Journal article icon

Journal article

Gold Nanoparticles Decorated with Oligo(ethylene glycol) Thiols: Enhanced Hofmeister Effects in Colloid-Protein Mixtures

Abstract:
Oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) decorated gold nanoparticles (AuNPs) have potential applications in bionanotechnology due to their unique property of preventing the nonspecific absorption of protein on the colloidal surface. For colloid-protein mixtures, a previous study (Zhang et al. J. Phys. Chem. A 2007,111, 12229) has shown that the OEG SAM-coated AuNPs become unstable upon addition of proteins (BSA) above a critical concentration, c*. This has been explained as a depletion effect in the two-component system. Adding salt (NaCl) can reduce the value of c*; that is, reduce the stability of the mixture. In the present work, we study the influence of the nature of the added salt on the stability of this two-component colloid-protein system. It is shown that the addition of various salts does not change the stability of either protein or colloid in solution in the experimental conditions of this work, except that sodium sulfate can destabilize the colloidal solutions. In the binary mixtures, however, the stability of colloid-protein mixtures shows significant dependence on the nature of the salt: chaotropic salts (NaSCN, NaClO 4, NaNO 3, MgCl 2) stabilize the system with increasing salt concentration, while kosmotropic salts (NaCl, Na 2SO 4, NH 4Cl) lead to the aggregation of colloids with increasing salt concentration. These observations indicate that the Hofmeister effect can be enhanced in two-component systems; that is, the modification of the colloidal interface by ions changes significantly the effective depletive interaction via proteins. Real time SAXS measurements confirm in all cases that the aggregates are in an amorphous state. © 2009 American Chemical Society.
Publication status:
Published

Actions


Access Document


Publisher copy:
10.1021/jp810869h

Authors



Journal:
JOURNAL OF PHYSICAL CHEMISTRY C More from this journal
Volume:
113
Issue:
12
Pages:
4839-4847
Publication date:
2009-03-26
DOI:
EISSN:
1932-7455
ISSN:
1932-7447


Language:
English
Pubs id:
pubs:64745
UUID:
uuid:7237f31d-7b07-46a5-8732-2e017ad7e7a7
Local pid:
pubs:64745
Source identifiers:
64745
Deposit date:
2012-12-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP