Developing a risk map of malaria transmission for East Africa

by

Judith A Omumbo

Green College, University of Oxford

Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy
Department of Zoology
University of Oxford

Michaelmas Term
November, 2004
Acknowledgements

It is a pleasure to thank the many people who have made this work possible. Firstly I thank the Wellcome Trust, UK for financial support for my studies through the award of a Prize studentship (#060063). I also acknowledge the financial support of the International Development Research Centre, Canada and the South Africa Medical Research Council towards data collection. Information used in this study includes data produced through funding from NASA’s Earth Observing System Pathfinder Program. The data are provided by the Earth Observing Data and Information System (EODIS), Distributed Active Archive Center (DAAC) at the Goddard Space Flight Centre. I also thank Fred Snijders (FAO ARTEMIS) for permission to use Meteosat CCD data.

This thesis is the culmination of work carried out over the past 6 years beginning with the MARA team to whom I am indebted. Thanks all of you. I want also to thank the generous colleagues in malaria research and control in Kenya, Uganda, Tanzania, Ethiopia and Sudan for their support, for sparing time to facilitate my data collection, for sharing unpublished data and their hospitality during visits to each country. In particular I am grateful to Dr. Omer, Dr. Dukeen and Dr. Munira of the Sudanese National Malaria Administration, Dr. de Savigny and Rose Lusinde formerly of the Tanzania Essential Health Interventions Project (TEHIP), Albert Kilian (MoH, Uganda), Hugh Reyburn and Chris Drakeley (Gates Malaria Program, London School of Hygiene and Tropical Medicine), Chris Curtis and Ilona Carneiro (LSHTM), Dr. Talisuna and Dr. Langi of the Epidemiological Surveillance Division, MoH, Uganda and Dr. Ouma, Dr. Rapuoda and Mr Kwanya Agak of the Division of Malaria Control, MoH, Kenya, Dr. V. Marsh, Dr. T. Mwangi, Dr. D. Zurovac and Professor Bob Snow of the KEMRI/Wellcome Trust Research Programme, Kenya. The study would not have been possible without your contributions, asanteni sana.

I am deeply indebted to my supervisors Professor Bob Snow, Dr. Simon Hay and Professor David Rogers. I greatly appreciate the considerable amount of
time you spent critically reviewing what seemed like hundreds of drafts. In particular I thank Prof. Snow for keeping things moving, prompt and thorough reading of drafts and for your valuable comments on all aspects of this work. David thanks for all those hours of help with programming. Without you all, this work would not have been possible. Thanks too to Professor Sarah Randolph for your advice and encouragement and Dr. Willy Wint for being able to fix anything.

A special thank you is due to friends in Nairobi and in the UK and to colleagues in the Department of Zoology who made the past four years fun and provided a stimulating environment in which to learn and grow. So Bee, Nyami, Cee, Nyawira, Smoo, Sylvia, Andy, Dayo, Mike, Jana, Allan, Lina, Claudio, Bekky, Liz and Pippi, thanks for the visits, laughter, music, and for helping to keep life balanced. Jane, I thank you for providing a home away from home and for allowing me to enjoy the warm hearth of No. 6 for all those months.

Finally I wish to express my loving appreciation to my family. Mami and Baba, I have benefited greatly over the years from your wisdom and teaching about life’s choices. Thank you for your unwavering dedication to all of us. Lucy, Laura, Jim and Joe, you made it all worth it.
Abstract

Background: The distribution of malaria in sub-Saharan Africa is determined largely by climatic influences on the development and survival of *P. falciparum* and its Anopheline vectors. This inter-relationship has been exploited in developing a limited number of predictive maps of malaria's distribution but these climate maps have limitations. Climate alone does not fully describe the complex dynamics of transmission and, in particular, human influences such as urbanization and the use of widespread anti-malarial interventions. The improved accuracy and validation of solely climate-driven maps relies on the availability of robust malariometric training data. To date, such data have been scarce. This study redresses several deficiencies of existing malaria maps for Africa through the collation of an extensive database of empirical *P. falciparum* prevalence data, the investigation of the relationship between prevalence and a widely-used climate-driven map, an assessment of the influence of urbanization on prevalence and finally, through the use of empirical training data to develop an improved malaria map for Kenya, Tanzania and Uganda.

Methods: An extensive published and grey-literature search was conducted between 1996 and 2004 and identified 2003 *P. falciparum* prevalence surveys conducted among childhood populations across East Africa between 1927 and 2003. Stringent criteria were applied to select the best sample data; only randomly sampled community-based surveys, surveys with samples ≥ 50 children, surveys conducted between 1980-2004 and children aged 0-14 years, and surveys which were spatially and temporally unique. The selected data were used to investigate the association between *P. falciparum* prevalence and a fuzzy logic climatic suitability (FCS) map of malaria transmission, the
effect of urbanization on prevalence and to train Fourier-processed multi-temporal climate surrogate data derived from meteorological satellites in order to predict prevalence for un-sampled areas. Using discriminant analysis, the top ten climatic predictor variables that distinguished best between 4 categories of malaria prevalence (0-<5, 5-<25%, 25-<75% & >=75%) were selected and these used to develop a predictive transmission map.

Results: Three hundred and thirty *P. falciparum* prevalence surveys met the criteria for inclusion in subsequent analyses. A weak, but significant, association (*kappa*=0.367; p<0.0001) was found between the categorical definitions of malaria prevalence and FCS criteria. Urbanization was shown to have a significant limiting effect on transmission. Studies from urban areas (N=37) had 18% (p=<0.001) lower *P. falciparum* prevalence than rural area studies (N=292; 1 study was unclassified). No urban area surveys had a *P. falciparum* prevalence >75%. Environmental predictors that best discriminated between the four categories of malaria prevalence included surrogates of moisture availability (normalised difference vegetation index) and temperature (land surface temperature). The overall accuracy of the predictive model compared with the training data was 62% and a high level of agreement was noted between observed prevalence and predictions (*kappa*=0.477; *tau*=0.495).

Conclusions: Climate continues to be an important driver of transmission intensity in Eat Africa; however, maps that rely entirely upon climate cannot predict the plethora of human and local ecological factors that coincidentally modify transmission. At least 28% of East Africa's population live in urban areas. The trend towards urbanization is increasing and this will have important impacts on the distribution of malaria. The study
highlights the need for improved data relating to malaria, including more accurate spatial definitions of population settlement and the coverage of anti-malarial interventions. More accurate, higher resolution spatial definitions of malariometric data will be required for future high spatial resolution malaria maps. There is a need for the continued use of predictive mapping as more extensive empirical malariometric databases are unlikely to be available in the near future. This study demonstrates the capacity for improvement of predictive malaria mapping. With better descriptions of the distribution of populations at risk it should be possible to improve the rationalisation of interventions and evaluate their impacts.
Table of Contents

Title page ... i
Acknowledgements ... ii
Abstract .. iv
List of figures .. xi
List of tables ... xiv
List of abbreviations ... xvii

Chapter 1: The epidemiology and cartography of malaria in sub-Saharan Africa .. 1
1.1. Background .. 2
1.2. The scope of the thesis .. 6
1.3. The biology of *P. falciparum* malaria ... 9

1.3.1. The life cycle of *Plasmodium* ... 9
1.3.2. Anopheline vectors of human malaria in SSA .. 12
1.3.3. The life cycle of the *Anopheles* mosquito ... 12
1.3.4. Behavioural characteristics of the *Anopheles* mosquito .. 13
1.4. Clinical malaria ... 14
1.5. The malaria burden ... 19
1.6. Challenges for malaria control in SSA countries ... 21
1.7. Measuring infectious disease transmission .. 22

1.7.1. The Basic Reproduction Number of a disease R_0 .. 23
1.8. Describing the endemicity of malaria ... 25
1.8.1. Definition of endemicity .. 25
1.8.2. Stable and unstable malaria .. 26
1.8.3. Seasonality of malaria transmission .. 27
1.8.4. Epidemic malaria .. 28
1.9. Indicators of malaria endemicity: Incidence, prevalence, the force of infection and the Parasite Ratio ... 31
1.9.1. Measuring the Parasite Ratio ... 32
1.9.2. The classification of endemicity based on the Parasite Ratio ... 34
1.9.3. The relationship between the Entomological Inoculation Rate (EIR) and the Parasite Ratio ... 35
1.10. Determinants of *Plasmodium falciparum* endemicity ... 37

1.10.1. Temperature ... 38
1.10.2. Altitude .. 39
1.10.3. Rainfall and humidity ... 41
1.10.4. Human factors influencing transmission ...42
 1.10.4.1. Population movement, migration and displacement 43
 1.10.4.2. Urbanization .. 44
 1.10.4.3. Irrigation, water resources management and rice cultivation, land use and agriculture .. 46
 1.10.4.4. Socio-economic and behavioural factors .. 47
 1.10.4.5. Effects of malaria interventions .. 48

1.11. Malaria models for mapping malaria risk in sub-Saharan Africa49

1.11.1. Historical global maps of malaria risk .. 49
1.11.2. Climate data and remote sensing applied to vector-borne disease mapping 51
1.11.3. Mapping the geographical distribution of *Anopheles* in SSA 53
 1.11.3.1. Mapping the relative abundance of *Anopheles* using climate data 54
 1.11.3.2. Predicting malaria vector species distribution using satellite imagery 55
1.11.4. Modelling the seasonality of malaria .. 58
 1.11.4.1. The duration of malaria transmission seasons in SSA 58
 1.11.4.2. Predicting the onset of malaria seasons in Kenya using clinical data and satellite imagery ... 59
1.11.5. Modelling malaria risk: how much malaria? ... 61
 1.11.5.1. A fuzzy logic climate suitability model of malaria transmission 61
 1.11.5.2. A logistic regression model of malaria for West Africa 64
 1.11.5.3. Malaria transmission model for Kenya: estimating ‘at risk’ populations 66
 1.11.5.4. Predicting the EIR using satellite imagery ... 68
1.11.6. Modelling malaria under changing climate scenarios ... 70

1.12. Discussion of limitations of current malaria maps for SSA .. 72
Chapter 5: Publication 3: The influence of urbanization on measures of *Plasmodium falciparum* infection prevalence in East Africa ... 117

Chapter 6: Publication 4: Updating historical maps of malaria transmission intensity in East Africa using remote sensing .. 118

Chapter 7: Publication 5: Modelling malaria risk in East Africa at high spatial resolution ... 119

Chapter 8: Conclusions, limitations and future work ... 137

8.1. Summary .. 138

8.2. The limitation of the *P. falciparum* prevalence training data .. 140

8.3. A comparison of previous East African malaria maps ... 145

8.5. Future aims for mapping malaria and suggested steps to make improvements .. 153

References ... 155

Appendix: The data collection proforma .. 187
List of figures

Chapter 1: Figures

Figure 1.1: The life cycle of malaria parasites ... 11

Figure 1.2: Relative risks of infection, morbidity, severe disease and Mortality risks among a population aged 0-15 years located in a stable endemic area of the Kenyan coast ... 15

Figure 1.3: The direct, indirect and consequential public health effects of Plasmodium falciparum malaria in Africa ... 19

Figure 1.4: A conceptual framework of the dynamics malaria transmission 38

Figure 1.5: The effect of temperature on parasite development and vector development and survival ... 39

Figure 1.6: Altitude ranges of highland malaria epidemics in eastern African countries .. 41

Figure 1.7: The geographical limits of malaria .. 50

Figure 1.8: The geographical distribution of malaria infections 50

Figure 1.9: Sites where members of the Anopheles gambiae complex have been observed mapped against total annual rainfall .. 54

Figure 1.10: Distributions of five sibling species of the Anopheles gambiae complex in Africa, predicted from temporal Fourier-processed satellite data .. 57

Figure 1.11: Predicting the seasonality of malaria in Kenya ... 60

Figure 1.12: Fuzzy logic model of climatic suitability for stable P. falciparum transmission in SSA .. 63

Figure 1.13: Predicted prevalence of P. falciparum in children aged 2 to 10 years for West Africa ... 66

Figure 1.14: Modelled predictions of stable malaria endemicity for Kenya.................. 67

Figure 1.15: Satellite-derived predictions of EIR in Africa .. 69
Chapter 2: Figures

Figure 2.1: MARA organogram and map of regional data collection centres ... 79

Figure 2.2: MARA data entry screens .. 86

Figure 2.3: Distribution of parasitological survey data from the East and Horn of Africa between 1907 and 2003 according to dates of surveys .. 88

Figure 2.4: The spatial extents of surveys included in the analysis of parasite prevalence pre-1980 .. 96

Figure 2.5: The spatial extents of surveys included in the analysis of parasite prevalence post 1980 .. 97

Chapter 3: Figures

Figure 1a: The spatial distribution of *P. falciparum* parasite surveys undertaken between 1927 and 1979 against first-level UN approved administrative boundaries for Kenya, Tanzania and Uganda .. 115

Figure 1b: The spatial distribution of *P. falciparum* parasite surveys undertaken between 1980 and 2003 against first-level UN approved administrative boundaries for Kenya, Tanzania and Uganda .. 115

Chapter 4: Figures

Figure 1: MARA Fuzzy Suitability Class (FCS) values categorised into three categories in Kenya showing distribution of selected parasite survey data points .. 116

Figure 2: *Plasmodium falciparum* parasite prevalence among children under the age of 15 years surveyed in 217 spatially independent surveys by FCS values extracted for the same spatial areas 116

Figure 3: Box plot of distribution of *Plasmodium falciparum* parasite prevalence (%) according to three FCS categories ... 116
Chapter 5: Figures

Figure 1: Distribution of parasite prevalence surveys by malaria ecological zone in East Africa ... 117

Figure 2: Distribution of parasite prevalence data from East Africa according to rural vs. urban classification in low and moderate-intense malaria risk areas ... 117

Chapter 6: Figures

Figure 1: Relationship between land surface temperature, altitude and historical classifications of malaria transmission intensity........ 118

Figure 2a: Historical map of malaria transmission intensity 118

Figure 2b: Map of discriminant analysis predictions of malaria transmission intensity ... 118

Figure 2c: Distribution of misclassified pixels in relation to historical malaria transmission map ... 118

Chapter 7: Figures

Figure 1: Distribution of PR surveys according to ecological strata 134

Figure 2: Urban forced prediction with ecological zone stratification 135

Figure 3: Comparison of malaria maps available for East Africa 136

Chapter 8: Figures

Figure 8.1a: Historical map of malaria distribution for Kenya, Uganda and Tanzania ... 143

Figure 8.1b: MARA fuzzy climate suitability model 143

Figure 8.1c: HIMAL epidemic risk model ... 143

Figure 8.1d: Satellite-derived predictions of EIR for East Africa 143

Figure 8.1e: Modelled predictions of stable endemicity for Kenya 143

Figure 8.1f: Satellite-derived predictions of the malaria seasonality for Kenya ... 143
List of tables

Chapter 1: Tables

Table 1.1: Summary of behavioural preferences of malaria vector species

Table 1.2: Elements of R0 for malaria

Table 1.3: Classification of malaria

Chapter 2: Tables

Table 2.1: Parasite surveys report source descriptive data for Kenya, Tanzania, Uganda, Ethiopia and Sudan

Table 2.2: Selection criteria for parasite prevalence survey data in East Africa and description of selected surveys pre-1980

Table 2.3: Selection criteria for parasite prevalence survey data in East Africa and description of selected surveys between 1980 and 2003

Table 2.4: Diagram of a contingency matrix

Chapter 3: Tables

Table 1: Decade frequency of community sampled surveys of P. falciparum infection prevalence in East Africa

Table 2: Description of selected parasite prevalence surveys in East Africa
Table 3: First-level administrative boundary median *P. falciparum* parasite prevalence data for East Africa: 1927-2003

Chapter 4: Tables

Table 1a: Agreement between parasite prevalence categories and spatially congruent categorical values of the FCS using a 0.75 FCS threshold for stable endemic malaria

Table 1b: Agreement between parasite prevalence categories and spatially congruent categorical values of the FCS using a 0.6 FCS threshold for stable endemic malaria

Chapter 5: Tables

Table 1: Selection criteria for parasite prevalence survey data in East Africa and description of selected surveys

Table 2: Spatial resolution of parasitological surveys in Kenya, Uganda and Tanzania

Table 3: Malaria ecozone classification for parasite survey data in East Africa according to urban and rural coverage

Table 4: The mean, median and distribution of parasite prevalence between urban and rural surveys undertaken in two malaria ecological zones in East Africa

Chapter 6: Tables

Table 1: Correlation coefficients of independent variables

Table 2: Classification matrix for training data and predicted pixels

Table 3: Agreement between historical and predicted map of malaria transmission intensity

Table 4: Ten most discriminating RS variables by rank

Chapter 7: Tables

Table 1a: Classification matrix for urban-forced prediction stratified by ecozone: Ecozone 1
Table 1b: Classification matrix for urban-forced prediction stratified by ecozone: Ecozone 2 ... 133

Chapter 8: Tables

Table 8.1a: Agreement between Butler, 1959 & Omumbo et al., 2002 150
Table 8.1b: Agreement between Butler, 1959 & Craig et al., 1999 150
Table 8.1c: Agreement between Butler, 1959 & Snow et al., 1998 150
Table 8.1d: Agreement between Craig et al., 1999 & Snow et al., 1998 150
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>CBS</td>
<td>Central Bureau of Statistics</td>
</tr>
<tr>
<td>CCD</td>
<td>Cold cloud duration</td>
</tr>
<tr>
<td>CQ</td>
<td>Chloroquine</td>
</tr>
<tr>
<td>DA</td>
<td>Discriminant analysis</td>
</tr>
<tr>
<td>DALY</td>
<td>Disability-Adjusted Life Year</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital elevation model</td>
</tr>
<tr>
<td>EIR</td>
<td>Entomological Inoculation Rate</td>
</tr>
<tr>
<td>EMR</td>
<td>Electromagnetic radiation</td>
</tr>
<tr>
<td>EMS</td>
<td>Electromagnetic spectrum</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FCS</td>
<td>Fuzzy climate suitability index</td>
</tr>
<tr>
<td>GCM</td>
<td>General Circulation Model</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GRID</td>
<td>Global Resources Information Database</td>
</tr>
<tr>
<td>GLM</td>
<td>Generalised linear models</td>
</tr>
<tr>
<td>GLR</td>
<td>Generalised linear regression</td>
</tr>
<tr>
<td>GLOBE</td>
<td>Global Land One-kilometre Base Elevation</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning Systems</td>
</tr>
<tr>
<td>GRUMP</td>
<td>Global Rural-Urban Mapping Project</td>
</tr>
<tr>
<td>HRPT</td>
<td>High resolution picture transmission</td>
</tr>
<tr>
<td>ILRI</td>
<td>International Livestock Research Institute</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPT</td>
<td>Intermittent presumptive treatment</td>
</tr>
<tr>
<td>IRS</td>
<td>Insecticide residual spraying</td>
</tr>
<tr>
<td>LAC</td>
<td>Local area coverage</td>
</tr>
<tr>
<td>LST</td>
<td>Land surface temperature</td>
</tr>
<tr>
<td>MARA/ARMA</td>
<td>Mapping Malaria Risk in Africa/Atlas du Risque de la Malaria en Afrique</td>
</tr>
<tr>
<td>MIR</td>
<td>Middle infra red reflectance</td>
</tr>
<tr>
<td>MoH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>MVC</td>
<td>Maximum value composite</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalised Difference Vegetation Index</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental Organisation</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>PR</td>
<td>Parasite Ratio</td>
</tr>
<tr>
<td>RBM</td>
<td>Roll Back Malaria</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>SALB</td>
<td>Second level administrative boundaries</td>
</tr>
<tr>
<td>SI</td>
<td>Spatially interpolated</td>
</tr>
<tr>
<td>SSA</td>
<td>sub-Saharan Africa</td>
</tr>
<tr>
<td>SSS</td>
<td>Satellite sensor systems</td>
</tr>
<tr>
<td>TFA</td>
<td>Temporal Fourier analysis</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Project</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Emergency Fund</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1:

The epidemiology and cartography of malaria in sub-Saharan Africa
1.1. Background

The malaria parasite, *Plasmodium* is a unicellular protozoan. Of the four species of the genus *Plasmodium* that cause malaria in humans, *P. falciparum* is responsible for the greatest part of malaria's global morbidity and mortality. *P. falciparum* is also the most widely distributed *Plasmodium* species in tropical Africa, eastern Asia, Oceania and the Amazon compared with temperate zones. *P. vivax*, localised to northern Africa, is the second most widespread in Africa. *P. malariae* and *P. ovale* occur across sub-Saharan Africa (SSA) but their distribution is more focal (Lysenko & Beljaev, 1969). Phylogenetic studies date the origin of *P. falciparum* at least 40,000 years ago (Hume et al., 2003; Joy et al., 2003). A dramatic expansion of African *P. falciparum*, accompanying the development of agriculture 6000 years ago, has been suggested (Coluzzi & Bradley, 1999). The malaria parasite co-evolved with humans, as they migrated out of Africa, becoming adapted to the new environments they occupied (Coluzzi et al., 1979).

Today *Plasmodium falciparum* remains the dominant malaria parasite species of the tropics and sub-tropics affecting 42% of the world's population resident in 83 countries (WHO, International travel and health, situation as on 1 January 2003. Geneva: WHO pg 193). Over two billion people are potentially exposed to infection (Hay et al., 2004). Three hundred to five hundred million cases are reported annually, 90% of them being from SSA (WHO, 1994). Although all-cause mortality may be declining in many areas of SSA, studies suggest that malaria death rates may be rising (Snow et al., 2003). In East and Southern Africa, for example, malaria mortality has increased from ~6.5 per 1000 child-years in 1982-1989 to 11.9 per 1000 child-years
during 1990-1998 (Korenromp et al., 2003). There are multiple contributing factors to this trend that continues despite local efforts to control the disease. What is clear is that the dynamics of transmission are complex and effective control of malaria requires a multi-faceted attack on several points in the transmission cycle at the same time.

Sir Ronald Ross' and Giovanni Batista Grassi's description in 1898 of the complete transmission cycle of *Plasmodium* in avian (Ross, 1928) and human malaria respectively (described in Fantini, 1999) was a significant milestone in the history of malaria control. For the first time, there were hopes of breaking the transmission cycle through interruption of human - vector contact. On the basis of mathematical models of transmission dynamics, the forefathers of malaria control suggested that by widespread elimination of mosquito vectors, transmission could be reduced to below a threshold value such that malaria eradication could be achieved (Ross, 1911; MacDonald, 1956; Macdonald, 1957).

The malaria eradication programme began with extensive geographical reconnaissance to ensure total coverage for insecticide residual house spraying (IRS), and this baseline mapping work was pivotal to the success of eradication where it proved successful (Lepeš, 1974). Equipped with maps, the insecticide dichlorodiphenyltrichloroethane (DDT) and an effective anti-malarial drug, chloroquine (CQ), the dream of eradication began to be realised. The end of the Second World War saw the eradication of malaria from southern Europe, Russia and the more temperate areas of Asia (Guerin et al., 2002). Ross and MacDonald's mathematical models quantified the significant impact of these vector control
programmes. Spurred on by the success of eradication in temperate countries, the World Health Organization's (WHO) 8th World Health Assembly adopted a Global Malaria Eradication Campaign (World Health Organization, 1951). The results of pilot projects were disappointing and the campaign deemed unsustainable in countries of highly intense malaria transmission (Spielman, 1993). By the 1970s, it was generally accepted that eradication would not be achievable in these areas and that instead, control would be more realistic (Litsios et al., 2002).

The Roll Back Malaria (RBM) initiative is a global partnership of donor agencies, the private sector, and Non Governmental Organisations (NGOs) in malaria endemic countries. The initiative, set up in October 1998, was co-founded by the United Nations Development Programme (UNDP), the United Nations Children's Emergency Fund (UNICEF), The World Bank and the WHO. The overall objective of RBM is to halve the global burden of malaria by the year 2010 through multiple sustained interventions (Nabarro & Tayler, 1998; Remme et al., 2001). These strategies include; prompt access to effective treatment, access to insecticide treated nets (ITNs), prevention and control of malaria during pregnancy through intermittent presumptive treatment (IPT) and effective response to epidemics and emergencies (www.rbm.who.int). The emphasis is on the development of interventions that are adapted to local needs and supportive of the health sector development strategy adopted by governments in several SSA countries.

A key failure of the malaria eradication era in the tropics and sub-tropics was the lack of recognition of the geographical differences in the epidemiology of malaria and in vector behaviour (Coluzzi, 1994). The global strategy assumed that a uniform
eradication approach would be effective over a wide range of malaria ecologies and the importance of these differences was only recognised in hindsight. Current control approaches require a renewed examination of the geographical determinants of malaria. New spatial models of malaria risk should form the basis of decision-making for interventions, definitions of target populations and estimations of resource needs. Although malaria distribution maps are recognised as an important epidemiological tool, reliable empirical maps are lacking for most of SSA (Snow et al., 1996). Recent advances in disease mapping using Geographic Information Systems (GIS) coupled with an increased access to improved geo-referenced data on correlates of malaria transmission have rekindled an interest in such epidemiological investigations (Hay, 2000; Snow et al., 1996). In particular, the relationship between climate and vector-borne disease transmission has been exploited in mapping the distribution of these diseases (Hay et al., 2000a; Rogers et al., 2002). Currently available climate-based maps, however, are limited in that they consider only a few of the factors that determine transmission, leaving out key covariates such as urbanization and the effects of malaria control interventions.

The precise global morbid and fatal burden of malaria remains uncertain (Snow et al., 2004). The oft cited statements “three hundred to five hundred million cases of malaria reported globally each year” and “90% of the Plasmodium falciparum burden borne by SSA” (World Health Organization, 1994) are at best based upon imperfect data and at worst wild speculation. Recently more informed approaches to defining the Pan African burden of P. falciparum have been developed using semi-quantitative models of the spatial extent of infection risk, population distributions and morbid or fatal risks derived from epidemiological studies (Snow et al., 1999a; 2003).
The African continent supports a diverse set of ecological conditions that influence the likelihood and intensity of malaria parasite transmission. Hay et al. (2000b) have shown that empirical measures of entomological inoculation rates vary from as little as one new infection per person every few years to several hundred per person per night. In order to characterise the burden of malaria effectively, one must begin with an understanding of the relationship between malaria infection and disease outcome.

This thesis aims to provide some new approaches to defining the cartography of malaria risk in East Africa by employing high spatial resolution remotely sensed data, more comprehensive information on covariates of transmission and better empirical data upon which the models can be developed. The thesis is anchored in the belief that without better descriptions of the spatial extents of quantifiable malaria risk, future iterations of the contribution of malaria to the Disability-Adjusted Life Year (DALY) attributed to malaria will be less informed and less precise and targeted investment in local needs for control less efficient.

1.2. The scope of the thesis

The present chapter, Chapter 1, considers the biology of *P. falciparum*, the principal malaria parasite in SSA, the biology of the parasite’s principal vectors and the consequences of *P. falciparum* infection in humans. The chapter then explores how malariologists characterise the parasite’s transmission and the existing empirical evidence of biotic and abiotic factors that influence transmission. The chapter ends with a summary of how the determinants of *P. falciparum* transmission have been
recently modelled to map malaria infection risk in Africa, highlighting some of the methodological issues and opportunities for new approaches.

Chapter 2 describes the methods used to capture empirical data, understand their limitations and match them to remotely sensed and other domain environmental data in order to develop predictive models of risk. The rigorous selection criteria adopted to identify model input data and principal statistical models used are also described in detail.

Chapter 3 provides a detailed description of the selected parasite survey data between 1927 and 2003 across East Africa. A simple time-series description of the data is presented by 2nd level administrative boundaries for the East Africa region to highlight the paucity of empirical information from some areas and the contrasting plethora of information from others. The temporal data are also interpreted in the light of changing survey focus and possible changes in malaria endemicity. This work is presented as a publication in the *East African Medical Journal* entitled "*Plasmodium falciparum* parasite prevalence in East Africa: A review of empirical data 1927-2003 (2004)."

Chapter 4 considers a widely cited parameter used during recent presentations of malaria in Africa by RBM, WHO and UNICEF. The Fuzzy Climate Suitability (FCS) index was developed to describe the likelihood of stable *P. falciparum* transmission in 1999 in Africa (Craig *et al.*, 1999). The continental maps have been used by several authors to describe the spatial extent of malaria and the consequent disease burdens. Surprisingly, the FCS has never been compared with empirical, spatially
matched parasitological data. This work is presented as a paper published in the *Malaria Journal, 3*: Article N° 17 entitled “The relationship between the *Plasmodium falciparum* parasite ratio in childhood and climate estimates of malaria transmission in Kenya,” (Omumbo *et al.*, 2004). The results suggest that climate-driven factors are important but other factors might well impinge on the reliability of climate-based data to develop malaria risk maps.

Chapter 5 explores urbanization, one of the major possible influences on recent efforts to map malaria risk. Differences in Entomological Inoculation Rates (EIR) between urban and rural communities have been described previously (Hay *et al.*, 2000b; Robert *et al.*, 2003) but few systematic reviews of the effects of urbanization on the parasite rate have been undertaken. This work is presented as a paper published in *Acta Tropica* entitled “The influence of urbanization on measures of *Plasmodium falciparum* infection prevalence in East Africa (Omumbo *et al.*, 2005)”.

The paper also describes some of the limitations of current definitions of urban extents for use in geographic information systems (GIS) analyses but clearly demonstrates the effects of urbanization on the prevalence of *P. falciparum* infection within different ecological strata. The findings emphasize further the need to include covariates other than climate in definitions of malaria transmission.

