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ABSTRACT
We study the computational complexity of the problem #IndSub(Φ)
of counting 𝑘-vertex induced subgraphs of a graph𝐺 that satisfy a
graph property Φ. Our main result establishes an exhaustive and
explicit classification for all hereditary properties, including tight
conditional lower bounds under the Exponential Time Hypothesis
(ETH):

• If a hereditary property Φ is true for all graphs, or if it is true
only for finitely many graphs, then #IndSub(Φ) is solvable
in polynomial time.

• Otherwise, #IndSub(Φ) is #W[1]-complete when parame-
terised by 𝑘 , and, assuming ETH, it cannot be solved in time
𝑓 (𝑘) · |𝐺 |𝑜 (𝑘) for any function 𝑓 .

This classification features a wide range of properties for which the
corresponding detection problem (as classified by Khot and Raman
[TCS 02]) is tractable but counting is hard. Moreover, even for prop-
erties which are already intractable in their decision version, our
results yield significantly stronger lower bounds for the counting
problem.

As additional result, we also present an exhaustive and explicit
parameterised complexity classification for all properties that are
invariant under homomorphic equivalence.

By covering one of the most natural and general notions of
closure, namely, closure under vertex-deletion (hereditary), we
generalise some of the earlier results on this problem. For instance,
our results fully subsume and strengthen the existing classification
of #IndSub(Φ) for monotone (subgraph-closed) properties due to
Roth, Schmitt, and Wellnitz [FOCS 20].

A full version of our paper, containing all proofs, is available at
https://arxiv.org/abs/2111.02277.

CCS CONCEPTS
• Theory of computation → Problems, reductions and com-
pleteness; • Mathematics of computing → Combinatorics;
Graph theory.
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1 EXTENDED ABSTRACT
Detection and counting of patterns in networks belong to the most
well-studied problems in theoretical computer science and have ap-
plications in a diverse set of disciplines such as database theory [17],
statistical physics [22, 23, 33], and computational biology [16, 32].
In this work, we focus on counting small patterns in large net-
works. Among others, this task is motivated by the computation
of so-called significance profiles of network motifs which play a
central role in the analysis of complex networks [1, 26, 27, 31].

More formally, we consider the counting problem #IndSub(Φ)
as introduced by Jerrum and Meeks [19].1 Here, a graph property
Φ is a function from the class of graphs to {0, 1} that is invari-
ant under graph isomorphisms. If Φ(𝐻 ) = 1 for a graph 𝐻 , then
𝐻 satisfies the property Φ. For any fixed graph property Φ, the
problem #IndSub(Φ) asks, on input a graph 𝐺 and a positive in-
teger 𝑘 , to compute the number of 𝑘-vertex induced subgraphs
𝐻 in 𝐺 that satisfy Φ. Observe that, for proper choices of Φ, the
problem #IndSub(Φ) encodes a variety of well-studied counting
problems such as counting of𝑘-cliques,𝑘-independent sets, induced
𝑘-cycles, and, to name a more intricate example, 𝑘-graphlets, that
is, connected 𝑘-vertex induced subgraphs.

In recent years, the problem #IndSub(Φ) received significant
attention [7, 11, 19–21, 25, 29, 30]. All of the previous works had
the common goal of classifying the parameterised complexity of
#IndSub(Φ) for a wide range of properties Φ. More precisely, the
task is to identify those propertiesΦ for which the problem becomes
fixed-parameter tractable (FPT), i.e., solvable in time 𝑓 (𝑘)·|𝐺 |𝑂 (1) for
some computable function 𝑓 . Note that a parameterised analysis of
#IndSub(Φ) captures well the intuition that the size of the pattern 𝑘
is significantly smaller than the size of the graph𝐺 , that is, we only
aim for a running time which is polynomial in |𝐺 | but may be
super-polynomial in 𝑘 .

Ideally, a complete classification of #IndSub(Φ) identifies not
only the properties Φ for which the problem becomes FPT, but
also establishes a hardness result for all remaining properties. A
remarkable result due to Curticapean, Dell and Marx [7] shows that
such a complete classification is possible: They prove that for ev-
ery property Φ, the problem #IndSub(Φ) is either fixed-parameter

1In [19], #IndSub(Φ) is called #InducedUnlabelledSubgraphWithProperty(Φ) .
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tractable or complete for the parameterised class #W[1].2 Unfor-
tunately, their classification is implicit in the sense that, for most
graph properties Φ, it is not clear how to pinpoint the complexity of
#IndSub(Φ). More precisely, even for simple and natural properties
such as Φ(𝐻 ) = 1 iff 𝐻 is bipartite, or Φ(𝐻 ) = 1 iff 𝐻 is acyclic,
the complexity of #IndSub(Φ) is not easily deducible from the
aforementioned classification. The corresponding hardness proofs
turned out to be a non-trivial task [29]. Subsequent work focused
on finding explicit criteria for tractability and hardness [11, 29, 30].
More details on the classification from [7] are given in Section 1.2.

The state of the art suggests that the only properties Φ for which
#IndSub(Φ) is FPT are very restricted in the sense that they become
“eventually trivial”. More formally, we say that a property Φ is
meagre if there exists a positive integer 𝐵, such that for each 𝑘 ≥ 𝐵

the property Φ is either constant false or constant true on the set of
all 𝑘-vertex graphs. For example, the property Φ of having an even
number of vertices is meagre, and it is easy to see that #IndSub(Φ)
is trivial to solve: On input 𝐺 and 𝑘 , output 0 if 𝑘 is odd, and
output

( |𝑉 (𝐺) |
𝑘

)
if 𝑘 is even. It is well-known that an analogue of

the previous algorithm exists for every meagre property; this is
made formal in the full version [15]. Conversely, as stated in [30],
we conjecture that all non-meagre properties yield hardness:

Conjecture 1. Let Φ be a computable3 graph property. If Φ is
meagre then #IndSub(Φ) is fixed-parameter tractable. Otherwise,
#IndSub(Φ) is #W[1]-complete.

Despite significant effort, we are nowhere close to a resolution
of Conjecture 1 in its full generality. However, progress has been
made for properties that satisfy certain closure criteria. For example,
a result of Jerrum and Meeks [20] implies that Conjecture 1 is
true for minor-closed graph properties. After several partial results,
Conjecture 1 has recently also been established for the more general
class ofmonotone properties, that is, properties that are closed under
the removal of vertices and edges4 [30].

There are two natural generalisations of the class of monotone
properties:

(1) Properties that are closed under vertex-deletion, called hered-
itary properties (these properties are closed under taking
induced subgraphs).

(2) Properties that are closed under edge-deletion, called edge-

monotone properties.
To make this concrete, let us give some simple examples that are

covered by the different notions of closure. Say Φ corresponds to
the property of being “planar”. Then Φ is closed under both vertex-
and edge-deletion as well as under edge-contraction. Therefore, Φ
is minor-closed and hence the complexity of #IndSub(Φ) is covered
by [20]. The property of being “bipartite” is also closed under both
vertex- and edge-deletion. However, edge-contractions can lead to
non-bipartite graphs. So this is an example of a property that is
monotone but not minor-closed, and the corresponding hardness

2The class #W[1] can be considered as a parameterised counting equivalent of NP; a
formal definition is stated in the full version [15].
3We restrict ourselves to computable properties to avoid dealing with non-uniform
fixed-parameter tractability.
4To avoid confusion, we remark that in some literature (e.g. [19, 25]) the term “mono-
tone” is used for properties that are closed under the deletion (or addition) of edges
only. The latter will be called edge-monotone in this work.

result is from [30]. An example for a hereditary property that is not
monotone is the property “claw-free”, which refers to the absence
of an induced claw. This property is closed under vertex-deletion,
but not under edge-deletion. Conversely, the property of being
“disconnected” is closed under edge-deletion but not under vertex-
deletion. Hence, it is an example for an edge-monotone property
that is not monotone (which implies that it is also not hereditary).

