (s), 798 (s), 756 (s), 727 (w) 659 (s). Anal. Calcd. for C\textsubscript{24}H\textsubscript{14}BCl\textsubscript{5}F\textsubscript{10}N\textsubscript{2}: C 46.04; H 2.25; N 4.47. Found: C 45.91; H 2.16; N 4.39. X-ray data: HZ3_1.cif
5.4.2 Synthesis of DABCO-BH(C₆F₅)₂ (3.2)

A J-Young’s NMR tube was charged with B(C₆F₅)₃ (80 mg, 0.16 mmol), DABCO (18 mg, 0.16 mmol) and toluene-d₈ (0.7 mL). The reaction was freeze-pump-thaw degassed (x3) before H₂ (1 atm) was added to the ampoule and the reaction mixture was heated at 65 °C for 7 days and monitored using ¹H, ¹⁹F and ¹¹B NMR spectroscopy. Upon cooling single X-ray quality crystals grew from the reaction mixture. The precipitate was isolated and analysis showed full conversion to DABCO-BH(C₆F₅)₂ and C₆F₅H. Due to the loss of material for single X-ray crystallography, the yield could not be determined. ¹H NMR (CD₃CN, 300 MHz): δ 3.25 (br m, 1H, BH); 2.37 (s, 12H, CH₂N). ¹¹B NMR (CD₃CN, 128 MHz): δ −8.25 (d, ¹JBH = 91 Hz). ¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 148.92 (dm, ¹JC₆F₅ = 238 Hz, ortho-C₆F₅); 146.17 (dm, ¹JC₆F₅ = 250 Hz, para-C₆F₅); 137.61 (dm, ¹JC₆F₅ = 250 Hz, meta-C₆F₅); 45.54 (s, NCH₂). ¹⁹F NMR (CD₃CN, 282 MHz): δ −128.55 (br d, 4F, ³JFF = 22 Hz, ortho-C₆F₅); −157.15 (t, 2F, ³JFF = 20 Hz, para-C₆F₅); −163.50 (m, 4F, meta-C₆F₅). HRMS (ESI, m/z): for C₁₈H₁₃BF₁₀N₂Na Calcd: 481.0904. Found: 481.0909. IR (cm⁻¹): 2959 (s), 2892 (w), 2439 (br. s), 1643 (s), 1514 (s), 1459 (s), 1378 (w), 1319 (s), 1278 (s), 1259 (s), 1131 (s), 1074 (br. m), 970 (s), 892 (s), 834 (m), 736 (s). X-ray data: HZ3_2.cif.
5.4.3 Synthesis of [1-H][H-DABCO] (3.3)

A 50 mL ampoule was charged with a magnetic stirrer bar, 1 (B(C₆F₅)₂(C₆Cl₅)) (577 mg, 0.97 mmol), DABCO (108 mg, 0.97 mmol) and toluene (15 mL). The reaction was freeze-pump-thaw degassed (x3) before H₂ (1 atm) was added to the ampoule and the reaction mixture was heated at 65 °C for 7 days with stirring. The precipitate was washed with pentane (2 x 10 mL), collected and dried under vacuum (10⁻² mbar) at 80 °C to give [1-H][H-DABCO] as a yellow microcrystalline solid (530 mg, 77%, 0.75 mmol).

¹H NMR (CD₃CN, 300 MHz): δ 8.65 (s, 1H, NH); 4.11 (br q, 1H, J_BH = 90 Hz, BH); 2.95 (s, 12H, CH₂N).

¹¹B NMR (CD₃CN, 128 MHz): δ -19.73 (d, J_BH = 94 Hz).

¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 149.49 (dm, J_CF = 234 Hz, ortho-C₆F₅); 138.97 (s, para-C₆Cl₅); 139.04 (dm, J_CF = 242 Hz, para- C₆F₅); 137.81 (dm, J_CF = 251 Hz, meta- C₆F₅); 130.45, 129.98 (both s, meta-C₆Cl₅ and ortho-C₆Cl₅); 45.98 (s, NCH₂). Ipso-C₆F₅ and ipso-C₆Cl₅ were not observed.

¹⁹F NMR (CD₃CN, 282 MHz): δ -134.52 (d, J_FF = 21 Hz, ortho-C₆F₅); -165.24 (t, J_FF = 19 Hz, para-C₆F₅); -168.41 (m, J_FF = 21 Hz, meta-C₆F₅).

HRMS (ESI⁺, m/z): for C₁₈HBCl₁₀F₁₀N₂ Calcd: 592.8460. Found: 592.8466. IR (cm⁻¹): 2972 (w), 2362 (w), 1701 (br), 1643 (s), 1602 (w), 1512 (s), 1496 (m), 1462 (m), 1178 (w), 1053 (s).

Anal. Calcd. for C₂₉H₁₄BCl₃F₁₀N₂: C 40.69; H 1.99; N 3.95. Found: C 40.80; H 1.94; N 3.88. X-ray data: HZ3_3.cif.
5.4.4 Synthesis of [2-H][H-DABCO] (3.4)

A 50 mL ampoule was charged with a magnetic stirrer bar, 2 \((B(\text{C}_6\text{F}_5)(\text{C}_6\text{Cl}_3)_2)\) (300 mg, 0.39 mmol), DABCO (45.7 mg, 0.39 mmol) and toluene (15 mL). The reaction was freeze-pump-thaw degassed (x3) before \(\text{H}_2\) (1 atm) was added to the ampoule and the reaction mixture was stirred at 22 \(^\circ\text{C}\) for 5 days. The precipitate was washed with pentane to remove any starting material (2 x 10 mL), collected and dried under vacuum (10\(^{-2}\) mbar) to yield [2-H][H-DABCO] as a pale yellow solid (156 mg, 45%, 0.19 mmol). \(^1\text{H}\) NMR (CD\(_3\)CN, 300 MHz): \(\delta\) 4.21 (br q, 1H, \(^1J_{\text{BH}} = 90\) Hz, BH); 2.88 (s, 12H, \(\text{CH}_2\)N). \(\text{NH}\) peak was not observed. \(^{11}\text{B}\) NMR (CD\(_3\)CN, 128 MHz): \(\delta\) −14.47 (d, \(^1J_{\text{BH}} = 90\) Hz). \(^{13}\text{C}\)\(^{\text{1H}}\) NMR (CD\(_3\)CN, 75 MHz): \(\delta\) 149.09 (dm, \(^1J_{\text{CF}} = 240\) Hz, ortho-\(\text{C}_6\text{F}_5\)); 139.29 (s, ipso-\(\text{C}_6\text{Cl}_5\)); 138.91 (dm, \(^1J_{\text{CF}} = 234\) Hz, para-\(\text{C}_6\text{F}_5\)); 137.56 (dm, \(^1J_{\text{CF}} = 244\) Hz, meta-\(\text{C}_6\text{F}_5\)); 131.24 (s, para-\(\text{C}_6\text{Cl}_5\)); 130.30 (both s, meta-\(\text{C}_6\text{Cl}_5\) and ortho-\(\text{C}_6\text{Cl}_5\)); 46.62 (s, \(\text{NCH}_2\)). Ipso-\(\text{C}_6\text{F}_5\) was not observed. \(^{19}\text{F}\) NMR (CD\(_3\)CN, 282 MHz): \(\delta\) −133.78 (v. br m, 2F, ortho-\(\text{C}_6\text{F}_5\)); −165.16 (t, 1F, \(^3J_{\text{FF}} = 21\) Hz, para-\(\text{C}_6\text{F}_5\)); −168.41 (br s, 2F, meta-\(\text{C}_6\text{F}_5\)). HRMS (ESI\(^+\), \text{m/z}): for C\(_{18}\)HBCl\(_{10}\)F\(_5\) Calcd: 672.6982. Found: 672.7000. IR (cm\(^{-1}\)): 2945 (w), 2207 (w), 1510 (s), 1458 (s), 1301 (m), 1215 (w), 1107 (s), 1078 (s), 1056 (s), 1010 (w), 964 (s), 916 (w), 850 (w), 800 (w), 769 (s), 734 (s). Anal. Calcd. for C\(_{24}\)H\(_4\)BCl\(_{10}\)F\(_3\)N\(_2\): C 36.46; H 1.78; N 3.54. Found: C 36.56; H 1.70; N 3.57.
5.4.5 Synthesis of DABCO-BH(C₆F₅)(C₆Cl₅) (3.5)