Chapter 6 provides an example of how new high spatial resolution remotely sensed correlates of climate can be used to map the historical extent of malaria endemicity in East Africa. The chapter introduces the application of remotely sensed imagery in malaria risk mapping and is presented as a paper published in *Photogrammetric Engineering and Remote Sensing, 68*: 161-166, entitled “Updating historical maps of
malaria transmission intensity in East Africa using remote sensing (Omumbo et al., 2002).” The chapter provides an introduction to the next chapter which exploits the use of empirical parasitological data in the model development rather than reliance upon the historical expert opinion maps.

Chapter 7 represents the culmination of the preceding chapters using carefully defined selection criteria for input model data on parasite prevalence, urbanization and other non-climatic factors and newly acquired, high spatial resolution remotely sensed data on climate. The chapter employs discriminant analysis techniques to identify key predictors of endemicity classes useful for public health definitions of disease risk and control options. The work is presented as a paper entitled “Modelling malaria risk in East Africa at high spatial resolution” submitted to Tropical Medicine and International Health. A large part of the detailed methodology is presented in Chapter 2.

Finally Chapter 8 provides a summary of the thesis identifying some of the weaknesses and areas that demand further investigation.

1.3. The biology of P. falciparum transmission

1.3.1. The life cycle of Plasmodium

There are four main species of the protozoan Plasmodium that cause malaria in humans; Plasmodium falciparum, P. vivax, P. ovale and P. malariae. The development of Plasmodium takes place in two cycles, a sexual cycle within the
mosquito and an asexual cycle passed in the human host (Figure 1.1). The female *Anopheles* mosquito requires blood for the maturation of her eggs and person-to-person transmission of malaria occurs through the bite of the *Anopheles*. Infection of the human host begins with the inoculation of the asexual stage of the parasite, the sporozoite, from an infected mosquito into the blood stream of a susceptible host. This cycle of blood feeding and egg-laying is known as the *gonotrophic cycle*. After thirty minutes to four hours, sporozoites leave the circulating blood and migrate to the host's liver cells (hepatocytes). An asexual replication process, termed *exoerythrocytic schizogony*, follows. Liver schizonts are produced and these multiply rapidly producing between 10,000 and 30,000 merozoites per hepatocyte. This period, before symptoms are evident, lasts about a week. *P. vivax* and *P. ovale* are able to form a dormant liver stage, the hypnozoite that release merozoites into the peripheral blood system at a later point in time. In this way they can cause relapsing malaria.

The merozoites then invade the red blood cells (RBCs). The early RBC (erythrocytic) stage of the parasite is known as the trophozoite. Trophozoites form schizonts within which between 16-32 merozoites develop and these are released into the blood circulation. Some of the merozoites develop into macrogametes and microgametes (female and male sexual forms respectively). The gametocytes are ingested during a blood meal. The rest of the merozoites invade other erythrocytes, multiplying within them and causing their rupture. The erythrocytes rupture in synchronised 48-hour cycles in *P. falciparum*, *P. vivax* and *P. ovale* infections and in 72 hours cycles for *P. malariae*. Bouts of fever occur when the erythrocytes rupture in response to the release of toxins into the blood stream.
Macro- and microgametes mate in the mosquito midgut and the resulting zygote develops into a motile oökinete. The oökinetes traverse the midgut membrane to lodge in the mid-gut outer wall as oöcysts. Over a period of 10-14 days the oöcysts undergo asexual multiplication forming thousands of sporozoites. The duration of this process, known as sporogony, depends on the *Plasmodium* species and ambient temperature. For example, optimum temperatures for sporogony for *P. falciparum* are between 25-30°C while *P. vivax* prefers lower temperatures of about 25°C (Section 1.10.1). The sporozoites break out of the oöcyst and migrate to the mosquito’s salivary gland. Here they remain infective for the duration of the mosquito’s life or are inoculated into a human host.

Figure 1.1. The life cycle of malaria parasites in the human and mosquito
1.3.2. Anopheline vectors of human malaria in SSA

The subfamily Anophelinae belongs to the family Culicidae of the order Diptera and comprises 3 genera; *Chagisa*, *Bironella* and *Anopheles*. *Anopheles* is the only genus known to be involved in the transmission of human malaria. There are about 430 known species of *Anopheles*. Seventy of these are vectors of malaria and only forty are of medical importance (Service & Townson, 2002). Vectors in areas of intense transmission are able to maintain high levels of abundance, have a high susceptibility to infection and a high longevity (Macdonald, 1957).

Anopheles gambiae sensu lato is the most dominant vector within the Afrotropical and Ethiopian faunal region (Boyd, 1930). It is a seven species complex comprising *Anopheles gambiae* sensu stricto, *An. arabiensis*, *An. melas*, *An. merus*, *An. quadriannulatus*, *An. quadriannulatus* Species B and *An. bwambae* (Coluzzi, 1984). *An. gambiae* s.s. and *An. arabiensis* are found in 70% of the African continent and *An. funestus* is the next most widely distributed vector in tropical Africa (Gillies & Coetzee, 1987).

1.3.3. The life cycle of the Anopheles mosquito

The development of the *Anopheles* mosquito (egg, larval and pupal stages) takes place in water and lasts about a week. The adults mate within 2 days of their emergence and females can travel up to 4 kilometres from the breeding site in search of vertebrate hosts (Gillies & De Meillon, 1968). The duration of the gonotrophic cycle (Section 1.3.1) is temperature dependent, lasting longer in cooler climates. In
tropical countries, mosquitoes take a blood meal every 2-3 days and complete 4-5 gonotrophic cycles in their lifetime (Service & Townson, 2002). The longevity of the mosquito is a key determinant of infection risk among exposed and susceptible human populations as described by the basic reproduction number, R_o (Section 1.7.1).

1.3.4. Behavioural characteristics of the Anopheles mosquito

Key determinants of mosquito distribution are their feeding, resting and habitat preferences. Vectors that prefer to feed on humans are referred to as anthropophilic or anthropophagic. The Human Blood Index (HBI) gives an estimate of the anthropophilia of a vector and is the proportion of mosquitoes sampled that contain human blood (Section 1.7.1). In general, the vectors of African malaria bite at night (Service & Townson, 2002) and after feeding, some vectors rest in shady areas outside houses. Such vectors are termed exophilic. Others are endophilic and remain indoors after feeding. Anthropophagic and endophilic vectors are dominant around human settlements while those with a preference for biting animals (zoophilic) are abundant where livestock is kept. The behaviour traits, however, are not absolute and a zoophilic vector may feed on humans if animal hosts are not readily available. Behavioural preferences differ between the main Anopheles species in SSA. These differences are relevant for targeting interventions for their control and determine the relative abundance of sibling species (Table 1.1).
Table 1.1: Summary of behavioural preferences of malaria vector species

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat preferences</th>
<th>Feeding preference</th>
<th>Resting</th>
</tr>
</thead>
<tbody>
<tr>
<td>An. gambiae s.s</td>
<td>Permanent fresh water pools Humid areas</td>
<td>Anthropophagic</td>
<td>Indoors</td>
</tr>
<tr>
<td>An. arabiensis</td>
<td>Temporary fresh water pools Arid areas</td>
<td>More readily feeds on cattle than on humans</td>
<td>Outdoors</td>
</tr>
<tr>
<td>An. merus</td>
<td>Salt water breeder</td>
<td>Zoophilic Anthropophagic in absence of other hosts</td>
<td>Outdoors</td>
</tr>
<tr>
<td>An. melas</td>
<td>Salt water breeder</td>
<td>Zoophilic Anthropophagic in absence of other hosts</td>
<td>Outdoors</td>
</tr>
<tr>
<td>An. quadriannulatus</td>
<td>Fresh water pools</td>
<td>Zoophilic</td>
<td>Outdoors</td>
</tr>
<tr>
<td>An. bwambae</td>
<td>Mineral waters</td>
<td>Zoophilic</td>
<td>Outdoors</td>
</tr>
<tr>
<td>An. funestus Giles</td>
<td>Shaded marshes, streams, rivers & swamps</td>
<td>Anthropophagic</td>
<td>Indoors</td>
</tr>
</tbody>
</table>

1.4. Clinical malaria

It has long been recognised that the relationships between *P. falciparum* infection, morbidity and disease outcome are complex. What we do know is that individuals born into areas of stable *P. falciparum* transmission frequently move between periods of being infected and remaining uninfected. Most individuals will, at some stage in their lives, develop an overt clinical response to an infection, often manifested as a febrile event associated with difficulties in breathing, diarrhoea and vomiting. A comparatively small proportion of these clinical events may progress to severe pathological clinical states, including acidosis, anaemia and altered consciousness. These may naturally resolve or the patient may survive through medical intervention. However, even with optimal clinical management, case fatalities for conditions such as cerebral malaria are often in excess of 15% (Marsh *et al.*, 1995).
The comparative risks of infection, mild morbidity, severe complicated disease and mortality during childhood have been recorded during a series of studies at Kilifi, on the Kenyan Coast. The study population comprised children aged 0–15 years who could expect to receive about 10 new infections each year from the local vectors. The risks of severe malaria warranting admission to hospital and malaria deaths declined during early childhood (<5 years), while the frequency of mild, clinical attacks fell some time later (Figure 1.2).

Figure 1.2: Relative risks of infection (triangles), morbidity (squares), severe disease (circles) and mortality risks (diamonds) among a population aged 0-15 years located in a stable endemic area of the Kenyan Coast (Snow & Gilles, 2002)
Since the risk of infection remained approximately constant throughout childhood, it is reasonable to assume that these age-related findings are associated with the development of functional immunity. It appears that at least three levels of immune acquisition occur: initial protection against severe and fatal outcomes, followed by protection against mild, self-limiting clinical disease; much later, during adulthood, individuals develop an ability to regulate peripheral infection (Snow & Gilles, 2002).

Of relevance to disease control is whether the cumulative risks of disease or death decline with declining parasite exposure. Clearly, at one end of the transmission spectrum where the risk of infection is very low, immunity will be acquired slowly and all age groups are likely to be at risk of both disease and death following infection. Under these conditions the relative risk of a particular disease outcome will simply be a function of the chance encounters with the parasite. Among communities experiencing a wide range of stable, moderate to high intensity transmission conditions, early acquisition of functional immunity becomes important. Recent studies in Africa among children admitted to hospital with severe, life-threatening disease show a marked decline in severe disease with increasing age in areas in which the local prevalence of asymptomatic infection is >70%. In areas with a local prevalence <30%, malaria occurs with similar frequency throughout childhood (Trape et al., 1987; Seboxa & Snow, 1997; Snow et al., 1997; Armengaud et al., 1962; Marsh & Snow, 1999; Snow & Marsh, 2002; Gernaat et al., 1998). These observations support the view that the development of functional immunity may depend upon an ill-defined amount of parasite exposure from birth. Moreover, severe malarial anaemia tends to dominate the clinical picture in areas of high transmission, while
cerebral malaria assumes increasingly greater importance in areas of less intense transmission (Marsh & Snow, 1999).

In areas of high transmission intensity, it is uncertain whether artificially reducing the rate of natural parasite exposure, through sustained vector control or personal protection, will lead to new epidemiological conditions typical of intermediate transmission (Snow et al., 1994; Snow & Marsh, 2002; Smith et al., 2001a; 2001b; Trape & Rogier, 1996; Molineaux, 1988). It seems likely that the result would be a change in age-specific risks of disease outcomes resulting in a higher mean age of severe disease and death. Less certain is whether there would be an overall change in cumulative disease or risk of death throughout childhood.

In areas where parasite transmission is high, a reduction in transmission is initially marked by a reduction in disease across all age groups (because a reduced challenge is met with a high level of immunity). This has been shown clearly during short-term studies of insecticide-treated bed nets or indoor residual house-spraying (IRS) in Africa (Lengeler et al., 1998). Children born into the population, thereafter, grow up facing the new reduced level of challenge and presumably develop an immune profile and disease experience similar to that of children born in other areas with similarly lower challenge. The net result may be that, with time, the severe disease and, possibly, malaria-specific death rates re-adjust to those of the new reduced intensity transmission conditions. Conversely, interventions in areas where transmission intensity is already low could provide conditions in which the relationship between parasite exposure, immunity and disease result in a low risk of serious disease. Such
ecological conditions represent the fringes of stable transmission and may be subject to epidemics.

In addition to the morbidity and mortality directly attributed to *P. falciparum* there are other consequential and indirect effects on mortality linked to each step of the infection and disease process (for review see Snow *et al.*, 2003). Chronic, sub-clinical infections cause anaemia or may lead to under-nutrition which in turn may increase susceptibility to severe clinical outcomes of subsequent infection with malaria or other pathogens. Despite a poor understanding of the precise mechanisms of pathology (Menendez, 1995), the morbid outcomes of malaria infection during pregnancy have also been well described (Brabin, 1983; Guyatt & Snow, 2001a, 2001b; Steketee *et al.*, 1996; 2001). In endemic settings in Africa, pregnant women experience relatively little malaria-specific morbidity (*e.g.* fever illness) but do have increased risk of infection and higher density parasitaemia leading to anaemia and placental sequestration of the parasite. Maternal anaemia has been shown to be an important contributor to maternal mortality with a relative risk for mortality of 1.35 for moderate anaemia and 3.51 for severe anaemia (Brabin *et al.*, 2001). Prematurity and low birth weight (LBW; <2500 grams) is associated with maternal malaria, including the contribution from both malaria-associated maternal anaemia and placental infection. The contribution of malaria during pregnancy to LBW and subsequent mortality in the first year of life has been estimated to range from 3% to 8% of infant mortality (Greenwood *et al.* 1992; Steketee *et al.* 1996; 2001). Patients seek treatment and treatments often carry their own risks of fatal or morbid outcomes (Snow & Gilles, 2002). Patients who survive severe disease may be left with debilitating sequelae, such as spasticity or epilepsy (Mung’ala *et al.*, 2004). Subtler
consequences, including behavioural disturbances or cognitive impairment, have also been described (Holding & Snow, 2001; Holding & Kitsao-Wekulo, 2004; Mung’ala et al., 2004). These combined effects are summarized in Figure 1.3. In the absence of measures aimed to reduce the risk of infection, the risks shown in Figure 1.3 will largely depend upon extrinsic factors that determine the speed with which a population develops acquired immunity, access to effective case-management and intrinsic factors such as host genetics and nutrition.

Figure 1.3. The direct, indirect and consequential public health effects of Plasmodium falciparum malaria in Africa (Snow & Gilles, 2002)

1.5. **The malaria burden**

The most recent estimations of the burden posed by *P. falciparum* in SSA derive from extrapolations of endemicity-specific epidemiological assessments of morbid and fatal risk to populations located in areas of the continent congruent with defined levels of climate suitability for stable transmission (Snow *et al.*, 2003). Further details
of how these risk populations were structured are provided in Chapter 4. The models took no account of urbanization and the implications of this are also discussed.

During 2000 Snow et al. (2003) estimated that approximately 1.14 million people in SSA might have died as a direct result of infection with *P. falciparum*. 88% of these deaths would have occurred in areas of stable, endemic malaria and the majority of these would have been among young children. Snow et al. (2003; 2004) further explore the empirical evidence for indirect or consequential mortality component by reviewing the evidence of trials aimed at reducing parasite exposure on all-cause mortality and the relationship between parasite prevalence and all-cause mortality. They conclude that at least an additional 10% of mortality not directly attributed to malaria could be a result of infection acting as a risk factor.

One million deaths due to malaria each year in Africa resonates with earlier claims of a similar figure proposed as far back as the 1950’s (Bruce-Chwatt, 1952; Greenwood, 1990; Schwartlander, 1997; Struchler, 1989). These estimations are hard to comprehend without a methodological framework or empirical evidence to support them. The estimations provided by Snow et al. (2003) continue to be driven by informed approximations, in part because of the paucity of reliable and accurate data, but also due to the inherent difficulties of uniquely diagnosing malaria. The approach employs empirical epidemiological measures of mortality risks, structured according to age and malaria transmission. It is similar to the approach used previously by Snow et al., (1999a) to define the malaria burden of SSA but is cognisant of new data, refined endemicity classifications, broader health consequences and temporal effects associated with changing anti-malarial drug sensitivity. This data-driven approach
allows for a more transparent review of the evidence. However, it is not without scope for further improvement and one major area is in the definition and modelling of populations exposed to the varied risks of parasite challenge in SSA as is the subject of the present thesis.

1.6. Challenges for malaria control in SSA countries

An estimated US $12 billion is spent on the direct costs of treatments and prevention for malaria in SSA (Gallup & Sachs, 2001). Despite this investment, malaria causes an annual decline in economic growth of at least 1.3% in these countries (Gallup & Sachs, 2001; World Health Organization, 2002). The Roll Back Malaria (RBM) movement proposes to halve malaria mortality by the year 2010. This goal is operational at a time when existing, affordable therapeutics are rapidly failing, health service provision is breaking down, there are no immediate prospects of widespread vaccination and poverty continues to afflict most endemic countries. There are strong reasons to believe that over the past 15 years malaria-specific mortality has risen and now accounts for an increasing proportion of overall childhood mortality (Snow et al., 2003; Korenromp et al., 2003). It is important to realise that the starting point for new efforts to Roll Back Malaria is not a level playing field, but a mortality burden returning to levels described before Africa gained independence.

Much is understood of the transmission dynamics of the malaria parasite and this has provided a solid epidemiological basis for the development of the appropriate vaccine in the future. Morbidity, mortality, the efficacy of interventions such as ITNs, the spread of drug resistance and the development of anti-malarial immunity are all
driven by the intensity of malaria transmission. The most significant challenge facing
the malaria epidemiologist today is to describe malaria health outcomes in Africa and
how these risks change from birth through adulthood according to the dependent
factors of infection, immunity and control. As part of this, a better cartography of
malaria risk is required.

1.7. Measuring infectious disease transmission

The underlying principles of transmission dynamics are common to many infectious
diseases and are captured in a variety of mathematical models of the probability of
transmission. The infection probability \(p \) is the probability that a susceptible host
becomes infected on contact with a pathogen. It is basically the product of the contact
rate with infective persons \(\times \) the probability of transmission per contact \(\times \) the duration
of infectiousness (Anderson & May, 1992; Halloran, 2001). \(p \) can be modelled in
many different ways for different diseases but the basic reproduction number \(R_0 \) is
commonly used in infectious disease epidemiology (Ross, 1911; MacDonald, 1957).

When the transmission cycle of a pathogen involves an insect or other vector,
measurements of \(p \) consider the vector's ecology. Models of malaria transmission
consider the contact rates from mosquito to man and from man to mosquito, both of
these transmission probabilities and the duration of infectiousness in both the
mosquito and in humans. For malaria transmission, \(R_0 \) is also refined to incorporate
ecological covariates of vector and parasite dynamics. Many of these variables;
including mosquito abundance, feeding frequency, survival and the parasite's
extrinsic incubation period, are sensitive to climate. This knowledge of climate
sensitivity is applied to the biological modelling of malaria transmission as defined through R_0 also commonly known as the Ross-MacDonald Model (Ross, 1911; MacDonald, 1957).

1.7.1. The basic reproduction number of a disease R_0

For a pathogen to persist in a population, the pool of susceptible individuals needs to exceed a threshold number such that, on average, each primary case of infection generates at least one secondary case. R_0 is defined as the average number of successful offspring that a parasite can potentially produce (MacDonald, 1957) or the average number of secondary infections produced from one infected individual introduced into a susceptible host population (Anderson & May, 1992). The longevity and abundance of vectors are key factors in the sustenance of malaria transmission. The sporogonic cycle of *Plasmodium* is long relative to the life span of the mosquito and usually only a small proportion of mosquitoes live for long enough to transmit disease. A sizeable population of vectors is therefore required to maintain transmission. R_0 combines measures of mosquito infectivity and survival and, for the parasite to persist, R_0 must be greater than 1.0. A reproduction number > 1.0 indicates an expansion of infections in a population while < 1.0 indicates a decline in infections in the population. R_0 is calculated using the following equation, the elements of which are summarized in Table 1.2.

$$R_0 = \frac{ma^2bc}{\mu r}$$ \hspace{0.5cm} \text{(Equation 1.1.)}$$

Once infected, the mosquito remains infective throughout its lifetime. Its duration of infectivity is related to the reciprocal of its mortality rate, $1/\mu$. The human biting rate
is derived from the frequency of bites and the proportion of those blood meals that are taken from humans. Interventions that modify the exponents 'μ' and 'τ,' in Equation 1.1. have the most significant impact on R_0. This model was the basis for the WHO's decision to initiate widespread anti-vectorial measures during the 1950's malaria eradication campaign (Garrett-Jones, 1964). Both elements, μ and τ, refer to the malaria vector and are therefore sensitive to climatic influences (Rogers, 1988).

Table 1.2: Elements of R_0 for malaria

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>the size of the human population</td>
</tr>
<tr>
<td>M</td>
<td>the size of the female mosquito population</td>
</tr>
<tr>
<td>$m = M/N$, the number of female mosquitoes per human host or the vector density</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>the rate of biting on humans by a single mosquito (number of bites per unit time)</td>
</tr>
<tr>
<td>b</td>
<td>the proportion of bites that result in vector to human infection</td>
</tr>
<tr>
<td>c</td>
<td>the proportion of bites that result in human to vector infection</td>
</tr>
<tr>
<td>r</td>
<td>the rate of recovery from infection</td>
</tr>
<tr>
<td>μ</td>
<td>the vector mortality rate</td>
</tr>
<tr>
<td>τ</td>
<td>the extrinsic incubation period (incubation period to infectivity of the parasite within the vector)</td>
</tr>
</tbody>
</table>

An, as yet, un-quantified relationship exists between biotic factors (relating to the vector or the parasite) and abiotic factors (such as ambient temperature and relative humidity). Biotic entomological factors include vector density, survival, mosquito biting habit, duration of the asexual development phase and the proportion of infective mosquitoes. Biotic parasitological factors include the population-based prevalence of the parasite *i.e.* the parasite ratio (PR) and the immunological status of the population. A threshold reservoir of infective carriers in the population is necessary to maintain transmission. The PR is the proportion of population carrying
the infective stage of the parasite and is thus a measure of the infective reservoir in
the population. Abiotic factors are mainly meteorological and environmental.

1.8. Describing the endemicity of malaria

The endemicity of malaria has been defined in a variety of ways by various authors
using varied measures and categories of these measures. The descriptions are often
attempts to describe a continuous variable according to discrete categories. While
conditions at the upper and lower extremes of endemicity may be easy to define,
conditions in between are not. The result is some degree of arbitrariness and overlap.
In some cases, operational definitions are unclear and their interpretation is therefore
difficult. Some of the historical definitions have incorporated new terms as additional
knowledge has permitted more detailed studies of endemicity. In general, definitions
selected for individual studies are chosen to suit the questions being asked by the
specific study. The main definitions available from the literature are presented in this
section.

1.8.1. Definition of endemicity

A disease is described as endemic when it is normally found in a population. Malaria,
for example, is endemic in most of SSA. Areas of non-endemicity are also found in
SSA including parts of southern Africa, North Africa and highland areas > 2500
metres above sea level (Service & Townson, 2002). Endemicity can be modified and
many non-endemic areas are former areas of endemic malaria where the disease has
been eradicated by successful anti-malarial interventions. Following 50 years of
control activities in Egypt and Morocco, for example, malaria was close to eradication by the late 1970’s. Control activities were briefly interrupted in the 1980s and the disease remained at low endemicity. Control was reinstated and eradication achieved by 1999. The disease is no longer endemic in the two countries (Beljaev, 2002).

Within endemic areas the intensity of transmission, or endemicity that populations are exposed to, is spatially heterogeneous (Snow & Marsh. 1998; Snow & Gilles, 2002). Transmission can be described as a continuum where at the lowest extreme the risk of infection is minimal, herd immunity is low and all age groups of the population are exposed to an equal risk of disease. At the highest extreme of the continuum, intense year-round infection results in the development of a high degree of immunity achieved by early childhood.

1.8.2. Stable and unstable malaria

The endemicity of malaria has also been defined in terms of its level of stability: i.e. stable or unstable, again two extremes on a continuum of epidemiological scenarios (MacDonald, 1957). Where malaria is stable, transmission is often continuous or perennial; the frequency of infection persistently high and immunity, due to frequent infection challenge, develops at a relatively early age among the resident population. Stable malaria is relatively insensitive to environmental changes and control interventions. The mechanisms of this refractoriness are unclear but the high level of community immunity (herd immunity) may play a major rôle. Estimations of herd
immunity are rarely available and this is one of the many terms defining endemcity
that have not been operationally defined.

Unstable malaria, on the other hand, is characterised by great spatial and temporal
variability. Recessions and recurrences occur i.e. periods when disease incidence is
low alternate irregularly with high incidence periods with several months separating
the periods of recurrence. R_o also fluctuates either side of 1.0. Because the periods of
disease outbreak are brief and infrequent, herd immunity is undeveloped among all
age groups. Seasonal fluctuations are a feature of malaria across a wide range of
endemcity settings and again, definitions of ‘temporal variability’ are unclear. In
many areas, low or moderate levels of transmission occur year-round with periodic
intra-annual upsurges occurring. These ‘seasonal’ upsurges are not associated with
levels of morbidity and mortality as high as those experienced during epidemic
periods.

1.8.3. Seasonality of malaria transmission

The inter-annual periodicity of malaria’s endemcity occurs in response to climatic
seasons. Vector densities and relative abundance, vector biting rates, and the risk of
infection respond to these climatic variations. Studies have also suggested that the
amplitudes and frequency of these seasonal cycles of infection risk modify the
incidence of severe $P. falciparum$ malaria in children (Brewster & Greenwood, 1993;
Snow et al., 1993). Evidence of relevant seasonal aspects of malaria is found in a
range of longitudinal field studies conducted in malaria endemic sites across the
world (McKenzie et al., 2001). Pioneering investigations of the seasonality of malaria

27
transmission were carried out in the 1930’s by Gill (1938). He stated that ‘the cause of the seasonal periodicity of malaria is still imperfectly understood and the whole question of the influence of climate and season upon the natural history of the disease requires re-examination.’ Although seasonality has been recognised as a key influence of infection incidence since Gill’s work, few investigations of seasonality were carried out prior to the 1990’s. Today the understanding of seasonal influences on malaria transmission is still limited. Recent studies of malaria seasonality are discussed further in Chapter 2.

1.8.4. Epidemic malaria

Epidemics may be considered a form of highly unstable malaria. By definition, they occur when unusual environmental conditions cause sudden upsurges of transmission among non- or semi-immune populations (Molineaux, 1988; Nájera et al., 1998; Abeku et al., 2003). They are characterized by extremely high mortality among all age groups of a population and are worsened in situations such as in the highlands of East Africa where medical systems are ill equipped to cope with the numbers of the ill and dying (Cox et al., 1999; Hay et al., 2003). Macdonald (1957) defined an epidemic as ‘...an acute exacerbation of disease out of proportion to the normal to which a community is subject.’ What constitutes a ‘normal’ level of disease is often debatable. This, however, is the definition still in use by the WHO with the following additional caveats:

"An epidemic is the result of the disturbance of a previously existing equilibrium of the ecological system comprising human, parasite and
vector populations in a particular environmental niche. Depending on
the resilience of the system, and whether or not the disturbance has
changed some of its essential components, it will either return to its
previous state of equilibrium after the end of the disturbance, or tend to
find a new equilibrium, with or without going through a period of
oscillation” (Nájera et al., 1998).

In SSA, epidemiological characteristics that predispose to epidemics are found in
semi-arid/arid and highland areas where low rainfall or low temperatures respectively
tend to limit malaria transmission. Such epidemics have been documented in the areas
of the East and Horn of Africa (Heisch & Harper, 1949; Fontaine et al., 1961; Some,
1994; Malakooti et al., 1998; Lindblade et al., 1999; Snow et al., 1999b; Bødker et
al., 2000; Abeku et al., 2003) and in 1997 in the arid regions of North Eastern Kenya
(Brown et al., 1998; Snow et al., 1999b). The emergence of malaria in previously
‘malaria-free’ zones and highland areas, from which it has been previously
eradicated, has sparked a renewed interest in the phenomenon of ‘highland malaria’
(Malakooti et al., 1998; Lindblade et al., 1999; Bødker et al., 2000; Lindblade et al.,
2000; Cox et al., 2002). Examples from East Africa reveal how variable definitions of
“highland malaria” can be.

Highland areas of northern Tanzania include the Pare and Usambara Mountain ranges
(600-1200 metres ASL). Most of Tanzania’s highland malaria data are from the
Eastern Usambara area, which historically was considered as having a very low risk
of malaria infection (Wilson D.B. & Wilson M.E., 1937; Clyde, 1967; Matola et al.,
1987; Cox et al., 1999; Bødker et al., 2000; Lindsay et al., 2000). Estimates of
population based infection prevalence rates have varied markedly between studies from as low as 6% to above 75% (Lelijveld, 1971; Voller et al., 1972; Matola et al., 1987; Ellman et al., 1998; Drakeley & Reyburn, personal communication). Several of these studies have suggested that these marked fluctuations are due to changes in human activities (clearing of forests for tea plantations and movement of migrant workers from surrounding lowland malarious areas) that introduce parasite carriers to non-immune populations. Studies by Ellman et al., (1998) found that, despite low infection challenge, parasite prevalence in this area was consistently high (33-76%) and suggested that malaria was probably not as rare in the Usambara’s as previously suggested.

Malaria incidence rates in highland areas of Ethiopia have also increased markedly in the 1980’s (Tulu, 1993) but much of this rise may have been due to emerging drug resistance and population resettlement from lowland areas. In Kenya there are very limited malariometric data from highland or epidemic defined areas. Kericho in Western Kenya (1700-2230m ASL) is considered an epidemic-prone area by the Kenya Ministry of Health. Hospital-based studies of malaria by Malakooti et al., (1998) using data from 1991-1997, suggest a highly seasonal malaria profile with epidemics occurring when rainfall exceeds a threshold of 150 mm a month.