So far, there are only partial results on resolving Conjecture 1
for the hereditary and edge-monotone cases; see [30, Section 6]
for hereditary properties defined by a single forbidden induced
subgraph (which includes the property “claw-free”), and [25, 29]
for some results on edge-monotone properties (including the prop-
erty “disconnected”). Many natural properties are covered by these
partial results but a full classification has remained elusive. In this
work, we obtain a full classification for the first case, i.e., for all
hereditary properties; our results are presented in Section 1.1. At
this point let us give an example of a hereditary property that, as
far as we are aware, has not been covered by previous work. Con-
sider Φ with Φ(𝐻 ) = 1 iff 𝐻 is “hole-free”, which means that 𝐻
does not have an induced cycle of length at least 5 (also known as
a hole). First note, that Φ is closed under vertex-deletion, but not
under edge-deletion. It is therefore hereditary but not monotone (or
even minor-closed). Since Φ is characterised by multiple forbidden
induced subgraphs it is not covered by [30, Theorem 4]. As Φ does
not distinguish bicliques from independent sets it is not subject
to [30, Theorem 2]. Finally, Φ does not have low Hamming-weight
𝑓 -vectors, which is another criterion introduced in [30]. (For this
fact, it is relevant that triangles are not forbidden by Φ.) Similar
hereditary properties that have not been covered by previous work
are “(odd-hole)-free”, “(anti-hole)-free”, etc. In Section 1.4, we give
an example of an unresolved edge-monotone property.

1.1 Our Results
In addition to confirming Conjecture 1 for hereditary properties, we
also establish a tight conditional lower bound under the Exponential
Time Hypothesis; it turns out that a hereditary property is meagre
if and only if either Φ is true for all graphs, or it is true only for
finitely many graphs (an easy proof of this fact can be found in the
full version [15]).

Theorem 2. Let Φ be a computable hereditary graph property. If Φ
is meagre, then #IndSub(Φ) is solvable in polynomial time. Otherwise

#IndSub(Φ) is #W[1]-complete and, assuming the Exponential Time

Hypothesis (ETH), cannot be solved in time 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘) for any
function 𝑓 .

Observe that our conditional lower bound under ETH rules out
any significant improvement over the brute-force algorithm for
#IndSub(Φ), which iterates over every 𝑘-vertex subset of 𝑉 (𝐺)
and counts those that induce a subgraph satisfying Φ. The running
time of this algorithm is clearly bounded by 𝑓 (𝑘) · |𝑉 (𝐺) |𝑘+𝑂 (1) ≤
𝑓 (𝑘) · |𝐺 |𝑂 (𝑘) for some computable function 𝑓 . Note further, that
a stronger lower bound ruling out algorithms running in time
𝑓 (𝑘) · |𝑉 (𝐺) |𝑘−𝜀 for any 𝜀 > 0 is not possible: For the (hereditary)
property Φ of being a complete graph, the problem #IndSub(Φ)
is the problem of counting 𝑘-cliques, which can be solved in time
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|𝑉 (𝐺) |
𝜔𝑘
3 +𝑂 (1) , where 𝜔 < 3 is the matrix multiplication expo-

nent [28].
To compare our results on exact counting with the complexity

of decision and approximate counting we partition the class of
all hereditary properties as follows; we write 𝐼ℓ and 𝐾ℓ for the
independent set and the complete graph of size ℓ , respectively.

(1) Suppose there are positive integers 𝑠 and 𝑡 such thatΦ is false
on 𝐾𝑠 and 𝐼𝑡 . By Ramsey’s Theorem and the fact that Φ is
closed under taking induced subgraphs, Φmust then be false
on all but finitely many graphs. The problem #IndSub(Φ) is
thus solvable in polynomial time, and so are its decision and
approximate counting versions.

(2) If, for all positive integers ℓ , the property Φ is true on 𝐾ℓ
and 𝐼ℓ then Φ is not meagre, unless it is constant true. Khot
and Raman [24] proved that deciding the existence of a 𝑘-
vertex induced subgraph that satisfies Φ is fixed-parameter
tractable. Furthermore, Meeks [25] established the existence
of a “fixed-parameter tractable approximation scheme” (FP-
TRAS) for the counting problem, which can be considered the
parameterised notion of an FPRAS (see [2] for a discussion).
In sharp contrast, from Theorem 2 it follows that exact count-
ing is intractable (unless Φ is trivially true, in which case
#IndSub(Φ) is trivial).

(3) Otherwise, the decision version was shown to beW[1]-hard
by Khot and Raman [24]. However, their reduction only
yields an implicit ETH-based conditional lower bound of the
form 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘𝑐 ) , where 0 < 𝑐 < 1 is a constant depending
on the set of forbidden induced subgraphs of Φ.5 While it
is unsurprising that Theorem 2 yields #W[1]-hardness of
exact counting (since the decision version is W[1]-hard),
it is worth to point out that our conditional lower bound
significantly improves upon the hardness of decision.

In summary, together with Khot and Raman [24], andMeeks [25],
we fully complete the complexity landscape for detection, approxi-
mate counting and exact counting induced subgraphs with hered-
itary properties. In particular, we identify a significant variety of
properties for which decision and approximate counting is easy,
but exact counting is hard. A more concise overview is given in
Table 1.

We note that our classification for hereditary properties sub-
sumes and strengthens the classification of monotone properties
due to Roth, Schmitt and Wellnitz [30]6, see Section 1.3.

In the course of establishing Theorem 2, we prove a much strong-
er technical intractability theorem which is stated in the full ver-
sion [15]. We have not yet explored the full extent of its applicability
and we believe that it will be useful in future work (see Section 1.4).
For now, let us present one particular additional consequence: We
say that a graph property Φ is invariant under homomorphic equiva-

lence if Φ(𝐻1) = Φ(𝐻2) whenever 𝐻1 and 𝐻2 are homomorphically
equivalent, i.e., there are homomorphisms from 𝐻1 to 𝐻2 and from
𝐻2 to 𝐻1. Examples of properties invariant under homomorphic
equivalence include
5That is, a conditional lower bound that applies to allΦ is of the form 𝑓 (𝑘) · |𝐺 |𝑜 (𝑔 (𝑘 ) )
where 𝑔 is asymptotically smaller than every proper rational function, e.g., 𝑔 (𝑘) =
log(𝑘) .
6However, the classification of properties depending only on the number of edges
in [30] is not subsumed.

• Φ(𝐻 ) = 1 if and only if 𝐻 has odd girth 𝑑 .
• Φ(𝐻 ) = 1 if and only if 𝐻 has clique number 𝑑 .
• Φ(𝐻 ) = 1 if and only if 𝐻 has chromatic number 𝑑 .