A J-Young’s NMR tube was charged with 2 (B(C₆Cl₅)₂(C₆F₅)) (30 mg, 0.04 mmol), DABCO (4.5 mg, 0.04 mmol) and toluene-δ₈ (0.7 mL). The reaction was freeze-pump-thaw degassed (x3) before H₂ (1 atm) was added to the ampoule and the reaction mixture was heated at 65 °C for 7 days and monitored using ¹H, ¹⁹F and ¹¹B NMR spectroscopy. Single X-ray quality crystals were grown from a saturated solution of toluene layered with pentane. The precipitate was isolated and analysis showed a mixture of 2, DABCO-BH(C₆F₅)(C₆Cl₅) and C₆Cl₅H. Due to the loss of material for single X-ray crystallography, the yield could not be determined. ¹H NMR (CD₃CN, 300 MHz): δ 2.31 (s, 12H, CH₂N). BH resonance was not observed. ¹¹B NMR (CD₃CN, 128 MHz): δ −3.18 (d, J₁₈ = 80 Hz). ¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 50.40 and 45.54 (both s, NCH₂). Resonances for the C₆F₅ and C₆Cl₅ rings were not observed. ¹⁹F NMR (CD₃CN, 282 MHz): δ −127.00 (br d, 2F, J₉₁₂ = 23 Hz, ortho-C₆F₅); −159.13 (t, 1F, J₉₁₂ = 20 Hz, para-C₆F₅); −164.10 (m, 2F, meta- C₆F₅). IR (cm⁻¹): 1703 (w), 1510 (s), 1458 (s), 1325 (w), 1215 (w), 1057 (s), 966 (s), 916 (w), 800 (m), 772 (s), 660 (s). X-ray data: HZ3_5.cif. HRMS using ESI or ES could not be obtained.
5.4.6 Synthesis of [3-\textit{H}][\textit{H}-\text{DABCO}] (3.6)

A 50 mL ampoule was charged with a magnetic stirrer bar, 3 (B(C_{6}Cl_{5})_{3}) (300 mg, 0.39 mmol), DABCO (45.7 mg, 0.39 mmol) and toluene (15 mL). The reaction was freeze-pump-thaw degassed (x3) before \textit{H}_{2} (1 atm) was added to the ampoule and the reaction mixture was heated at 110 °C for 2 days with stirring. The precipitate was washed with hot toluene (110 °C) (2 x 10 mL), collected and dried under vacuum (10^{-2} mbar) at 120 °C to give [3-\textit{H}][\textit{H}-\text{DABCO}] as a yellow solid (114 mg, 33\%, 0.13 mmol). 1H NMR (CD_{3}CN, 300 MHz): \(\delta\) 8.52 (s, 1H, NH); 4.17 (br q, 1H, 1J_{BH} = 86 Hz, BH); 2.87 (s, 12H, 13C{1H}N). 11B NMR (CD_{3}CN, 128 MHz): \(\delta\) –8.83 (d, 1J_{BH} = 86 Hz). 13C{1H} NMR (CD_{3}CN, 75 MHz): \(\delta\) 139.22 (s, ipso-C_{6}Cl_{5}); 132.76 (d, para-C_{6}Cl_{5}); 130.79, 130.30 (both s, meta-C_{6}Cl_{5} and ortho-C_{6}Cl_{5}); 46.87 (s, NCH_{2}). HRMS (ESI-, \textit{m/z}): for C\textsubscript{18}HBCl\textsubscript{10}F\textsubscript{5} Calcd: 752.5505. Found: 752.5509. IR (cm-1): 2943 (w), 2204 (w), 1525 (s), 1456 (w), 1321 (m), 1315 (m), 1300 (m), 1222 (s), 1165 (w), 1178 (s), 1056 (s), 1008 (br), 972 (s), 833 (s), 800 (s), 771 (m), 705 (s). Anal. Calcd. for C\textsubscript{24}H\textsubscript{14}BCl\textsubscript{15}N\textsubscript{2}: C 33.02; H 1.62; N 3.21. Found: C 33.09; H 1.62; N 3.26. X-ray data: HZ3_6.cif

5.4.7 Synthesis of [1-\textit{H}][\textit{H}-\text{TMP}] (3.7)

A 50 mL ampoule was charged with a magnetic stirrer bar, 1 (B(C_{6}F_{5})_{2}(C_{6}Cl_{5})) (300 mg, 0.84 mmol), TMP (118 mg, 0.84 mmol) and toluene (15 mL). The reaction was freeze-pump-thaw degassed (x3) before \textit{H}_{2} (1 atm) was added to the ampoule and the reaction mixture
was heated at 110 °C for 7 days with stirring. The solvent was removed under vacuum and the residue was washed with pentane (2 x 10 mL), collected and dried under vacuum (10⁻² mbar) at 80 °C to afford [1-H][H-TMP] as a colourless solid (284 mg, 76%, 0.38 mmol). ¹H NMR (CD₃CN, 300 MHz): δ 6.21 (br t (1:1:1), 2H, ¹J_NH = 51 Hz, NH₂); 3.81 (br q, 1H, ¹J_BH = 90 Hz, BH); 1.73 (m, 2H, CH₂); 1.63 (m, 4H, CH₂); 1.39 (s, 12H, CH₃). ¹¹B NMR (CD₃CN, 128 MHz): δ −19.81 (d, ¹J_BH = 90 Hz). ¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 149.49 (dm, ¹J_CF = 234 Hz, ortho-C₆F₅); 144.96 (br s, ipso-C₆Cl₅); 139.30 (s, ipso-C₆Cl₅); 139.06 (dm, ¹J_CF = 242 Hz, para-C₆F₅); 137.89 (dm, ¹J_CF = 243 Hz, meta-C₆F₅); 131.27 (s, para-C₆Cl₅); 129.79, 126.16 (both s, meta-C₆Cl₅ and ortho-C₆Cl₃); 126.16 (br s, ipso-C₆F₅); 59.76 (s, NC(CH₃)₂CH₂); 35.73 (s, NC(CH₃)₂CH₂); 27.68 (s, NC(CH₃)₂CH₂); 17.01 (s, NC(CH₃)₂CH₂). ipso-C₆F₅ was not observed. ¹⁹F NMR (CD₃CN, 282 MHz): δ −134.51 (d, 4F, ³J_FF = 22 Hz, ortho-C₆F₅); −165.29 (t, 2F, ³J_FF = 19 Hz, para-C₆F₅); −168.39 (m, 4F, meta-C₆F₅). HRMS (ES⁺, m/z): for C₁₈HBCl₁₀F₅ Calcd: 592.8471. Found: 592.8471. IR (cm⁻¹): 2959 (w), 2262 (w), 1639(w), 1573 (s), 1512 (s), 1452 (s), 1384 (s), 1327 (w), 1301 (s), 1259 (s), 1076 (br m), 958 (s), 893 (s), 785 (br s). Anal. Calcd. for C₂₇H₂₃BCl₄F₁₀N: C 43.97; H 2.87; N 1.90. Found: C 44.07; H 2.78; N 2.04. X-ray data: HZ3_7.cif. Neutron Data: HZ3_7_neutron.cif.

5.4.8 Synthesis of [2-H][H-TMP] (3.8)

A 50 mL ampoule was charged with a magnetic stirrer bar, 2 (B(C₆F₅)(C₆Cl₅)) (500 mg, 0.84 mmol), TMP (118 mg, 0.84 mmol) and toluene (15 mL). The reaction was freeze-pump-thaw degassed (x3) before H₂ (1 atm) was added to the ampoule and the reaction mixture was...
heated at 110 °C for 7 days with stirring. Washing the precipitate with toluene (2 x 10 mL), collected and dried under vacuum (10⁻² mbar) at 80 °C afforded [2-H][H-TMP] as an orange solid (530 mg, 77%, 0.75 mmol). 1H NMR (CD$_3$CN, 300 MHz): δ 4.03 (br q, 1H, 1J$_{BH}$ = 86 Hz, BH); 1.72 (br s, 2H, CH$_2$); 1.63 (br s, 4H, CH$_2$); 1.41 (br s, 12H, CH$_3$). NH$_2$ peak was not observed. 11B NMR (CD$_3$CN, 128 MHz): δ −14.52 (d, 1J$_{BH}$ = 90 Hz).