A clear definition of epidemic malaria is not available at present and current ones are specific to local regions. No single factor can be considered a precipitator and most variables are interdependent. Modelling the variables related to precipitation of epidemics has an obvious rôle in epidemic detection, early warning and future forecasting (Hay et al., 1998a; Cox et al., 1999; Thomson & Connor, 2001; Hay et
al., 2002c; Hay et al., 2003). In recent years, models of highland malaria have been developed for East Africa aimed at addressing information needs for epidemic early warning in the region (Cox et al., 1999).

1.9. Indicators of malaria endemicity: incidence, prevalence, the force of infection and the parasite ratio

This section considers methods used to measure endemicity. Incidence refers to the number of new cases of infection occurring in a population within a unit of time and is sometimes referred to as an 'attack rate.' Numerical measures of incidence are normally given as the number of cases per population per year. For malaria, incidence of infection is impractical to measure as it requires frequent population-based blood sampling. The true incidence rate of a transmissible disease is a measure of the force of infection, λ, defined as the per capita probability that a susceptible individual acquires infection (Anderson & May, 1992) or the number of new cases of infection/person/year. For a specific community, the value of λ is age-dependent and can be measured epidemiologically by serological conversion rates i.e. the rate at which individuals convert from seronegative to seropositive. λ can also be estimated from the number of infected individuals (prevalence (Section 1.9.1.)) if a linear relationship between λ and prevalence can be assumed (MacDonald, 1950a; Molineaux et al., 1978). The value of λ is modified by the balance of the ratios between susceptible persons, those who become infected, recovery rates and those who develop immunity to infection. This relationship can be represented as follows (Anderson & May, 1992):

$$\lambda = \beta \int_0^\infty Y(a, t) \, da$$

(Equation 1.2)
Y(a,t) represents the number of infected individuals ‘a’ at time ‘t’ ‘γ’ represents changes in the number of susceptible hosts due to the development of immunity. When γ=0 there is life long immunity and if γ=∞ there is no immunity. β is a measurement of transmission that incorporates biotic and abiotic factors that drive transmission while ‘da’ is the mortality rate with respect to the infected individuals. In malaria endemic areas, λ can only truly be measured in infants (0-11 months of age) as they are the only truly susceptibles having not had prior exposure to infection (MacDonald, 1950a).

Estimates of λ have been derived from repeat cross-sectional surveys of infection in infant populations in SSA where values ranged from 0.41 infections/infant/year under the low-moderate seasonal malaria conditions found in Sukuta, The Gambia to >2 infections/infant/year under intense perennial conditions in Kilifi, Kenya (Snow et al., 1994). Such studies are however extremely labour intensive and as such are rare in the literature on malaria endemicity in SSA.

1.9.1 Measuring the parasite ratio

Where infections persist for long periods and super-infection occurs, it is not possible to distinguish between new (incidence) and old (prevalence) infections making measurement of incidence difficult among older children. The term prevalence refers to the proportion of infections in a community at a point in time and is commonly measured according to the PR. The PR is based on random community-based samples and is taken as the proportion of those sampled that have peripheral blood stage parasites. The laboratory confirmation of malaria parasites in blood slides involves
the direct microscopic observation of whole parasite cells, parasite nucleic acids or parasite products. The techniques for this, involving slide preparation, drying, fixing, staining and microscopic examination are outlined in detail in Schute, (1988), World Health Organization (1991) and Gilles (1993b).

Microscopy for malaria parasites demands observer skill and quite often low parasite densities can go undiagnosed. Skill is required to prepare a slide of adequate thickness (thick blood films vs. thin films), to mix the various buffering and staining solutions required and also in distinguishing parasite particles from artefacts. Rules for numbers of high-powered microscopic fields examined are not uniform. The more fields examined, the more likely parasites will be identified. Although 100 to 200 microscopic fields are recommended, the number of fields counted during microscopic examination varies from study to study from as low as 50 fields with some observers only counting until the first parasite is seen. Making comparison between studies can therefore be problematic. Quality control can be applied by re-examining a proportion of slides by a second observer and estimating observer agreement. This, however, is rarely reported in published parasitological surveys.

Although often described as the parasite rate or absolute parasite rate, strictly speaking, it is not a rate, as it is not estimated over a period of time. The term Parasite Ratio (PR) is preferred and is used here. In endemic areas, an endemicity-dependent saturation of the PR occurs in older children due to the development of immunity and the longevity of infection such that only children under the age of 10 years are included in its estimation (Metselaar & van Thiel, 1959). Ideally the PR should be recorded for each Plasmodium species and sexual and asexual stages separately but
this is often neglected. The accuracy of the PR as an endemicity measure depends on how well it can be related to β (Equation 1.2) and thus how well it represents the multiple factors that define malaria transmission. Compared with other measures, the PR is limited in many ways but as it has high specificity and is relatively easy to estimate under field conditions, it is widely available. For this reason, for many years, malaria control programmes across SSA have based their epidemiological assessments of malaria on the PR. A more comprehensive description of the PR and the rationale for its use in defining endemicity is given in Chapter 2.

1.9.2. The classification of endemicity based on the parasite ratio

The categorical classification of endemicity has historically been based on cut-off values applied to prevalence indicators described in the previous section. The 1950 WHO malaria conference in Kampala endorsed a classification based on the prevalence of enlarged spleens (splenomegaly), the spleen rate (World Health Organization, 1951)). Splenomegaly occurs commonly with chronic parasitic infections. Such infections are highly prevalent in malaria endemic areas. As the spleen rate has a low specificity, because of competing causes of splenomegaly in Africa, Metselaar & van Thiel (1959) revised the WHO classification and defined four classes of endemicity using the PR (Table 1.3).

Prevalence of infection crudely corresponds to the frequency and duration of parasite exposure but does not provide a precise quantification of the number of new infections received by a child each year. The non-linear relationship between challenge and infection prevalence has long been recognised (MacDonald, 1950b).
Given the long persistence of parasitaemia after a single infection (Eyles & Young, 1951), it might be expected that PR would become an increasingly blunt measurement instrument at higher levels of transmission.

Table 1.3: Classification of malaria (Metselaar & van Thiel, 1959)

<table>
<thead>
<tr>
<th>Type of endemity</th>
<th>Parasite Rate</th>
<th>Epidemiological description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoendemic</td>
<td>If the parasite rate in the age group 2-10 years is as a rule under 10%. It may be higher for part of the year.</td>
<td>Areas where there is little transmission and the effects, during the average year, upon the general population are unimportant. Can be regarded as unstable malaria.</td>
</tr>
<tr>
<td>Mesoendemic</td>
<td>If the PR in the age group 2-10 years is as rule between 11-50%. It may be higher for part of the year.</td>
<td>Typically found among rural communities in subtropical zones when wide geographical variations in transmission risk exist. Can be regarded as unstable malaria in some cases although epidemics are less severe than in hypoendemic areas.</td>
</tr>
<tr>
<td>Hyperendemic</td>
<td>If the PR in the age group 2-10 years is constantly over 50%</td>
<td>Areas where transmission is intense but seasonal and immunity is insufficient in all age groups.</td>
</tr>
<tr>
<td>Holoendemic</td>
<td>If the PR is constantly over 75% in the 1-year age group</td>
<td>Perennial, intense transmission resulting in a considerable degree of immunity outside early childhood. Stable malaria.</td>
</tr>
</tbody>
</table>

1.9.3. The relationship between the Entomological Inoculation Rate (EIR) and the parasite ratio

The entomological inoculation rate (EIR) is the product of the human biting rate (the number of vectors biting an individual over a fixed period of time, usually expressed per year) and the sporozoite rate (the proportion of vectors with sporozoites in the salivary glands). Estimates of sporozoite challenge across broad geographical areas are fraught with methodological problems. First, the frequency of parasite exposure varies considerably within small geographical areas and even between households (Cattanni et al., 1986; Mbogo et al., 2003). All previous comparisons of the risks of parasite challenge from birth and disease outcomes (Snow et al., 1994; Smith et al., 2001a) and spatial models of EIR (Rogers et al., 2002) have selected one point...
estimate of EIR from a single or collection of households to represent the wide areas.
Second, whilst the EIR defines the frequency of contact between hosts and infected
vectors, methods used to measure it in the field vary (Githeko et al., 1996). Whether
sampling of vectors is undertaken indoors or outdoors with light-traps placed close to
the bed, with pyrethrum spray catches or through human bait catches affects the
quantification of the EIR. The overall consequence is that EIR data are hard to
reconcile as standard measures between sites and may convey a degree of precision in
the estimation of parasite challenge that simply does not exist. More importantly the
overall paucity of reliable data across SSA limits the ability to develop robust models
(Hay et al., 2000b).

The PR is a more readily available and widely used index of transmission intensity
and it has the advantage over entomological measures of endemicity in that
parasitological surveys often cover more comprehensively defined spatial units. Beier
and colleagues (1999) have recently reviewed coincidental measures of the PR in
childhood and standardised estimates of EIR. Their analysis showed that over 70% of
the variance in PR could be explained by the logarithmic classification of the EIR,
overall and when analysed by East and West Africa or by “ecological zone”. Broadly
there were no studies where a prevalence of infection in childhood was less than 50%
that had an EIR greater than 15. Conversely all areas with a prevalence of infection
greater than 80% had an EIR in excess of 200. Analysis of the logarithmic
classifications of the EIR showed that an EIR of less than 1 infective bite per adult
per annum encompassed an interquartile range of infection prevalence between 1 and
25%. EIRs between 1and 10 had an infection prevalence range of 25-50%, and EIRs
between 11 and 100 covered the prevalence range between 51 and 74%. The highest EIRs (in excess of 100) had infection prevalence in excess of 74%.

The analysis by Beier and colleagues strongly suggests that approaching measures of exposure as categorical rather than continuous variables may be important to overcome the inadequacies in the measures available to estimate parasite challenge. This is important for reasons not only related to the methodological difficulties. The future mapping of the spatial distribution of transmission intensity, populations exposed to risk and the likely impact of intervention strategies will most probably be based upon categorical classes of risk and benefit.

1.10. Determinants of *Plasmodium falciparum* endemicity

A complex interaction exists between man, the parasite, the vector and the environment and this interaction determines malaria's endemicity (Figure 1.4). As shown by R_o, malaria transmission is highly sensitive to the survival rate of *Anopheles* (Jepson *et al.*, 1947; Macdonald, 1957; Detinova, 1962; Charlwood *et al.*, 1995; Martens, 1997) (Section 1.7.1.). The influences on transmission dynamics are discussed in this Section.
Figure 1.4. A conceptual framework of the dynamics of malaria transmission (adapted from Wernsdorfer & McGregor (1988))

Environmental factors
These have greatest impact on vector populations and include availability and salinity of surface water, rainfall, temperature, man-made changes to the environment, altitude, humidity, slope of land, soil, and vegetation

Human factors
Includes behavioural and socio-economic factors that either promote or interrupt transmission such as use of physical protective measures, anti-malarial prophylaxis, and access to prompt treatment, collective immunity, settlement, population movement, population distribution and density.

Malaria control interventions
Anti-vectorial measures such as residual spraying and interruption of man-vector contact e.g. by use of insecticide treated bed nets

Adult vector factors
Vector longevity and abundance

Plasmodium life cycle
Perturbation
Sporogony

Climatic influences
Temperature, rainfall and humidity

Erythrocytic asexual development
Hepatic asexual development

1.10.1. Temperature

The optimal temperature for parasite development (sporogony) is species dependent. Sporogonic development for *P. falciparum*, for example, takes 9 days at 30°C, 10 days at 25°C, 11 days at 24°C and 23 days at 20°C (Boyd, 1949). Below 16°C and above 35°C sporogony ceases for *P. falciparum* (Detinova, 1962). The optimum temperature for sporogony in *P. vivax* is around 25°C. Temperature also has effects on mosquito development (Figure 1.5). Mortality at optimum conditions of temperature (27°C) is 15% compared with 16.1%, 1.9% and 4.9% at 21.2°C, 26.5°C and 29.5°C respectively (Armstrong *et al.*, 1961). Thermal death of mosquitoes occurs at 40-42°C (Dutta & Dutt, 1978). Mosquitoes are less sensitive to low temperatures than malaria parasites and temperature has a greater limiting effect on
the distribution of malaria parasites than on the distribution of mosquitoes. Uninfected mosquitoes can therefore be found in high altitude areas of endemic countries, a phenomenon termed 'anophelism without malaria.' In such areas sudden rises in temperature, permitting the proliferation of malaria parasites may be associated with epidemics of malaria (Loevinsohn, 1994; Matola et al., 1987)

Figure 1.5. The effect of temperature on parasite (Detinova, 1962) and vector (Martens, 1997) development and survival.

1.10.2. Altitude

Altitude is inversely related to temperate and in general a 0.5-0.6 °C drop in temperature occurs for every 100-metre increase in altitude (Schwetz, 1942; Cox et al., 1999). This altitude/temperature criterion, however, is very variable and is influenced by latitude, air saturation and distance from large water bodies (Cox et al., 1999). Malaria transmission is dependent on the presence of suitable numbers of parasitised vectors and susceptible hosts. *Anopheles* are generally not found at
altitudes over 2500 metres above sea level (Service & Townson, 2002). As altitude increases, transmission periods become shorter and a more seasonal transmission profile tending towards 'epidemics' may be experienced (Bruce-Chwatt, 1984).

Historical medical reports record an absence of malaria in highland areas of East Africa above 1500m at the turn of the 19th Century (Lindsay & Martens, 1998). Other authors have reported epidemic malaria at 2000m in Kenya (Bruce-Chwatt, 1984). Studies in the Muheza District of Tanzania also showed decreasing malaria transmission risk, as determined by the EIR and PR, with increasing altitude (Ellman et al., 1998; Cox et al., 1999; Lindsay et al., 2000; Drakeley & Reyburn, personal communication). The exact altitude at which transmission ceases is difficult to define. It varies geographically and according to latitude and is modified by a host of local factors such that altitude alone is a poor predictor of epidemic-proneness (Cox et al., 1999; Figure 1.6).

The recent emergence of malaria at higher altitudes causing epidemics of ‘highland malaria’ has sparked much debate on the possible rôle of climate change and global warming in the aetiology of re-emergent malaria (Reiter, 1998; Dye & Reiter, 2000; Shanks et al., 2000; Hay et al., 2002a; 2002b). As pointed out by Mouchet et al., (1998), Reiter (1998), Lindblade et al. (2000), Shanks et al. (2000) and Hay et al. (2002b), the quality of public health services, irrigation and agricultural activities, land use practices, civil strife, natural disasters, ecological change, population change, use of insecticides, and the movement of people are more likely to be the cause of the increase in malaria at high altitudes than temperature.
1.10.3. Rainfall and humidity

It is difficult to quantify the direct relationship between rainfall and malaria transmission. Several investigations, particularly among non-immune populations, have noted marked increases in infection incidence during periods of unusually heavy rainfall (Bouma & Vanderkaay, 1996; Bouma & Dye, 1997; Brown et al., 1998; Kilian et al., 1999). Breeding site availability is associated with rainfall and increased mosquito survivorship with increasing humidity (Gill, 1920; Dutta & Dutt, 1978). Mosquito abundance is directly related to the prevalence of water bodies available for vector breeding. Dramatic increases in populations of *An. arabiensis* are associated
with short-term increases in rainfall that create temporary breeding pools. Studies in the Kilombero River Valley in Tanzania show that An. arabiensis numbers can increase a hundred-fold during the short rainy season compared with dry season numbers (Charlwood et al., 1995). Unusually heavy rainfall, however, can have the effect of flooding out mosquito breeding sites as was seen during the severe flooding in Mozambique in March 2000 (Cox et al., 2002).

Breeding site availability is of particular relevance to malaria vector survival during extended dry periods in arid areas. Vector populations survive the dry seasons in small pools of water, marshes and dry riverbeds (Bruce-Chwatt, 1984; Hamad et al., 2002). The ability of soil to retain moisture may also contribute to vector survival. The prevalence of malaria parasitaemia has been shown to vary locally in relation to soil type with higher parasitaemias associated with more moist soils and it has been shown that vectors may undergo periods of aestivation in moist soils (Chinery, 1997; Patz et al., 1998). The effect of humidity in field conditions is not well understood. Laboratory studies, however, have shown that a humidity of 50-60% is optimum for vector survival (Molineaux, 1988; Beljaev, 2002). The climatic factors described in this section are not independent, their effects being modified by human intervention. Some of these human influences on transmission, notably population settlement, movement and urbanisation, are described in the next section.

1.10.4. Human factors influencing malaria transmission

Although the important rôle of human factors for malaria control has been recognised for many years (Prothero, 1977; MacCormack, 1984), very few studies or
interventions have attempted to address them. This is perhaps because human
behaviour is often difficult to predict or measure. Urbanization, population
distribution and movement, agricultural practices and land-use, nonetheless are key
influences on malaria transmission (Gilles, 1993a). Construction of dams, formation
of reservoirs and irrigation systems and agricultural practices provide important
influences on human settlement, land-use and disease risk. The relationship between
the amount of rainfall and the development of breeding sites is dependent on several
factors such as the slope of the land; run-off and soil type and the suitability of these
breeding sites will further be affected by the availability of shade, vegetation,
predators and level of salinity.

1.10.4.1. Population movement, migration and displacement

Recent interest in human factors has been sparked by the re-emergence of malaria in
areas where it either had previously been eradicated or had not been recorded. This
phenomenon has been attributed to population mobility (Martens & Hall, 2000).
Population movement may be temporary (circulation) or involve a permanent change
of residence (migration). In general, migration, as a consequence of war and famine
or urbanization, poses the greatest risk for malaria transmission.

The movement of non-immune individuals *en masse* into holoendemic areas could
result in malaria epidemics or conversely immune parasite carriers have been seen to
introduce the disease to previously malaria-free areas (Prothero, 1961; Mouchet *et al*.,
1998). The greatest risk of malaria increase occurs when mass population re-
settlement occurs rapidly and in an unplanned fashion. Such situations are becoming
increasingly prevalent in war and famine stricken countries. According to the United Nations High Commission for Refugees (UNHCR) in 2000, at least 12.1 million people were displaced due to war and famine (United Nations High Commissioner for Refugees, 2001). Of these, 3.6 million refugees were in Africa where the 2nd highest proportion of refugees (30\%) live (United Nations High Commissioner for Refugees, 2001). Displaced populations are at increased risk of malaria as they often live in temporary shelters with inadequate sanitation facilities. Epidemics of malaria occur when non-immune populations are moved into highly endemic areas (Crowe, 1997). Although the exact extent of the risk of malaria in these situations is not known (Allan, 2003).

1.10.4.2. Urbanization

According to the United Nations Development Programme's (UNDP) world urbanization prospects report, 37.2\% of Africa's 794 million inhabitants lived in urban areas in 2000 (Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, 2002). This figure is expected to rise by 52.9\% to 1.5 billion people by 2030. The urban growth rate during this period is estimated to be 2.1\% per annum compared with a 1.14\% p.a. growth rate in rural areas. SSA, thus, has the highest rates of urbanization in the world (World Bank, 1996). A large part of the urban growth will occur as a consequence of transformation of rural trading centres into towns and cities. Such rapid urban expansion often occurs ahead of infra-structural developments with the result that low standards of housing, health care, water supply and sanitation prevail. In addition, people moving from rural areas to settle around urban centres often retain a rural life style of small-scale
subsistence farming using irrigation and the use of informal building materials. The resulting pattern of malaria transmission may mirror that of rural areas (Warren et al., 1999).

Although it is widely held that urban malaria is imported as a result of such population migrations, there is increasing evidence of local transmission in urban centres (Rapuoda & Achola, 1984; Warren et al., 1999). A study in Accra, Ghana attributes increasing vector populations to pools of surface water created by rapid, inadequately planned urbanization (Chinery, 1984). The effects of habitat changes on vectors show some worrying trends. In the study in Accra, An. gambiae, normally a fresh water breeder, was noted to adapt to the polluted water habitats found in urban settings (Chinery, 1984). Similarly, increases in vectorial capacity were seen in Cotonou, Benin where urbanization and accompanying changes in housing favoured the proliferation of An. gambiae against indigenous An. melas (Akogbeto et al., 1992).

Increasing data from hospital-based studies suggest the presence of local urban malaria transmission in major cities; Freetown (Morgan, 1994), urban Mozambique (Thompson et al., 1997; Granja et al., 1998), Brazzaville (Carme et al., 1992; Carme, 1996) Zanzibar (Matteelli et al., 1996) and Kinshasa (Hedberg et al., 1993). In contrast, however, studies of non-mobile or more settled urban populations suggest that urbanization may be associated with a reduced risk of malaria transmission. Decreasing risks of infection associated with urbanization, either entomological or parasitological, have been shown in urban areas in West Africa: Liberia (Björkman et al., 1985), The Gambia (Lindsay, 1990), Senegal (Trape et al., 1992), Ghana
(Gardiner et al., 1984), Burkina Faso (Robert et al., 1985; Rossi et al., 1986; Benasseni et al., 1987; Modiano et al. 1999); Central Africa: Cameroon (Fondjo et al., 1992), Republic of Congo (Trape and Zoulani, 1987), Democratic Republic of Congo (Ngimbi et al., 1982; Coene, 1993); the Horn of Africa: Ethiopia (Yohannes & Petros, 1996), Sudan (El Sayed et al., 2000); and Southern Africa: Zambia (Watts et al., 1990). Moreover, in a recent meta-analysis of 159 sites across Africa where annual entomological inoculations rates (EIR) had been recorded, it was shown that people in rural areas received on average 146 $P. falciparum$ infected bites per annum compared to only 14 for people resident in urban areas (Hay et al., 2000b; 2005a).

1.10.4.3. Irrigation, water resources management and rice cultivation, land use and agriculture

Labour related to agricultural activities and mining may also pose an increased risk of malaria infection in SSA (Martens & Hall, 2000). Water resource development projects such as irrigation and cultivation of rice create suitable habitats for mosquito breeding (Ijumba et al., 2002a; Henry et al., 2003) although the exact impact of these activities on infection risk is difficult to define. Some studies associate rice cultivation with a decreased risk of malaria infection (Ijumba & Lindsay, 2001). In a study in Bobo-Dioulasso, Burkina Faso, $An. gambiae$ densities were found to be ten times higher within rice fields compared with the surrounding savannah area (Carnevale & Robert, 1987). Other studies in Tigray, Ethiopia showed a sevenfold higher incidence of malaria among children living in close proximity to micro-dams compared with those living more than 1500 metres away (Ghebreyesus et al., 1998;
Ghebreyesus et al., 1999). On the other hand, a study in Kenya found no additional risk associated with rice-field irrigation (Githeko et al., 1993).

Anopheles density, survival, human biting rate and malaria infection incidence were monitored at 3 sites in the lower Moshi irrigation area in northern Tanzania. Each site represented different agro-ecosystems namely a sugarcane plantation a smallholder rice irrigation scheme and savannah with subsistence cropping. Although the vectorial capacity was four times greater in the rice field village than in the other 2 sites, the EIR in the rice field village was 61-68% lower. An. arabiensis was the principal vector of malaria in all 3 villages and sporozoite rates were respectively 0.01%, 0.1% and 0.12% in the rice field, sugarcane and savannah villages. The lower infection risk in the rice field village was attributed to relatively better socio-economic conditions and therefore greater use of anti-malarials and anti-mosquito measures (Ijumba et al., 2002b). A further study on infection prevalence in this same population supported these findings (Ijumba et al., 2002a).

1.10.4.4. Socio-economic and behavioural factors

The decreased risk of malaria associated with urbanization and rice cultivation is most likely due to the improved economic status and higher education levels of the populations living in these areas (Ijumba et al., 2002a). Other studies have looked at the influences of types of housing on transmission. In rural Gambia, house entry by Anopheles gambiae, was reduced by the presence of a ceiling: plywood (59% reduction), synthetic netting (79%), insecticide-treated synthetic netting (78%), plastic insect-screen (80%, P < 0.001 in all cases) and closed eaves (37%, ns)
(Lindsay et al., 2003). In a study in Principe, significantly lower malaria infection prevalence was found among people living in houses with eaves compared with those without eaves (RR=1.57; 95% CI=1.22-2.02; p=0.0008).

1.10.4.5. Effects of anti-malarial interventions

There are several examples of successful vector control programmes in SSA that were able to maintain low malaria transmission levels over several years. These include the insecticide residual house spraying interventions in the Pare-Taveta area of Tanzania during the 1950's (Draper & Smith, 1957; 1960; Pringle & Matola, 1967; Draper et al., 1972), in the Gezira area of Sudan within the Blue Nile Project during the 1960s – 1970s (El Gaddal, 1990; 1991) and the highland malaria areas of Ethiopia (Malaria Control Programme Ethiopia, 1991) and Madagascar (Mouchet et al., 1997). The main lesson learned from these projects is that transmission control in SSA needs to be sustained. If the interventions stop, infection risks rapidly revert to pre-intervention levels (Mouchet et al., 1998; Hagmann et al., 2003).

Significant reductions in malaria transmission resulting in up to 60% reductions in all-cause mortality have been associated with the use of ITNs under programme conditions (Alonso et al., 1991; D'Alessandro et al., 1995; Binka et al., 1996; Nevill et al., 1996). ITNs have also been shown to have a transmission reducing effect among communities not using bed nets themselves but living in proximity to bed net using communities (Howard et al., 2000).
1.11. Malaria models for mapping malaria risks in sub-Saharan Africa

1.11.1. Historical global maps of malaria risk

Surprisingly few advances have been made in malaria mapping since Lysenko and Beljaev’s 1969 description of the limits of the distribution of the disease in relation to the 60 °F (15.6 °C) and 70 °F (21°C) summer isotherms (Figure 1.7). The two summer isotherms reflect the ideal temperatures required for sporogony in *P. falciparum* (over 18 °C) and *P. vivax* and *P. malariae* (about 15 °C). Available disease atlases are outdated and over the years, relatively little investment has been made in recording and mapping malaria prevalence (Snow *et al.*, 1996). Perhaps the labour-intensive nature of traditional cartography has been a deterrent to mapping efforts particularly in the resource-constrained settings where the greatest burden of malaria is felt. Recently there has been a rekindling of interest in malaria mapping. With today’s desktop mapping systems, data storage and updating is facilitated by the use of relational databases. Within these systems, representative malariometric data can be used to train environmental data in making predictions of malaria for wider unsampled sites. Malaria maps are thus evolving from being purely empirical distribution maps based on previously documented relationships between the environment and disease, to more process-based models of transmission dynamics and the influences on transmission described in the previous section.

Several regional malaria control measures have been implemented since the malaria endemicity distribution map of (Lysenko & Beljaev, 1969) was published. Their impact has been varied across ecological settings and today, malaria is localised to the
tropics and sub-tropics. A series of WHO records document changes in the global distribution of stable malaria between 1965 and 2002 (Pampana & Russel, 1955; World Health Organization, 1966; World Health Organization, 1997; Hay et al., 2004) (Figure 1.8).

Figure 1.7. The geographical limits of malaria (Lysenko & Beljaev, 1969)

Figure 1.8. The geographical distribution of malaria infections (Hay et al., 2004)
As described in section 1.4, the risks of malaria morbidity and mortality vary within these distributional limits. To date, limited work has been carried out to define the different categories of malaria risk geographically. Major reasons for this are a poor understanding of how infection risk translates to disease outcome and a limited availability of reliable empirical disease data to determine risk for most of SSA. In the absence of data, environmental, mostly climatic, correlates of malaria transmission have been used to model malaria in data deficient areas.

1.11.2. Climate data and remote sensing applied to vector-borne disease mapping

One of the most significant boosts to vector-borne disease mapping has been the increased availability, range and quality of climate-surrogate data measured by satellite sensors positioned in space (Hay et al., 1996; 1997; Rogers, 1998; Hay, 2000; Rogers et al., 2002). Three climatic variables, or composite measures of them, tend to be modelled frequently namely, temperature, vegetation moisture availability/humidity and rainfall. Such models will form the basis of future studies of disease incidence and prevalence. This section is an overview of the evolution of malaria modelling in SSA from historical times to the present day and a critique of its current status.

Vector-borne disease (VBD) maps have proven effective as decision support tools in designing, monitoring and assessment of the impact of disease control interventions for several diseases. Examples include health systems research studies (Tanser, 2002), the monitoring of guinea worm (Dracunculus medinensis (Clarke et al., 1991)), lymphatic filariasis (elephantiasis) and schistosomiasis (Schistosoma
control (Brooker et al., 2001; Malone et al., 2001), and for mapping animal trypanosomiasis distribution (Rogers et al., 1996). The potential of maps is also being recognised increasingly for describing malaria's epidemiology (Hay et al., 1998a; Craig et al., 1999; Kleinschmidt et al., 2000; Kleinschmidt et al., 2001a; Kleinschmidt et al., 2001b; Kleinschmidt et al., 2002) and estimating disease burden (Snow et al., 1998; 1999a). A more complete review of the applications of malaria maps in SSA is provided in (Hay et al., 2000a). Common to all VBDs is the impact of environmental parameters, notably climate, on the distribution, abundance and dynamics of their respective vectors.