Here, 𝑑 can be any fixed positive integer. We note that none of
the previous works on #IndSub(Φ) reveals its complexity for the
previous three properties. We change that in the current work:

Theorem 3. Let Φ be a computable graph property that is invari-

ant under homomorphic equivalence. If Φ is meagre, then #IndSub(Φ)
is solvable in polynomial time. Otherwise, #IndSub(Φ) is #W[1]-
complete and, assuming ETH, cannot be solved in time 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘)
for any function 𝑓 .

As a consequence, for each 𝑑 ≥ 1 (and 𝑑 odd in the case of
odd girth), all three of the previous examples yield intractability of
#IndSub(Φ).

1.2 Technical Overview
Similarly as in previous work [7, 11, 29, 30] we rely on the frame-
work of graph motif parameters and the homomorphism basis
as introduced by Curticapean, Dell and Marx [7]: Using the term
#IndSub(Φ, 𝑘 → 𝐺) for the number of 𝑘-vertex induced subgraphs
of 𝐺 that satisfy Φ, it is known that there is a unique function 𝑎Φ,𝑘
with finite support and independent from 𝐺 , such that

#IndSub(Φ, 𝑘 → 𝐺) =
∑
𝐻

𝑎Φ,𝑘 (𝐻 ) · #Hom(𝐻 → 𝐺) , (1)

where the sum is over all (isomorphism types of) graphs, and
#Hom(𝐻 → 𝐺) denotes the number of graph homomorphisms
from 𝐻 to 𝐺 . Let us emphasise that the sum is finite, since 𝑎Φ,𝑘
has finite support, that is, 𝑎Φ,𝑘 (𝐻 ) ≠ 0 only for finitely many 𝐻 .
The complexity monotonicity principle, which was independently
discovered by Curticapean, Dell and Marx [7] and by Chen and
Mengel [3], states that computing a finite linear combination of
homomorphism counts as in (1) is precisely as hard as comput-
ing its hardest term #Hom(𝐻 → 𝐺) with a non-zero coefficient
𝑎Φ,𝑘 (𝐻 ) ≠ 0. Since the complexity of counting homomorphisms
from𝐻 to𝐺 is well-understood — the problem is feasible if and only
if the treewidth7 of 𝐻 is small [9] — the complexity monotonic-
ity principle shifted the study of the complexity of #IndSub(Φ)
and related subgraph counting problems to the purely combina-
torial problem of determining the treewidth of the graphs 𝐻 with
a non-zero coefficient 𝑎Φ,𝑘 (𝐻 ) ≠ 0. More formally, we can define
a function 𝑡Φ which maps a positive integer 𝑘 to the maximum
treewidth of a graph 𝐻 with 𝑎Φ,𝑘 (𝐻 ) ≠ 0. We then obtain the
following implicit classification:

Theorem 4 (Corollary 1.11 in [7]). The problem #IndSub(Φ) is
fixed-parameter tractable if 𝑡Φ is bounded by a constant, and #W[1]-
complete otherwise.

For tight(er) lower bounds under ETH, it is additionally necessary
that 𝑡Φ (𝑘) ∈ Ω(𝑘).

With Theorem 4 as a powerful tool at hand, recent work focused
on establishing an explicit criterion for tractability of #IndSub(Φ).
More concretely, we note that Conjecture 1 can be resolved if it is
7Intuitively, treewidth is a parameter that measures how tree-like a graph is. In this
work, we will rely on treewidth purely in a black-box manner, and thus we refer the
reader to Chapter 7 in [8] for a comprehensive treatment of treewidth.
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Table 1: Finding and counting 𝑘-vertex induced subgraphs that satisfy a hereditary property Φ. The conditional lower bounds
for exact counting assume the Exponential Time Hypothesis, and the absence of an FPTRAS for approximate counting is
conditioned on the assumption thatW[1] does not coincide with FPT under randomised parameterised reductions.

† For the property True of being constant true, all versions of the problem become trivial.
‡ By Ramsey’s Theorem, and since Φ is hereditary, the condition ∃ 𝑠, 𝑡 : Φ(𝐾𝑠 ) = Φ(𝐼𝑡 ) = 0 implies that Φ is false for all graphs with at least 𝑅 (𝑠, 𝑡 ) vertices. As 𝑠
and 𝑡 are constants, all versions of the problem can be trivially solved in time 𝑛𝑂 (𝑅 (𝑠,𝑡 ) ) = 𝑛𝑂 (1) .

Condition on Φ ≠ True†
Decision

Khot & Raman [24]
Approx. Counting

Meeks [25]
Exact Counting

This work (Theorem 2)

∃ 𝑠, 𝑡 : Φ(𝐾𝑠 ) = Φ(𝐼𝑡 ) = 0‡ P P P

∀ ℓ : Φ(𝐾ℓ ) = Φ(𝐼ℓ ) = 1 FPT FPTRAS #W[1]-hard,
not in 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘 )

Otherwise W[1]-hard no FPTRAS #W[1]-hard,
not in 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘 )

proved that 𝑡Φ is bounded if and only if Φ is meagre. Unfortunately,
it turned out that the analysis of 𝑡Φ and thus the analysis of the
coefficients 𝑎Φ,𝑘 (𝐻 ) in (1) is a very challenging task in its own
right. The reason for the latter is that the coefficients 𝑎Φ,𝑘 (𝐻 ) often
encode algebraic and even topological invariants.8 Despite the latter
difficulty, Theorem 4 was successfully used in previous works to
resolve Conjecture 1 for some restricted classes of properties, which
we will present in more detail in Section 1.4.

In the current work, we side-step the problem of analysing the
coefficients in (1) for hereditary properties by considering a bipar-
tite version of #IndSub(Φ) as an intermediate step. For the defi-
nition of the intermediate problem, we need to consider bipartite
graphs𝐺 with fixed bipartitions𝑉 (𝐺) = 𝑈 ¤∪𝑉 (note that a bipartite
graph might have multiple bipartitions). Formally, we will write
G = (𝑈 ,𝑉 , 𝐸) to emphasise fixing the left- and right-hand side
vertices𝑈 and 𝑉 , respectively. Furthermore, two bipartite graphs
G1 = (𝑈1,𝑉1, 𝐸2) and G2 = (𝑈2,𝑉2, 𝐸2) are said to be consistently
isomorphic if there exists an isomorphism that maps 𝑈1 to 𝑈2 and
𝑉1 to 𝑉2, respectively. A bipartite property Ψ is then defined to be a
function from bipartite graphs to {0, 1} such that Ψ(G1) = Ψ(G2)
whenever G1 and G2 are consistently isomorphic.