19F NMR (CD$_3$CN, 282 MHz): δ −134.73 (v. br m, 2F, ortho-C$_6$F$_5$); −165.24 (t, 3F, 3J$_{FF}$ = 19 Hz, para-C$_6$F$_5$); −168.55 (br s, 2F, meta-C$_6$F$_5$). 13C{1H} NMR (CD$_3$CN, 75 MHz): δ 149.45 (dm, 1J$_{CF}$ = 237 Hz, ortho-C$_6$F$_5$); 139.52 (dm, 1J$_{CF}$ = 242 Hz, para-C$_6$F$_5$); 139.07 (s, ipso-C$_6$F$_5$); 138.79 (dm, 1J$_{CF}$ = 246.05 Hz, meta-C$_6$F$_5$); 131.24 (s, para-C$_6$Cl$_5$); 130.79, 130.30 (both s, meta-C$_6$Cl$_5$ and ortho-C$_6$Cl$_5$); 59.09 (s, N(C(CH$_3$)$_2$CH$_2$); 35.82 (s, NC(CH$_3$)$_2$CH$_2$); 27.78 (s, NC(CH$_3$)$_2$CH$_2$); 17.14 (s, NC(CH$_3$)$_2$CH$_2$). Ipso-C$_6$F$_5$ was not observed. HRMS (ESI−, m/z): for C$_{18}$HBCl$_{10}$F$_5$ Calcd: 672.6982. Found: 672.6985. IR (cm$^{-1}$): 2970 (w), 1959 (w), 1681 (m), 1585 (s), 1533 (s), 1512 (s), 1498 (s), 1429 (s), 1186 (m), 1058 (m). Anal. Calcd. for C$_{27}$H$_2$BCl$_{10}$F$_5$N: C 39.61; H 2.46; N 1.71. Found: C 39.66; H 2.41; N 1.74. X-ray data: HZ3_8.cif

5.4.9 Synthesis of [3-H][H-TMP] (3.9)

A 50 mL ampoule was charged with a magnetic stirrer bar, 3 (B(C$_6$Cl$_5$)$_3$) (500 mg, 0.66 mmol), TMP (93 mg, 0.66 mmol) and THF (10 mL). The reaction was freeze-pump-thaw degassed (x3) before H$_2$ (1 atm) was added to the ampoule and the reaction mixture was heated at 70 °C for 8 days with stirring. The precipitate was washed with hot toluene (110 °C) (2 x 10 mL), collected and dried under vacuum (10⁻² mbar) at 120 °C to yield [3-H][H-TMP] as a yellow solid (360 mg, 61%, 0.40 mmol). 1H NMR (CD$_3$CN, 300
5.4.10 Synthesis of [1-H][H-Lut] (3.10)

A 50 mL ampoule was charged with a magnetic stirrer bar, 1 (B(C₆Cl₅)(C₆F₅))₂ (1 g, 1.69 mmol), Lut (180 mg, 1.69 mmol) and toluene (30 mL). The reaction was freeze-pump-thaw degassed (x3) before H₂ (1 atm) was added to the ampoule and the reaction mixture was heated at 65 °C for 7 days with stirring. Washing the precipitate with pentane (2 x 10 mL), collected and dried under vacuum (10⁻² mbar) at 80 °C afforded [1-H][H-Lut] as a colourless solid (415 mg, 35%, 0.59 mmol).

¹H NMR (CD₃CN, 300 MHz): δ 8.18 (t, JHH = 8 Hz, NC(CH₃)CHCH); 7.53 (d, JHH = 8 Hz, NC(CH₃)CHCH); 3.78 (br q, 1H, JBH = 86 Hz, BH); 2.64 (s, NC(CH₃)CHCH). NH₂ peak was not observed. **¹¹B NMR (CD₃CN, 128 MHz):** δ −19.72 (d, JBH = 90 Hz). **¹⁹F NMR (CD₃CN, 282 MHz):** δ −134.47 (br d, JFF = 21 Hz, ortho-C₆F₅); −165.32 (t, 2F, JFF = 20 Hz, para-C₆F₅); −168.50 (br s, 4F, meta-C₆F₅). **¹³C{¹H} NMR (CD₃CN, 75 MHz):** δ 154.66 (s, NC(CH₃)CHCH); 148.77 (dm, JCF = 240 Hz, ortho-C₆F₅);
146.61 (s, NC(CH\textsubscript{3})CH\textsubscript{2}C\textsubscript{6}F\textsubscript{5}); 139.01 (s, ipso-C\textsubscript{6}Cl\textsubscript{5}); 138.77 (dm, \textit{J}_{\text{CF}} = 246 \text{ Hz}, meta-C\textsubscript{6}F\textsubscript{5}); 137.68 (dm, \textit{J}_{\text{CF}} = 245 \text{ Hz}, para-C\textsubscript{6}F\textsubscript{5}); 129.99 and 129.49 (both s, meta-C\textsubscript{6}Cl\textsubscript{5} and ortho-C\textsubscript{6}Cl\textsubscript{5}); 129.33 (s, NC(CH\textsubscript{3})C\textsubscript{6}F\textsubscript{5}); 126.33 (s, ipso-C\textsubscript{6}F\textsubscript{5}); 30.61 (s, NC(CH\textsubscript{3})CHCH).

HRMS (ESI−, m/z): for C\textsubscript{18}HBCl\textsubscript{10}F\textsubscript{5} Calcd: 592.8460. Found: 592.8468.

IR (cm-1): 2963 (w), 2345 (w), 1633.70 (w), 1510.26 (w), 1452.39 (s), 1257.58 (2), 1002.98 (m), 781.17 (s).

Anal. Calcd. for C\textsubscript{25}H\textsubscript{11}BCl\textsubscript{5}F\textsubscript{10}N: C 42.69; H 1.58; N 1.99. Found: C 42.86; H 1.64; N 2.05.

5.4.11 Synthesis of [2-H][H-Lut] (3.11)

A 50 mL ampoule was charged with a magnetic stirrer bar, 2 (B(C\textsubscript{6}Cl\textsubscript{5})\textsubscript{2}(C\textsubscript{6}F\textsubscript{5})) (300 mg, 0.44 mmol), Lut (62.6 mg, 0.44 mmol) and toluene (10 mL). The reaction was freeze-pump-thaw degassed (x3) before H\textsubscript{2} (1 atm) was added to the ampoule and the reaction mixture was stirred at 22 °C for 7 days. The precipitate was washed with toluene (2 x 10 mL), collected and dried under vacuum (10−2 mbar) at 80 °C afforded [2-H][H-Lut] as an orange solid (62 mg, 18%, 0.08 mmol). \textit{1H NMR (CD\textsubscript{3}CN, 300 MHz):} δ 8.17 (t, 1H, \textit{J}_{\text{HH}} = 8 Hz, NC(CH\textsubscript{3})CHCH); 7.53 (d, 2H, \textit{J}_{\text{HH}} = 8 Hz, NC(CH\textsubscript{3})C\textsubscript{6}F\textsubscript{5}); 4.01 (br q, 1H, \textit{J}_{\text{BH}} = 89 Hz, B\textsubscript{H}); 2.71 (s, 6H, NC(CH\textsubscript{3})C\textsubscript{6}F\textsubscript{5}). NH\textsubscript{2} peak was not observed. \textit{11B NMR (CD\textsubscript{3}CN, 128 MHz):} δ −14.51 (d, \textit{J}_{\text{BH}} = 86 Hz). \textit{19F NMR (CD\textsubscript{3}CN, 282 MHz):} δ −132.97 (v, br m, 2F, ortho-C\textsubscript{6}F\textsubscript{5}); −158.59 (t, 1F, \textit{J}_{\text{FF}} = 19 Hz, para-C\textsubscript{6}F\textsubscript{5}); −165.77 (br s, 2F, meta-C\textsubscript{6}F\textsubscript{5}). \textit{13C\textsuperscript{\textit{1H}} NMR (CD\textsubscript{3}CN, 75 MHz):} δ 155.14 (s, NC(CH\textsubscript{3})C\textsubscript{6}F\textsubscript{5}); 149.82 (dm, \textit{J}_{\text{CF}} = 240 Hz); 146.52 (s, NC(CH\textsubscript{3})C\textsubscript{6}F\textsubscript{5}), ortho-C\textsubscript{6}F\textsubscript{5}; 138.77 (dm, \textit{J}_{\text{CF}} = 246 Hz, para-C\textsubscript{6}F\textsubscript{5}); 138.13 (s, ipso-C\textsubscript{6}Cl\textsubscript{5}); 137.75 (dm, \textit{J}_{\text{CF}} = 245 Hz, meta-C\textsubscript{6}F\textsubscript{5}); 133.25 (s, para-C\textsubscript{6}Cl\textsubscript{5}); 131.23 and 130.30 (both s, meta-C\textsubscript{6}Cl\textsubscript{5} and ortho-C\textsubscript{6}Cl\textsubscript{5}); 125.90
(s, NC(CH₃)CHCH); 27.77 (s, NC(CH₃)CHCH). *ipso*-C₆F₅ was not observed. **HRMS**
(ESI⁻, m/z): for C₁₈HBCl₁₀F₅ Calcd: 676.6928. **Found**: 676.6976. **IR (cm⁻¹)**: 2978 (w), 2347 (w), 1643 (s), 1506 (br s), 1465 (s), 1382 (w), 1317 (m), 1263 (w), 1230 (s), 1188 (w), 1153 (s), 1132 (w), 10911 (br s), 968 (s), 873 (w), 788 (br s), 758 (w), 709 (s). **Anal. Calcd.** for C₂₅H₁₁BCl₁₀F₅N: C 38.22; H 1.41; N 1.78. **Found**: C 38.17; H 1.50; N 1.86.

5.4.12 Synthesis of [3-**H**][**H**-Lut] (3.10)

A 50 mL ampoule was charged with a magnetic stirrer bar, 3 (B(C₆Cl₅)₃) (500 mg, 0.66 mmol), 2,6-Lutidine (71 mg, 0.66 mmol) and THF (15 mL). The reaction was freeze-pump-thaw degassed (x3) before H₂ (1 atm) was added to the ampoule and the reaction mixture was heated at 70 °C for 8 days with stirring. The supernatant was decanted off and the colourless precipitate was collected, washed with Et₂O and dried under vacuum (10⁻² mbar) at 120 °C afforded [3-**H**][**H**-Lut] as an orange/yellow solid (91 mg, 16%, 0.11 mmol). **¹H NMR** (CD₃CN, 300 MHz): δ 7.85 (t, 1H, ³JHH = 8 Hz, NC(CH₃)CHCH); 7.28 (d, 2H, ¹JHH = 8 Hz, NC(CH₃)C₆H); 4.23 (br q, 1H, ¹JBH = 8 Hz, BH); 2.56 (s, 6H, NC(CH₃)CHCH); NH peak was not observed. **¹¹B NMR** (CD₃CN, 128 MHz): δ −8.75 (d, ¹JBH = 90 Hz). **¹³C{¹H} NMR** (CD₃CN, 75 MHz): δ 156.99 (s, NC(CH₃)CHCH); 142.52 (s, NC(CH₃)CHCH); 139.19 (br s, *ipso*-C₆Cl₅); 131.18 (s, **para**-C₆Cl₅); 130.94 and 129.01 (both s, **meta**-C₆Cl₅ and **ortho**-C₆Cl₅); 123.65 (s, NC(CH₃)CHCH); 22.56 (s, NC(CH₃)CHCH). **HRMS** (ESI⁻, m/z): for C₁₈HBCl₁₀F₅ Calcd: 752.5505. **Found**: 752.3365. **IR (cm⁻¹)**: 2961 (w), 2259 (w), 1525 (s), 1327 (s), 1300 (m), 1257 (w), 1224 (s), 1192 (s), 1126 (s), 1062 (br m), 989 (s), 871 (w), 794 (s), 188.
Chapter Five: Experimental Details and Characterisation Data

742 (w), 705 (s). **Anal. Calcd.** for C$_{25}$H$_{11}$BCl$_{15}$N: C 34.59; H 1.28; N 1.61. **Found:** C 34.71; H 1.38; N 1.71.

5.5 Experimental Details for Chapter Four

5.5.1 Synthesis of the Formatoborates using Route A1

A J-Young’s NMR tube containing a borohydride salt in either THF-d_8 or C$_7$D$_8$ (0.7 mL) was freeze-pump-thaw degassed (x3) and to this was added 13CO$_2$ (2.4 mL), via trap-to-trap transfer using a calibrated J-Young’s NMR tube. The reaction mixtures were heated at various temperatures for 1-2 weeks and were monitored using 1H, 11B and 13C NMR spectroscopy.

<table>
<thead>
<tr>
<th>Borohydride Salt</th>
<th>m (mg)</th>
<th>n (mmol)</th>
<th>Equiv. of 13CO$_2$</th>
<th>Solvent</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(C$_6$F$_5$)$_3$B-H][H-DABCO]</td>
<td>30</td>
<td>0.045</td>
<td>2</td>
<td>Toluene-d_8</td>
<td>65</td>
</tr>
<tr>
<td>[1-H][H-DABCO]</td>
<td>70</td>
<td>0.099</td>
<td>1</td>
<td>THF-d_8</td>
<td>145</td>
</tr>
<tr>
<td>[2-H][H-DABCO]</td>
<td>78</td>
<td>0.099</td>
<td>1</td>
<td>THF-d_8</td>
<td>145</td>
</tr>
<tr>
<td>[3-H][H-DABCO]</td>
<td>86</td>
<td>0.099</td>
<td>1</td>
<td>THF-d_8</td>
<td>145</td>
</tr>
<tr>
<td>[1-H][H-TMP]</td>
<td>73</td>
<td>0.099</td>
<td>1</td>
<td>Toluene-d_8</td>
<td>25</td>
</tr>
<tr>
<td>[2-H][H-TMP]</td>
<td>81</td>
<td>0.099</td>
<td>1</td>
<td>Toluene-d_8</td>
<td>120</td>
</tr>
<tr>
<td>[3-H][H-TMP]</td>
<td>89</td>
<td>0.099</td>
<td>1</td>
<td>THF-d_8</td>
<td>145</td>
</tr>
<tr>
<td>[1-H][H-Lut]</td>
<td>69</td>
<td>0.099</td>
<td>1</td>
<td>Toluene-d_8</td>
<td>25</td>
</tr>
<tr>
<td>[2-H][H-Lut]</td>
<td>77</td>
<td>0.099</td>
<td>1</td>
<td>Toluene-d_8</td>
<td>120</td>
</tr>
<tr>
<td>[3-H][H-Lut]</td>
<td>85</td>
<td>0.099</td>
<td>1</td>
<td>THF-d_8</td>
<td>145</td>
</tr>
</tbody>
</table>

All the borohydride salts containing B(C$_6$F$_5$)$_3$, 1 or 2 successfully inserted 13CO$_2$ into the B-H bond to produce the formatoborate species. None of the borohydride salts containing 3 were able to reduce 13CO$_2$. See Chapter 4 for full details of each reaction.
5.5.2 Synthesis of the Formatoborates using Route B

5.5.2.1 Synthesis of $[\text{HCO}_2][\text{H-DABCO}]$ (4.1)

HCO$_2$H (0.20 mL, 5.19 mmol) was added drop-wise to a stirred solution of DABCO (950 mg 6.73 mmol) in toluene (20 mL). The colourless precipitate was filtered, washed with toluene (3 x 10 mL) and dried (12 h) under vacuum to afford a colourless solid. Yield: 0.938 g (96%). 1H NMR (CD$_3$CN, 300 MHz): δ 8.26 (s, 1H, OCHO); 3.03 (s, 12H, CH$_2$N). NH was not observed. 13C{1H} NMR (CD$_3$CN, 75 MHz): δ 167.05 (s, COOH); 45.00 (s, CH$_2$N). IR (cm$^{-1}$): 2943 (m), 1591 (s), 1458 (m), 1323 (s), 1180 (s), 839 (s), 804 (s), 750 (s). Anal. Calcd. for C$_7$H$_{14}$N$_2$O$_2$: C 53.15; H 8.92; N 17.71. Found: C 53.00; H 9.06; N 17.63.

5.5.2.2 Synthesis of $[(\text{C}_6\text{F}_5)_3\text{B-CHO}][\text{H-DABCO}]$ (4.2)

A 50 mL Schlenk was charged with a magnetic stir bar, B(C$_6$F$_5$)$_3$ (405 mg, 0.79 mmol), HCO$_2$HDABCO (125 mg, 0.79 mmol) and toluene (10 mL) and was stirred at room temperature for 24 h under N$_2$. The solvent was removed under vacuum to give a colourless solid, which was washed with pentane (2 x 10 mL). The colourless solid was collected and dried under vacuum to give $[(\text{C}_6\text{F}_5)_3\text{B-CHO}][\text{H-DABCO}]$ (388 mg, 73%, 0.58 mmol). 1H NMR (CD$_3$CN, 300 MHz): δ 8.07 (s, 1H, OCHO); 3.08 (s, 12H, CH$_2$N). NH was not observed. 11B{1H} NMR (CD$_3$CN, 128 MHz): δ −4.33 (s). 13C{1H} NMR (CD$_3$CN, 75 MHz): δ 165.03 (s, BOCHO); 148.82 (dm, 1J$_{CF}$ = 234 Hz, ortho-C$_6$F$_5$); 139.74 (dm, 1J$_{CF}$ = 245 Hz, para-C$_6$F$_5$); 138.06 (dm, 1J$_{CF}$ = 243 Hz, meta-C$_6$F$_5$); 45.47 (s, NCH$_2$). ipso-C$_6$F$_5$ was not observed. 19F NMR
(CD$_3$CN, 282 MHz): δ −135.35 (d, 6F, $^3J_{FF} = 18$ Hz, ortho-C$_6$F$_5$); −162.38 (t, 3F, $^3J_{FF} = 20$ Hz, para- C$_6$F$_5$); −167.62 (td, 6F, $^3J_{FF} = 23$ and 7 Hz, meta-C$_6$F$_5$). HRMS (ESI$^-$, m/z): for [HCO$_2$B(C$_6$F$_5$)$_2$(C$_6$Cl$_3$)]$^{-}$ **Calcd:** 556.9836. **Found:** 556.9854. IR (cm$^{-1}$): 1662 (s), 1645 (w), 1517 (s), 1452 (s), 1373 (w), 1317 (w), 1209 (w), 1072 (w), 1053 (s), 981 (s), 966 (s), 906 (s), 835 (w), 783 (s), 773 (s), 744 (s), 692 (s). Anal. Calcd. for C$_{25}$H$_{14}$BF$_{15}$N$_2$O$_2$: C 44.89; H 2.11; N 4.18. Found: C 44.89; H 2.09; N 4.26.

5.5.2.3 Synthesis of [1-OCHO][H-DABCO] (4.3)

A 50 mL Schlenk was charged with a magnetic stirrer bar, **1** and toluene (10 mL) and was stirred at room temperature for 24 h under N$_2$. The solvent was removed under vacuum to yield a pink solid, which was washed with pentane (2 x 10 mL) and dried under vacuum (10$^{-2}$ mbar) at 60°C to yield [1-OCHO][H-DABCO] as a colourless solid (474 mg, 80%, 0.63 mmol). 1H NMR (CD$_3$CN, 300 MHz): δ 8.07 (s, 1H, OCHO); 7.14 (s, 1H, NH), 3.03 (s, 12H, CH$_2$N). 13B1H NMR (CD$_3$CN, 128 MHz): δ 1.65 (s).13C1H NMR (CD$_3$CN, 75 MHz): δ 165.59 (s, BOCHO); 148.95 (d, $^1J_{CF} = 238.8$ Hz, ortho-C$_6$F$_5$); 140.06 (d, $^1J_{CF} = 245.7$ Hz, para-C$_6$F$_5$); 138.14 (dm, $^1J_{CF} = 244$ Hz, meta-C$_6$F$_5$); 137.92 (s, ipso-C$_6$C$_3$F$_5$); 132.10 (s, para-C$_6$Cl$_3$); 131.35 and 129.95 (both s, meta-C$_6$Cl$_3$ and ortho-C$_6$Cl$_3$); 45.98 (s, NCH$_2$). ipso-C$_6$F$_5$ was not observed. 19F NMR (CD$_3$CN, 282 MHz): δ −134.81 (d, 4F, $^3J_{FF} = 21$ Hz, ortho-C$_6$F$_5$); −162.35 (t, 2F, $^3J_{FF} = 19$ Hz, para-C$_6$F$_5$); −167.53 (m, 4F, meta-C$_6$F$_5$). HRMS (ESI$^-$, m/z): for [HCO$_2$B(C$_6$Cl$_3$)$_2$]$^{-}$ **Calcd:** 636.8358. **Found:** 636.8383. IR (cm$^{-1}$): 1728 (w), 1649 (s), 1516 (s), 1450 (s), 1352 (w), 1317 (w), 1215 (w), 1076 (w), 1053 (s), 979 (s), 906 (s), 835 (w), 783 (s), 773 (s), 744 (s), 692 (s), 665 (w).
968 (s), 920 (s), 900 (s), 844 (s), 771 (w), 758 (s), 729 (w), 667 (s). Anal. Calcd. for C_{25}H_{14}BCl_{10}F_{10}N_{2}O_{2}: C 39.91; H 1.88; N 3.72. Found: C 40.03; H 1.83; N 3.81.

5.5.2.4 Synthesis of [2-OCHO][H-DABCO] (4.4)

A 50 mL Schlenk was charged with a magnetic stirrer bar, B(C_6F_5)(C_6Cl_5)_2 (530 mg, 0.79 mmol), HCO_2HDABCO (125 mg, 0.79 mmol) and toluene (10 mL) and was stirred at room temperature for 24 h under N_2. The solvent was removed under vacuum to yield a yellow solid, which was washed with pentane (2 x 10 mL). The yellow solid was collected and dried under vacuum (10^{-2} mbar) at 60 °C to give [2-OCHO][H-DABCO] (515 mg, 79%, 0.62 mmol). ^1H NMR (CD_3CN, 300 MHz): δ 9.24 (s, 1H, NH), 8.14 (s, 1H, OCHO), 3.04 (s, 12H, CH_2N). ^11B{^1H} NMR (CD_3CN, 128 MHz): δ 0.67 (s). ^13C{^1H} NMR (CD_3CN, 75 MHz): δ 165.62 (s, BOCHO); 138.27 (s, ipso-C_6Cl_5); 133.42 (s, para-C_6Cl_5); 132.54 and 130.57 (both s, meta-C_6Cl_5 and ortho-C_6Cl_5); δ 46.13 (s, NCH_2). Resonances for the C_6F_5 group were not observed. ^19F NMR (CD_3CN, 282 MHz): δ −130.31 (m, 1F, ortho-C_6F_5), −134.33 (m, 1F, ortho-C_6F_5), −162.45 (t, 1F, ^3J_{FF} = 20 Hz, para- C_6F_5), −167.78 (m, 2F, meta-C_6F_5). HRMS (ESI^−, m/z): for [HCO_2BCl_{18}Cl_{10}F_5]^− Calcd: 716.6881. Found: 716.6913. IR (cm^{-1}): 1705 (m), 1651 (s), 1516 (s), 1498 (s), 1460 (m), 1350 (w), 1321 (s), 1201 (s), 1157 (w), 1053 (m), 987 (m), 978 (s), 669 (s). Anal. Calcd. for C_{25}H_{14}BCl_{10}F_{10}N_{2}O_{2}: C 35.97; H 1.69; N 3.36. Found: C 35.61; H 1.75; N 3.47.
5.5.2.5 Synthesis of [3-OCHO][H-DABCO] (4.5)

A 50 mL Schlenk was charged with a magnetic stirrer bar, 3 (B(C_6Cl_5)_3) (300 mg, 0.40 mmol), HCO_2HDABCO (63 mg, 0.40 mmol) and THF (10 mL) and was stirred at room temperature for 24 h under N_2. The solvent was removed under vacuum to yield a yellow solid, which was dissolved in toluene (10 mL). The solution was filtered and the solvent was removed under vacuum to afford a yellow solid, which was collected and dried under vacuum (10^-2 mbar) at 60 °C to yield [3-OCHO][H-DABCO] (251 mg, 70%, 0.28 mmol).

^1H NMR (CD_3CN, 300 MHz): δ 8.43 (s, 1H, OCHO); 7.98 (s, 1H, NH); 3.03 (s, 12H, CH_2N).

^11B{^1H} NMR (CD_3CN, 128 MHz): δ 2.86 (s).

^13C{^1H} NMR (CD_3CN, 75 MHz): δ 166.32 (s, BOCHO); 138.92 (s, ipso-C_6Cl_5); 133.23 (s, para-C_6Cl_5); 130.92 and 130.41 (both s, meta-C_6Cl_5 and ortho-C_6Cl_5); 45.79 (s, NCH_2). HRMS (ESI^-, m/z): for [HCO_2BCl_15]^- Calcd: 796.5403. Found: 796.5403. IR (cm^-1): 1728 (w), 1645 (s), 1506 (w), 1460 (w), 1321 (s), 1197 (m), 1051 (m), 1008 (s), 908 (s), 796 (s), 671 (s). Anal. Calcd. for C_25H_16BCl_15N_2O_2: C 32.74; H 1.54; N 3.06. Found: C 32.64; H 1.48; N 3.18.
5.5.2.6 Synthesis of [HCO₂][H-TMP] (4.6)

H¹³CO₂H (0.20 mL, 5.19 mmol) was added drop-wise to a stirred solution of TMP (950 mg 6.73 mmol) in Et₂O (20 mL). The precipitate was collected by filtration, washed with cold Et₂O (3 x 10 mL) and dried for 12 h under vacuum to afford a colourless powder (938 mg, 96%, 6.46 mmol). ¹H NMR (CD₃CN, 300 MHz): δ 9.16 (br. s, 2H, NH₂); 8.52 (dd, 1H, J_HC = 187 Hz, oCHO); 1.69 (m, 2H, NC(CH₃)₂CH₂CH₂); 1.59 (m, 4H, NC(CH₃)₂CH₂CH₂); 1.37 (s, 12H, CH₃). ¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 167.45 (s, oCHO); 55.66 (s, NC(CH₃)₂CH₂); 36.04 (s, NC(CH₃)₂CH₂); 28.06 (s, NC(CH₃)₂CH₂); 17.36 (s, NC(CH₃)₂CH₂). IR (cm⁻¹): 2588 (m), 1705 (w), 1539 (s), 1323 (m), 1227 (m), 1082 (m), 1018 (s), 916 (w), 748 (s). Anal. Calcd. for C₁₀H₂₁NO₂: C 64.13; H 11.30; N 7.48. Found: C 64.08; H 11.24; N 7.56.

5.5.2.7 Synthesis of [1-O¹³CHO][H-TMP] (4.7)

To a 125 mL Schlenk tube charged with 1 (B(C₆F₅)₂(C₆Cl₅)) (297 mg, 0.50 mmol) in toluene (20 mL) was added [H¹³CO₂][TMPH] (95 mg, 0.50 mmol). The resulting colourless precipitate was collected by filtration, washed with pentane (2 x 20 mL) and dried under vacuum to afford [1-O¹³CHO][HTMP] (362 mg, 93%, 0.47 mmol) as a colourless solid. ¹H NMR (C₇D₈, 300 MHz): δ 8.15 (d, 1H, J_HC = 210 Hz, oCHO); 7.50 (br, 2H, NH₂); 0.98 (m, 6H, CH₂); 0.87 (s, 12H, CH₃). ¹¹B NMR (CD₃CN, 128 MHz): δ 1.37 (br. s). ¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 166.18
Chapter Five: Experimental Details and Characterisation Data

(s, oCHO); 148.90 (dm, $^1J_{CF} = 234$ Hz, ortho-C$_6$F$_5$); 139.86 (dm, $^1J_{CF} = 247$ Hz, para-C$_6$F$_5$); 137.98 (dm, $^1J_{CF} = 247$ Hz, meta-C$_6$F$_5$); 137.66 (s, para-C$_6$Cl$_5$); 131.91 and 131.15 (both s, meta-C$_6$Cl$_5$ and ortho-C$_6$Cl$_5$); 59.09 (s, NC(CH$_3$)$_2$CH$_2$); 35.32 (s, NC(CH$_3$)$_2$C$_2$H$_2$); 27.44 (s, NC(CH$_3$)$_2$CH$_2$); 16.68 (s, NC(CH$_3$)$_2$C$_2$H$_2$). Resonances for ipso-C$_6$F$_5$ and ipso-C$_6$Cl$_5$ not observed. 19F NMR (CD$_3$CN, 282.2 MHz): δ –134.13 (br. d, 4F, ortho-C$_6$F$_5$, $^3J_{FF} = 21$ Hz); –162.10 (t, 2F, $^3J_{FF} = 20$ Hz, para-C$_6$F$_5$); –167.35 (m, 4F, meta-C$_6$F$_5$). HRMS (ESI$^–$, m/z): for [HCO$_2$BCl$_5$F$_{10}$]$^–$ Calcd: 637.8353. Found: 637.9232. IR (cm$–1$): 2968 (m), 1641 (s), 1597 (w), 1516 (s), 1462 (m). Anal. Calcd. for C$_{28}$H$_{21}$BCl$_5$F$_{10}$NO$_2$: C 43.03; H 2.71; N 1.79. Found: C 42.94; H 2.68; N 1.84. X-ray data: HZ4_7cif

5.5.2.8 Synthesis of [2-O13CHO][H-TMP] (4.8)

To a 125 mL Schlenk tube charged with 2 (B(C$_6$F$_5$)(C$_6$Cl$_5$)$_2$) (336 mg, 0.50 mmol) in toluene (20 mL) was added [TMPH][H13CO$_2$] (95 mg, 0.50 mmol). The resulting colourless precipitate was collected by filtration, washed with pentane (2 x 20 mL) and dried under vacuum to afford [2-O13CHO][HTMP] (354 mg, 82%, 0.41 mmol) as a colourless solid. 1H NMR (CD$_3$CN, 300 MHz): δ 7.92 (dd, 1H, $^1J_{HC} = 208$ Hz, $^1J_{HF} = 8$ Hz, OCHO); 7.78 (br, 2H, NH$_2$), 1.65 (m, 2H, CH$_2$), 1.38 (m, 4H, CH$_2$), 1.15 (s, 12H, CH$_3$). 11B NMR (CD$_3$CN, 128 MHz): δ –0.61 (br. s). 13C(1H) NMR (CD$_2$Cl$_2$, 75 MHz): δ 165.26 (s, oCHO); 138.12 (para-C$_6$Cl$_5$); 131.91 and 131.15 (both s, meta-C$_6$Cl$_5$ and ortho-C$_6$Cl$_5$); 125.83 (ipso-C$_6$F$_5$); 52.48 (s, NC(CH$_3$)$_2$CH$_2$); 38.11 (s, NC(CH$_3$)$_2$CH$_2$); 30.90 (s, NC(CH$_3$)$_2$CH$_2$); 18.51 (s, NC(CH$_3$)$_2$CH$_2$CH$_2$). Resonances from C$_6$F$_5$ ring were not observed. 19F NMR (CD$_3$CN, 282.2 MHz): δ –
130.23 (m, 1F, ortho-C₆F₅), δ –134.21 (m, 1F, ortho-C₆F₅), δ –162.31 (t, 2F, J_FF = 20 Hz, para-C₆F₅), δ –167.56 (m, 2F, meta-C₆F₅). HRMS (ESI, m/z): for [HCO₂BCl₁₀F₁₅]⁻ Calcd: 717.6914. Found: 717.6905. IR (cm⁻¹): 2939 (m), 1705 (m), 1624 (s), 1516 (s), 1462 (s), 1375 (s), 1201 (s), 1070 (s), 975 (m), 798 (m), 671 (s).