Accurate and verified models that translate climate-related processes into more detailed maps of malaria, however, are scarce. There are some malaria models available and these vary in complexity. The simplest are hypothetical, mapping areas where climatic conditions are suitable for the development of *Plasmodium falciparum* and the *Anopheles* mosquito. A limited number of transmission models have used empirical disease data to define suitable habitats and train climate models (Snow et al., 1998; Kleinschmidt et al., 2000; Kleinschmidt et al., 2001a). The models also vary in the number or types of climatic variables included and the statistical methods applied. Two sources of climate data have been explored for malaria modelling, namely; spatially interpolated meteorological station data and satellite-sensor derived surrogates of climate.
1.11.3. Mapping the geographical distribution of *Anopheles* in SSA

The earliest map of the distributional limits of the main *Anopheles* species in Africa was based on field observations (Gillies & de Meillon, 1968). This map has since been updated with field studies on the *An. gambiae* species complex (Davidson & Lane, 1981; Gilles & Coetzee, 1987). More recently, the field records (n=2537 studies dating from 1944) have been transferred to a GIS (Coetzee *et al*., 1993; Coetzee *et al*., 2000; http://www.wits.ac.za/fac/med/entomology/medento.htm; (Figure 1.9)).

Although a very useful and now readily updateable record, this species distribution map is limited in several aspects. Firstly, many areas have not been sampled. Secondly, species were assumed absent at sampling sites if they were not recorded when other species were sampled such that it is possible that species were missed. Finally, species identification methods vary between surveys and identification and locality inconsistencies are inevitable. However, these data have been used to train climate data in predicting species distribution in previously un-surveyed locations (Lindsay *et al*., 1998; Bayoh *et al*., 2001; Rogers *et al*., 2002; Levine *et al*., 2004). Some of these predictive models are discussed in the next sections.
Figure 1.9. Sites where members of the Anopheles gambiae complex have been observed (closed symbols) mapped against total annual rainfall. Open circles show sites where species were not recorded during collections of other species of the An. gambiae complex (Coetzee et al., 2000)

1.11.3.1. Mapping the relative abundance of Anopheles using climate data

Lindsay et al., (1998) have used annual precipitation and annual and wet season temperature (Hutchinson et al., 1995) to define the ranges of An. gambiae s.s. and An. arabiensis in Africa. ‘Suitable’ climatic conditions for the species were defined on the basis vector distribution maps (Davidson & Lane, 1981; White, 1985) that were scanned and digitised. The climatic habitats preferred by An. gambiae s.s. and An. arabiensis were defined empirically using field data from West Africa. Non-linear
regression techniques were used to predict the relative abundance of the two species for the rest of Africa (Lindsay et al., 1998).

The study found that relative abundance was predicted best by the ratio of five-monthly maximum precipitation to five-monthly potential evapotranspiration (P/PE). Significant differences ($p<0.001$) were found in habitat preferences. *An. gambiae* s.s. showed a preference for more saturated areas ($P/PE>1.0$) while *An. arabiensis* predominated in less saturated locations ($P/PE<1.0$). The model showed high correlation with field observations from Tanzania ($r^2=0.745$).

1.11.3.2. Predicting malaria vector species distribution using satellite imagery

Climate models of vector-borne disease are essentially models of environmental suitability for a vector. Areas where environmental conditions are unsuitable are classed as outside the distributional limits of the vector. Within suitable environments, predictions of the distributions of *An. gambiae* s.s., *An. arabiensis*, *An. merus*, *An. melas* and *An. quadriannulatus* have been made for Africa between latitudes 18°N–30°S using data from sensors of the National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (NOAA-AVHRR) and Meteosat High Resolution Radiometer (HRR) satellites (Figure 1.10) (Rogers et al., 2002) and a 0.05 degrees spatial resolution digital elevation model (EROS Data Center, 2002). The satellite sensor derived meteorological surrogate data included thermal variables *i.e.* reflectance in the middle infra-red (MIR) channel and land surface temperature (LST) from the AVHRR and a surrogate for rainfall, the cold cloud duration (CCD), from Meteosat’s HRR. Species ‘presence’ sites were
defined as areas within 0.15° of an observation site and 'absence' was determined from sites where only other species recorded. Randomly selected pixels from the presence and absence sites were used to train the environmental data. K-means clustering methods applied to the environmental and altitude data were then used to identify natural presence and absence clusters.

Using maximum likelihood discriminant analysis, 10 environmental variables that best discriminated between absence and presence classes were selected for each species. Selection was carried out in a stepwise manner with variables in each round of selection added on the basis of generation of the maximum index of agreement (kappa statistic (Cohen, 1960; Landis & Koch, 1977)). The probabilities of membership in the absence or presence classes were calculated for each pixel and the presence/absence status mapped for the rest of the continent. The predictions were compared with the training data and an assessment of predictive accuracy made. Kappa values were above 0.6. Landis & Koch (1977) suggest the following interpretation of observer agreement defined by the kappa statistic. Agreement is poor where $k < 0.4$, good where $0.4 < k < 0.75$ and excellent where $kappa \geq 0.75$. Good to excellent agreement was achieved for all species predictions.
Figure 1.10. Distributions of five sibling species of the Anopheles gambiae complex in Africa, predicted from temporal Fourier-processed satellite data (Rogers et al., 2002). a) An. arabiensis; b) An. gambiae s.s.; c) An. quadriannulatus; d) An. melas (West African coast) and An. merus (East African coast) (Rogers et al., 2002)
1.11.4. Modelling the seasonality of malaria

The intra-annual or seasonal cycles of infection risk characteristic of African malaria are also driven by climate (Gill, 1920; 1936; 1938; Onori & Grab, 1980). Seasonality is particularly marked in areas of low infection challenge where effects of immunity are minimal and fluctuations in challenge are manifested in changes in disease levels. In these areas, the morbidity and mortality from malaria infection is concentrated during a defined period of the year, the transmission season.

The length of the transmission season in East African countries was defined in historical expert-opinion malaria maps (Government of Tanganyika, 1956; Butler, 1959; Government of Uganda, 1962). These are discussed in more detail in Chapter 6. Since these early maps, very few seasonality maps have been developed mainly due to a lack of data either on seasonal indicators of challenge or intra-annual changes in disease. Seasonal estimates of vector abundance, for example, are lacking for most of Africa (Rogers et al., 2002) while disease data are either lacking or unreliable (Snow et al., 1999b). Climate-driven predictive models have been used to describe the duration of transmission seasons across Africa (MARA/ARMA collaboration, 1998) and in Kenya (Hay et al., 1998b). These models are described in this section.

1.11.4.1. The duration of malaria transmission seasons in SSA

Interpolated climate surfaces have been used to predict the duration of malaria transmission seasons at a 5x5 kilometre spatial resolution in Africa (MARA/ARMA collaboration, 1998). Temperature and rainfall thresholds necessary to sustain
transmission were defined for map pixels using mean monthly temperature and rainfall data (temperature threshold=19.5 °C; rainfall threshold >=80mm monthly rainfall). The number of months in a year where threshold rainfall and temperatures coincided was then recorded for each pixel. A ‘seasonality’ surface with 3 ‘length of season’ classes (1-3 months, 4-6 months and 7-12 months) was then created. This map provides a crude low resolution classification of the duration of malaria seasons. No attempt was made to verify the map with empirical evidence and so no assessment of its accuracy can be made.

The distribution of seasonal vs. perennial malaria has also been mapped using Boolean thresholds for temperature (16-32 °C) and a moisture index based on the ratio of precipitation to potential evapotranspiration (Martin & Lefebvre, 1995). Areas where threshold conditions were experienced for >=7 months in a year were classified as experiencing seasonal transmission.

1.11.4.2. Predicting the onset of malaria seasons in Kenya using clinical data and satellite imagery

The seasonal abundance of An. gambiae s.l. in The Gambia has been shown to relate to the NDVI (Thomson et al., 1996). Hay et al. (1998a) have also demonstrated a relationship between the NDVI and hospital admission rates for childhood malaria. This has been used to predict the onset and duration of malaria transmission seasons. Monthly malaria admission rates expressed as a percentage of total annual malaria admissions in 3 hospitals in Kenya were compared with contemporaneous monthly NDVIs.
Childhood malaria admissions correlated with the previous month’s NDVI ($r^2=0.71$). Malaria seasons (defined as admissions >5% of annual total malaria admissions) were associated with an NDVI threshold of >0.35. The duration of a ‘malaria season’ was computed by counting the number of months during which NDVIs were at or above this threshold. Seasonality was then classified as in historical malaria maps for East Africa (i.e. 0-3 months, 3-6 months and >6 months of transmission per year) presented on an 8x8 kilometre resolution map (Figure 1.11).

*Figure 1.11. Predicting the seasonality of malaria in Kenya. The number of months in a year during which *P. falciparum* transmission is possible are predicted based on an NDVI threshold of 0.35 (Hay et al., 1998a). □ = >6 months, △ = 3-6 months, □ = <3 months transmission, □ = no transmission.*
1.11.5. Modelling malaria risk: how much malaria?

A further step in malaria mapping has been to model the stability and intensity of malaria transmission within stable endemic areas using interpolated climate surfaces and satellite sensor-derived climate surrogates. Following are examples of these models from SSA countries.

1.11.5.1. A fuzzy logic climate suitability model of malaria transmission

Most ecological measures have some uncertainty and do not necessarily fall into distinct Boolean categories. Climatic conditions, for example, can be suitable for malaria transmission along a gradient of suitability relative to 2 extremes, ‘suitable’ (S) and ‘unsuitable’ (U). Such data can be described as fuzzy sets. Fuzzy sets define vague concepts and admit the possibility of partial membership. The degree to which an object belongs to a fuzzy set is denoted by a membership value between 0 (U) and 1 (S). The relationship between a variable and its fuzzy membership value can be described according to four types of fuzzy membership curves or functions: sigmoidal, j-shaped, linear or some other user defined curve. The fuzzy functions are controlled by four points ordered from low to high on a measurement scale.

Sigmoidal fuzzy membership curves have been used to rank climate variables derived from spatially interpolated weather station data (Hutchinson et al., 1996) according to a scale of ‘suitability’ of climate for transmission (Craig et al., 1999; Figure 1.12). Rainfall thresholds were defined from an investigation of long-term monthly rainfall and monthly mean and minimum temperature patterns in 20 sites in Africa where the malaria transmission profiles have been described previously (Smith et al., 1993;
Some, 1994; Dolo et al., 1997; Snow et al., 1997). The sites analysed encompassed perennial, seasonal, epidemic and malaria-free epidemiologies. A threshold number of *Anopheles* must survive winter months to transmit malaria during warmer months. A period of winter temperatures (< 4-6°C) during a year is sufficient to kill vector populations (Detinova, 1962). The model, assigned a fuzzy membership of 0 to these areas. Optimum temperatures for sporogonic development in the mosquito were defined as 22°C - 32°C (suitable; fuzzy suitability =1) while <18°C and >40°C was considered unsuitable (fuzzy suitability=0). A mean monthly rainfall of 80 millimetres for at least 5 months in a year was defined as suitable.

Each map pixel was assigned a fuzzy membership value \((y) \) for each climatic predictor variable according to sigmoidal relationships described by the equation:

\[
y = \cos^2 \left(\frac{x-U}{S-U} \right) \times \frac{\pi}{2}
\]

(Equation 1.3)

For a positive fuzzy relationship between fuzzy suitability and predictor variable (e.g. suitability for sporogony and increasing temp), \(y \) is the fuzzy suitability of predictor variable \(x \). (For an inverse relationship the fuzzy suitability is defined by \(1-y \)). \(S \) is the value of \(x \) when conditions are suitable for malaria transmission and \(U \) the value when conditions are unsuitable.

A suitable rainfall and temperature need to occur concurrently for optimum transmission conditions, the number of months where threshold conditions were met was included as a parameter of the model. Due to ecological differences and variations in vector behaviour, a much shorter period of optimum conditions is required to build up sufficient vector populations in the more arid regions to the north of Africa (above 8°N of latitude) compared with more southerly regions. For the
model, 3 months a year was taken as suitable in northern and 5 months of optimal conditions for the rest of the continent. Using these criteria, the minimum suitability rating was calculated for each 8x8 km map pixel.

Figure 1.12. Fuzzy logic model of climatic suitability for stable P. falciparum transmission in SSA (Craig et al., 1999)

Although such maps delineate the broad geographical limits of areas where malaria may occur, they are purely climate driven and do not measure actual disease risk or any non-climatic factors that modify malaria's distribution. Transmission risk can only be defined by the use of empirical data. Furthermore the model uses long-term average climate data and so does not take into account the effect of seasonal climatic influences on transmission. This model, however, is the only recent map of malaria transmission distribution at a continental level and has been a pioneering tool for
defining the burden of malaria while taking account of differing transmission scenarios on burden estimates (Snow et al., 1999b; 2003). The limitations of the map for Kenya are presented in Chapter 4.

1.11.5.2. A logistic regression model of malaria for West Africa

Empirical data have to a limited extent been used with climate data in making predictions for un-sampled areas. Models applying generalised linear regression are available for Mali (Kleinschmidt et al., 2000) and West Africa (Kleinschmidt et al., 2001a; Figure 1.13). The Mali model uses 101 malaria prevalence surveys dating from 1960-2000 to train climate, ecological and population data. Climatic explanatory variables included were long-term averages of rainfall, mean monthly maximum and minimum temperatures. Population density and distance to nearest water body were also modelled.

The West African model used step-wise multiple logistic regression to identify climatic and environmental risk factors of malaria prevalence defined using the PR between latitudes 1 °N and 22 °N and longitudes 17 °W and 16 °E. The model applies methodological approaches used by Snow et al., (1998), Craig et al., (1999) and Kleinschmidt et al., (2000). The training data comprised PR surveys of children less than 10 years of age dating from 1970-1999. Climate data (Hutchinson et al., 1996) were long-term average monthly rainfall, monthly averages of daily maximum and minimum temperatures, the NDVI, an index of drainage density and estimated population density. The monthly average climate data were summarized according to quarterly averages to correspond with the wet and dry seasons. This initial primary
model explained only 65% of the variation in malaria prevalence. Kriging was carried out on a local level to improve the predictions made (Kleinschmidt et al., 2001a). Kriging uses a weighted linear combination of weights defined at known points to estimate values at unknown points (Isaaks & Srivastava, 1989).

A further consideration in areas where vector niches differ significantly is that models developed for one ecological zone are likely to perform poorly if applied to an ecologically different area. Studies of the distributions of trypanosomiasis (Rogers et al., 1996) and schistosomiasis (Brooker et al., 2002) highlight the importance of considering ecological zone similarity when extending VBD predictions to previously unpredicted areas. Kleinschmidt et al., (2001a) modelled the interactions between environmental predictors of the PR and agro-ecological zones (AEZ) defined by the Food and Agriculture Organization (FAO) (1978).

The AEZ classification stratifies areas within West Africa according to the length of the period, during a year, that is suitable for growing crops based on the interactions of precipitation, evapotranspiration and soil moisture levels. Four AEZs are recognised, namely, the Sahel, the Sudan savannah, the Guinea savannah and a forest zone. (The Sahel and Sudan Savannah regions were combined for this study as they are similar climatically and also very limited data were available for the Sahel). The prediction method resulted in discontinuities along AEZ boundaries. A statistical model was derived for each AEZ and 4 categories of prevalence were predicted in each AEZ. 77.6% of observed points (N=450) were predicted accurately (\(kappa=0.62, P<0.0001\)).
1.11.5.3. Malaria transmission model for Kenya: estimating ‘at risk’ populations

Snow et al., (1998) have also used empirical data of malaria prevalence (PR), and interpolated climate surfaces to model malaria prevalence in Kenya (Figure 1.13). Community-based surveys (N=124) dating from 1966-1999 of children <10 years of age where at least 100 children were sampled were used in the model. ‘Unstable’ transmission areas were defined as 4th level administrative units (locations) with a fuzzy probability of malaria transmission <0.05 i.e. a less than 1 in 20 chance that climatic conditions within an average year are suitable for malaria transmission (Section 1.11.5.1, Craig et al., 1999). For the rest of the country, linear discriminant analysis techniques were used to assign, each of the country’s 1080 locations to one
of 3 endemicity classes based on a categorical classification of the PR; 0-<20%, 20-
<70% and >=70% or low, moderate and high respectively.

Figure 1.14. Modelled predictions of stable malaria endemicity for Kenya (Snow et
al., 1998). ■=high, ◊=moderate, ▩=low, □=unstable endemicity.

Eight significant ($p<=0.05$) discriminating variables that identified the 3 categories of
stable malaria prevalence were identified. These were the number of months of
transmission risk; rainfall in April and December; NDVI in April; minimum
temperatures in April and December; and maximum temperatures in May and
November.
A statistically significant correlation was found between the PR and total months of transmission risk (Pearson $r=0.62$, $P<0.0001$). Linear discriminant criteria correctly identified 77.4% (95% CI: 70-85%) of each endemity class and overall classification accuracy was 73% (95% CI: 65-80%). Two variables i.e., the months of transmission risk and rainfall in April explained 25% of the variation in malaria prevalence. The combined model explained 46% of the variation in endemity class. Additional multiple regression analysis, using the PR as a continuous variable, showed that combined, these climate variables, accounted for over half of the variation in the PR ($R^2=0.55$, $P<0.001$). The model was used to derive estimates of populations at risk for each of the 4 risk categories modelled (Figure 1.14).

1.11.5.4. Predicting the EIR using satellite imagery

As described in Section 1.9, the EIR among populations is the most reliable measure of malaria challenge currently available. The major limitation of the EIR is the practical difficulty of measuring its elements. Estimates of the EIR are rarely available and, in general, studies in SSA where it has been measured have been short-term and have covered small areas (Hay et al., 2000b). The more reliable of these studies have been used to train satellite data in making predictions of EIR for Africa (Rogers et al., 2002; Figure 1.15).
Figure 1.15. Satellite-derived predictions of EIR in Africa. EIR data (map inset) were grouped into five approximately equal-sized classes of mean levels of malaria challenge. The same satellite data layers and analytical methods as used in Figure 1.10 are used to define the probability with which each continental pixel belongs to one of the five challenge categories. Insufficient training data were available to define EIR in those parts of the continent marked grey.

The satellite sensor data and analysis methods used were the same as those applied to the predictions of Anopheles distribution described in Section 1.11.3.2. Environmental data were able to discriminate between 5 equal-sized classes of EIR giving a high index of agreement ($kappa$ statistic=0.77) between the predicted values and the training data. Predictions were not made for large areas of the continent due to the absence of training data representative of these areas.
The potential impact of global warming on the distribution of malaria is a controversial subject (Rogers & Packer, 1993; Martens et al., 1995, 1997; McMichael & Martens, 1995; Lindsay & Birley, 1996; Reiter, 2000a; 2000b; Rogers & Randolph, 2000; Reiter et al., 2004). The results from the few studies that have modelled changes in infection risk under different scenarios of increasing temperatures to date are inconclusive. Most of these models are primarily temperature driven and suggest that risk is likely to be greatest for populations living within the latitudinal and altitudinal fringe areas of malaria transmission (Lindsay & Birley, 1996; Lindsay & Martens, 1998). Here small increases in temperature could significantly raise vectorial capacity and the models predict an increase in seasonal and epidemic malaria in these regions (Martin & Lefebvre, 1995; Lindsay & Birley, 1996; Lindsay & Martens, 1998). Loevinsohn (1994) and Matola et al. (1987), working in highland areas of Rwanda and Tanzania respectively, have linked increasing temperatures at these sites with increasing malaria incidence rates.

The Intergovernmental Panel on Climate change (IPCC) has postulated six likely future climate scenarios based on different mathematical general circulation models (GCM (Houghton et al., 1996)). Martin & Lefebvre (1995) and Martens et al. (1999) have modelled malaria's distribution under some of these scenarios. Although all models predict the spread of seasonal and epidemic malaria into higher altitudes and further latitudes, they do not concur on where the spread is likely to occur. As noted by these studies, many of the parameters of the GCM are poorly elucidated and so introduce biases. In addition, none of these studies were able to define current risk
accurately enough as a basis for prediction of changes in risk. The fit of these models to currently available maps of malaria is poor. Rogers & Randolph (2000) present a multivariate statistical approach to defining current malaria risk according to a relative measure of epidemic potential (EP). Infection risk was modelled by re-arranging the R_o to predict the vector/host ratio. The EP was then taken as the reciprocal of the vector/host ratio and this used to model predictions of malaria under climate change. Very few changes in the distribution of malaria were predicted even under the most extreme scenarios of climate change. The model by Rogers & Randolph (2000) includes covariates of malaria transmission other than temperature (precipitation and saturation vapour pressure) and cite these covariates as limiting factors in the future spread of malaria.

Currently available models of climate models are limited and future predictions of malaria distribution will need more accurate, higher resolution data. Furthermore, the effects of preventive interventions, host related factors and population adaptive processes in fringe areas are not possible to predict into the future. Most importantly, an accurate geographical definition of the current distribution of malaria is a necessary pre-requisite for comparing future change scenarios.
1.12. Discussion of limitations of current malaria maps for SSA

An often-cited reason for the failure of malaria eradication was its sole reliance on vector-based measures. This lesson may also be applied to malaria mapping. Whereas vector distribution maps may be useful for identifying potential areas of transmission, the presence of vectors does not necessarily mean the presence of disease. Similarly suitable vector habitats do not necessarily mean malaria transmission occurs. This is perhaps the greatest drawback of solely climate driven models of vector distribution. Given that widely distributed and accurate disease data sets are unlikely to be available in the near future, the development of malaria models will continue to rely on climatic predictors. Climate data, however, have not been exploited to their full potential and there are several limitations of current data sets and prediction methods.

There has been a heavy reliance on spatially interpolated (SI) climate surfaces in malaria modelling (e.g. Hutchinson et al., 1996). The effect of SI is to smooth out data and this results in the loss of information. The accuracy of SI depends on the variability of the climate measure i.e. less spatially variable measures, such as temperature, interpolate more accurately than very variable variables. Rainfall, in particular, varies markedly over small areas and this variation is lost during smoothing. In order to compensate for this, Hutchinson et al., (1996) interpolated over small areas (tiles); 2 for temperature and 15 for rainfall. Although accuracy is improved by tiling, the rainfall stations from which the data were derived were also irregularly distributed. The interpolated climate surfaces also are limited by data gaps. As noted by the authors, records in many stations were inconsistent, for example rainfall recording was more frequent than temperature (Hutchinson et al., 1996).
Furthermore, means summarised over varied time periods were used in developing single climate surfaces. The periodic aspects of malaria transmission are highly significant in describing the epidemiology of malaria and these aspects are removed when climate averages are used. The rainfall estimate (RFE) integrated approach using both SI and RS meteorological surrogates has markedly improved the accuracy of SI rainfall data (http://www.cpc.ncep.noaa.gov/products/fews/rfel.html). There is much potential for further improvements in rainfall estimation using such combined approaches.

Craig et al. (1999) have defined a ‘transmission’ season based upon the number of months where climatic conditions are suitable for transmission. ‘Suitable’ was defined as 5 consecutive months of optimal conditions. In SSA, rainfall seasons closer to the equator tend to follow a bimodal profile while farther away, the pattern tends towards unimodal or a single rainfall season each year. The models do not consider which 5 months or take into account the rainfall patterns. The authors, however, did not find that this had a significant effect on the transmission model. GCM-based seasonal models have also been developed. In addition to the well-recognised biases inherent in the climate models themselves, the malaria models are almost exclusively temperature driven and do not consider the effects of covariates of malaria transmission. Furthermore, no attempts have been made to validate the models. Improved seasonal models will require better empirically defined data on the seasonal profile of transmission.

Linking very different multivariate data sets spatially can be problematic. Snow et al., (1998) provide a novel approach to estimating disease risk in Kenya by modelling
disease level based on local data and applying it to up-to-date population maps. The malaria prevalence memberships and population data were summarised according to unequal sized polygons. For each of these, a malaria prevalence membership was assigned based upon the percentage surface area of each polygon located within that prevalence category. The limitations of this method are explained in the following example. A polygon where over 50% of the surface was ‘high’ was classified as high prevalence. If the population were concentrated in the lower prevalence region of the polygon, their risk category would have been misclassified. It is important, therefore, to consider the spatial distribution of population in such assessments. This model, however, demonstrates a very much-needed application for malaria models. It has been derived for a specific area and purpose and is based upon empirical data. The challenge, once again, is to improve on the data sets used for this purpose.

Kleinschmidt et al., (2001a) have used PR data to train the climate data. As noted by the authors, their limited number poses problems for accurate generalised linear regression (GLM) as GLM is sensitive to sample size. Attempts were made to improve accuracy through kriging (Matheron, 1963; Oliver, 1996). GLM uses only the information of covariates at the specified geographical co-ordinates and in so doing tends to give predicted values that are close to the mean. Kriging, on the other hand, takes into account the values of all the covariates surrounding the specified point and this improves predictions to a degree. In assessing accuracy, another consideration for this model is the PR. The PR is sensitive to age and season and perhaps sample size. A limited attempt was made to control for age by limiting the data to a target age group. No control was applied for seasonality. Sample sizes of the PR studies vary in a non-random way through the data used. Such variations are
likely to affect the confidence of the PR estimate. The authors suggest that it may have been better to weight predicted values according to sample size but this was not done. Both this study and Snow et al., (1998) have combined PR data spanning several decades. It is not clear whether the PR is stable over extended time periods and if this would affect the estimate of prevalence. Climate data for 1920-1980 were matched with malaria data from the late 1960s to 1996. The impacts of age and season on the PR and its effects on the estimation of risk of infection are discussed in greater detail in Chapter 2.

Attempts to validate maps are few and many models have relied on visual comparisons with historical maps. Craig et al., (1999) based their validation on an overall 'visual' comparison with historical distribution maps and incidence data for Southern African countries. The validation of climate models is still in its infancy. There is a need in particular for contemporary malaria data to perform such validations.

As is clear from this review, there are several methods for vector-borne disease modelling already available. What is also clear is the lack of empirical disease data either for training models or for verifying them. Models have used different variables and varied techniques but the message for all is the same, climate can be used to predict malaria. Improvements in modelling will require more accurate climate and disease data sets. Remotely sensed meteorological surrogate data sets have obvious advantages for disease modelling. Although their greater accuracy compared with interpolated climate surfaces has been shown (Hay & Lennon, 1999), their potential for investigating temporal phenomena in malaria transmission is, to-date, under
exploited. RS is also able to capture a much wider range of environmental data than climate alone. Information on water bodies, vegetation, soil types, humidity, and population can be made available.

The important points to note from Section 1.11. are that developments in the techniques of malaria modelling using environmental and empirical data are advanced. Much as these techniques are available, the lack of both climate and empirical datasets hamper the development of accurate high spatial and temporal resolution models that can be of use to malaria control planners at a regional or country level. Current malaria models have many limitations. Empirical database may improve in the future but this is unlikely given the cost and practical difficulties of field sampling. Modelling continues to rely on environmental data and a reliable, untapped source of this is RS. Malaria vector dynamics and *Plasmodium falciparum* transmission are driven by the interaction of several environmental conditions. RS provides the possibility of making predictions of the dynamics of malaria transmission with greater accuracy than has been achieved in the past. The following chapters deal with empirical data generated from East Africa and their use in new models, incorporating new RS data and non-climatic data, to provide more precise estimates of risk for this sub-region.
CHAPTER 2:

Materials and methods
2.1. Background

This study began in 1998 with an early attempt to collect empirical data on \(P. falciparum \) prevalence in Kenya (Omumbo et al., 1998). This was prompted by the earlier work of Snow and colleagues (1994a; 1994b; 1997) that characterised the clinical epidemiology of severe disease and death directly attributed to malaria in relation to malaria endemicity showing differences in disease patterns with increasing transmission intensity (Section 1.4). This set the scene for a renewed effort to map malaria endemicity in Africa (Snow et al., 1996). Following discussions with the International Development Research Council of Canada, Kenyan and South African investigators established the beginnings of the Mapping Malaria Risk in Africa (MARA/ARMA) program in 1998 (MARA/ARMA, 1998). The feasibility of building a continental data resource on published and unpublished parasitological data had been established (Omumbo et al., 1998) and a network was formed to replicate this approach across the continent. Research foci were established as per Figure 2.1.

This thesis is based on the data collected as part of MARA for the East and Horn of Africa for which the author was responsible. The original scope of the thesis was to use all the data collected from the region but, as will become clear in Section 2.6, this objective was finally changed to represent modelling work among the three countries of the East African community: Kenya, Tanzania and Uganda. The availability of other data is described at the beginning of the chapter but the focus of further descriptive work and analysis is centred on the three East African countries.
2.2. The data entry proforma

The proforma used for data collection was developed in Kenya and modified later by other members of the MARA collaboration during early network meetings in Durban, South Africa. The proforma, shown in Annex A, was designed to capture a broad range of indices related to malaria risk, some of which were unique to special interests in different areas of the continent. For example, a section was included for malaria incidence data for countries in southern Africa who report annual case data at high resolution. Vector abundance and descriptions of entomological inoculation rates were also included for special interests and resulted in an early MARA publication of a vector distribution map as presented in Chapter 1 (Section 1.11.3). The thesis considers only the sections of the proforma related to the PR data.

The proforma included a unique identifier for each source and subsequent suffixes for repeat data from the same source. The first 3 digits referred to the ISO code for the country (for example, 254=Kenya, 255=Tanzania and 256=Uganda), the next 4 digits
referred to the report number and final 5 digits identified the PR data within the report. Each possible source of information was screened to ensure that data could be extracted in a standardised format as shown in Annex A. PR data were regarded as separate if the cross-sectional surveys were conducted at different times within the same report and separate if the same report provided details for different geographical areas. These were collapsed later as described in Section 2.6.2. Whenever possible, data were broken down by as small age groupings as possible. The month and year of the start and end of the survey, season, description of the study site, details on the methods used, etc. were all noted from the report. Care was taken to record as many details as possible on the study location (including photocopying maps contained within the report) to facilitate later identification of the study longitude and latitude (Section 2.4).