Given a bipartite property Ψ, the problem #BipIndSub(Ψ) asks,
on input a bipartite graph G (with fixed bipartition!) and a positive
integer 𝑘 , to compute the number of 𝑘-vertex induced subgraphs of
G that satisfy Ψ; here, the bipartition of an induced subgraph ofG is
induced by the bipartition ofG. We stress that #BipIndSub(Ψ) is not
the same as the restriction of #IndSub(Φ) to bipartite input graphs
(without fixed bipartition). For example, #BipIndSub(Ψ) allows us
to express counting of 2𝑘-vertex induced subgraphs of G that have
𝑘 vertices on the left-hand side and 𝑘 vertices on the right-hand
side, or, more interestingly, counting 𝑘-vertex induced subgraphs
ofG such that there is a vertex on the left-hand side that is adjacent

8As a concrete example, it was shown in [29] that for edge-monotone Φ, the coefficient
𝑎Φ,𝑘 (𝐾𝑘 ) of the complete graph is equal to the so-called reduced Euler characteristic
of the simplicial graph complex associated withΦ. As a consequence, it was established
that 𝑎Φ,𝑘 (𝐾𝑘 ) ≠ 0 is a sufficient criterion for the property Φ to be evasive on 𝑘-vertex
graphs. Therefore, a proof that 𝑎Φ,𝑘 (𝐾𝑘 ) does not vanish whenever Φ is non-trivial
on 𝑘-vertex graphs would resolve Karp’s famous Evasiveness-Conjecture. We refer
the reader to [29] for a detailed treatment of the connection between the coefficients
𝑎Φ,𝑘 (𝐾𝑘 ) and the evasiveness of Φ.

to all vertices on the right-hand side. Both of those examples are
not expressible by just restricting #IndSub(Φ) to bipartite inputs.

Our proof of Theorem 2 can then be split into two essentially
independent parts: First, we establish the following criterion for
the intractability of #BipIndSub(Ψ). To this end, I𝑘,𝑘 denotes an
independent set of size 2𝑘 , with a fixed bipartition that contains 𝑘
vertices on the left-hand side and 𝑘 vertices on the right-hand side;
andB𝑘,𝑘 denotes the complete bipartite graphwith𝑘 vertices on the
left-hand side and 𝑘 vertices on the right-hand side. Furthermore,
we call a set of integersK dense if there exists a constant 𝑐 such that
for every positive integer𝑚, there is a 𝑘 ∈ K with𝑚 ≤ 𝑘 ≤ 𝑐 ·𝑚.

Theorem 5. Let Ψ be a computable bipartite property. Let K
be the set of primes 𝑘 for which Ψ distinguishes I𝑘,𝑘 and B𝑘,𝑘 , i.e.,
Ψ(I𝑘,𝑘 ) ≠ Ψ(B𝑘,𝑘 ). If K is infinite then #BipIndSub(Ψ) is #W[1]-
hard. Moreover, if K is dense then #BipIndSub(Ψ) cannot be solved
in time 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘) for any function 𝑓 , assuming the ETH.

In the second step, we show that for a wide range of proper-
ties Φ, including all hereditary properties, we can associate with
Φ a bipartite property ΨΦ such that #BipIndSub(ΨΦ) reduces to
#IndSub(Φ) with respect to parameterised reductions. Addition-
ally, this reduction will be tight in the sense that all conditional
lower bounds transfer. Finally, we show that, whenever Φ is not
meagre, the bipartite property ΨΦ will satisfy the strong hardness
condition in Theorem 5, yielding not only #W[1]-hardness, but also
the conditional lower bound under ETH. 9

In what follows, we will describe both steps in more detail sepa-
rately.

1.2.1 Classification of Bipartite Properties. The main motivation
of our consideration of #BipIndSub(Ψ) as an intermediate step is
the “algebraic approach to hardness” as introduced in [11], which
we will describe subsequently.

For a properly defined vertex-coloured version of #IndSub(Φ),
restricted to bipartite input graphs (but without fixed bipartition), a

9For readers familiar with the so-called bipartite double-cover 𝐺 × 𝐾2 , we wish to
stress that the latter is not used in our reduction, even though this approach may seem
tempting at first glance. Unfortunately, due to technical reasons which are out of the
scope of this extended abstract, we were not able to obtain an easier proof via the
bipartite double-cover.
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transformation as linear combination of vertex-coloured homomor-
phism counts similar as in Equation (1) is known to hold. It was
furthermore established that

(I) the complexity monotonicity principle (Theorem 4) remains
true in the vertex-coloured setting, and

(II) the coefficient 𝑎Φ,𝑘 (𝐻 ) for 𝐻 being a complete bipartite
graph can be analysed much easier in the vertex-coloured
case.

The reason for the simplified analysis of the coefficient in (II) ulti-
mately relied on the fact that the complete bipartite graph is edge-
transitive and that it can have a prime-power number of edges; we
describe this in more detail when we apply the algebraic approach
to the setting of fixed bipartitions further below.

In combination, (I) and (II) were shown to yield a classification
similar to Theorem 5 but without considering fixed bipartitions.
Unfortunately, our reduction from the bipartite to the non-bipartite
case crucially depends on such fixed bipartitions. Therefore, we
adapt the algebraic approach to #BipIndSub(Ψ) as follows. Writ-
ing #BipIndSub(Ψ, 𝑘 → G) for the number of (bipartite) 𝑘-vertex
induced subgraphs of G that satisfy Ψ, we establish a similar trans-
formation as in Equation (1). We show that there exists a function
𝑎Ψ,𝑘 of finite support and independent of G such that10

#BipIndSub(Φ, 𝑘 → G) =
∑
𝐻

𝑎Ψ,𝑘 (𝐻 ) · #Hom(𝐻 → 𝐺) , (2)

where the sum is again over all graphs (without fixed bipartitions)
and 𝐺 is the underlying graph of G. Additionally, if 𝑘 = 2ℓ , we
show that

𝑎Ψ,𝑘 (𝐵ℓ,ℓ ) =
∑

𝐴⊆𝐸 (𝐵ℓ,ℓ )
Ψ(Bℓ,ℓ [𝐴]) · (−1)ℓ

2−|𝐴 | , (3)

where 𝐵ℓ,ℓ is the complete bipartite graph, i.e., the ℓ-by-ℓ biclique,
Bℓ,ℓ is the ℓ-by-ℓ biclique with fixed bipartition, and Bℓ,ℓ [𝐴] is
obtained from Bℓ,ℓ by removing all edges in 𝐸 (𝐵ℓ,ℓ ) \𝐴. The goal is
to show that 𝑎Ψ,𝑘 (𝐵ℓ,ℓ ) in (3) is non-zero whenever ℓ is a prime and
Ψ(Iℓ,ℓ ) ≠ Ψ(Bℓ,ℓ ). Since the treewidth of 𝐵ℓ,ℓ is linear in ℓ , we can
rely on a vertex-coloured version of complexity monotonicity such
as in (I) to prove that 𝑎Ψ,𝑘 (𝐵ℓ,ℓ ) ≠ 0 is sufficient for the classification
of #BipIndSub(Ψ) (Theorem 5).

The subtle difference between (3) and the analysis in [11], which
prevents us from using the main result of [11] in a black-box man-
ner, is that the edge-subgraphs of Bℓ,ℓ keep their fixed bipartition,
and only the subgraphs for which the bipartite property Ψ holds
contribute to the sum. More precisely, the main result of [11] is
achieved by considering the canonical action of the automorphism
group Aut(𝐵ℓ,ℓ ) on the set of edge-subsets and observing that the
term Ψ(𝐵ℓ,ℓ [𝐴]) · (−1)ℓ

2−|𝐴 | is invariant under this action if no
bipartition is fixed and if Ψ is a graph property rather than a bipar-
tite property. However, in our case, Ψ is a bipartite property that
respects the bipartition. Thus, for an automorphism 𝜋 of 𝐵ℓ,ℓ which
maps vertices from the left-hand side to the right-hand side and
vice versa, there might be an edge-subset 𝐴 such that

Ψ(Bℓ,ℓ [𝐴]) ≠ Ψ(Bℓ,ℓ [𝜋 (𝐴)]) .

