Journal article
Temperature and magnetic field dependent photoluminescence from carbon nanotubes
- Abstract:
- Photoluminescence as a function of temperature and magnetic field from single walled carbon nanotube solutions is described. This is modelled assuming that it is dominated by the small energy splitting between the dark and bright states of the singlet excitons which are found to be in the region of 1-5 meV for nanotubes of 0.8-1.2nm. The emission energies show a large red-shift due to the introduction of an Aharanov-Bohm phase by magnetic field along the tube axis and the luminescence intensity is strongly enhanced at low temperatures due to the mixing of the different valley states of the excitons. © World Scientific Publishing Company.
- Publication status:
- Published
Actions
Authors
- Journal:
- INTERNATIONAL JOURNAL OF MODERN PHYSICS B More from this journal
- Volume:
- 21
- Issue:
- 8-9
- Pages:
- 1180-1188
- Publication date:
- 2007-04-10
- DOI:
- EISSN:
-
1793-6578
- ISSN:
-
0217-9792
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:5132
- UUID:
-
uuid:8058d1c2-818a-4c63-80f8-ec2cbea99fff
- Local pid:
-
pubs:5132
- Source identifiers:
-
5132
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2007
If you are the owner of this record, you can report an update to it here: Report update to this record