2.3. Methods of data collection

The data search strategy relied on multiple approaches to ensure a comprehensive coverage of all possible information. Electronic database searches were performed using Medline® (SilverPlatter International, Boston, MA, USA 2000), Popline® (Johns Hopkins School of Hygiene & Public Health, Baltimore, MD, USA) and EmBase® (Elsevier Science, Little Rock, Arkansas, USA 1999-2000). The following keywords were used in the search; malaria, Africa, East Africa, Sudan, Ethiopia, Djibouti, Somalia, Ethiopia, Eritrea, Kenya, Tanzania, Uganda, parasite and malaria and Africa, Plasmodium falciparum, parasite rate, parasite prevalence and malaria transmission. For each publication, bibliographies were cross-referenced to identify additional sources of information and other studies. Where additional details could
not be identified through the literature searches, authors were contacted to provide more information on geographical location, timing and age-specific characteristics of their parasitological data.

Pre-electronic journals held at the Wellcome Institute's Library in the grounds of the Kenyatta National Hospital as well as archive collections at the London School of Hygiene and Tropical Medicine and Oxford University were reviewed systematically volume by volume from the earliest available. In addition, national or regional, non-electronically referenced peer-reviewed journals were reviewed manually for additional data. Annual reports and unpublished reports from mission hospitals, drug companies and non-governmental organisations involved in health care delivery or research in each country were opportunistically accessed using local information on who works on what and the where their research work is carried out.

Visits were made to Uganda (December 1997 & January 2001), Sudan (October 1999 & July 2000), Ethiopia (February 2001) and Tanzania (August 2002). Postgraduate theses were searched manually in the libraries of the following departments and universities: University of Nairobi Medical and Chiromo Campuses and the Community Health Department; The Faculty of Medicine, Makerere University, Uganda; Faculty of Science, University of Khartoum, University of Gezira, Lion Hospital and the Wellcome Trust Library in Khartoum, Sudan; and Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania. At these libraries and those of national institutes for medical research (Kenya Medical Research Institute, Nairobi; National Institute of Medical Research, Dar es Salaam) national conference proceedings, annuals reports and institute journals were also identified. Of
note were the annual reports of the pre-1980 WHO-established centres of the East African Institute for Medical Research and East African Institute of Malaria and Vector-Borne Diseases located at Amani, Tanzania.

Results of routine PR surveys undertaken by Ministries of Health in Kenya, Uganda and Sudan were of particular interest. In Kenya, the Division of Vector Borne Diseases (DVBD) was established in 1951 and has been routinely involved in vector-borne disease surveillance, including periodic PR surveys in communities and schools. The reports of these surveys were available at the DVBD headquarters in Nairobi and the archive was thoroughly searched. In addition it was possible to visit 7 provincial headquarters to identify additional material from the 45 field stations operated by DVBD to locate information not forwarded to headquarters. In Uganda, at the completion of the pre-eradication PR surveys, the office of the Malaria Eradication Pilot Project, located in Jinja, was closed and occupied by the MoH’s Jinja Laboratory Training centre. While all project documents were removed (and largely destroyed), a small filing cabinet was left and remained unopened for many years. Fortunately, the raw data from Uganda's 1959-1960 pre-eradication pilot project that focused on 3 districts were found in this cabinet. One further extremely useful resource for historical data on PR in Tanzania was the reports provided by David Clyde (1967) in his book entitled Malaria in Tanzania.
2.4. Data geo-referencing

All parasite survey data were "geo-referenced" (i.e. their latitude and longitude determined). Most survey reports provided only the survey site name. To identify the precise location of each survey site, a variety of techniques and complimentary sources of information were used. First, maps provided in the reports were used to begin the more thorough positioning of each survey, unless the report provided the exact longitude and latitude extents of the survey. The next important sources were national maps of varying resolution and detail; the most useful were 1:50 000 scale topographic maps produced by the Directorate of Overseas Surveys in 1971 for East Africa. For those sites not discernable from topographical maps digital gazetteers were used which include place names and spatial co-ordinates these included: GEOname (GDE Systems Inc., 1995, San Diego California) and Africa Data Sampler (World Resources Institute, 1995). Finally a combination of correspondence with various research groups, particularly the International Livestock Research Institute (ILRI) for Kenya, allowed an approximation of spatial positions for those that could not be spatially defined through the original source report, topographical maps or electronic gazetteers.

Two variables were used to record the spatial position of the parasitological surveys: first the centroid of the survey site (longitude and latitude in decimal degrees) was recorded as a unique identifier to cross-reference spatial overlaps with other surveys; and second, a more detailed definition of the spatial extent of the surveys was coded and stored as polygons within the GIS platforms used for the analysis. For the latter, surveys were classified as representing one of five spatial extents: First, surveys
representing a single village where the central longitude and latitude was used to define point estimates covering the community using ArcView 3.2 (ESRI, Redlands, CA, USA). The second spatial classification reflected surveys that sampled from several villages but presented the data as a single PR for all the villages. In this case, a polygon was created to enclose the villages. The third, fourth and fifth spatial criteria corresponded to surveys undertaken at the 5th (average area covered 9.4 km²), 4th (average area covered 15.4 km²) or 3rd (average area covered 34.1 km²) administrative levels.

The true position of a point in space can be taken as the co-ordinates measured using a Global Positioning System (GPS). The accuracy of other geo-referencing methods can be measured against GPS readings and a root mean square error (RMSE) calculated. The RMSE is determined by calculating the deviations of points from their true position, summing up these residuals and then taking the square root of the sum i.e. \[
\sum_{i=1}^{n} \sqrt{x_i^2 + y_i^2} / n.
\] Using a recently compiled database of 56 GPS-positioned health facilities in Kenya (Noor et al., 2004) RMSE estimates were made to compare longitude and latitude co-ordinates derived from 1:50,000 scale topographical maps and a digital 5th level administrative unit map and digital place name gazetteers. The RMSE were respectively 2.02x10⁴, 5.02x10⁴ and 4.22x10⁴ decimal degrees.
2.5. Data entry and verification

All the data were entered using a customised data-entry program developed in Microsoft Corporation Access97 Release 2 [Microsoft Corporation, 1989-1996 Seattle, Washington]. The data entry program was first developed by Informatica (Nairobi, Kenya) for the present project and later forwarded to the MARA collaboration where subsequent modifications were made. The data entry screens allowed easy entry of the data and had a number of skip and internal range consistency checks built in to reduce data entry errors (Figure 2.2).

Data were entered twice by different data entry clerks and both files were verified to detect data entry errors. These were corrected using the original proformas in both files by the data entry clerks who re-ran the verification program until both files were identical. Then a program was run to re-check consistency errors, for example inconsistencies in two date fields or district names for a given country. These were corrected on the final temporary file before being saved as an update file. When this file was complete for a number of proformas the data were then posted within the program to the main data file. The main Access file served as the primary source for future extractions. Data were later managed and ordered in Microsoft Excel Version 9 (Microsoft Corporation, 1985-1999).
2.6. Data selection and descriptive analysis of data

2.6.1. Overall data identification

By 2004, 2308 spatially and temporally independent PR surveys had been identified for the East and Horn of Africa, with the earliest report being in 1907 (Table 2.1). The majority (43%) of the reports identified were from Kenya (Figure 2.3). This reflects the location of the investigator and also the more intensive investment in malaria research in Kenya compared to its neighbours over the years. Table 2.1 also shows the sources of information for each recorded survey, dates, age ranges and georeferencing methods. Only one report was available from Djibouti, two reports from
Eritrea and four reports from Somalia and these have not been included in the table or further analysis.

In Ethiopia and Sudan a large number of surveys could not be geo-positioned due to inadequate detail from the reports or inadequate reference material to identify the positions of the surveys, 36 (26%) and 42 (25%) respectively. Of those that could be positioned, among studies reported in Ethiopia, over 77% sampled all age groups and the results were not provided for children only, in Sudan the corresponding figure was 64%. Of the remaining 23 surveys in Ethiopia and 45 surveys in Sudan that sampled children only, 5 and 35 respectively were conducted after 1980. For these reasons it was decided to exclude Ethiopia and Sudan from subsequent analyses and focus on the three East African countries for which more appropriate, spatially referenced and contemporary data were available.
Figure 2.3. Distribution of parasitological survey data between 1907 and 2003 according to dates of surveys in the East and Horn of Africa.
Table 2.1: Parasite survey report source descriptive data for Kenya, Tanzania, Uganda, Ethiopia and Sudan

<table>
<thead>
<tr>
<th>Country*</th>
<th>K</th>
<th>T</th>
<th>U</th>
<th>E</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data source (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td>130</td>
<td>121</td>
<td>252</td>
<td>91</td>
<td>12</td>
<td>606</td>
</tr>
<tr>
<td>Book</td>
<td>2</td>
<td>66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>68</td>
</tr>
<tr>
<td>Post-graduate theses</td>
<td>41</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>68</td>
<td>131</td>
</tr>
<tr>
<td>Conference proceedings</td>
<td>29</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>National Institute Reports</td>
<td>-</td>
<td>93</td>
<td>36</td>
<td>-</td>
<td>10</td>
<td>139</td>
</tr>
<tr>
<td>Ministry of Health Reports</td>
<td>683</td>
<td>35</td>
<td>77</td>
<td>-</td>
<td>59</td>
<td>854</td>
</tr>
<tr>
<td>Other reports</td>
<td>76</td>
<td>146</td>
<td>101</td>
<td>46</td>
<td>15</td>
<td>384</td>
</tr>
<tr>
<td>Personal communication</td>
<td>31</td>
<td>35</td>
<td>12</td>
<td>-</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>Date of surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900-1929</td>
<td>27</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>1930-1939</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>26</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1940-1949</td>
<td>21</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>1950-1959</td>
<td>76</td>
<td>60</td>
<td>67</td>
<td>3</td>
<td>10</td>
<td>216</td>
</tr>
<tr>
<td>1960-1969</td>
<td>25</td>
<td>27</td>
<td>249</td>
<td>76</td>
<td>27</td>
<td>440</td>
</tr>
<tr>
<td>1970-1979</td>
<td>102</td>
<td>55</td>
<td>20</td>
<td>2</td>
<td>7</td>
<td>186</td>
</tr>
<tr>
<td>1980-1989</td>
<td>249</td>
<td>171</td>
<td>17</td>
<td>7</td>
<td>42</td>
<td>531</td>
</tr>
<tr>
<td>1990-2003</td>
<td>428</td>
<td>157</td>
<td>130</td>
<td>45</td>
<td>46</td>
<td>806</td>
</tr>
<tr>
<td>Methods of spatial positioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Could not be positioned</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>36</td>
<td>42</td>
<td>79</td>
</tr>
<tr>
<td>Topographical maps</td>
<td>585</td>
<td>109</td>
<td>106</td>
<td>16</td>
<td>21</td>
<td>837</td>
</tr>
<tr>
<td>Africa Data Sampler</td>
<td>6</td>
<td>394</td>
<td>42</td>
<td>32</td>
<td>3</td>
<td>477</td>
</tr>
<tr>
<td>GEOname</td>
<td>60</td>
<td>6</td>
<td>286</td>
<td>35</td>
<td>53</td>
<td>440</td>
</tr>
<tr>
<td>Coordinates in report</td>
<td>8</td>
<td>-</td>
<td>27</td>
<td>-</td>
<td>19</td>
<td>54</td>
</tr>
<tr>
<td>Other (digital map or GPS)</td>
<td>333</td>
<td>12</td>
<td>28</td>
<td>19</td>
<td>29</td>
<td>421</td>
</tr>
<tr>
<td>Age range of surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infants only</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Adults aged 15 years + only</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Survey covered all age groups 0-80yrs</td>
<td>52</td>
<td>77</td>
<td>43</td>
<td>35</td>
<td>40</td>
<td>247</td>
</tr>
<tr>
<td>Age range including 0-6 year olds</td>
<td>84</td>
<td>132</td>
<td>33</td>
<td>-</td>
<td>3</td>
<td>252</td>
</tr>
<tr>
<td>Age range including 0-15 year olds</td>
<td>508</td>
<td>197</td>
<td>179</td>
<td>56</td>
<td>60</td>
<td>1000</td>
</tr>
<tr>
<td>Age range including 5-15 years only</td>
<td>302</td>
<td>77</td>
<td>144</td>
<td>-</td>
<td>14</td>
<td>537</td>
</tr>
<tr>
<td>Age of sample not given in report</td>
<td>45</td>
<td>31</td>
<td>88</td>
<td>46</td>
<td>48</td>
<td>258</td>
</tr>
</tbody>
</table>

*K=Kenya, T=Tanzania, U=Uganda, E=Ethiopia, S=Sudan
2.6.2. Selection criteria for data in Kenya, Tanzania and Uganda

Rigorous selection criteria were applied to the primary database on the basis that it is important to establish a series of rules for the inclusion or exclusion of primary and secondary data from peer-reviewed and un-reviewed data to ensure that some comparability was achieved in the data to be analysed. Firstly, data were combined from individual survey reports if repeat surveys were undertaken by the same investigators within a 24 month period or for surveys undertaken by several investigators at different times in the exactly same location within a 24 month period. Surveys were spatially mapped in MapInfo Professional Version 7.0 (Troy, New York, USA) to identify a single estimate for one spatial unit. Where two or more surveys were identified in the same community undertaken > 24 months apart or with different age classes, the most congruent age class survey was selected followed by a selection for the more “random” survey (see below), the largest sample and then followed lastly for a criterion based on the most recent survey.

The surveys identified represented a variety of sampling approaches, ranging from household-level random studies to non-random or purposively sampled households that may have included volunteers, surveys of healthy attendees at maternal and child health (MCH) clinics, expanded programme for immunization (EPI) clinics, surveys of school children and anti-malarial drug-resistance screening surveys. In an effort to reduce those surveys which might have been subject to sampling error introduced through selective recruitment, only studies that recruited children at the community level were included in the analysis. These included total population, randomly sampled or longitudinal community surveys. Several community-based surveys,
particularly those undertaken by the Ministry of Health (MoH), provided little detail on the sampling strategy used to select the childhood populations. These surveys were retained but coded separately in the database to distinguish them from truly random selections should there be differences in estimates of PR dependent upon sampling methods.

Age ranges used during the parasitological surveys also varied between surveys (Table 2.1). Infection prevalence changes with age as a result of acquired anti-parasitic immunity resulting in lower prevalence of infection in older age groups in stable endemic areas (Section 1.4). Infants have a reduced prevalence of infection for a number of reasons, including reduced body size (Port & Boreham, 1980) and more importantly passively acquired immunity through maternal IgG (McGregor, 1965). Where possible, survey data have been pooled to provide a single estimate within the age range of 0-15 years but surveys which predominantly included children aged less than two years were excluded. Surveys were excluded if they covered age ranges beyond 15 years, largely those that reported for entire communities.

Sample size is likely to affect the accuracy of the prevalence estimate and to control for this only surveys where at least 50 subjects were sampled were included. Using a cut-off of 50 subjects was based on advised sampling strategies for parasitological surveys (Snow & Gilles, 2002). For all remaining surveys the precision of each estimate was calculated from the standard error of the proportion where the denominator and numerator were provided. For obvious reasons studies for which sample size details were unavailable were excluded.
The spatial extent of the surveys was also an important selection criterion. There were several studies that covered very wide, spatial areas, for example >4th level administrative units, which are areas of governmental administration two levels below the district level. These posed a particular problem for the present analysis as it was unclear the extent of the spatial sampling within these polygons and thus it is not clear how representative the parasitological data were of that polygon. All reports covering greater than 4th level administrative units in Kenya, Uganda and Tanzania were therefore excluded. In addition those that could not be accurately positioned were obviously excluded.

Data were finally reduced to provide spatially unique studies undertaken since 1927. The exclusions and data reduction strategy is shown in Tables 2.2 and 2.3 for the periods 1929-1979 and 1980-2003 respectively. The spatial distribution of the survey data pre-1980 and 1980-2003 are shown in Figures 2.4 and 2.5 respectively. These two time periods have been selected to ensure that modelling work presented in Chapters 4-7 is cognisant of any errors likely to be introduced resulting from long-term temporal changes in predictive variables within the models. Furthermore it is likely that the dependent data, the PR, might also have changed over time within the same spatial areas for areas of East Africa and due largely to growing parasitological failures to commonly used anti-malarial drugs. As such the data for the models considers only data since 1980 (whilst allowing for dates of surveys), the following section (2.6.3) examines the same-site changes in infection prevalence and possible changes over longer time periods are presented in Chapter 3.
Table 2.2: Selection criteria for PR survey data in East Africa and description of selected surveys pre-1980.

<table>
<thead>
<tr>
<th>Total number of surveys identified</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>236</td>
<td>194</td>
<td>237</td>
<td>667</td>
</tr>
</tbody>
</table>

Exclusion criteria

<table>
<thead>
<tr>
<th>Exclusion criteria</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluded post-1979</td>
<td>756</td>
<td>328</td>
<td>252</td>
<td>1336</td>
</tr>
<tr>
<td>Excluded because unable to locate longitude/latitude</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Excluded because no information on denominator</td>
<td>69</td>
<td>58</td>
<td>3</td>
<td>130</td>
</tr>
<tr>
<td>Excluded sample size <50</td>
<td>16</td>
<td>4</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Excluded because non community sampled (or no details given)</td>
<td>38</td>
<td>31</td>
<td>88</td>
<td>157</td>
</tr>
<tr>
<td>Excluded sample age groups ≠ 0-15 or infants only</td>
<td>8</td>
<td>8</td>
<td>37</td>
<td>53</td>
</tr>
<tr>
<td>Excluded because spatial overlap with more contemporary or larger sample size survey</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>108</td>
</tr>
</tbody>
</table>

Characteristics of surveys

<table>
<thead>
<tr>
<th>Final survey samples included in analysis</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveys reported in peer-reviewed journals or books</td>
<td>25</td>
<td>23</td>
<td>27</td>
<td>75</td>
</tr>
<tr>
<td>Surveys reported in Ministry of Health, NGO or donor reports</td>
<td>52</td>
<td>33</td>
<td>11</td>
<td>96</td>
</tr>
<tr>
<td>Surveys reporting total population sampling, longitudinal sampling, random sampling</td>
<td>27</td>
<td>42</td>
<td>36</td>
<td>105</td>
</tr>
<tr>
<td>Surveys covering period 1920-1929</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Surveys covering period 1930-1939</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Surveys covering period 1940-1949</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Surveys covering period 1950-1959</td>
<td>11</td>
<td>18</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>Surveys covering period 1960-1969</td>
<td>17</td>
<td>16</td>
<td>30</td>
<td>63</td>
</tr>
<tr>
<td>Surveys covering period 1970-1979</td>
<td>36</td>
<td>21</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>Median (interquartile range) of sample sizes</td>
<td>165</td>
<td>311</td>
<td>93</td>
<td>191</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0-5 years</td>
<td>[129, 315]</td>
<td>[170, 617]</td>
<td>[67, 373]</td>
<td>[112, 432]</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0-10 years</td>
<td>0</td>
<td>9</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0-15 years</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0-15 years</td>
<td>17</td>
<td>7</td>
<td>2</td>
<td>26</td>
</tr>
</tbody>
</table>
Table 2.3: Selection criteria for PR survey data in East Africa and description of selected surveys between 1980 and 2003

<table>
<thead>
<tr>
<th>Exclusion criteria</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluded pre-1980</td>
<td>236</td>
<td>194</td>
<td>237</td>
<td>667</td>
</tr>
<tr>
<td>Excluded because unable to locate longitude/latitude</td>
<td>0</td>
<td>33</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>Excluded because no information on denominator</td>
<td>9</td>
<td>1</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Excluded sample size < 50</td>
<td>82</td>
<td>9</td>
<td>69</td>
<td>160</td>
</tr>
<tr>
<td>Excluded because non-community sampled†</td>
<td>408</td>
<td>128</td>
<td>121</td>
<td>657</td>
</tr>
<tr>
<td>Excluded sample age groups ≠ 0-15 or infants only</td>
<td>20</td>
<td>39</td>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>Excluded because spatial overlap with more contemporary or larger sample size survey†</td>
<td>20</td>
<td>32</td>
<td>1</td>
<td>53</td>
</tr>
</tbody>
</table>

Characteristics of surveys				
Final survey samples included in analysis	217	86	27	330
Surveys reported in peer-reviewed journals	11	24	7	42
Surveys reported in reports of Ministry of Health, NGO or donor reports	168	34	17	219
Surveys reporting total population sampling, longitudinal sampling, random sampling†	143	86	16	245
Surveys covering period 1980-1989	54	32	2	88
Surveys covering period 1990-1994	100	14	14	128
Surveys covering period 1995-2003	63	40	11	114
Median [interquartile range] of sample sizes	[119, 431]	[146, 443]	[76, 265]	[120, 427]
Surveys covering age ranges within 0-5 years†	32	61	0	93
Surveys covering age ranges within 0-10 years‡	134	16	17	167
Surveys covering age ranges within 0-15 years‡	51	9	10	70
a. Several surveys reported follow-up of patients during drug resistance surveys, or patients sampled during routine EPI/MCH clinic visits. These were excluded on the basis that it was difficult to know whether they represented community-based infection prevalence. In addition surveys conducted during randomized controlled trials of interventions were only included for control populations, intervention arms were excluded.

b. For surveys which were contiguous with others, the most recent, largest sample size and most detailed in its reporting of sampling strategy was included.

c. Several surveys, particularly those reported by Vector Control or Malaria Divisions of the Ministry of Health, did not provide adequate sampling strategy details (26.4% (n=88) of the overall survey samples). It is unclear whether these prevalence estimates have the same precision as surveys providing detailed descriptions of sampling and survey method.

d. The surveys included in the analysis were not all consistent with a single age range. The surveys varied in the age groups sampled, for example 0-4, 1-4, 0-3, 0-9, 1-9, 1-12, 0-15, etc. The table represents the summary of three broad age classes using the upper age range as the defining age for sub-groups. Separate analyses have shown that the categorical description of endemicity based on the PR does not alter significantly within one area by different age groupings within the 0-15 year age range.
Figure 2.4. The spatial distribution of parasite survey data 1927-1979
Figure 2.5. The spatial distribution of parasite survey data 1980-2003
2.7. Construction of model attribute data

2.7.1. General principles

The spatial distribution of each parasite survey data point varied and this had to be accommodated for during the matching and extraction of ecological and remotely sensed attribute data. The spatially distinct polygons or points for each PR survey were created using digital administrative maps of East Africa (CBS, 1989; Tanzania Statistics Bureau, 2002; Uganda Bureau of Statistics, 2004), first warped to UN approved national boundaries (SALB, 2004) using ArcView 3.2 (ESRI, Redlands, CA, USA). The spatial extents of attribute data were mapped to single longitudes or latitudes (for point data) or polygons for each of the parasite surveys using ArcView 3.2 (ESRI, Redlands, CA, USA). For surveys covering wider areas (clusters of communities or 3rd-5th level administrative units), the percentage of the polygon covered by various attribute criteria were extracted using the MILA Utilities 3.2 update extension within ArcView 3.2 (http://www.esri.com/arcscripts). For vector related proximate determinants a 2.5 km buffer was first created around the polygons. This radius was selected according to previous entomological work summarised by Service (1997) and based on evidence on the average flight range of *Anopheles gambiae* s.l.
2.7.2. Satellite sensor derived meteorological surrogate data

Satellite sensor systems (SSS) can be placed in geostationary or polar-orbits. Geostationary satellites are put into a high orbit (~36,000 km) in the equatorial plane, with a speed equal to that of the Earth's rotation; hence they remain fixed above a particular point on Earth. Polar-orbiting satellites circle the globe repeatedly at much lower altitude orbits (~600-900 km) at a high angle to the equator. In the latter situation, successive orbits pass over a different section of the Earth as it rotates (Cracknel & Hayes, 1991). SSS are able to record the intensity of reflected thermal energy. Each sensor measures electromagnetic radiation (EMR) from between specific wavelengths, or channels, of the electromagnetic spectrum (EMS) (Hay, 2000).

As electromagnetic signals pass through the atmosphere and on to the Earth's surface, they may be absorbed, reflected or transmitted. RS techniques use the differences seen in reflectance across the EMS (the spectral signature) to make inferences about the physical properties of bodies on the Earth. For example, the spectral signature of a water body is different from that of vegetation. There are a variety of RS systems derived from different satellite sensors and each records a different measure of processes related to the Earth's environment. The sensors differ in their resolution. Resolution refers to the ability of a sensor to distinguish between signals that are close together in space i.e. their spatial resolution, or between spectrally similar signals i.e. their spectral resolution. A further difference is the frequency with which sensors record observations, referred to as their temporal resolution. Previous reviews of RS applied to the problems of
mosquito and malaria control (Connor, 1999; Dale et al., 1998; Hay et al., 1998a; Roberts & Rodriguez, 1994; Thomson et al., 1997; Washino & Wood, 1994) and to the study and control of a range of arthropod-borne diseases (Hay et al., 1997) have explored the relationships between remotely derived estimates of ecological conditions and parameters of malaria distribution and abundance.

There are several advantages of RS meteorological surrogate data. Routinely collected ground-station meteorological data do not adequately describe variables that are highly spatially variable. RS surrogates of rainfall, however, have shown greater correlation with weather station data than interpolated climate surfaces developed by Hutchinson et al. (1995): RS RMSE error=38.0mm, $r^2=0.63$; SI RMSE=93.7mm, $r^2=0.19$ (Hay & Lennon, 1999). Furthermore, improvements in the range and quality of climatic surrogate data are continuing.

A global land coverage of RS data from the NOAA afternoon ascending polar-orbiting satellites were acquired through a world-wide network of 29 high-resolution picture transmission (HRPT) stations and complemented by on-board recording of Local Area Coverage (LAC) where necessary (Eidenshink & Faundeen, 1994). The daily data set is composed of 5-channel, 10-bit, raw AVHRR data, at 1.1-km spatial resolution (at nadir) for each daily orbital pass. These data are available in Goode's interrupted homolosine projection (Steinwand, 1994) for 93 ten-day composites (dekads) from 31 months (April-December 1992, January-September 1993, February-December 1995 and January-May 1996). The data are permanently archived, catalogued, and available from the United States' Geological Survey, Distributed Active Archive Centre
All data were re-sampled to a latitude and longitude co-ordinate reference system and coverages for the 3 East African countries subset from the global images using the co-ordinates 19.995 °E to 52.005 °E and latitude 23.755 °N to 13.005 °S. The following sections describe the RS data used in this study.

2.7.2.1. The Normalised Difference Vegetation Index (NDVI)

The NDVI is strongly correlated with measures of intensity of vegetation or photosynthetic activity. It is frequently used as a proxy for vegetation density and soil wetness (Justice et al., 1985). The NDVI exploits the differences in light absorption and reflection between the near-infrared (Channel 2) and visible (Channel 1) wavelengths. It is calculated using the formula:

$$\text{NDVI} = \frac{\text{Ch}2 - \text{Ch}1}{\text{Ch}2 + \text{Ch}1}$$ \hspace{1cm} (Equation 2.1)

Values range between -1 and +1. Increasing positive values indicate increasing green vegetation (0-0.2 for desert or bare ground compared with >=0.7 for forest) and negative values indicate non-vegetated features such as water (Hay et al., 1998b). The NDVI has found frequent application in studies of vector-borne disease distribution as an indicator of photosynthetic activity and a surrogate for moisture availability (Hay, 2000; Rogers, 2000). Studies using data for Mali and other West African countries identified the NDVI as a significant explanatory variable of malaria intensity as estimated using the PR (Kleinschmidt et al., 2000).
2.7.2.2. Land surface temperature (LST)

LST estimates were calculated from simultaneously collected brightness temperatures (K) from AVHRR channels 4 and 5 and calculated using an equation derived by Price (1984):

\[
\text{LST} = T_{\text{Ch4}} + 3.33(T_{\text{Ch4}} - T_{\text{Ch5}}) \quad \text{(Equation 2.2)}
\]

The 3.33 term, is a value determined empirically for the NOAA-7 satellite. This relationship holds because signal attenuation is much greater in channel 5 than in channel 4, so the difference between the channels can be used to estimate, and hence correct for, the amount of atmospheric water vapour attenuation. This equation has been demonstrated to provide LST estimates accurate to ±2-3 K (Cooper & Asrar, 1989; Sugita & Brutasaert, 1993). The accuracy of this estimation is similar to that of spatially interpolated meteorological station data and has been calculated at ±3-4 K across Africa (Hay, 1999; 2000).

2.7.2.3. Middle infrared reflectance (MIR)

MIR radiance data from AVHRR channel 3 were also processed. Despite being less well documented than other wavebands, MIR wavelengths appear to suffer less atmospheric attenuation than the visible and near infrared wavelengths (Kerber & Schutt, 1986) making these data potentially very suitable for monitoring vegetation in the tropics. Furthermore, MIR has been shown to be more highly correlated with various biophysical properties of vegetation canopies.
than the visible or near-infrared wavelengths (Boyd et al., 1996; Boyd & Curran, 1998). Boyd & Ripple (1997) provide an exhaustive review of the proposed mechanisms governing the interaction of MIR and vegetated land surface. MIR reflectance (AVHRR channel 3) has been applied to vegetation mapping and although it is sensitive to both reflected and emitted radiation (Boyd & Curran, 1998) and has advantages in that it suffers less from atmospheric attenuation than channel 4 and channel 5 (Cracknell, 1997).

2.7.2.4. Cold Cloud Duration (CCD)

The CCD index derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series is used as a surrogate measure of rainfall. CCD image pixels represent the number of hours during which cold cloud top temperatures below a geographically variable threshold (Hay & Lennon, 1999) were experienced during a 10-day compositing period. The CCD has been found to have a root mean square error of ±38 mm when compared with meteorological station recordings across continental Africa (Hay & Lennon, 1999). The 0.01-degree resolution CCD data used for this study were re-sampled to 1x1km resolution.