10In fact, for technical reasons, we establish Equation (2) in a vertex-coloured setting,
which is, however, shown to be interreducible with the uncoloured setting. The formal
treatment can be found in the full version [15].

Fortunately, we can easily solve this problem by restricting to
automorphisms that are consistent, i.e., which map the left-hand
side to the left-hand side and the right-hand side to the right-hand
side. Writing Aut(Bℓ,ℓ ) for the set of consistent automorphisms, it
is easy to see that Aut(Bℓ,ℓ ) still acts transitively on the edges of the
complete bipartite graph Bℓ,ℓ , that is, for each pair of edges 𝑒 and
𝑓 of Bℓ,ℓ , there exists 𝜋 ∈ Aut(Bℓ,ℓ ) such that 𝜋 (𝑒) = 𝑓 . With that
observation at hand, we can apply the algebraic approach similarly
as in [11]; for now we provide a concise outline and refer the reader
to the full version [15] for the detailed presentation.

To establish that 𝑎Ψ,𝑘 (𝐵ℓ,ℓ ) does not vanish under the previous
constraints, we will first observe that #Aut(Bℓ,ℓ ) is divisible by
ℓ . Thus, we can show that there exists an ℓ-Sylow subgroup Γ
of Aut(Bℓ,ℓ ) whose action on the edges of Bℓ,ℓ is still transitive.
Extending this action to edge-subsets of Bℓ,ℓ , we observe that for
each pair 𝐴1 and 𝐴2 in the same orbit, we have that

Ψ(Bℓ,ℓ [𝐴1]) = Ψ(Bℓ,ℓ [𝐴2]) .

Since the size of each orbit must divide the order of the group, which
is the prime ℓ , we can take Equation (3) modulo ℓ , and observe that
only the fixed points survive, that is 𝐴 = ∅ and 𝐴 = 𝐸 (𝐵ℓ,ℓ ). In
other words, we obtain

𝑎Ψ,𝑘 (𝐵ℓ,ℓ ) = Ψ(Bℓ,ℓ ) + Ψ(Iℓ,ℓ ) · (−1)ℓ
2

mod ℓ , (4)

which is non-zero whenever ℓ is a prime and Ψ(Bℓ,ℓ ) ≠ Ψ(Iℓ,ℓ ). As
outlined previously, this will suffice for establishing the classifica-
tion of #BipIndSub(Ψ) (Theorem 5).

1.2.2 Reducing from Bipartite Properties to Graph Properties using
False Twins. LetΦ be a hereditary graph property that is not meagre.
In order to confirm Conjecture 1 for such Φ we will relate Φ to a
bipartite property ΨΦ, which satisfies the requirements of the hard-
ness result from Theorem 5. Intuitively, this means that ΨΦ should
distinguish, for certain 𝑘 , the independent set I𝑘,𝑘 from the bi-
cliqueB𝑘,𝑘 . Additionally, we have to establish that #BipIndSub(ΨΦ)
reduces to #IndSub(Φ).

How could we define such a property ΨΦ? Since Φ is hereditary
it can be classified by a (possibly infinite) set of (inclusion-minimal)
forbidden induced subgraphs Π(Φ). Since Φ is not meagre Π(Φ)
contains at least one element, say 𝐻 . Consider the following initial
construction; an illustration is provided in Figure 1. Suppose that
𝐻 contains an edge 𝑒 = {𝑢1, 𝑢2}. Then replacing this edge with a
complete bipartite graph B𝑘,𝑘 yields a graph 𝐻B𝑘,𝑘

that contains 𝐻
as induced subgraph, which means that Φ(𝐻B𝑘,𝑘

) = 0. Now suppose
further that replacing 𝑒 with an independent set I𝑘,𝑘 yields a graph
𝐻I𝑘,𝑘 for which Φ(𝐻I𝑘,𝑘 ) = 1. Then the process of replacing the
edge 𝑒 with some bipartite graph G — note that the choice of the
bipartition matters — and evaluating Φ for the resulting graph 𝐻G
defines a bipartite property that distinguishes I𝑘,𝑘 from B𝑘,𝑘 .

However, for this approach to work in general, it is essential
that Φ(𝐻I𝑘,𝑘 ) = 1, i.e., that 𝐻I𝑘,𝑘 does not contain any forbidden
induced subgraph. This suggests some kind of “minimal” choice of
the graph 𝐻 ∈ Π(Φ) in the general case. Consider the graphs in
Figure 2 as forbidden induced subgraphs. The graph on the left has
fewer vertices and edges. However, when replacing any of its edges
by I2,2, we obtain the graph on the right. So it does not suffice to
look at the number of vertices or edges alone.
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𝐻G

Figure 1: Replacing an edge 𝑒 of 𝐻 by the 3-by-3 biclique, the 3-by-3 independent set, and the bipartite graph G.

For the choice of 𝐻 it turns out to be helpful to consider sets
of vertices in 𝐻 that have identical neighbourhood (so-called false

twins). The false twin relation partitions the vertices of𝐻 into blocks.
By 𝐻↓ we denote the corresponding quotient graph, in which each
block is replaced by a single vertex. We refer to it as the twin-

free quotient.11 Note that the twin-free quotient of the left-hand
graph in Figure 2 is 𝐾4 itself, whereas the twin-free quotient of the
right-hand graph is 𝐾4 minus an edge.

For our refined construction that will ultimately lead to the
definition of the bipartite property ΨΦ, we will choose a graph 𝐻
from Π(Φ) for which 𝐻 ↓ has minimal number of edges. For an
edge {𝑢1, 𝑢2} in 𝐻 let 𝐵1 and 𝐵2 be the blocks containing 𝑢1 and
𝑢2, respectively. Given a bipartite graph G = (𝑉1,𝑉2, 𝐸) we define
a graph 𝐹G, where we now replace not only the edge {𝑢1, 𝑢2} but
the complete bipartite graph induced by 𝐵1 and 𝐵2, and insert
in its stead the graph G, where 𝑉1 replaces 𝐵1, and 𝑉2 replaces
𝐵2, see Figure 3 for an example. As in the initial construction, for
sufficiently large𝑘 ,𝐻 is an induced subgraph of 𝐹B𝑘,𝑘

, which implies
Φ(𝐹B𝑘,𝑘

) = 0. However, one can also show that for every induced
subgraph 𝐹 ′ of 𝐹I𝑘,𝑘 , it holds that |𝐸 (𝐹 ′↓)| ≤ |𝐸 (𝐹I𝑘,𝑘↓)| < |𝐸 (𝐻↓
)|, and so, by our choice of 𝐻 , 𝐹 ′ is not in Π(Φ), i.e., it is not a
forbidden induced subgraph of Φ. Consequently, Φ(𝐹I𝑘,𝑘 ) = 1 as
intended. This way we establish that the bipartite property ΨΦ

11The twin-free quotient was implicitly used in [30] as well, although in a much less
general reduction.

𝐻1 𝐻2

Figure 2: 𝐻1 = 𝐾4 and 𝐻2 which can be obtained from 𝐾4 by
replacing an edge by I2,2.

with ΨΦ (G) B Φ(𝐹G) distinguishes, for sufficiently large 𝑘 , the
independent set I𝑘,𝑘 from the biclique B𝑘,𝑘 and thereby satisfies
the requirements of Theorem 5. This shows that #BipIndSub(ΨΦ)
is #W[1]-hard with the corresponding conditional lower bound.

It is worth to mention that Conjecture 1 was previously con-
firmed for hereditary properties that only have a single forbidden
induced subgraph, i.e., for the case |Π(Φ) | = 1 [30]. The correspond-
ing proof uses the idea of replacing a single edge that we described
in the initial construction. It then boils down to a reduction from
counting independent sets. In our work, we significantly generalise
the gadget construction, and by using #BipIndSub(ΨΦ), where ΨΦ
depends on Φ, we also broaden the class of problems we reduce
from. Note that the problem of counting independent sets is a very
special case of a property that distinguishes independent sets from
bicliques.

We continue by giving an overview of the tight parameterised
reduction from #BipIndSub(ΨΦ) to #IndSub(Φ). Given a bipartite
graph G = (𝑉1,𝑉2, 𝐸) together with a positive integer 𝑘 as input to
#BipIndSub(ΨΦ) let 𝐹G be as defined previously. Let 𝑅 = 𝑉 (𝐹G) \
(𝑉1 ∪𝑉2), so 𝑅 contains the vertices of 𝐻 that are outside of 𝐵1 and
𝐵2 (which were replaced by 𝑉1 and 𝑉2 in the construction of 𝐹G).
Let 𝑘 ′ = 𝑘 + |𝑅 |. One can show that for the sought-for number of
𝑘-vertex induced subgraphs of G that satisfy ΨΦ we have

#BipIndSub(ΨΦ, 𝑘 → G) = #{𝑆 ∈ IndSub(Φ, 𝑘 ′ → 𝐹G) | 𝑅 ⊆ 𝑆}.

Then, from the standard inclusion-exclusion principle, it follows
that

#{𝑆 ∈ IndSub(Φ, 𝑘 ′ → 𝐹G) | 𝑅 ⊆ 𝑆}

=
∑
𝐽 ⊆𝑅

(−1) | 𝐽 | · IndSub(Φ, 𝑘 ′ → 𝐹G \ 𝐽 ),

where 𝐹G \ 𝐽 is the graph obtained from 𝐹G by deleting the
vertices in 𝐽 . Thus, an algorithm that makes 2 |𝑅 | ∈ 𝑂 (1) ora-
cle calls, each of the form (𝐹G \ 𝐽 , 𝑘 ′), can compute the value
#BipIndSub(ΨΦ, 𝑘 → G), which gives the sought-for reduction, i.e.,
the connection between the bipartite property ΨΦ and the original
graph property Φ.
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Figure 3: Replacing a pair of adjacent blocks 𝐵1 and 𝐵2 by a bipartite graph G.

There is an additional ingredient which so far we have swept
under the rug. In the definition of 𝐹G we replaced two adjacent
blocks in the chosen graph 𝐻 by the graph G. It is important that
the blocks 𝐵1 and 𝐵2 share an edge. (Since they are blocks, this
means that there is a complete set of edges between them.) How-
ever, it is possible that Φ contains an independent set as forbidden
induced subgraph. It would follow that the graph 𝐻 in Π(Φ) with
edge-minimal 𝐻↓ is an independent set, which would spoil the con-
struction. In this case it helps to consider a closely related property.
For each graph𝐺 , let𝐺 be the complement of𝐺 . Then we define Φ
withΦ(𝐺) = Φ(𝐺). It is known thatΦ is hereditary if and only ifΦ is
hereditary. Furthermore, #IndSub(Φ) and #IndSub(Φ) are known
to be tightly interreducible by parameterised reductions [30]. So,
for all our purposes, we are free to work with either one of Φ or Φ.
By a simple application of Ramsey’s theorem, we show that every
hereditary property Φ, for which both Φ and Φ have an independent
set as forbidden induced subgraph, has to be meagre. Conversely,
if Φ is not meagre then at least one of Φ or Φ is a suitable candidate
for our construction.

The approach of utilising bipartite properties and implanting
bipartite graphs into some fixed graph𝐻 that depends on the graph
property Φ is not only applicable to hereditary properties. With a
slightly different construction we also prove Theorem 3, the clas-
sification for properties that are invariant under homomorphic
equivalence. In this case it suffices to implant a graph G into an
edge 𝑒 in a graph 𝐻 for which Φ(𝐻 ) ≠ Φ(𝐻 − 𝑒) holds. We omit
further details but it is worth to point out that we actually classify a
less natural but even more general class of properties. A graph prop-
erty Φ is twin-invariant if, for each pair of graphs 𝐻1 and 𝐻2 that
have isomorphic twin-free quotients12, we have Φ(𝐻1) = Φ(𝐻2).
This criterion covers previously unclassified properties such as
“disconnected or bipartite” or “disconnected or triangle-free” but
more importantly it is not hard to see that every property that is
invariant under homomorphic equivalence is also twin-invariant.
Thus, Theorem 3 is a direct consequence of the following more
general result.

12In the definition we can even get away with only considering graphs whose twin-free
quotient contains at least two vertices. This is a technicality which makes the class
of covered properties more general and ensures that this result covers, for instance,
also the property of being (dis)connected, which was of interest in some of the earlier
works [19, 29].

Theorem 6. Let Φ be a computable twin-invariant graph property.

If Φ is meagre then #IndSub(Φ) is solvable in polynomial time. Oth-

erwise, #IndSub(Φ) is #W[1]-complete and, assuming ETH, cannot

be solved in time 𝑓 (𝑘) · |𝐺 |𝑜 (𝑘) for any function 𝑓 .

1.3 Further Related Work
The decision version of #IndSub(Φ) for hereditary properties Φ
was studied and fully classified by Khot and Raman [24] — their
results are summarised in Table 1 — and also by Eppstein, Gupta and
Havvaei [12] who additionally restricted the problem to hereditary
classes of input graphs. Furthemore, if for each 𝑘 , the property Φ
is true for at most one 𝑘-vertex graph, the work of Chen, Thurley
and Weyer [6] establishes hardness for both, decision and counting,
whenever Φ is not meagre.13

The complexity of computing an 𝜀-approximation of #IndSub(Φ)
was investigated by Jerrum and Meeks in a sequence of papers [19–
21, 25], and in case of hereditary properties, it was ultimately re-
solved by Meeks [25] (see Table 1). For more general classes of
properties, there are only partial results, and to the best of our
knowledge the complexity of approximating #IndSub(Φ) is still
open for edge-monotone properties. However, there are strong
recent meta-theorems such as the 𝑘-Hypergraph framework due
to Dell, Lapinskas, and Meeks [10] that yield efficient approxima-
tion algorithms for #IndSub(Φ) by reduction to vertex-coloured
decision problems.

Most results on #IndSub(Φ) are concerned with hardness of
exact counting; we list them chronologically.

• In [19], Jerrum and Meeks proved that #IndSub(Φ) always
belongs to #W[1], given that Φ is computable. Additionally,
#W[1]-hardness was established for the property Φ of being
connected.

• In [20], #W[1]-hardness was proved by the same authors
for all properties with low edge-densities. This covers, for
example, all non-trivial minor-closed properties.

• In the survey paper of Meeks [25] a #W[1]-hardness re-
sult was established for properties that are closed under the
addition of edges, and whose edge-minimal elements have
unbounded treewidth.

13We remark that our notion of meagre coincides with their notion of meagre in the
special case where Φ is true for at most one 𝑘-vertex graph for each 𝑘 , which applies,
e.g., to the properties of being a path, a cycle, or a matching.
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• In [21], Jerrum and Meeks proved #W[1]-hardness for the
property of having an even, or an odd, number of edges.

• In the breakthrough paper of Curticapean, Dell and Marx [7],
the principle of complexity monotonicity was introduced,
and it was shown that #IndSub(Φ) is always either fixed-
parameter tractable or #W[1]-hard, given that Φ is com-
putable. (See Theorem 4.)

• In [29], Roth and Schmitt established #W[1]-hardness and a
tight lower bound under ETH for edge-monotone properties
that are non-meagre and false on odd cycles.

• In [11], Dörfler, Roth, Schmitt, and Wellnitz introduced the
“algebraic approach to hardness” and established #W[1]-
hardness for properties that distinguish independent sets
from so-called wreath graphs. As a concrete example, their
result applies to monotone properties that are non-trivial on
bipartite graphs, in which case a tight lower bound under
ETH is also achieved.

• Finally, in [30], Roth, Schmitt andWellnitz established #W[1]-
hardness and an almost tight conditional lower bound of the
form 𝑓 (𝑘)·𝑛𝑜 (𝑘/

√
log𝑘) for non-meagremonotone properties.

More generally, they proved the result for any property with
so-called 𝑓 -vectors of small Hamming weight; we refer the
reader to [30, Sections 3 and 4] for a detailed exposition but
remark that hereditary properties do not, in general, have
𝑓 -vectors with small enough Hamming weight for the result
in the current paper to be covered by their meta theorem.
Additionally, Roth, Schmitt andWellnitz proved Conjecture 1
for the restricted case of hereditary properties that are de-
fined by a single forbidden induced subgraph.

None of the previous results comes close to resolving Conjec-
ture 1 for all hereditary properties. In particular, since every mono-
tone property is also hereditary, we not only subsume the classifi-
cation for monotone properties from [30], but we also improve the
conditional lower bound from almost tight to tight.

1.4 Open Problems
We conclude our presentation with two open problems and sugges-
tions for further work.

First, the most important open question is whether Conjecture 1
is indeed true for all computable properties. With the case of hered-
itary properties now being resolved, the other central remaining
family of properties with a natural closure condition is the class
of all edge-monotone properties. Between the results from [25]
and [29], large classes of edge-monotone properties are already
covered, but there remains a significant gap towards a complete
understanding. For example, none of the existing partial results
resolves the complexity of #IndSub(Φ) for the following (slightly
artificial) edge-monotone property:

Φ(𝐻 ) = 1 if and only if 𝐻 is bipartite or has no apex.14

For this reason, we suggest to tackle Conjecture 1 for the case of
edge-monotone properties as a concrete next step. Our hope is that
the technical framework that we introduce in the work at hand will
help to close the remaining gap for edge-monotone properties as
well.

14An apex is a vertex adjacent to all other vertices.

However, we wish to point out that, in this case, strengthening
the intractability part of Conjecture 1 by additionally aiming for
tight conditional lower bounds might require hardness assumptions
stronger than ETH. The reason for the latter is the existence of
artificial “non-dense” edge-monotone properties, such as

Φ(𝐻 ) =
{
1 ∃ℓ : 𝐻 = 𝐼𝑎 (ℓ,ℓ)
0 otherwise ,

where 𝑎 is the Ackermann function. Observe that Φ is closed under
the removal of edges (but not under the removal of vertices). It is
easy to establish #W[1]-hardness of #IndSub(Φ) by reducing from
the parameterised problem of counting independent sets using
standard methods. However, the parameter explodes drastically in
this reduction due to the fact that we can only reduce to instances of
#IndSub(Φ) in which 𝑘 is in the image of the Ackermann function.
This prevents us from coming even close to a tight ETH-based lower
bound. One way to circumvent this problem is to restrict ourselves
to graph properties that are dense in the sense that the set of ℓ for
which Φ is non-trivial on ℓ-vertex graphs is a dense enough subset
of the natural numbers; this approach was formalised and used in
previous work [11, 29, 30].

Finally, given that this work provides even more evidence for
the intractability of #IndSub(Φ), we stress that a relaxation of
the problem is unavoidable if efficient algorithms are sought. The
obvious and most promising candidate for such a relaxation is to
only aim for an approximation of the solution.

As summarised in Table 1, Meeks [25] explicitly and exhaustively
identified those hereditary properties Φ for which #IndSub(Φ) ad-
mits an FPTRAS. In particular, our main result shows that Meeks’
result cannot be strengthened to yield fixed-parameter tractability
of exact counting, unless ETH fails.

However, for general (not necessarily hereditary) properties
much less is known about the complexity of the approximate count-
ing variant of #IndSub(Φ); again, we refer the reader to the survey
of Meeks for a comprehensive overview [25].

ACKNOWLEDGEMENTS
We are very grateful to Johannes Schmitt and Philip Wellnitz for
helpful comments on early and recent drafts of this work.

REFERENCES
[1] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and

S. Cenk Sahinalp. 2008. Biomolecular network motif counting and discovery by
color coding. Bioinformatics 24, 13 (07 2008), i241–i249. https://doi.org/10.1093/
bioinformatics/btn163

[2] Vikraman Arvind and Venkatesh Raman. 2002. Approximation Algorithms for
Some Parameterized Counting Problems. In Algorithms and Computation, 13th

International Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23,

2002, Proceedings. 453–464. https://doi.org/10.1007/3-540-36136-7_40
[3] Hubie Chen and Stefan Mengel. 2016. Counting Answers to Existential Positive

Queries: A Complexity Classification. In Proceedings of the 35th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San

Francisco, CA, USA, June 26 - July 01, 2016. 315–326. https://doi.org/10.1145/
2902251.2902279

[4] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A.
Kanj, and Ge Xia. 2005. Tight lower bounds for certain parameterized NP-hard
problems. Inf. Comput. 201, 2 (2005), 216–231. https://doi.org/10.1016/j.ic.2005.
05.001

[5] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong compu-
tational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72, 8
(2006), 1346–1367. https://doi.org/10.1016/j.jcss.2006.04.007

https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1007/3-540-36136-7_40
https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007


Counting Small Induced Subgraphs with Hereditary Properties STOC ’22, June 20–24, 2022, Rome, Italy

[6] Yijia Chen, Marc Thurley, and Mark Weyer. 2008. Understanding the Complexity
of Induced Subgraph Isomorphisms. In Automata, Languages and Programming,

35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,

Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games. 587–596.
https://doi.org/10.1007/978-3-540-70575-8_48

[7] Radu Curticapean, Holger Dell, and Dániel Marx. 2017. Homomorphisms are a
good basis for counting small subgraphs. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,