5.5.2.9 Synthesis of [H¹³CO₂][H-Lut] (4.9)

H¹³CO₂H (0.20 mL, 5.19 mmol) was added dropwise to an ampoule containing a stirring solution of lutidine (556 mg, 5.19 mmol) in Et₂O (20 mL). The ether was subsequently removed in vacuo to yield [LutH][H¹³CO₂] as a colourless oil (725 mg, 91%, 4.72 mmol), and stored under N₂. ¹H NMR (CDCl₃, 300 MHz): δ 8.27 (t, 1H, JHN = 65 Hz, NH); 8.27 (d, 1H, J_HC = 210 Hz, OCHO); 7.98 (t, 1H, J_HH = 8 Hz, NHCHCH), 7.34 (t, 2H, J_HH = 8 Hz, NHCH), 2.73 (s, 6H, CH₃). ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ 166.33 (s, oCHO); 154.77 (s, NC(CH₃)CHCH); 143.20 (s, NC(CH₃)CHCH); 124.02 (s, NC(CH₃)CHCH); 20.17 (s, NC(CH₃)CHCH). IR (cm⁻¹): 2854 (m), 1655 (s), 1579 (m), 1450 (m), 1354 (m), 1188 (s), 956 (m), 777 (s), 692 (s). Anal. Calcd. for C₂₈H₂₁BCl₁₀F₁₅NO₂: C 38.93; H 2.45; N 1.62. Found: C 38.87; H 2.51; N 1.66.

Found: C 62.62; H 7.03; N 8.90.
5.5.2.10 Synthesis of [1-O\(^{13}\)CHO][H-Lut] (4.10)

To a 125 mL Schlenk tube charged with a stirring solution of 1 (B(C\(_6\)F\(_5\))\(_2\)(C\(_6\)Cl\(_5\)) \(297 \text{ mg, 0.50 mmol}\) in toluene \(20 \text{ mL}\) was added \([H^{13}\text{CO}_2][\text{LutH}] \(77 \text{ mg, 0.50 mmol}\). Removal of the solvent under vacuum afforded a yellow residue, which was washed with pentane \(2 \times 20 \text{ mL}\) and dried under vacuum to afford 1-[O\(^{13}\)CHO]][LutH] \(342 \text{ mg, 91\%, 0.46 mmol}\) as a colourless powdery solid.

\(^1\text{H} \text{NMR (CD}_3\text{CN, 300 MHz):} \ \delta 12.86 \text{ (t, 1H, } ^1J_{\text{HN}} = 65 \text{ Hz, NH); 8.76 (d, 1H, } ^1J_{\text{HC}} = 270 \text{ Hz, OCHO); 8.27 (t, 1H, } ^3J_{\text{HH}} = 8 \text{ Hz, NHCHCH); 7.61 (t, 2H, } ^3J_{\text{HH}} = 8 \text{ Hz, NHCH); 2.68 (s, 6H, CH}_3). \ \ ^{13}\text{C}[^1\text{H}] \text{NMR (CD}_3\text{CN, 75 MHz):} \ \delta 164.89 \text{ (OCHO); 154.79 (NC(CH}_3)\text{CHCH); 147.88 (dm, } ^1J_{\text{CF}} = 245 \text{ Hz, ortho-C}_6\text{F}_5); 143.26 (dm, } ^1J_{\text{CF}} = 250 \text{ Hz, para-C}_6\text{F}_5); 138.58 (dm, } ^1J_{\text{CF}} = 241 \text{ Hz, meta-C}_6\text{F}_5); 137.98 \text{ (s, para-C}_6\text{Cl}_5); 130.69 \text{ and 133.16 (both s, ortho and meta-C}_6\text{Cl}_5); 126.28 \text{ (NC(CH}_3)\text{CHCH); 19.90 (NC(CH}_3)\text{CHCH). Resonances for ipso-C}_6\text{F}_5 \text{ and } \text{ipso-C}_6\text{Cl}_5 \text{ rings were not observed.} \ ^{11}\text{B NMR (CD}_3\text{CN, 128 MHz):} \ \delta 1.96 (s). \ \ ^{19}\text{F NMR (CD}_3\text{CN, 282.2 MHz):} \ \delta -135.25 \text{ (m, 4F, ortho-C}_6\text{F}_5); -159.62 \text{ (m, 2F, para-C}_6\text{F}_5); -166.54 \text{ (m, 4F, meta-C}_6\text{F}_5). \ \text{HRMS (ESI, m/z):} \ \text{for [HCO}_2\text{BC}_{18}\text{Cl}_5\text{F}_{10}]^- \text{ Caled:} \ 637.8353. \ \text{Found:} \ 637.9645. \ \text{IR (cm}^{-1}): \ 3186 \text{ (m), 1705 (s), 1643 (s), 1514 (s), 1458 (s), 1377 (m), 1327 (s), 1192 (s), 1072 (s), 966 (m), 785 (m), 669 (m). NMR analysis showed the presence of a small impurity (<5%), therefore a satisfactory elemental analysis could not be obtained.
5.5.2.11 Synthesis of [2-O13CHO][H-Lut] (4.11)

To a 125 mL Schlenk tube charged with 2 (B(C$_6$F$_5$)(C$_6$Cl$_3$)$_2$) (336 mg, 0.50 mmol) in toluene (20 mL) was added [H13CO$_2$][LutH] (77 mg, 0.50 mmol). Removal of the solvent under vacuum afforded a yellow residue, which once washed with pentane (2 x 20 mL) and dried under vacuum afforded [2-O13CHO][LutH] (367 mg, 88%, 0.44 mmol) as a pale yellow powdery solid. 1H NMR (CD$_3$CN, 300 MHz): δ 7.96 (dd, 1H, 1J$_{HC}$ = 210 Hz, 1J$_{HF}$ = 9 Hz, OCHO); 7.78 (s, 1H, NH); 7.56 (t, 1H, 2J$_{HH}$ = 8 Hz, NHCHCH), 7.07 (t, 1H, 2J$_{HH}$ = 8 Hz, NHCH), 2.51 (s, 6H, CH$_3$). 13C1H NMR (CD$_2$Cl$_2$, 75 MHz): δ 170.24 (s, oCHO); 154.10 (s, NC(CH$_3$)CHCH); 145.8 (s, NC(CH$_3$)CHCH); 137.4 (s, para-C$_6$Cl$_5$); 131.9 and 131.2 (both s, meta-C$_6$Cl$_5$ and ortho-C$_6$Cl$_5$); 125.10 (s, NC(CH$_3$)CHCH); 19.60 (s, NC(CH$_3$)CHCH). Resonances from C$_6$F$_5$ rings and ipso-C$_6$Cl$_5$ were not observed. 11B NMR (CD$_2$Cl$_2$, 128 MHz): δ 2.66 (br. s). 19F NMR (CD$_2$Cl$_2$, 282.2 MHz): δ −130.25 (m, 1F, ortho-C$_6$F$_5$), −134.31 (m, 1F, ortho-C$_6$F$_5$), −162.26 (t, 1F, 3J$_{FF}$ = 20 Hz, para-C$_6$F$_5$), −167.73 (m, 2F, meta-C$_6$F$_5$). HRMS (ES$^-$, m/z): for [HCO$_2$BC$_{18}$Cl$_{10}$F$_3$]$^-$ Calcd: 717.6875. Found: 717.8179. IR (CH$_2$Cl$_2$, cm$^{-1}$): 2962 (m), 1705 (s), 1527 (s), 1423 (s), 1352 (m), 1319 (s), 1217 (s), 1037 (m), 989 (s), 796 (m), 665 (s). NMR analysis showed the presence of a small impurity (<5%), therefore a satisfactory elemental analysis could not be obtained.
5.5.3 Synthesis of the Methoxyborates using Route A2

Using the formatoborate systems successfully synthesised using route A1, attempts were made to reduce the formatoborates to methoxyborates using H₂.

To a J-Young’s NMR tube containing the equilibrium mixtures of the borohydride and formatoborate salts was freeze-pump-thaw degassed and placed under H₂ (1 atm). The reaction was heated up to 145 °C and monitored using ¹H and ¹³C NMR spectroscopy. Once it was determined that no more of the methoxyborate or methanol was formed, the volatiles were distilled to another J-Young’s NMR tube. Any ¹³CH₃OH isolated was integrated against internal ferrocene as described by Ashley et al.²⁵

5.5.4 Synthesis of the Methoxyborates using Route B2

5.5.4.1 Synthesis of [(C₆F₅)₃B-OMe][H-DABCO] (4.12)

A 50 mL Schlenk was charged with a magnetic stirrer bar, B(C₆F₅)₃ (302 mg, 0.59 mmol), DABCO (66 mg, 0.59 mmol) and toluene (10 mL), to which methanol (24 μl, 0.59 mmol) was added. The solution first became orange and then turned colourless. The reaction was stirred at 22 °C for 24 h under N₂. The solvent was removed under vacuum to afford a colourless solid, which was washed with pentane (2 x 10 mL). The colourless solid was collected and dried under vacuum to give [(C₆F₅)₃B-OMe][H-DABCO] (363 mg, 94%, 0.55 mmol). ¹H NMR (CD₃CN, 300 MHz): δ 3.27 (s, 3H, BOCH₃), 3.02 (s, 12H, CH₂N). NH was not observed. ¹¹B{¹H} NMR (CD₃CN, 128 MHz): δ 2.65 (s). ¹³C{¹H} NMR (CD₃CN, 75 MHz): δ 148.82 (dm, ¹J_CF = 236 Hz, ortho-C₆F₅), 139.58 (dm, ¹J_CF = 255 Hz, para-C₆F₅), 137.31 (dm, ¹J_CF = 245 Hz, meta-C₆F₅), 52.60 (s, oCH₃); 45.32 (s, NCH₂). Ipso-C₆F₅ was not observed. ¹⁹F NMR (CD₃CN, 282 MHz): δ −135.15 (br. d, 6F, ³J_FF = 21
HZ, ortho-C₆F₅), −163.53 (t, 3F, $^3J_{FF} = 20$ Hz, para-C₆F₅), −167.78 (m, 6F, meta-C₆F₅).

HRMS (ESI⁻, m/z): for [H₃COBC₁₈F₁₅]⁻ Calcd: 543.0043. Found: 543.0055. **IR (cm⁻¹):** 2958 (w), 1705 (w), 1643 (s), 1512 (s), 1452 (s), 1281 (w), 1193 (w), 1056 (m), 964 (m), 916 (s), 810 (s), 763 (s), 692 (s), 667 (s).

5.5.4.2 Synthesis of [1-OMe][H-DABCO] (4.13)

A 50 mL Schlenk was charged with a magnetic stirrer bar, 1 (B(C₆F₅)₂(C₆Cl₅)) (351 mg, 0.59 mmol), DABCO (66 mg, 0.59 mmol) and toluene (10 mL). Methanol (24 μL, 0.59 mmol) was added. The solution first became orange and then turned colourless. The reaction was stirred at 22 °C for 24 h under N₂. The solvent was removed under vacuum to yield a colourless solid, which was washed with pentane (2 x 10 mL). The colourless solid was collected and dried under vacuum to give [1-OMe][H-DABCO] (298 mg, 77%, 0.45 mmol). **¹H NMR (CD₃CN, 300 MHz):** δ 3.26 (s, 1H, OCH₃); 3.01 (s, 12H, CH₂N). NH was not observed. **¹¹B⁻¹H NMR (CD₃CN, 128 MHz):** δ 0.22 (s). **¹³C⁻¹H NMR (CD₃CN, 75 MHz):** δ 148.95 (d, $^1J_{CF} = 242$ Hz, ortho-C₆F₅); 139.80 (dm, $^1J_{CF} = 237$ Hz, para-C₆F₅); 138.88 (s, ipso-C₆Cl₅); 137.62 (dm, $^1J_{CF} = 245$ Hz, meta-C₆F₅); 131.94 and 131.58 (both s, meta-C₆Cl₅ and ortho-C₆Cl₅); 53.22 (s, BOCH₃); 45.98 (s, NCH₂). ipso-C₆F₅ and ipso-C₆Cl₅ were not observed. **¹⁹F NMR (CD₃CN, 282 MHz):** δ −135.54 (d, 4F, $^3J_{FF} = 21$ Hz, ortho-C₆F₅), −163.95 (t, 2F, $^3J_{FF} = 20$ Hz, para-C₆F₅), −167.84 (m, 6F, meta-C₆F₅).

HRMS (ESI⁻, m/z): for [(C₆F₅)₂(C₆Cl₅)BOCH₃]⁻ Calcd: 622.8565. Found: 622.8577. **IR (cm⁻¹):** 1734 (w), 1641 (w), 1521 (s), 1452 (s), 1074 (s), 1055 (s), 966 (m), 912 (m),
5.5.4.4 Synthesis of [1-OMe][H-TMP] (4.14)

A 50 mL Schlenk was charged with a magnetic stirrer bar, 1 (B(C₆F₅)₂(C₆Cl₅)) (175 mg, 0.30 mmol), TMP (32 mg, 0.30 mmol) and toluene (5 mL). Methanol (10 μl, 0.30 mmol) was added at 22 °C for 24 h under N₂. The solvent was removed under vacuum to yield a colourless solid, which was washed with pentane (2 x 10 mL), filtered and dried under vacuum to afford [1-OMe][H-TMP] as a colourless solid (45 mg, 20 %, 0.06 mmol).

¹H NMR (CD₃CN, 300 MHz): δ 3.12 (s, 3H, OCH₃); 1.72 (m, 2H, NC(CH₃)CH₂CH₂); 1.62 (m, 4H, NC(CH₃)CH₂CH₂); 1.34 (s, 12H, CH₂). **¹³C{¹H} NMR (CD₃CN, 75 MHz):** δ 149.11 (dm, JCF = 235 Hz, ortho-C₆F₅); 139.14 (dm, JCF = 250 Hz, para-C₆F₅); 138.50 (s, ipso-C₆Cl₅); 137.89 (dm, JCF = 250 Hz, meta-C₆Cl₅); 137.80 (s, para-C₆Cl₅); 130.33 and 130.13 (both s, meta-C₆Cl₅ and ortho-C₆Cl₅); 59.12 (s, NC(CH₃)₂CH₂); 51.72 (s, BOCH₂); 35.61 (s, NC(CH₃)₂CH₂); 27.64 (s, NC(CH₃)CH₂); 16.89 (s, NC(CH₃)₂CH₂CH₂). **¹⁹F NMR (CD₃CN, 282.2 MHz):** δ –133.30 (br. d, 4F, ortho-C₆F₅); 3JFF = 22 Hz); δ –164.60 (t, 2F, 3JFF = 20 Hz, para-C₆F₅); δ –168.25 (m, 4F, meta-C₆F₅). **HRMS (ESI, m/z):** for [H₃OCBC₁₈Cl₅F₁₀⁺] Calcld: 622.8565. Found: 622.88584. **IR (cm⁻¹):** 2941 (w), 1728 (s), 1641 (s), 1597 (s), 1450 (s), 1384 (w), 1205 (s), 1056 (s), 975 (s), 910 (m), 831 (w), 771 (m), 671 (s). **Anal. Calcld.** for C₂₅H₁₆BF₁₀Cl₃N₂O: C 40.66; H 2.18; N 3.79.

Found: C 40.73; H 2.24; N 3.83.
5.6 References

(16)Frisch, M. J. In *Gaussian 03, Revision E.01*; Gaussian, Inc.: Wallingford CT.