2.7.2.5. Ordination of time series data

Data from satellite channels are subjected to atmospheric contamination, notably due to clouds. For high temporal resolution satellites (those that take frequent images), the least cloud-contaminated image taken over each 10-day period
(dekad) is selected. The satellite data, summarised according to dekads, is then stored in an image called a Maximum Value Composite (MVC). Meteorological data summarised monthly in this way is highly correlated and data ordination techniques are applied to minimise this effect. In addition to reducing the dimensionality of the data set data ordination is used to identify new meaningful underlying variables. Two main ordination methods are in use, Principal Component Analysis (PCA) and Temporal Fourier Analysis (TFA). Principal component analysis (PCA) involves a mathematical procedure that summarises correlated variables into a number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. TFA is able to retain the information on seasonality within time series data and, for this reason has, been used for ordination of the satellite data used in this study.

2.7.2.6. Temporal Fourier analysis of RS data

The five year series of monthly NDVI, LST, MIR and CCD images were subjected to TFA as described by Rogers & Williams (1994). TFA decomposes seasonal changes in the satellite-sensor variables into the sum of their sinusoidal components with frequencies of one up to six cycles per year, so that the first term in the Fourier expansion gives the annual cycle, the second the biannual cycle, and so on (Rogers et al., 1996). The sum of the different components then describes the observed annual variation at the site in question. The first two Fourier terms capture most of the variation in the signal, and only these were used
in the present study. The analysis also gives information on both the phase (timing in the year of maximum value) and amplitude (maximum range in annual values) of each component and these were used to construct the fitted signal, from which may be extracted the number of months above or below any threshold value.

2.7.3. Altitude

The Global Land 1-km Base Elevation Project (GLOBE) Digital Elevation Model (DEM) Version 1.0. (GLOBE Task Team, 19999) is a 30-arc-second gridded digital elevation model developed by NOAA's National Geophysical Data Center (NGDC (www.ngdc.noaa.gov/seg/topo/globe.shtml)). The DEM is a compilation of several data sets derived from a variety of sources including the GTOPO30 DEM developed by the EROS data center (1993-1997) and the DTED from the US Defence Mapping Agency. GLOBE is the highest resolution global DEM currently available.

2.7.4. Urbanization

Urbanization is a difficult demographic concept to define and there are inconsistencies between international, national and published definitions (Vlahov & Galea, 2002; Tatem & Hay, 2004). A combination of approaches was used to classify urban surveys. First the investigators urban/rural description was accepted as stated in the survey reports. Second, the name of the survey site was used to validate the descriptions, for example, if a study site was reported as
"Malindi town". Third, national census bureau administrative boundaries of known urban extents against the spatial position of each survey was used to identify those whose survey report or community name did not provide adequate information to classify them as urban or rural. Here urban settlements were classified if they were located in national census bureau definitions of cities, towns or market centres.

Finally a global database of urban extents developed as part of the Global Rural-Urban Mapping Project, GRUMP (Balk et al., 2004; CIESIN/CIAT 2004; CIESIN/IPFRI/CIAT, 2004) was used. The urban mask was developed at a 1 x 1 km spatial resolution using data on night-time lights (Sutton et al., 2001) and Landsat satellite imagery in combination with other geographic data (Digital Chart of the World populated places (Mika, 1997), Tactical Pilotage Charts produced from Australian Defence Imagery and Geo-Spatial Organisation, and national census data). The spatially distinct polygons or points for each PR survey were created using digital administrative maps as described earlier using ArcView 3.2 (ESRI, Redlands, CA, USA). The GRUMP urban extents were mapped to the single longitudes or latitudes or polygons of each the parasite surveys using ArcView 3.2 (ESRI, Redlands, CA, USA). If more than 75% of the polygon was classified as either urban or rural the survey was classified accordingly.

2.7.5. Ecological features from Africover

Africover is a project of the United Nation's Food and Agriculture Organization involved in landcover mapping using satellite data in Eastern Africa (Africover
The project was operational between 1995 and 2002 and involved ten countries, namely; Burundi, the Democratic Republic of Congo, Egypt, Eritrea, Kenya, Rwanda, Somalia, Sudan, Tanzania and Uganda. The project’s aim was to produce user-friendly landcover models for supporting decision makers in planning and management of sustainable development. The Eastern Africa module was the project’s first operational component and has so far mapped 8.5 million km² using over 400 Landsat scenes.

The digital database defines 22 landcover/land use classes including cultivated vegetation, natural vegetation, urban areas, settlements (rural & refugee), water bodies (artificial and natural) etc. Land use types relevant to this study were water bodies and urban extents. The Africover data were available as ArcView shape files (ESRI, Redlands, CA, USA). Three water body classes (artificial water body, river and lake) and urban areas were extracted from the main database and stored as separate surfaces. The data were converted into grid files within ArcView and the surfaces modified to represent the proportion (%) of each pixel within each of the land use categories. Original vector data were converted into a 100x100 metre resolution grid file and subsequently re-sampled to a 1x1 km resolution grid resulting in surfaces that represent the proportion of each 1x1 km pixel that is urbanised or within a water body.

2.8. Statistical methods

There are two types of models used to link descriptive/field data with meteorological variables. Statistical or empirical models describe wide areas e.g.
species distributions and require extensive studies while predictive models model the interactions between biological processes (Rogers, 2000). The latter are also referred to as process-based models. Statistical methods used in predictive modelling aim to reduce a group of often correlated continuous variables to a single linear composite (i.e. n-dimensional profiles are reduced to a set of scales along a single axis). The linear association derived comprises values of explanatory variables that maximally distinguish between classes of a variable to be predicted. The techniques then allow the testing of differences between predictor variable group means or centroids. Two techniques are commonly applied in ecological modelling, generalised linear regression (GLR) and discriminant analysis (DA).

In GLR, the relationships between multiple explanatory variables are summarised by a linear relationship that describes how changes in an explanatory variable change according to the variable to be predicted. Linear regression makes two assumptions. Firstly, for any value of an independent variable, it is assumed that the dependent variable is normally distributed. The second assumption is that the dependent variables have equal co-variance matrices (Kirkwood, 1988). Neither of these assumptions can be made of environmental data, which are often spatially correlated. If co-variance matrices are dissimilar the axis separating the explanatory variable groups is not linear. A bias is introduced to predictions resulting in more observations being assigned to the group with the larger co-variance matrix. DA techniques are therefore preferred and are used in the malaria models presented in Chapters 6 and 7.
2.8.1. Principles of discriminant analysis

Discriminant analysis assumes that 'presence' of the factor being investigated is described by one multivariate distribution and "absence" of the fact by another multivariate distribution. DA involves defining a best line of discrimination i.e. a hypothetical linear axis in multivariate space that maximises the variability or separation between multiple predictor variables (Green, 2002). The difference between the group centroids can then be estimated and finally predictions based on the discriminant function derived can be made. A training data set is used to provide statistics of what predictions are to be expected. The prediction involves assigning a profile to unknown points to the group with the closer centroid based on training data statistics. One approach to discrimination is based on Mahalanobis distances (D^2 (Mahalanobis, 1948)). D^2 is derived from the Euclidean distance (squared) and can be considered a multivariate residual for an observation measuring how far the observation is from the centre of the distribution of all values. D^2 uses information on the means, variances and covariances of the variables being discriminated. Assuming there are 2 mean-corrected centroids, i and j, in a multivariate space of n dimensions, their Mahalanobis distance is defined according to the equation:

$$D^2_{ij} = (\bar{x}_i - \bar{x}_j)^T C_w^{-1} (\bar{x}_i - \bar{x}_j) = d' C_w^{-1} d$$

(Equation 2.1)

where C_w^{-1} is the inverse of the pooled within-group covariance matrix (Green, 2002). The Mahalanobis distance of each point to a group centroid is calculated and the point can then be allocated to the group that it is closest to i.e. the group
for which D^2 is the minimum. The proportion of correct allocations is used as an indicator of how well the groups can be separated on the basis of the given variables.

2.8.2. Predictor variable data extraction and manipulation

Seven global Fourier analysis processed layers were produced for each of the satellite-derived predictor variables as follows: mean (amp0), minimum (min), maximum (max), amplitude of annual cycle (amp1), amplitude of bi-annual cycle (amp2), phase of annual cycle (phi1), phase of bi-annual cycle (phi2). The resulting 24 satellite variables were stored as IDRISI images (IDRISI Version 2.0, Clarke University Graduate School of Geography, 1997). Data for Eastern Africa (19.995 - 52.005 decimal degrees of longitude and -13.005 - 23.755 decimal degrees of latitude) were selected from the world images using the WINDOW module in IDRISI. Details of sampling criteria used (scale, shift and offset), data type and file type were stored in the documentation file for each image. A sample documentation file for the LST amp1 image for East Africa follows:

```plaintext
file title: East Africa Fourier LST amp 1
DATA type: integer
file type: binary
columns: 3201
rows: 3676
ref. system: longlat
ref. units: deg
unit dist: 1
min. X: 19.995
max. X: 52.005
min. Y: -13.005
max. Y: 23.755
pos'n error: unknown
resolution: 0.01
min. value: 0
max. value: 1380
value units: val=(DN/10)
```
Data extraction was carried out in ArcView Version 3.2 (Redlands, CA, USA). The satellite data were exported from IDRISI (Clarke University Graduate School of Geography, 1997) as ASCII files for importation into ArcView as grid files.

Each *P. falciparum* prevalence estimate was represented by a spatial unit representing the area from which samples were drawn. Villages or single communities were represented by 1 km radius area drawn from a central longitude and latitude (centroid). Secondly, in Kenya, where survey reports stated that samples were drawn from known administrative units *i.e.* divisions (3rd level admin. units), locations (4th level units) or sub-locations (5th level units) the administrative boundary was used to represent the sampling area. Respective digital administrative boundaries were obtained from a digital map of 5th level boundaries as used during Kenya’s population census in 1989 (Central Bureau of Statistics, 1989). Thirdly, where study samples were drawn from several villages and presented as a single PR estimate for all the villages sampled, a polygon connecting the villages was drawn to represent the study area. A 2.5km buffer was created around these three types of polygon data representing the flight distance of *Anopheles gambiae* (Service, 1997). The buffered polygons were stored as a single shape file in ArcView (Extraction polygons) representing the spatial extents of each survey.
Using the 'zonal statistics' module in ArcView, RS image values were extracted for the extraction polygon areas which were the training data set. An average value of all the pixels within each extraction polygon was extracted and this value stored in a Microsoft Excel file. The relationship between the environmental data and prevalence was defined for the training data using DA. Ideally the training data should represent the entire range of possible environmental conditions across the area for which predictions are to be made. The programs for data analysis and mapping (predictive image outputs) were developed in QuickBasic (Microsoft Corporation, Redmond, Washington) by David Rogers, (personal communication). Each pixel was allocated to a malaria prevalence category according to the similarity of the covariate data related to the respective pixel compared with the training data set. A prediction was not made for pixels that were markedly different from the training data (i.e. no predictions were made for pixels that had values greater than 3 standard deviations from the mean).

2.8.3. Assessing the accuracy of the predicted models

The accuracy of a predictive model is assessed in terms of its ability to predict a test data set. Error can be thought of as the difference between a predicted value and the true value at that same location. There are two main approaches to model evaluation. In the first, a single training or calibration data set is used to develop the model and then cross validation techniques are used to assess model accuracy. The alternative method uses two independent data sets, comprising training and evaluation data sets.
A contingency matrix (Table 2.4) is an effective way of representing overall prediction accuracy as well as the accuracy of each individual class as described by the inclusion errors (commission errors) and by the exclusion errors (errors of omission) present in the classification. The main diagonal of the matrix (elements \(n_{11}, n_{22} \ldots \ldots n_{kk} \)), totals correctly allocated pixels whilst elements outside the diagonal represent incorrect allocations. Overall accuracy is calculated by the sum of main diagonal values divided by the total number of observations, \(i.e. \):

\[
\text{Overall accuracy} = \frac{\sum_{i=1}^{k} n_{ii}}{n}
\]

(Equation 2.2)

Table 2.4: Diagrammatic representation of a contingency matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>k</th>
<th>Total (row) (n_{i+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(n_{11})</td>
<td>(n_{12})</td>
<td>(n_{1k})</td>
<td>(n_{1+})</td>
</tr>
<tr>
<td>2</td>
<td>(n_{21})</td>
<td>(n_{22})</td>
<td>(n_{2k})</td>
<td>(n_{2+})</td>
</tr>
<tr>
<td>(k)</td>
<td>(n_{k1})</td>
<td>(n_{k2})</td>
<td>(n_{k})</td>
<td>(n_{k+})</td>
</tr>
<tr>
<td>Total (column) (n_{+j})</td>
<td>(n_{+1})</td>
<td>(n_{+2})</td>
<td>(n_{+k})</td>
<td>(n)</td>
</tr>
</tbody>
</table>

The contingency matrix can also be used to assess the accuracy of individual classes by calculating the producer's accuracy (omission error \(i.e. \) the exclusion of a pixel from a class to which it should belong) and the consumer's accuracy
(commission error *i.e.* inclusion of a pixel in a class to which it does not belong (Story & Congalton, 1986)).

Producer's accuracy \[= \frac{n_{ii}}{n_{i+}} \quad (\text{Equation 2.3}) \]

Consumer's accuracy \[= \frac{n_{ji}}{n_{rj}} \quad (\text{Equation 2.4}) \]

Overall accuracy tends to underestimate accuracy as it does not consider the proportion of accuracy that occurs due to chance (Couto, 2003). The kappa \((k)\) coefficient (Cohen, 1960) is frequently used as it considers the chance component of agreement. It is based on the difference between the overall agreement and the chance agreement that is indicated by the contingency matrix marginal totals as follows:

\[K = \frac{n \sum_{i=1}^{k} n_{ii} - \sum_{i=1}^{k} (n_{i+} \times n_{+i})}{n^2 - n \sum_{i=1}^{k} (n_{i+} \times n_{+i})} \quad (\text{Equation 2.5}) \]

where \(n\) is the number of observations, \(k\) the number of rows in the matrix, \(n_{ii}\) the numbers of observations in row \(i\) and column \(i\) and \(n_{i+}\) and \(n_{+i}\) the marginal totals for row \(i\) and column \(i\) respectively. Values of kappa range from 0 (no agreement) to 1 (full agreement). Landis & Koch (1977) suggest the following interpretation of observer agreement defined by the kappa statistic: poor where \(k < 0.4\), good where \(0.4 < k < 0.75\) and excellent where \(kappa \geq 0.75\). An advantage of the kappa statistic is that confidence intervals can be attached making it a suitable index for hypothesis testing. Kappa is a standard measure of accuracy in prediction analyses and is the measure used in this study.
CHAPTER 3:

Plasmodium falciparum prevalence in East Africa: A review of empirical data 1927-2003

JA Omumbo & RW Snow

East African Medical Journal (2004), 81: 649-656
ABSTRACT

Objectives: Empirical data on malaria endemicity are rarely available for public domain use to guide effective malaria control. This paper describes the work carried in East Africa since 1997 as part of a pan-African collaboration to map the risk of malaria, Mapping Malaria Risk in Africa (MARA) aimed at redressing deficiency.

Data extraction: Studies of cross-sectional community estimates of Plasmodium falciparum prevalence among children aged 0-15 years were identified from a variety of sources including electronic searches of published material, manual review of pre-electronic peer reviewed journals and searches of libraries and archives in Kenya, Tanzania and Uganda. Each survey source, infection prevalence, date, longitude and latitude and survey characteristics were recorded.

Data synthesis: All data were subjected to a number of selection criteria including minimum sample sizes, samples randomly selected, community-based surveys, age ranges of sampled communities within 0-15 years, and surveys that were spatially unique. Of the 2,003 survey data points identified since 1907 in East Africa, only 503 were eligible for inclusion in the analysis dating from 1927 to 2003. The spatial plots of the data demonstrate the paucity of information on malaria prevalence from a number of densely populated areas and highlight the concentration of empirical data in concert with research centres in the sub-region.

Conclusions: Models are required to define malaria risk in areas of East Africa where no empirical data are available so that limited resources can be better targeted to those in greatest need.

INTRODUCTION

Malaria continues to be a major public health problem in the East African sub-region. The disease overwhelms already stretched clinical services and contributes to at least a quarter of all deaths that occur before the fifth birthday(1). Furthermore there is convincing evidence that mortality directly due to Plasmodium falciparum is increasing in East Africa since the late 1980's coincidental with the emergence of resistance to widely used anti-malarial drugs(2).

The international community has been effective in raising the importance of malaria control as a priority health investment for Africa through the Roll Back Malaria (RBM) partnership (3,4). Nevertheless five years after the formation of RBM, countries in East Africa still have very low coverage of interventions likely to reduce the burden of malaria in this sub-region. National surveys in East Africa show that less than 5% of children less than five years old are protected by an insecticide-treated net (ITN)(5). In addition there are large disparities in the spatial components of access to ITN in all these countries. A recent Demographic and Health Survey in Kenya showed that the highest rates of ITN use were in Nairobi, the province least likely to experience malaria risk(6).

Malaria is a vector-borne disease whose geographical extent is driven largely by climatic factors affecting vector and parasite survival. Consequently the large diversity in climate, ecology and urbanisation, characteristic of East Africa, supports a wide range of infection and disease risks. It has often been argued that without at least a basic knowledge of risk, efforts to control malaria will lack the ability to target limited resources to maximise coverage appropriately among those most at risk(7).

There are several approaches to measuring malaria risk, but the most widely used in Africa today was developed following the conference on malaria eradication for Africa held in Kampala in 1950(8). Metselaar and van Theil proposed the use of community-derived estimates of the Plasmodium falciparum parasite prevalence among children aged 2-15 years(9). They categorised
malaria risk according to the prevalence of parasitaemia (the parasite rate (PR)) among two to ten year olds as follows: Hypoendemic if the PR in the two to ten year age group is <10%; mesoendemic if the PR is 11-50%; hyperendemic if the PR is constantly >50%; and holoendemic if the PR among infants (<1 year old) is constantly >75%. These criteria have been variously applied in different studies and modified according to the data available.

The simplicity of the measure has meant that it rapidly became a common descriptive of malaria risk across Africa. During the 1960s, David Clyde published a series of historical data for Tanzania describing patterns of endemicity by region according to the parasite ratio(10). In Uganda, during the period 1959 to 1960, the WHO/Uganda Malaria Eradication Pilot Project (MEPP) mounted sample surveys of parasite prevalence across the country in preparation for the implementation of the Malaria Eradication Programme(11). Since these early descriptions, there have hardly been any attempts to compile malaria parasite prevalence survey data from East Africa in order to map malaria endemicity. This paper presents the results of a five-year data search and compilation of *P. falciparum* infection prevalence data.

MATERIALS AND METHODS

The feasibility of building a national database of published and unpublished parasitological data was established in Kenya during 1998(12). This led to the formation of a research network called the Mapping Malaria Risk in Africa (MARA) project(13). A data collection proforma was designed to capture a broad range of indices related to malaria risk. The proforma included a unique identifier for each data source and subsequent suffixes for other data from the same source. Parasite prevalence data were regarded as separate if the cross-sectional surveys were conducted at different times within the same report and/or different geographical areas. Care was taken to record as many details as possible on the study location and where maps were provided in the survey report, these were photocopied and attached to the data collection proforma for later determination of the longitude and latitude co-ordinates of the survey site.

Data searches: The data search strategy relied on multiple approaches to ensure a comprehensive coverage of all possible information. Electronic database searches were performed using Medline® (SilverPlatter International, Boston, MA, USA 2000), Popline® (Johns Hopkins School of Hygiene & Public Health, Baltimore, MD, USA) and Embase® (Elsevier Science, Little Rock, Arkansas, USA 1999-2000). The following keywords were used in the search: malaria, Africa, East Africa, Kenya, Tanzania; Uganda, parasite and malaria and Africa, Plasmodium falciparum, parasite rate, parasite prevalence and malaria transmission. For each publication, bibliographies were cross-referenced to identify additional sources of information and other studies. Where additional details could not be identified through the literature searches authors were contacted to provide more information on geographical location, timing and age specific characteristics of their parasitological data.

Pre-electronic journals held at the Wellcome Library (located at the National Public Health Laboratories in the grounds of the Kenyatta National Hospital), archived collections at the London School of Hygiene and Tropical Medicine and at the University of Oxford were reviewed volume by volume systematically from the earliest volume available. In addition, national or regional, non-electronically referenced peer-reviewed journals were manually reviewed for additional data. Annual reports and unpublished reports from mission hospitals, drug companies and non-governmental organisations involved in health care delivery or research in each country were opportunistically accessed using local information on who had undertaken malaria surveys.

Postgraduate theses in the libraries of the University of Nairobi Medical and Chiromo Campuses and the Community Health Department (Kenya); Makerere University’s Department of Child Health, Division of Public Health (Uganda); and Muhimbili University College of Health Sciences (Tanzania) were searched. Visits were also made to national institutes for medical research (Kenya Medical Research Institute, Nairobi; National Institute for Medical Research, Dar es Salaam) to identify published proceedings of national conferences, annual reports and institute journals. These were searched manually to locate additional parasite survey reports. Of particular note were the annual reports of the pre-1980 WHO-established centres of the East African Institute for Medical Research and the East African Community’s East African Institute of Malaria and Vector-Borne Diseases whose headquarters were located at Amani, Tanzania.

Results of routine parasite prevalence surveys undertaken by Ministries of Health in Kenya and Uganda were of special interest. In Kenya, the Division of Vector Borne Diseases (DVBD) has been involved in routine vector-borne disease surveillance activities, which include periodic parasite prevalence surveys of communities and schools, since its establishment in 1951. The reports of these surveys were available at the DVBD headquarters in Nairobi. In addition, a visit to six other provincial headquarters was made to identify additional material from 45 field stations operated by DVBD to locate information that may have not been forwarded to the headquarters in Nairobi. At the completion of the pre-eradication parasite prevalence surveys the office of the MEPP located in Jinja, Uganda, was closed and occupied by a paramedical training centre. While all project documents were removed (and largely destroyed), a few items of furniture including a small filing cabinet remained on site and unopened for many years. Fortunately, the raw data from the 1959-1960 eradication pilot project that focused on three districts in Uganda was found in this cabinet.

Spatial positioning of survey data: All parasite survey data were "geo-referenced" (i.e. their latitude and longitude coordinates determined). A limited number of reports provided geographical coordinates but for most survey reports only the survey site name was available. To identify the precise location of these sites, a variety of techniques and complimentary sources of information were applied. First, maps provided in the reports were used to begin the more thorough positioning of each survey. The next important source was topographic maps of varying resolution and detail; in particular, the 1:50000 scale maps produced by the Directorate of Overseas Surveys in 1971 for East Africa. Digital gazetteers(14,15) listing place names and their spatial co-ordinates were used for sites that were not recorded on
December 2004

The survey data identified 2003 *P. falciparum* prevalence surveys undertaken in East Africa since 1907. Eight hundred and fourteen were undertaken among patients attending maternal and child health or expanded programme for immunisation clinics, MCH/EPI, schools or participants of drug trials or intervention studies. These were excluded from the database. Thirty-six additional surveys were excluded as they could not be spatially positioned due to a lack of sufficient detail on where they were undertaken or a lack of congruence with digital place names. A further 205 surveys were excluded because they were undertaken among samples of less than 50 subjects. Age ranges varied between surveys and surveys undertaken only among children aged less than two years (n=9) and surveys whose sample age range extended beyond 15 years (n=122) were also excluded. Finally a selection was made for single surveys where more than one survey had been undertaken in the same community >24 months apart, resulting in the exclusion of 161 "spatial duplicates".

The reduced data set contained 503 prevalence surveys undertaken in Kenya (294), Tanzania (142) and Uganda (67) between 1927 and 2003, representing the examination of 202,628 children. Forty three percent of the surveys were conducted before 1980. The frequency of parasite surveys undertaken within ten year time periods is shown in Table 1. We have chosen to divide this time period into two: 1927-1979 and 1980-2003 to provide a historical versus contemporary comparison of survey data in the sub-region being cognisant of major changes that have occurred in the emphasis of malaria control (vertical approaches to vector control pre-1980, to integrated disease control within general health services post-1980) and the emergence of drug resistance. The sources of the survey data, whether undertaken by Ministries of Health, sample sizes and age ranges of the surveys are summarised in Table 2. Ministries of Health were an important source of empirical data representing over 43% of all survey reports. This was particularly true of Kenya. In Uganda there seems to have been a decline in survey effort since 1979 compared to the earlier time periods, possibly reflecting the reduced planning efforts after the national MEPP and a lower malaria research output compared to Kenya and Tanzania. The age ranges and sample sizes included in the surveys did not vary significantly between the two time periods or between countries.
Table 1

Decade frequency of community-sampled surveys of *P. falciparum* infection prevalence in East Africa

<table>
<thead>
<tr>
<th>Year of survey</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920-1929</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1930-1939</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1940-1949</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1950-1959</td>
<td>11</td>
<td>18</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1960-1969</td>
<td>17</td>
<td>16</td>
<td>31</td>
<td>64</td>
</tr>
<tr>
<td>1970-1979</td>
<td>36</td>
<td>21</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>1980-1989</td>
<td>54</td>
<td>32</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>1990-1999</td>
<td>137</td>
<td>24</td>
<td>25</td>
<td>186</td>
</tr>
<tr>
<td>2000-2003</td>
<td>26</td>
<td>30</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Total number of surveys</td>
<td>294</td>
<td>142</td>
<td>67</td>
<td>503</td>
</tr>
</tbody>
</table>