June 19-23, 2017. 210–223. https://doi.org/10.1145/3055399.3055502
[8] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized

Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3
[9] Víctor Dalmau and Peter Jonsson. 2004. The complexity of counting homomor-

phisms seen from the other side. Theor. Comput. Sci. 329, 1-3 (2004), 315–323.
https://doi.org/10.1016/j.tcs.2004.08.008

[10] Holger Dell, John Lapinskas, and Kitty Meeks. 2020. Approximately counting
and sampling small witnesses using a colourful decision oracle. In Proceedings

of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake

City, UT, USA, January 5-8, 2020, Shuchi Chawla (Ed.). SIAM, 2201–2211. https:
//doi.org/10.1137/1.9781611975994.135

[11] Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. 2022. Counting
Induced Subgraphs: An Algebraic Approach to #W[1]-Hardness. Algorithmica

84, 2 (2022), 379–404. https://doi.org/10.1007/s00453-021-00894-9
[12] David Eppstein, Siddharth Gupta, and Elham Havvaei. 2021. Parameterized Com-

plexity of Finding Subgraphs with Hereditary Properties on Hereditary Graph
Classes. In Fundamentals of Computation Theory - 23rd International Symposium,

FCT 2021, Athens, Greece, September 12-15, 2021, Proceedings (Lecture Notes in Com-

puter Science, Vol. 12867), Evripidis Bampis and Aris Pagourtzis (Eds.). Springer,
217–229. https://doi.org/10.1007/978-3-030-86593-1_15

[13] Jörg Flum and Martin Grohe. 2003. Describing parameterized complexity classes.
Inf. Comput. 187, 2 (2003), 291–319. https://doi.org/10.1016/S0890-5401(03)00161-
5

[14] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer.
https://doi.org/10.1007/3-540-29953-X

[15] Jacob Focke and Marc Roth. 2021. Counting Small Induced Subgraphs with
Hereditary Properties. CoRR abs/2111.02277 (2021). arXiv:2111.02277

[16] Joshua A. Grochow and Manolis Kellis. 2007. Network Motif Discovery Using
Subgraph Enumeration and Symmetry-Breaking. In Research in Computational

Molecular Biology, Terry Speed and Haiyan Huang (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 92–106.

[17] Martin Grohe, Thomas Schwentick, and Luc Segoufin. 2001. When is the eval-
uation of conjunctive queries tractable?. In Proceedings on 33rd Annual ACM

Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece.
657–666. https://doi.org/10.1145/380752.380867

[18] Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of k-SAT.
J. Comput. Syst. Sci. 62, 2 (2001), 367–375. https://doi.org/10.1006/jcss.2000.1727

[19] Mark Jerrum and Kitty Meeks. 2015. The parameterised complexity of counting
connected subgraphs and graph motifs. J. Comput. Syst. Sci. 81, 4 (2015), 702–716.

https://doi.org/10.1016/j.jcss.2014.11.015
[20] Mark Jerrum and Kitty Meeks. 2015. Some Hard Families of Parameterized

Counting Problems. TOCT 7, 3 (2015), 11:1–11:18. https://doi.org/10.1145/2786017
[21] Mark Jerrum and Kitty Meeks. 2017. The parameterised complexity of counting

even and odd induced subgraphs. Combinatorica 37, 5 (2017), 965–990. https:
//doi.org/10.1007/s00493-016-3338-5

[22] Pieter W. Kasteleyn. 1961. The statistics of dimers on a lattice: I. The number
of dimer arrangements on a quadratic lattice. Physica 27, 12 (1961), 1209–1225.
https://doi.org/10.1016/0031-8914(61)90063-5

[23] Pieter W. Kasteleyn. 1963. Dimer Statistics and Phase Transitions. J. Math. Phys.

4, 2 (1963), 287–293. https://doi.org/10.1063/1.1703953
[24] Subhash Khot and Venkatesh Raman. 2002. Parameterized complexity of finding

subgraphs with hereditary properties. Theor. Comput. Sci. 289, 2 (2002), 997–1008.
https://doi.org/10.1016/S0304-3975(01)00414-5

[25] Kitty Meeks. 2016. The challenges of unbounded treewidth in parameterised
subgraph counting problems. Discrete Applied Mathematics 198 (2016), 170–194.
https://doi.org/10.1016/j.dam.2015.06.019

[26] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal
Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of Evolved and
Designed Networks. Science 303, 5663 (2004), 1538–1542. https://doi.org/10.
1126/science.1089167

[27] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002.
Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 5594
(2002), 824–827. https://doi.org/10.1126/science.298.5594.824

[28] Jaroslav Nešetřil and Svatopluk Poljak. 1985. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae 26, 2 (1985),
415–419.

[29] Marc Roth and Johannes Schmitt. 2020. Counting Induced Subgraphs: A Topo-
logical Approach to #W[1]-hardness. Algorithmica 82, 8 (2020), 2267–2291.
https://doi.org/10.1007/s00453-020-00676-9

[30] Marc Roth, Johannes Schmitt, and Philip Wellnitz. 2020. Counting Small Induced
Subgraphs Satisfying Monotone Properties. In 61st IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,

2020. IEEE, 1356–1367. https://doi.org/10.1109/FOCS46700.2020.00128
[31] Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. 2015. StreaM -

A Stream-BasedAlgorithm for CountingMotifs in Dynamic Graphs. InAlgorithms

for Computational Biology, Adrian-Horia Dediu, Francisco Hernández-Quiroz,
Carlos Martín-Vide, and David A. Rosenblueth (Eds.). Springer International
Publishing, Cham, 53–67.

[32] Falk Schreiber and Henning Schwöbbermeyer. 2005. Frequency Concepts and
Pattern Detection for the Analysis of Motifs in Networks. In Transactions on

Computational Systems Biology III, Corrado Priami, Emanuela Merelli, Pablo Gon-
zalez, and Andrea Omicini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
89–104.

[33] Harold N. V. Temperley and Michael E. Fisher. 1961. Dimer problem in statistical
mechanics-an exact result. The Philosophical Magazine: A Journal of Theoretical

Experimental and Applied Physics 6, 68 (1961), 1061–1063. https://doi.org/10.
1080/14786436108243366

https://doi.org/10.1007/978-3-540-70575-8_48
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1137/1.9781611975994.135
https://doi.org/10.1137/1.9781611975994.135
https://doi.org/10.1007/s00453-021-00894-9
https://doi.org/10.1007/978-3-030-86593-1_15
https://doi.org/10.1016/S0890-5401(03)00161-5
https://doi.org/10.1016/S0890-5401(03)00161-5
https://doi.org/10.1007/3-540-29953-X
https://arxiv.org/abs/2111.02277
https://doi.org/10.1145/380752.380867
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/j.jcss.2014.11.015
https://doi.org/10.1145/2786017
https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1063/1.1703953
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/j.dam.2015.06.019
https://doi.org/10.1126/science.1089167
https://doi.org/10.1126/science.1089167
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1007/s00453-020-00676-9
https://doi.org/10.1109/FOCS46700.2020.00128
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1080/14786436108243366

	Abstract
	1 Extended Abstract
	1.1 Our Results
	1.2 Technical Overview
	1.3 Further Related Work
	1.4 Open Problems

	References