Table 2

Description of selected parasite prevalence surveys in East Africa

<table>
<thead>
<tr>
<th>Characteristics of surveys 1927-1979</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of surveys</td>
<td>992</td>
<td>522</td>
<td>489</td>
<td>2003</td>
</tr>
<tr>
<td>Excluded</td>
<td>698</td>
<td>380</td>
<td>422</td>
<td>1500</td>
</tr>
<tr>
<td>Surveys reported in peer-reviewed journals</td>
<td>25</td>
<td>23</td>
<td>27</td>
<td>75</td>
</tr>
<tr>
<td>Surveys undertaken by Ministries of Health</td>
<td>50</td>
<td>13</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>Median interquartile range of sample sizes</td>
<td>165(129:315)</td>
<td>311(170:617)</td>
<td>93(67:373)</td>
<td>19(112:432)</td>
</tr>
<tr>
<td>Surveys with age ranges within 0-5 years</td>
<td>0</td>
<td>9</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>Surveys with age ranges within 0-10 years</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Surveys with age ranges within 0-15 years</td>
<td>17</td>
<td>7</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Median IQR of parasite prevalence</td>
<td>40.6(20.6;56.4)</td>
<td>35(16.4;63.0)</td>
<td>49.3(17.9;71.8)</td>
<td>40.1(18.3;62.1)</td>
</tr>
<tr>
<td>Lower and upper prevalence recorded</td>
<td>1.5;86.7</td>
<td>0;87.3</td>
<td>0;87.5</td>
<td>0;87.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics of surveys 1980-2003</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of surveys</td>
<td>217</td>
<td>86</td>
<td>27</td>
<td>330</td>
</tr>
<tr>
<td>Surveys reported in peer-reviewed journals</td>
<td>11</td>
<td>24</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>Surveys undertaken by Ministries of Health</td>
<td>116</td>
<td>30</td>
<td>12</td>
<td>158</td>
</tr>
<tr>
<td>Median (interquartile range) of sample sizes</td>
<td>221(119:431)</td>
<td>194(146:443)</td>
<td>88(76:265)</td>
<td>204(120:427)</td>
</tr>
<tr>
<td>Surveys with age ranges within 0-5 years</td>
<td>32</td>
<td>61</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>Surveys with age ranges within 0-10 years</td>
<td>134</td>
<td>16</td>
<td>17</td>
<td>167</td>
</tr>
<tr>
<td>Surveys with age ranges within 0-15 years</td>
<td>51</td>
<td>9</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>Median (IQR) of parasite prevalence</td>
<td>33.7(14.3;54.0)</td>
<td>34.8(18.5;67.9)</td>
<td>47.5(28.3;79.5)</td>
<td>35.1(17.0;56.3)</td>
</tr>
<tr>
<td>Lower and upper prevalence recorded</td>
<td>0.94.5</td>
<td>0.96.1</td>
<td>6.7;90.6</td>
<td>0.96.1</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th>1927-1979</th>
<th>1980-2003</th>
<th>Population*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nairobi</td>
<td>16.7 (11)</td>
<td></td>
<td>2,143,254</td>
</tr>
<tr>
<td>Central</td>
<td>2.8(2.4,8.7) (17)</td>
<td></td>
<td>3,724,159</td>
</tr>
<tr>
<td>Coast</td>
<td>28.1 (8.3,37.0) (33)</td>
<td>34.0(26.3,54.1) (137)</td>
<td>2,487,264</td>
</tr>
<tr>
<td>Western</td>
<td>46.0 (1)</td>
<td>59.4(34.9,77.8) (14)</td>
<td>3,358,776</td>
</tr>
<tr>
<td>Nyanza</td>
<td>57.1 (47.9,70.2) (31)</td>
<td>49.2(32.1,59.7) (97)</td>
<td>4,329,196</td>
</tr>
<tr>
<td>North Eastern</td>
<td>7.3(5.4,12.1) (6)</td>
<td></td>
<td>962,143</td>
</tr>
<tr>
<td>Eastern</td>
<td>20.3 (9.0, 26.5) (7)</td>
<td>20.6(7.1,29.7) (35)</td>
<td>4,631,779</td>
</tr>
<tr>
<td>Rift Valley</td>
<td>35.4 (32.0,56.4) (5)</td>
<td>4.8(0.9,17.0) (10)</td>
<td>6,987,036</td>
</tr>
<tr>
<td>Tanzania</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodoma</td>
<td>10.1 (5.5,15.2) (5)</td>
<td>17.3(1.4,19.2) (7)</td>
<td>1,707,275</td>
</tr>
<tr>
<td>Arusha</td>
<td>26.2 (13.5,48.3) (3)</td>
<td>22.4(8.8,39.4) (10)</td>
<td>1,221,890</td>
</tr>
<tr>
<td>Kilimanjaro</td>
<td>38.6 (23.3,56.5) (20)</td>
<td>11.3(7.5,14.7) (7)</td>
<td>2,019,967</td>
</tr>
<tr>
<td>Tanga</td>
<td>53.8 (37.6,74.3) (11)</td>
<td>54.5(33.7,70.7) (22)</td>
<td>1,742,413</td>
</tr>
<tr>
<td>Morogoro</td>
<td>75.4 (73.8,80.8) (5)</td>
<td>85.6(43.8,88.4) (6)</td>
<td>1,783,664</td>
</tr>
<tr>
<td>Pwani</td>
<td>87.2 (1)</td>
<td>76.6(60.7,84.1) (4)</td>
<td>848,316</td>
</tr>
<tr>
<td>Dar es Salaam</td>
<td>33.9,34.0 (2)</td>
<td>19.7,48.5 (2)</td>
<td>2,547,217</td>
</tr>
<tr>
<td>Lindi</td>
<td>73.9 (1)</td>
<td></td>
<td>848,562</td>
</tr>
<tr>
<td>Mtwara</td>
<td>8.3 (1)</td>
<td>63.4 (50.9,75.4) (4)</td>
<td>1,079,816</td>
</tr>
<tr>
<td>Ruvuma</td>
<td></td>
<td></td>
<td>1,222,242</td>
</tr>
<tr>
<td>Iringa</td>
<td></td>
<td>44.1(12.1,75.6) (9)</td>
<td>1,737,791</td>
</tr>
<tr>
<td>Mbeya</td>
<td>4.4 (1)</td>
<td></td>
<td>2,235,271</td>
</tr>
<tr>
<td>Singida</td>
<td></td>
<td></td>
<td>1,109,005</td>
</tr>
<tr>
<td>Tabora</td>
<td>25.0 (24.0,55.0) (3)</td>
<td></td>
<td>1,432,673</td>
</tr>
<tr>
<td>Rukwa</td>
<td></td>
<td></td>
<td>1,218,977</td>
</tr>
<tr>
<td>Kigoma</td>
<td></td>
<td></td>
<td>1,240,939</td>
</tr>
<tr>
<td>Shinyanga</td>
<td></td>
<td></td>
<td>2,615,565</td>
</tr>
<tr>
<td>Kagera</td>
<td>20.0 (1)</td>
<td>24.2(36.4) (2)</td>
<td>1,957,921</td>
</tr>
<tr>
<td>Mwanza</td>
<td>52.2 (1)</td>
<td></td>
<td>2,665,956</td>
</tr>
<tr>
<td>Mara</td>
<td></td>
<td></td>
<td>1,432,476</td>
</tr>
<tr>
<td>Manyara</td>
<td></td>
<td></td>
<td>999,729</td>
</tr>
<tr>
<td>North Unguja</td>
<td>25.7,45.6 (2)</td>
<td></td>
<td>137,976</td>
</tr>
<tr>
<td>South Unguja</td>
<td>18.1 (1)</td>
<td></td>
<td>110,733</td>
</tr>
<tr>
<td>West Unguja/Land</td>
<td>46.7 (1)</td>
<td></td>
<td>363,253</td>
</tr>
<tr>
<td>North Pemba</td>
<td>34.4(26.3,42.4) (4)</td>
<td></td>
<td>203,137</td>
</tr>
<tr>
<td>South Pemba</td>
<td>39.2 (34.7,45.5) (4)</td>
<td></td>
<td>188,695</td>
</tr>
<tr>
<td>Uganda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>32.3 (26.9,56.1) (8)</td>
<td>32.0 (23.4,39.8) (18)</td>
<td>6,683,887</td>
</tr>
<tr>
<td>Eastern</td>
<td>16.7 (16.5,35.5) (3)</td>
<td>47.6 (39.6,77.2) (10)</td>
<td>6,301,677</td>
</tr>
<tr>
<td>Northern</td>
<td>56.6 (44.6,78.2) (17)</td>
<td>80.5 (79.9,82.8) (3)</td>
<td>5,345,964</td>
</tr>
<tr>
<td>Western</td>
<td>33.5 (13.3,72.2) (12)</td>
<td>54.9 (31.3,80.4) (6)</td>
<td>6,417,449</td>
</tr>
</tbody>
</table>

National medians and interquartile ranges of infection prevalence are shown in Table 2 for the two time periods. These ranges of infection prevalence simply serve to demonstrate the diversity of malaria endemicity covered by the surveys included in the database rather than as an indication of national infection risks. The latter is best considered at sub-national resolution. Table 2, however, suggests that surveys undertaken in Tanzania were conducted in areas of higher prevalence compared to surveyed areas in Kenya and Uganda. To examine the spatial and temporal differences in P. falciparum infection prevalence further, we have analysed survey data according to first level administrative units (Kenyan provinces, Tanzanian regions and Ugandan regions) using recent UN approved international country boundaries(17). The longitude and latitude co-ordinates of the centroid of each survey site was used to attribute each survey to one of eight administrative boundaries in Kenya, 26 in Tanzania and four in Uganda (Figures...
Comparison of Figure 1a (1927-1979) with Figure 1b (1980-2003) further highlights the decline over time in information for Tanzania and Uganda and also the changes in the spatial focus of survey work within countries that have occurred over-time. The studies undertaken pre-1980 are more widespread and so are more representative of the wide range of malaria ecologies experienced in the countries studied. Later studies have focused on specific ecological sites, notably low malaria risk highland areas in the Usambara Mountains of Tanzania and Kigezi in Uganda and some arid areas of northern Kenya as well as areas of more intense transmission along the Kenyan coast and the Lake Victoria Basin, likely to be a reflection of where research groups operate.

Figure 1a

The spatial distribution of P. falciparum parasite surveys undertaken between 1927 and 1979(*) against first-level UN approved administrative boundaries (17) for Kenya, Tanzania and Uganda.

Figure 1b

The spatial distribution of P. falciparum parasite surveys undertaken between 1980 and 2003(*) against first-level UN approved administrative boundaries (17) for Kenya, Tanzania and Uganda.
The number of surveys, median of the infection prevalence estimates and ranges of parasite prevalence by administrative unit between 1927-1979 and 1980-2003 are shown in Table 3. The first observation, as shown in Figures 1 a and 1 b, is that there is a paucity of information in several populated areas of East Africa, notably the south and west of Tanzania, the northern regions of Uganda and northern and central parts of Kenya. Secondly, there is a wide range of parasite prevalence estimates within a given administrative boundary, as shown by the interquartile ranges in Table 3 for areas such as Arusha and Tanga in Tanzania. This would be expected given the coarse spatial resolution of first-level administrative boundaries which, in some cases, cover up to 183,000 km² (Rift Valley Province in Kenya) thus encompass a diverse range of altitude and ecology. Nevertheless areas reporting low parasite prevalence tend to be those located either at high altitude (highlands of Tanzania) or arid areas (North Eastern and areas north of Eastern Province in Kenya) and thus conform to our basic understanding of malaria transmission in the sub-region.

DISCUSSION

The Roll Back Malaria (RBM) initiative is a global partnership of donor agencies. Ministries of Health, the private sector and non-Governmental Organisations in malaria endemic countries(3). The overall objective of RBM is to halve the global burden of malaria by the year 2010 through sustained and multi-pronged intervention strategies(3). Equal optimism was expressed during the early part of the last century with the World Health Organisation’s 8th World Health Assembly adoption of a Global Malaria Eradication Campaign in 1955 and the expansion of effective drugs for disease management and residual house-spraying(18). Today, strategies for malaria control include: prompt access to effective treatment, access to Insecticide Treated Nets (ITNs), prevention and control of malaria during pregnancy through intermittent presumptive treatment and effective response to epidemics and emergencies(3). Today’s emphasis is on the development of interventions that are adopted to local needs and supportive of the health sector development strategy adopted by governments in several sub-Saharan African countries. A key failure of the malaria eradication era in the tropics and sub-tropics was the lack of recognition of the geographical differences in the epidemiology of malaria and in vector behaviour(19). The WHO strategy in the 1950’s assumed that a uniform eradication approach would be effective over a wide range of malaria ecologies and the importance of these differences was only recognised in hindsight.

Current control approaches require a renewed examination of the geographical determinants of malaria. Maps of malaria risk are pivotal to the achievement of a spatial dimension to planning malaria control activities. Several historical maps do exist of malaria risk in East Africa(20-22), however these were developed from “expert opinion” during the last 1950’s and early 1960’s. These maps were not based upon empirical data and it seems reasonable to assume that risks have changed over the last fifty years. The present review demonstrates two things: firstly, there are data available but often these are not consolidated into centralised databases for public domain access. The collation of the data presented in this study has taken five years and it is the intention of the authors to host the empirical data on an appropriate website. The second important observation is that the contemporary survey data that are available are concentrated in areas where malaria research groups work. This differs from earlier work, before 1980 that aimed to provide national survey data in countries such as Tanzania and Uganda. The limited spatial coverage of survey data prevents easy extrapolation to distant areas that might have very different ecological characteristics lending themselves to very different transmission patterns. There has been a renaissance in malaria mapping and recent advances in disease mapping using Geographic Information Systems (GIS) coupled with an increased access to improved geo-referenced databases on correlates of malaria transmission have rekindled an interest in such epidemiological investigations(23). In particular, the relationship between climate and vector-borne disease transmission has been exploited in mapping the distribution of these diseases(24-25). Currently available climate-based maps are limited in that they consider only a few of the multiple factors that determine malaria’s transmission omitting key covariates such as urbanisation, land use and the effects of malaria control interventions (24,26-28).

New spatial models of malaria risk require a source of empirical spatially referenced data for their construction and validation. The data presented in this paper represent one of the largest survey collections for the sub-region and will be used to develop improved, high-resolution models of malaria risk. Such maps should form the basis of decision-making for control interventions; definition of target populations for these interventions and estimation of resource needs within the sub-region. A better geographical awareness of risk will hopefully result in improved use of limited resources available towards achieving RBM goals in East Africa.

ACKNOWLEDGEMENTS

This study received financial support from The Wellcome Trust, UK; International Development Research Centre, Canada; the South African Medical Research Council, the MARA/ARM A collaboration and the Kenya Medical Research Institute. The Wellcome Trust supports JAO and RWS as part of their Prize Studentship (#060063) and Senior Research Fellow (#058992) programmes respectively. The contribution of malaria control
personnel and scientists in East Africa who shared unpublished data. In particular, the Division of Malaria Control (Kenya Ministry of Health), Don de Savigny and Rose Lusinde (Tanzania Essential Health Interventions Project - TEHIP), Hugh Reyburn and Chris Drakeley (Gates Malaria Program, London School of Hygiene & Tropical Medicine), Caroline Maxwell, Chris Curtis and Ilena Carneiro (London School of Hygiene and Tropical Medicine), Ambrose Talisuna, Peter Langi and Albert Kilian (Ministry of Health, Uganda), Vicki Marsh and Tabitha Agak, (KEDHAR). We also acknowledge the help provided by Simon Hay and David Rogers at the Department of Zoology, University of Oxford. This paper is published with the permission of the Director, KEMRI.

REFERENCES

CHAPTER 4:

The relationship between the *Plasmodium falciparum* parasite ratio in childhood and climate estimates of malaria transmission in Kenya

JA Omumbo, SI Hay, CA Guerra, RW Snow

The relationship between the *Plasmodium falciparum* parasite ratio in childhood and climate estimates of malaria transmission in Kenya

Judith A Omumbo*1,2, Simon I Hay2,1, Carlos A Guerra2 and Robert W Snow1,3

Address: 1Public Health Group, KEMRI/Wellcome Trust Research Laboratories P.O. Box 43640, 00100 GPO, Nairobi, Kenya, 2TALA Research Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford, UK and 3Centre for Tropical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK

Email: Judith A Omumbo* - jomumbo@wtnairobi.mimcom.net; Simon I Hay - simon.hay@zoo.ox.ac.uk; Carlos A Guerra - carlos.guerraloiza@zoo.ox.ac.uk; Robert W Snow - rsnow@wtnairobi.mimcom.net

* Corresponding author

Published: 17 June 2004
 Received: 17 May 2004

Accepted: 17 June 2004

This article is available from: http://www.malariajournal.com/content/3/1/17

© 2004 Omumbo et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background: Plasmodium falciparum morbid and fatal risks are considerably higher in areas supporting parasite prevalence $\geq 25\%$, when compared with low transmission areas supporting parasite prevalence below 25%. Recent descriptions of the health impacts of malaria in Africa are based upon categorical descriptions of a climate-driven fuzzy model of suitability (FCS) for stable transmission developed by the Mapping Malaria Risk in Africa collaboration (MARA).

Methods: An electronic and national search was undertaken to identify community-based parasite prevalence surveys in Kenya. Data from these surveys were matched using ArcView 3.2 to extract spatially congruent estimates of the FCS values generated by the MARA model. Levels of agreement between three classes used during recent continental burden estimations of parasite prevalence (0%, >0 – $<25\%$ and $\geq 25\%$) and three classes of FCS (0, >0 – <0.75 and ≥ 0.75) were tested using the kappa (k) statistic and examined as continuous variables to define better levels of agreement.

Results: Two hundred and seventeen independent parasite prevalence surveys undertaken since 1980 were identified during the search. Overall agreement between the three classes of parasite prevalence and FCS was weak although significant (k = 0.367, p < 0.0001). The overall correlation between the FCS and the parasite ratio when considered as continuous variables was also positive (0.364, p < 0.0001). The margins of error were in the stable, endemic (parasite ratio $\geq 25\%$) class with 42% of surveys represented by an FCS <0.75. Reducing the FCS value criterion to ≥ 0.6 improved the classification of stable, endemic parasite ratio surveys. Zero values of FCS were not adequate discriminators of zero parasite prevalence.

Conclusion: Using the MARA model to categorically distinguish populations at differing intensities of malaria transmission in Kenya may under-represent those who are exposed to stable, endemic transmission and over-represent those at no risk. The MARA approach to defining FCS values of suitability for stable transmission represents our only contemporary continental level map of malaria in Africa but there is a need to redefine Africa’s population at risk in accordance with both climatic and non-climatic determinants of *P. falciparum* transmission intensity to provide a more informed approach to estimating the morbid and fatal consequences of infection across the continent.
Background
In recent years there has been a renaissance in mapping malaria distribution at the national [1-4], continental [5,6] and global scales [7]. These maps have adopted a variety of approaches and data sources in their construction. The most widely cited, contemporary continental resolution map of *Plasmodium falciparum* transmission distribution for Africa was developed by the Mapping Malaria Risk in Africa (MARA) collaboration [5]; http://www.mara.org.za. It has formed the basis for several reports by the Roll Back Malaria partnership [8,9] and was used during several recent estimates of the pan-African public health malaria burden to identify population's at-risk [10-12]. The MARA model used a fuzzy membership approach, assigning 5x5 km areas to a suitability estimate for stable *P. falciparum* transmission based upon simple rainfall and temperature determinants of the parasite's sporogonic development and mosquito survival. The model did not attempt to define intensities of transmission; rather it determined the likelihood that stable transmission could occur. Using the MARA model, areas of low stable and high stable endemicity across the continent have been distinguished categorically by assuming that the greater the climatic likelihood of stable transmission, the more likely areas would support higher intensities of malaria transmission [11,12]. In this paper, the validity of these assumptions and the likely margins of error are examined by comparing MARA climate suitability values with empirical *P. falciparum* parasite prevalence survey data in Kenya.

Methods
Plasmodium falciparum prevalence surveys data among children aged 0–15 years in Kenya
A search of published and unpublished literature related to malaria infection prevalence surveys in Kenya was conducted as part of the MARA project [13,14]. In brief, electronic database searches were performed using Medline* (SilverPlatter International, Boston, MA, USA 2000), Popline* (Johns Hopkins School of Hygiene & Public Health, Baltimore, MD, USA, 2000) and Embase* (Elsevier Science Little Rock, Arkansas, USA 1999–2000). The following keywords were used in the search: Kenya, malaria, parasite and malaria and Kenya, *Plasmodium falciparum*, parasite rate, parasite prevalence and malaria transmission. For each publication, bibliographies were cross-referenced to identify additional sources of information from other studies. Where additional details could not be identified through the published sources, authors were contacted to provide more information on geographical location, survey dates and age-specific characteristics of the parasitological data. Postgraduate theses held in the libraries of four departments of the University of Nairobi were also searched (Medical school campuses at the Kenyatta National Hospital and Chiromo, Community Health Department and the Faculty of Science). Annual reports, journals and conference proceedings of national medical research institutes, and non-governmental organisations were reviewed at respective institute's libraries. Results of routine parasite prevalence surveys undertaken by the Ministry of Health's (MoH) Vector Control Department were manually searched in archives at national headquarters and at seven Provincial offices in Kenya.

Using a variety of sources: 1:50 000 scale topographic maps [15], digital maps of administrative units in Kenya [16] or public domain digital gazetteers [17,18], a longitude and latitude was ascertained for each parasitological survey in decimal degrees. These geo-references were imported into a geographical information system platform ArcView 3.2 (ESRI, Redlands, CA, USA), mapped and overlaid on administrative boundary maps for Kenya [16]. The national administrative boundary maps were first warped within ArcView 3.2 to United Nations approved national boundaries [19] and then used to check for inconsistencies in spatial positioning and to define the spatial coverage of each survey (see below).

All surveys undertaken in Kenya (n = 923) were subjected to a number of selection criteria for inclusion in the analysis. First, to allow for a contemporary assessment of infection risk, surveys were only selected if they were undertaken between 1980 and 2003 (n = 657). The historical data (1927–1979) will be described elsewhere (Omumbo & Snow, in preparation). Second, surveys were excluded if the survey formed part of clinic visits, drug sensitivity testing or included intervention arms of controlled trials. Only total population, randomly sampled or longitudinal community-based surveys were included. Several community-based surveys, particularly those undertaken by the Ministry of Health, provided little detail on the sampling strategy used to select the childhood populations. These surveys were retained but were coded separately in the database to distinguish them from truly random selections should there be differences in estimates of parasite ratio dependent upon sampling methods (n = 74). Third, surveys were excluded if they covered infants only or an age range that extended into adulthood (≥15 years, n = 12)). Fourthly, a minimum survey sample size of 50 was imposed on the selection to allow for adequate precision in the estimates of infection prevalence [20], or surveys were excluded if there were no details of the denominator or numerator (n = 21). Finally, repeat surveys by the same investigators within a twenty-four month period were combined into a single estimate. Surveys undertaken by several investigators at different times in the same location were reduced to one estimate by selecting the most recent survey, or the one with the largest sample size.

Page 2 of 8 (page number not for citation purposes)
MARA Fuzzy Climate Suitability Index

The MARA model describes climatic conditions that range from unsuitable (0) to completely suitable (1) for stable *P. falciparum* transmission [5]. The Fuzzy Climate Suitability (PCS) index is defined by a series of curves

\[y = \cos^2 \left(\frac{(x - U)}{(S - U)} \cdot \frac{\pi}{2} \right) \]

where \(x \) is a climate parameter, \(U \) is the value of \(x \) when conditions are unsuitable, and \(S \) is the value of \(x \) when conditions are suitable. When \(S \) is greater than \(U \) the suitability \(y \) increases as \(x \) increases. The model defines a monthly increasing curve (\(S = 22 \text{ C}, U = 18 \text{ C} \)) and decreasing curve (\(S = 22 \text{ C}, U = 40 \text{ C} \)) for mean diurnal air temperature, a monthly increasing curve (\(S = 80 \text{ mm}, U = 0 \text{ mm} \)) for rainfall, and a single increasing curve (\(S = 6 \text{ C}, U = 4 \text{ C} \)) for annual minimum temperature.

The PCS values for each parasite ratio data point were extracted from the PCS model developed by Craig et al. [5]. To provide a spatially congruent PCS value for each parasite prevalence survey, surveys were classified as representing one of five spatial dimensions: First, for surveys representing a single village, the central longitude and latitude was used to create a 2.5 km buffer surrounding the village using ArcView 3.2 (ESRI, Redlands, CA, USA). The size of the buffer was defined by the average flight range of *Anopheles gambiae* s.l. [21]. Using the MILA Utilities 3.2 update extension within ArcView 3.2 http://www.esri.com/arcscripts, the average of all the 5x5 km pixel PCS values within this buffer was extracted to represent the average PCS value for the respective village parasite prevalence survey. The second spatial classification reflected surveys that sampled from several villages but presented the data as a single parasite ratio estimate (n = 5). In this case, a polygon was created to connect the villages and a 5 km buffer created around the polygon to represent the wider spatial sampling. Average PCS values within this buffered polygon were summarised. The third, fourth and fifth spatial criteria corresponded to surveys undertaken at the 5th (sub-location), 4th (location) or 3rd (division) administrative unit levels in Kenya. These spatially distinct polygons were created within ArcView 3.2 using a digital administrative map of Kenya [16] and a 2.5 km buffer was created around each polygon extent before extraction of the average PCS values.

Data entry and statistical methods

All parasite prevalence survey data were entered twice in Microsoft* Access version 7 (Microsoft Corporation 1989–1996; Seattle, Washington, USA). Data entry errors and range inconsistencies were checked and verified against the original material. Data were summarized for matching to other data sources using Microsoft* Excel 2000 version 9.0 and then analysed using SPSS (SPSS, v10.01, 1999, Chicago, Illinois, USA).

Data were then re-classified in accordance with criteria used to define three categorical limits of PCS and parasite ratio risk for burden of disease analysis for the African continent to allow for differences in disease and mortality risks between classes of malaria endemicity [11,12] (Table 1). First, were areas with a PCS value of zero. Second were areas where populations are exposed to marginal risks of malaria transmission and those communities able to support cross-sectional estimates of parasite prevalence below 25% (hypo to meso-endemic malaria transmission). These areas were assumed to be represented by an PCS greater than zero but less than 0.75. Finally, areas of the continent that are described by an PCS of greater than 0.75, which might support parasite prevalence rates of 25% and above (meso- through to holoendemic malaria).

The significance of agreement between the three classes of parasite ratio and PCS was tested using the kappa (k) statistic [22], which is a measure of the agreement between two classifications discounting for the probability that the agreement could be due to chance. Values of kappa range from 0 (no agreement) to 1 (full agreement) and Landis & Koch [23] suggest the following interpretation of agreement defined by the kappa statistic: poor where \(k < 0.4 \), good where \(0.4 < k < 0.75 \) and excellent where kappa \(\geq 0.75 \).

<table>
<thead>
<tr>
<th>Parasite prevalence</th>
<th>FCS = 0.00</th>
<th>FCS >0 - <0.75</th>
<th>FCS >= 0.75</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>>0 - <25%</td>
<td>6</td>
<td>58</td>
<td>8</td>
<td>72</td>
</tr>
<tr>
<td>>= 25%</td>
<td>0</td>
<td>58</td>
<td>79</td>
<td>137</td>
</tr>
<tr>
<td>Totals</td>
<td>9</td>
<td>121</td>
<td>87</td>
<td>217</td>
</tr>
</tbody>
</table>

Table 1: Agreement between parasite prevalence categories among 217 surveys and spatially congruent categorical values of the Fuzzy Climate Suitability (PCS) using the 0.75 threshold for stable endemic malaria.
The simple correlation between the contiguous measures of the FCS values and their respective estimates of the parasite prevalence was also tested. The continuous association was further tested using weighted least-squares regression with the model weighting the dependent variable (parasite ratio) for its precision using the \(\log_{10}+1 \) of the standard error of the parasite ratio. Covariates in this model included the end-year of the study (pre-1990, 1990–94, and 1995–2002), the survey sampling methodology (random, longitudinal or total population surveys versus surveys without precise details) and the maximum age range covered in the sample (up to 5 years, up to 10 years and up to 15 years). The proportion of variation in the parasite ratio explained by each variable in the model was calculated by comparing overall proportions of explained variation \((R^2) \) between subsequent models with additional variables entered in a stepwise fashion allowing for all variables already in the model.

Results

A total of 217 spatially independent parasite prevalence surveys were identified that met the selection criteria. Eleven were reported in peer reviewed journals, 168 were unpublished Ministry of Health reports, NGO/bilateral/multilateral organisation reports, 16 were reported in doctoral or masters theses and 22 were provided as unpublished data by malaria scientists working in Kenya. Twenty-five percent \((n = 54)\) of the surveys were undertaken before 1990. The median sample size in the childhood surveys was 220 (inter-quartile range 118, 430). 14.7\% \((n = 32)\) of the surveys were undertaken among age groups covering the 0–5 year age range; 61.8\% \((n = 134)\) spanned the age range 0–10 years; and 23.5\% \((n = 51)\) of surveys included children between the ages of 0 and 15 years. The majority of surveys were regarded as random, longitudinal or total population surveys \((65.9\%, n = 143) \). The distribution of the survey data against the categorical distinctions for the MARA FCS values is shown in Figure 1.

Table 1 compares the categorical definitions of parasite prevalence with categories of the FCS values used during recent malaria burden estimations \([11,12]\). Of the parasite surveys reporting a zero prevalence of infection, five out of eight had an FCS value greater than zero. One hundred and thirty seven surveys reported parasite prevalence greater or equal to 25\% \((i.e. stable endemic transmission)\), however only 79 \((58\%) \) had an FCS value \(\geq 0.75 \). For surveys reporting a low parasite prevalence between 1–24\% \((n = 72)\), 58 \((81\%) \) were characterised by an FCS value \(>0 \) but less than 0.75. Overall agreement between the categories was poor, \(k = 0.367 \), although statistically significant \((p < 0.0001)\). Table 2 reflects a change in the FCS categories around 0.6 to represent zero, 1–24\% and \(\geq 25\% \) parasite prevalence. These criteria greatly improved the levels of agreement with the parasite ratio categories \((k = 0.442, p < 0.000)\) and 68\% of surveys reporting a parasite prevalence \(\geq 25\% \) were described by an FCS value \(\geq 0.6 \). Further changes in the FCS criteria made little difference to the levels of agreement.

Regarding the parasite prevalence and the FCS values as continuous measures produced a weak positive correlation \((R^2 = 0.364, p < 0.0001; \text{Figure 2})\). Inclusion of covariates, upper age, year of survey or sampling method did not improve the association and nor did weighting the parasite ratio by its standard error during weighted least-squares regression.

Discussion

The analyses presented in this paper compare empirical parasite prevalence data among children sampled in 217 communities across Kenya with a climate-driven model that estimates the likelihood of stable malaria transmission. The results of the study suggest that there is a significant linear, albeit weak, association between these two measures of \(P. falciparum \) transmission \((\text{Figure 2&3})\). This is perhaps not surprising as the parasite ratio and the FCS value represent two very different transmission criteria. The parasite ratio reflects the intensity of transmission and has been routinely used as a marker of endemicity in Africa since the 1950's \([24]\). The FCS is a representation of the rainfall and temperature determinants of the parasite and vector's ability to coexist and thus enable stable transmission \([5]\). Furthermore, the MARA FSC is based on climatological averages for the 1951–1995 period \(\text{(although recent analyses suggest this to have been surprisingly stable over the last century [25] and the parasite rate sampled in specific years. The potential confounding influence of timing on the parasite prevalence sample is an area of ongoing research.} \)

The positive, albeit weak, correlation with measures of the intensity of transmission lends some support for the MARA model's ability to define populations at-risk of differing intensities of malaria transmission. There were too few surveys reporting zero infection prevalence \((n = 8)\) to argue whether the FCS model can correctly distinguish areas of no transmission, however, 5 areas reporting zero prevalence did have a FCS value greater than zero. More striking was the ability of the FCS categories \(>0 \) and \(<0.75 \) to correctly identify populations at low risk of malaria infection with parasite prevalence's between \(0 - <25\% \) \((81\%: \text{Table 1})\). During estimations of malaria burden it has been assumed that populations residing in these areas experience much lower risks of malaria-specific morbidity and mortality compared to populations located in areas described by an FCS \(\geq 0.75 \) \([11,12]\). Conversely areas described as supporting stable, endemic transmission with parasite prevalence \(\geq 25\% \) were less well described.
Figure 1
MARA Fuzzy Suitability Class (FCS) values categorised into three categories (light grey, zero FCS; light red FCS > 0 & < 0.75 & red ≥ 0.75) in Kenya showing distribution of selected parasite survey data points (black dots, n = 217)
Table 2: Agreement between parasite prevalence categories among 217 surveys and spatially congruent categorical values of the Fuzzy Climate Suitability (PCS) using the 0.6 threshold for stable endemic malaria.

<table>
<thead>
<tr>
<th>Parasite prevalence</th>
<th>FCS = 0.00</th>
<th>FCS > 0 - < 0.6</th>
<th>FCS >= 0.6</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>>0 - <25%</td>
<td>6</td>
<td>56</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td>>= 25%</td>
<td>0</td>
<td>44</td>
<td>93</td>
<td>137</td>
</tr>
<tr>
<td>Totals</td>
<td>9</td>
<td>104</td>
<td>104</td>
<td>217</td>
</tr>
</tbody>
</table>

Figure 2
Plasmodium falciparum parasite prevalence (%) among children under the age of 15 years surveyed in 217 spatially independent surveys by Fuzzy Climate Suitability values extracted for the same spatial areas ($R^2 = 0.364, p < 0.0001$)

using the criteria FCS ≥0.75. Only 58% of the parasite prevalence surveys reporting a parasite ratio ≥25% were classified as having a FCS value ≥0.75, the remaining 42% of surveys were classified as having FCS values >0 but less than 0.75. Altering the FCS criteria to ≥0.6 for stable, endemic transmission improved the classifications of parasite prevalence surveys in Kenya with 68% of surveys correctly identified (Table 2).
Conclusions
The results of this study suggest that applying climate suitability modelled estimates of transmission potential to distinguishing populations at differing levels of malaria infection intensity has several limitations. First it may not adequately distinguish populations at no risk of infection. Second, populations exposed to stable, endemic transmission may be poorly defined using criteria of ≥0.75 FCS. These results relate only to Kenya and similar validations are required in other settings in Africa. Nevertheless, for Kenya the disease and mortality burden of malaria will have been under-estimated using the criteria shown in Figure 1. The extent of higher intensity transmission resulting in higher malaria burdens could be wider and the extent of no risk might be more restricted. The model developed by Craig et al. [5] represents the only available continental scale map upon which to define populations at risk of *Plasmodium falciparum* infection. Our analysis suggests that, at a crude level, it does distinguish communities exposed to differing levels of malaria transmission intensity. Given the large number of assumptions made regarding the paucity of attribute morbidity and mortality data.
to define continental scale DALY's for malaria, defining the spatial extents of population denominators is only one part of the problem that is at least soluble. New malaria risk models are being developed which go beyond the climatic determinants of *P. falciparum* transmission and new iterations of malaria risk models will hopefully become more robust with the inclusion of new global scale data on population settlement, land use and ecology.

Authors' contributions

JAO carried out the data collection, entry, checking and analyses and drafted the manuscript. SIH and CAG obtained and extracted the ancillary MARA and urban extents data. RWS, SIH and JAO conceived the study and participated in its design and coordination. All authors read, edited and approved the final manuscript.

Acknowledgements

This study received financial support from The Wellcome Trust, UK; International Development Research Centre, Canada; the South African Medical Research Council, the MARA/ARMA collaboration and the Kenya Medical Research Institute. The Wellcome Trust supports JAO, SIH and RWS as part of their Prize Studentship (#060063), Research Career Development (#069045) and Senior Research Fellow (#058992) programmes respectively. The authors acknowledge the contribution of malaria control personnel and scientists and in Kenya who shared unpublished data. Particular thanks are due to the Division of Malaria Control (Kenya Ministry of Health), Vicki Marsh and Tabitha Mwangi (KEERI), Dejan Zurovac (MSF-France) and Sportron Kwanya Agak, (KEDHAR). The authors also wish to thank Greg Fagan and Hasbun Okoko for statistical support and Abdisalan M Noor for help with the spatial mapping of the FCS values. This paper is published with the permission of the director of KEMRI.

References

CHAPTER 5:

The influence of urbanization on measures of *Plasmodium falciparum* infection prevalence in East Africa

JA Omumbo, CA Guerra, SI Hay, RW Snow

Acta Tropica (2005), 93: 11-21
The influence of urbanisation on measures of *Plasmodium falciparum* infection prevalence in East Africa

J.A. Omumbo\(^a,\)*, C.A. Guerra\(^b\), S.I. Hay\(^{a,b}\), R.W. Snow\(^{a,c}\)

\(^a\) Public Health Group, KEMRI/Wellcome Trust Research Programme, P.O. Box 43640, 00100 GPO, Nairobi, Kenya
\(^b\) Department of Zoology, TALA Research Group, Tinbergen Building, University of Oxford, South Parks Road, Oxford, UK
\(^c\) Centre for Tropical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK

Received 1 June 2004; received in revised form 5 August 2004; accepted 17 August 2004

Available online 27 October 2004

Abstract

There is a growing interest in the effects of urbanisation in Africa on *Plasmodium falciparum* risks and disease outcomes. We undertook a review of published and unpublished literature to identify parasite survey data from communities in East Africa. Data were selected to represent the most reliable and contemporary estimates of infection prevalence and were categorised by urban or rural status using a number of approaches. We identified 329 spatially distinct surveys undertaken since 1980 in the sub-region of which 37 were undertaken in urban settlements and 292 in rural settlements. Overall rural settlements reported significantly higher parasite prevalence among children aged 0–14 than urban settlements (on average 10% higher infection rates; \(p<0.05\)). No urban settlements recorded parasite prevalence in excess of 75%. In areas of East Africa where climatic conditions are likely to support higher parasite transmission, the rural–urban difference was most marked. There was a significant trend towards documenting higher classes of parasite prevalence in rural compared to urban settlements (\(p<0.05\)) and the mean difference between rural and urban samples was 18% (\(p<0.001\)). These results further highlight the need to better define urban extents in Africa in order to capture the non-climatic determinants of infection and disease risk and provide a more informed approach to describing the burden of disease across the continent.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Malaria; Urbanisation; Disease burden; *Plasmodium falciparum* prevalence; East Africa; GIS; Maps

1. Introduction

The majority of the Disability-Adjusted Life Years (DALY) for sub-Saharan Africa (SSA) is driven by high mortality in early childhood from infectious diseases (diarrhoeal and respiratory diseases, measles and malaria) and high mortality in young adults from HIV
infection and tuberculosis (Murray and Lopez, 1997; World Health Organization, 2002). The DALY approach to prioritising disease intervention has led to improved efforts to define disease-specific mortality rates. Despite the paucity of data, pan-African extrapolations of specialized survey data on acute respiratory tract infections (Williams et al., 2002), HIV (Walker et al., 2002) and malaria (Snow et al., 1999; Snow and Omumbo, 2004) have been used to re-estimate the contribution made by these infectious diseases to the mortality burden in SSA. Only the estimations for malaria have allowed for the spatial determinants of populations-at-risk of infection and their effect upon subsequent disease risks.

At the population level, the chances and frequency of Plasmodium falciparum infection risk influence age-specific disease outcomes: low infection risks result in lower malaria mortality rates and are not influenced by acquired immunity; increasing intensities of transmission support increasing mortality risks and are markedly influenced by age-specific acquired immunity (Snow and Marsh, 2002). The transmission patterns of P. falciparum in Africa vary between countries, and more importantly for disease burden estimation, within national borders. The estimates of the malaria burden in Africa have used populations-at-risk of different climate-determined patterns of transmission to reflect the spatial heterogeneity of infection risk on disease outcome (Craig et al., 1999; Snow et al., 1998; Snow and Omumbo, 2004).

One important caveat to this approach has been the inability of the current continental-scale malaria risk maps to reflect other influences upon transmission, notably urbanisation. Two recent reviews suggest that urban populations in Africa receive, on average, 10 times fewer new infections from vectors compared with their rural counterparts (Hay et al., 2000; Robert et al., 2003). In 2000, 38% of Africa's 784 million inhabitants were urban dwellers and this is expected to increase to 55% by 2030 (United Nations, 2002). This shift in human populations from environments supporting predominantly communicable disease burdens to those lending themselves to non-communicable diseases will have profound epidemiological and public health impacts (Harpham, 1997). In this paper we examine differences in P. falciparum prevalence between urban and rural settlements of East Africa to explore the likely impact of urbanisation on malaria burdens in this sub-region.

2. Material and methods

2.1. P. falciparum prevalence survey data among children aged 0–15 years in East Africa

A search was conducted of published and unpublished literature related to malaria infection prevalence surveys in the East Africa region. Electronic database searches were performed using Medline® (SilverPlatter International, Boston, MA, USA, 2000), Popline® (Johns Hopkins School of Hygiene and Public Health, Baltimore, MD, USA, 2000) and EmBase® (Elsevier Science, Little Rock, AR, USA, 1999–2000). The following keywords were used in the search: malaria, parasite and malaria and Kenya, Tanzania, Uganda, P. falciparum, parasite rate, parasite prevalence and malaria transmission. For each publication, bibliographies were cross-referenced to identify additional sources of information and other studies. Where additional details could not be identified through the published sources, authors were contacted to provide more information on geographical location, survey dates and age-specific characteristics of the parasitological data. Postgraduate theses held in the libraries of Nairobi, Makerere and Muhimbili Universities were also searched. Annual reports, journals and conference proceedings of national medical research institutes, and non-governmental organisations were reviewed in each country. Results of routine parasite prevalence surveys undertaken by the Ministry of Health's (MoH) Vector or Malaria Control Departments in Kenya and Uganda were manually searched during field visits to archives at headquarters in each country, and in Kenya at provincial offices.

Using a variety of sources: 1:50,000 scale topographic maps (Directorate of Overseas Surveys, 1971), digital maps of administrative units in Kenya (Central Bureau of Statistics, 1989) or public domain digital gazetteers (GDE Systems, GeoName, 1995; World Resources Institute, Africa Data Sampler, 1995), a longitude and latitude was ascertained for each parasitological survey undertaken. The centroid served as a unique identifier for each survey and, combined with a description of the survey, was used to describe the spatial extent of each sample. Surveys were classified as representing one of five spatial dimensions. First, surveys representing a single village where the central longitude and latitude was used to define point
estimates covering the community using ArcView 3.2 (ESRI, Redlands, CA, USA). The second spatial classification reflected surveys that sampled from several villages but presented the data as a single parasite ratio (five and seven surveys in Kenya and Tanzania, respectively). In this case, a polygon was created to connect the villages. The third, fourth and fifth spatial criteria corresponded to surveys undertaken at the fifth (sublocation: average area covered 9.4 km²), fourth (location: average area covered 15.4 km²) or third (division: average area covered 34.1 km²) administrative levels in Kenya (Hay et al., in press).

All surveys undertaken in Kenya, Tanzania and Uganda (n = 2003) were subjected to a number of selection criteria for inclusion in the present analysis (Table 1). The selection allowed for contemporary assessments of infection risk (>1979); inclusion of community-based surveys; age ranges within 0-15 years (excluding surveys where only infants sampled); minimum sample sizes of 50 children; and adequate details on location, and denominators. Finally, repeat surveys by the same investigators within a 24-month period were combined to a single estimate and surveys undertaken by several investigators at different times in the same location were reduced to one estimate by excluding either the earlier survey or smaller sample size.

2.2. Defining urban and rural extents

Urbanisation is a difficult demographic concept to define and there are inconsistencies between international, national and published definitions (Vlahov and Galea, 2002; Tatem and Hay, in press). We have used a combination of approaches to classify urban surveys. First we accepted the investigators urban/rural description as stated in the survey reports. Second, we used the name of the survey site to validate the descriptions, e.g., if a study site was reported as “Malindi town”. Third, we compared national census bureau administrative boundaries (Central Bureau of Statistics, Kenya, 1989; Statistics Department Uganda, 1995; Bureau of Statistics, Tanzania, 2002) of known urban extents against the spatial position of each survey to identify those whose survey report or community name did not provide adequate information to classify them as urban or rural. Here we classified urban settlements if they were located in national census bureau definitions of cities, towns or market centres.

Finally we used a global database of urban extents developed as part of the Global Rural–Urban Mapping Project (GRUMP) (Balk et al., 2004; CIESIN/CIAT, 2004; CIESIN/IPFRI/CIAT, 2004). The urban mask was developed at a 1 km × 1 km spatial resolution using data on night time lights (Sutton et al., 2001) and Landsat satellite imagery in combination with other geographic data (Digital Chart of the World populated places (Mika, 1997), Tactical Pilotage Charts produced from Australian Defence Imagery and Geo-Spatial Organisation, and national census data). The spatially distinct polygons or points for each parasite prevalence survey were created using a digital administrative map of Kenya (CBS, 1989), first warped to UN approved national boundaries (SALB, 2004) using ArcView 3.2 (ESRI, Redlands, CA, USA). The GRUMP urban extents were mapped to the single longitudes or latitudes or polygons of each the parasite surveys using ArcView 3.2 (ESRI, Redlands, CA, USA). For surveys covering wider areas (clusters of communities or third–fifth level administrative units), the percentage of the polygon covered by urban extents was extracted using the MILA Utilities 3.2 update extension within ArcView 3.2 (http://www.esri.com/arcscripts). If more than 75% of the polygon was classified as either urban or rural the survey was classified accordingly.

2.3. Malaria ecological zonation of East Africa

To compare urban–rural differences in parasite prevalence within broad, climate-derived malaria risk classes we have used an 8 km × 8 km resolution malaria risk map developed to approximate to the historical descriptions of malaria transmission in East Africa (Oumumbo et al., 2002). In brief, Fourier processed data from remotely sensed images related to land surface temperature (LST), rainfall and moisture availability as inferred by cold cloud duration (CCD), and normalised difference vegetation index (NDVI) data were used to construct a model of malaria risk. Discriminant analysis of the models ability to predict the historical categorization of four malaria risk zones in Kenya, Tanzania and Uganda showed that malaria free areas could be predicted with a 96% accuracy, while areas where transmission occurs only near water, moderate malaria areas and intense malaria transmission areas were predicted with accuracies of 90, 72 and 87%, respectively. For the purposes of the
Table 1
Selection criteria for parasite prevalence survey data in East Africa and description of selected surveys

<table>
<thead>
<tr>
<th>Total number of surveys identified</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluded pre-1980</td>
<td>236</td>
<td>194</td>
<td>237</td>
<td>667</td>
</tr>
<tr>
<td>Excluded because unable to locate longitude/latitude</td>
<td>0</td>
<td>33</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>Excluded because no information on denominator</td>
<td>9</td>
<td>1</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Excluded sample size <50</td>
<td>82</td>
<td>9</td>
<td>69</td>
<td>160</td>
</tr>
<tr>
<td>Excluded because non-community sampled</td>
<td>408</td>
<td>128</td>
<td>121</td>
<td>657</td>
</tr>
<tr>
<td>Excluded sample age groups ≠ 0–15 or infants only</td>
<td>20</td>
<td>39</td>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>Excluded because spatial overlap with more contemporary or larger sample size survey</td>
<td>20</td>
<td>32</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>Characteristics of surveys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final survey samples included in analysis</td>
<td>217</td>
<td>86</td>
<td>27</td>
<td>330</td>
</tr>
<tr>
<td>Surveys reported in peer-reviewed journals</td>
<td>11</td>
<td>24</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>Surveys reported in reports of Ministry of Health, NGO or donor reports</td>
<td>168</td>
<td>34</td>
<td>17</td>
<td>219</td>
</tr>
<tr>
<td>Surveys reporting total population sampling, longitudinal sampling, random sampling</td>
<td>143</td>
<td>86</td>
<td>16</td>
<td>245</td>
</tr>
<tr>
<td>Surveys covering period 1980–1989</td>
<td>54</td>
<td>32</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>Surveys covering period 1990–1994</td>
<td>100</td>
<td>14</td>
<td>14</td>
<td>128</td>
</tr>
<tr>
<td>Surveys covering period 1995–2003</td>
<td>63</td>
<td>40</td>
<td>11</td>
<td>114</td>
</tr>
<tr>
<td>Median (interquartile range) of sample sizes</td>
<td>221 (119, 431)</td>
<td>194 (146, 443)</td>
<td>88 (76, 265)</td>
<td>204 (120, 427)</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0–5 years</td>
<td>32</td>
<td>61</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0–10 years</td>
<td>134</td>
<td>16</td>
<td>17</td>
<td>167</td>
</tr>
<tr>
<td>Surveys covering age ranges within 0–15 years</td>
<td>51</td>
<td>9</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

a Several surveys reported follow-up of patients during drug resistance surveys, or patients sampled during routine EPI/MCH clinic visits. These were excluded on the basis that it was difficult to know whether they represented community-based infection prevalence. In addition surveys conducted during randomized controlled trials of interventions were only included for control populations, intervention arms were excluded.

b For surveys which were contiguous with others, the most recent, largest sample size and most detailed in its reporting of sampling strategy was included.

c Several surveys, particularly those reported by Vector Control or Malaria Divisions of the Ministry of Health, did not provide adequate sampling strategy details (26.4% (n = 88) of the overall survey samples). It is unclear whether these prevalence estimates have the same precision as surveys providing detailed descriptions of sampling and survey method.

d The surveys included in the analysis were not all consistent with a single age range. The surveys varied in the age groups sampled, e.g. 0–4, 1–4, 0–9, 1–9, 1–12, 0–15, etc. The table represents the summary of three broad age classes using the upper age range as the defining age for sub-groups. Separate analyses have shown that the categorical description of endemicity based on the parasite ratio does not alter significantly within one area by different age groupings within the 0–15 years age range (Omumbo et al., in preparation).

In the present analysis we have grouped the malaria risk areas: malaria free with malaria only near water and moderate with intense transmission areas to distinguish between low and moderate-to-high infection risks (Fig. 1).

Parasite survey data were classified in accordance with the two malaria ecozones based on the polygon spatial extents of each survey (Table 3) with a 2.5 km buffer (approximating to the average flight distances of _Anopheles gambiae s.l._ (Service, 1997)) using ArcView 3.2 (ESRI, Redlands, CA, USA). Parasite survey data were classified as only one ecozone category where more than 75% of the surface area was dominated by that zone class.

2.4. Data entry and statistical methods

All parasite survey data were recorded on standard proformas and entered twice in Microsoft® Access version 7 (Microsoft Corporation 1989–1996; Seattle, WA, USA). Data entry errors and range inconsistencies were checked and verified against original material. Data were extracted for matching to other data sources using Microsoft® Excel 2000 version 9.0. Data
were analysed using SPSS for Windows Release 10.01 (SPSS, 1999, Chicago, IL, USA). Mean differences between urban and rural survey reports of parasite prevalence were tested using analysis of variance (ANOVA) and categorical descriptions of the ranges of parasite prevalence between urban and rural settlements were tested using a chi-square for trend.

3. Results

A total of 330 spatially independent parasite surveys were identified that met the selection criteria across East Africa. The exclusions and characteristics of these surveys are shown in Tables 1 and 2. The surveys in the three countries were distributed across the two
Table 2
Spatial resolution of 329 *P. falciparum* parasitological surveys among children in Kenya, Uganda and Tanzania

<table>
<thead>
<tr>
<th>Description</th>
<th>Kenya</th>
<th>Uganda</th>
<th>Tanzania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Village/community*</td>
<td>85</td>
<td>27</td>
<td>79</td>
</tr>
<tr>
<td>Cluster of villages/communities</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Sub-location</td>
<td>112</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Location</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Division</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surveys in sub-locations, locations,
divisions excluded as urban/rural
extent could not be classified</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total sample included in analysis</td>
<td>216</td>
<td>27</td>
<td>86</td>
</tr>
</tbody>
</table>

* Eight studies in Uganda and five studies in Zanzibar/Pemba were recorded as villages or single communities where data were presented at sub-fifth level administrative boundary extents but covered dispersed areas.

A comparison of the mean parasite prevalence in urban and rural settlements demonstrated that rural surveys reported on average a 10% higher prevalence of infection in childhood compared to urban surveys (Table 4: ANOVA, F statistic = 5.37, $p = 0.021$). This difference persisted when rural and urban surveys were compared between areas of low malaria risk (8% lower in urban areas) and areas of moderate-to-high malaria risk (18% lower in urban areas) (Table 4). Only the rural–urban differences in the ecologically classified areas of moderate-to-high transmission, however, were statistically different (ANOVA, F statistic = 11.06, $p = 0.001$). The median and interquartile ranges of the overall and malaria ecozone urban and rural samples are shown in Fig. 2.

Table 3 also shows the comparison of the categorical ranges of parasite prevalence reported by surveys undertaken in rural and urban areas. No surveys undertaken in urban settlements reported parasite prevalence in excess of 75%. Overall the trend toward describing higher parasite prevalence (≥ 25–74% or ≥ 75%) in rural (192/292, 65.8%) compared to urban (23/37, 62.2%) settlements was not significant ($\chi^2 = 5.48$, d.f. = 2, $p = 0.065$). Comparison of urban–rural parasite distributions in areas of low transmission was not possible due to the small numbers of samples in this category. However, in moderate-to-high transmission malaria risk areas the difference between rural (161/208, 77.4%) and urban (22/32, 68.8%) reporting higher parasite prevalence was significantly different ($\chi^2 = 6.37$, d.f. = 2, $p = 0.041$).

4. Discussion

We have set out to examine the differences in *P. falciparum* infection prevalence among rural and urban children sampled as part of parasitological descriptions of

Table 3
Malaria ecozone (Omumbo et al., 2002) classification for 329 independent parasite survey data in East Africa according to urban and rural coverage

<table>
<thead>
<tr>
<th>Ecozone</th>
<th>Kenya (216)</th>
<th>Uganda (27)</th>
<th>Tanzania (86)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td>Malaria free or only near water</td>
<td>58</td>
<td>4</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Moderate-to-intense transmission</td>
<td>137</td>
<td>17</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>195</td>
<td>21</td>
<td>18</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 4
The mean (95% Cl) percentage parasite prevalence and distribution of infection prevalence between rural and urban surveys undertaken in two malaria ecological zones in East Africa

<table>
<thead>
<tr>
<th></th>
<th>Rural</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall mean (95% Cl) parasite prevalence</td>
<td>39.5 (36.4-42.6)</td>
<td>29.0 (23.9-34.1)</td>
</tr>
<tr>
<td>Low malaria risk areas, mean (95% Cl) parasite prevalence</td>
<td>22.2 (17.3-27.1)</td>
<td>14.5 (6.7-22.3)</td>
</tr>
<tr>
<td>Moderate-to-high transmission areas, mean (95% Cl) parasite prevalence</td>
<td>46.5 (43.1-49.9)</td>
<td>31.3 (25.6-37.0)</td>
</tr>
<tr>
<td>Overall number (%) surveys reporting prevalence <25%</td>
<td>100 (34.2%)</td>
<td>14 (37.8%)</td>
</tr>
<tr>
<td>Overall number (%) surveys reporting prevalence ≥25% to <75%</td>
<td>154 (52.7%)</td>
<td>23 (62.2%)</td>
</tr>
<tr>
<td>Overall number (%) surveys reporting prevalence ≥75%</td>
<td>38 (13.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Moderate-to-high transmission areas, number (%) surveys reporting prevalence <25%</td>
<td>47 (22.6%)</td>
<td>10 (31.3%)</td>
</tr>
<tr>
<td>Moderate-to-high transmission areas, number (%) surveys reporting prevalence ≥25% to <75%</td>
<td>127 (61.1%)</td>
<td>22 (68.8%)</td>
</tr>
<tr>
<td>Moderate-to-high transmission areas, number (%) surveys reporting prevalence ≥75%</td>
<td>34 (16.4%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

a The distribution of infection prevalence within low malaria risk areas is not shown, as there were only five urban surveys in this malaria risk class.
b ANOVA comparison of means between urban and rural samples p value < 0.05.
c Chi-square test comparison between urban and rural samples differences in prevalence criteria p value < 0.05.

Fig. 2. Distribution of parasite prevalence data from 329 surveys in East Africa according to rural (R) vs. urban (U) classification in low and moderate-intense malaria risk areas and overall. Outliers (open circles) are cases with values between 1.5 and 3 box lengths from the upper edge of the box. The box length is the interquartile range and the line within the box represents the median.
malaria endemicity in East Africa. We have applied rigorous selection criteria to the data identified through an exhaustive search of the literature (Table 1). We believe that reviews of previously published or unpublished literature should apply strict selection criteria to ensure comparability in the data being analysed. It is important to note that our final sample of surveys was, by definition, not a spatially random series of surveys and subsequent analysis will always be limited by where the majority of data derive. The filtering and attribution of surveys to urban or rural classifications resulted in only 37 surveys undertaken in urban areas compared to 292 in rural areas. The limited information from urban settlements probably reflects the general consensus that malaria is a rural problem and epidemiologists often focus their investigations on these communities. Nevertheless, for those surveys identified, among childhood populations in East Africa there were significant differences in the parasite prevalence estimates reported for rural and urban settlements. Overall rural settlements reported 10% higher parasite prevalence compared to urban communities and this difference was larger (18%) between rural and urban communities located in moderate-to-high malaria ecological risk areas of East Africa (Table 4; Fig. 2).

These findings are consistent with micro-epidemiological studies of urban malaria across Africa: decreasing risks of infection associated with urbanisation, either entomological or parasitological, have been shown in urban areas in West Africa: Liberia (Björkman et al., 1985), The Gambia (Lindsay et al., 1990), Senegal (Trape et al., 1992), Ghana (Gardiner et al., 1984), Burkina Faso (Robert et al., 1986; Rossi et al., 1986; Benasseni et al., 1987; Modiano et al., 1999); Central Africa: Cameroon (Fondjo et al., 1992), Republic of Congo (Trape and Zoulani, 1987), Democratic Republic of Congo (Ngumbi et al., 1982; Coene, 1993); the Horn of Africa: Ethiopia (Yohannes and Petros, 1996), Sudan (El Sayed et al., 2000); and Southern Africa: Zambia (Watts et al., 1990). Moreover, in a recent meta-analysis of 159 sites across Africa where annual entomological inoculations rates (EIR) had been recorded, it was shown that people in rural areas received on average 146 P. falciparum infected bites per annum compared to only 14 for people resident in urban areas (Hay et al., 2000).

Recent years have seen a satellite imagery-fuelled renaissance in attempts to produce risk-maps of vector-borne diseases including malaria (Hay, 2000). To a large extent, both historical and contemporary malaria mapping have focussed on extrinsic climatic determinants of disease distribution (Craig et al., 1999; Rogers et al., 2002), ignoring other spatial determinants of malaria risk, most notably the effects of urbanisation. This is primarily because these parameters have been harder to define at the coarse spatial resolution of the climate data currently used to model malaria risk. This is likely to influence the estimation of disease burden. The risks of all-cause childhood mortality are substantially and consistently lower in urban compared to rural areas of Africa (MEASURE, 2004). Our results and those of others have consistently shown malaria infection risks are lower in urban settings compared to rural settings. Severe malaria morbidity (Snow et al., 1997), malaria mortality (Snow and Marsh, 1995) and all-cause mortality (Snow and Marsh, 2002; Snow and Omumbo, 2004) are all substantially lower in areas of low parasite prevalence (childhood infection prevalence less than 25%) compared to areas of higher stable endemicity in Africa. In addition to the biological constraints on infection risk, urban communities are more likely to have either the financial means or better access to measures which further reduce the risks of infection, such as insecticide treated nets (Holtz et al., 2002; Mugisha and Arinatwe, 2003), intermittent presumptive treatment during pregnancy (Guyatt et al., 2004), or better malaria case-management and anti-malarial treatment (Rasheed et al., 2000; Molyneux et al., 1999).

The categorical descriptions of endemicity using the parasite prevalence in our analysis of previously published surveys demonstrated that no urban settlements were able to support an infection prevalence in excess of 75% and that there was a significant difference in areas with a climate suitable for stable, endemic, transmission between urban and rural settlements supporting parasite prevalence ratio’s in excess of 25%. In Kenya, Tanzania and Uganda, approximately 28% of the population reside in urban settlements (UN, 2002) and it seems reasonable to assume therefore that in this sub-region a significant proportion of the population will be misclassified in terms of infection and subsequent disease risk on the basis of climate-driven cartography of risk alone.

For the first time spatially explicit estimates of population living in urban and rural environments are
becoming available in the public domain. These surfaces have been implemented at global scales (Schneider et al., 2003; Balk et al., 2004; Tatem et al., in press). While these resources open significant new possibilities for exploring the impact of urbanization on malaria transmission over large areas, an important step in testing and validating their precision locally is needed as evidenced by discrepancies noted in our urban classification of parasitological survey data. This is warranted due to the novelty of these digital themes and the various techniques used to designate urban and rural land-use classes both as input training data (Tatem and Hay, in press) and output map products (Tatem et al., in press). These precision estimates for Kenya, Tanzania and Uganda are the subject of on-going research, including the use of higher spatial resolution optical and synthetic aperture radar (SAR) satellite imagery. New, higher resolution, better-defined spatial descriptions of urban settlements will ultimately improve our continental scale estimation of malaria risk and disease burden.

Acknowledgements

This study received financial support from The Wellcome Trust, UK; the International Development Research Centre, Canada; the South African Medical Research Council, the MARA/ARMA collaboration and the Kenya Medical Research Institute. The Wellcome Trust supports JAO, SIR and RWS as part of their Prize Studentship (#060063), Research Career Development (#056642) and Senior Research Fellow (#058992) programmes, respectively. The authors acknowledge the contribution of malaria control personnel and scientists and in East Africa who shared unpublished data. In particular we thank the Division of Malaria Control (Kenya Ministry of Health), Don de Savigny and Rose Lusinde (Tanzania Essential Health Interventions Project-TEHIP), Hugh Reyburn and Chris Drakeley (Gates Malaria Program, London School of Hygiene and Tropical Medicine), Caroline Maxwell, Chris Curtis and Ilona Carneiro (London School of Hygiene and Tropical Medicine), Ambrose Talisuna, Peter Langi and Albert Kilian (Ministry of Health, Uganda), Vicki Marsh and Tabitha Mwangi (Kenya Medical Research Institute), Dejan Zurovac (MSF-France) and Sporton Kwanya Agak, (KEDHAR). Deborah Balk and Gregory Yetman are also thanked for access and discussion regarding urban rural classification globally. We also acknowledge the help provided by Greg Fegan for statistical advice, Abdisalan M Noor for help with the spatial mapping and Kevin Marsh for comments on an earlier draft. This paper is published with the permission of the director of KEMRI.

References

World Resources Institute, 1995. Topographic data: Africa Data Sampler (CD-ROM). World Resources Institute, Washington, DC, USA.

CHAPTER 6:

Updating historical maps of malaria transmission intensity in East Africa using remote sensing

JA Omumbo, SI Hay, SJ Goetz, RW Snow, DJ Rogers

Updating Historical Maps of Malaria Transmission Intensity in East Africa Using Remote Sensing

J.A. Omumbo, S.I. Hay, S.J. Goetz, R.W. Snow, and D.J. Rogers

Abstract
Remotely sensed imagery has been used to update and improve the spatial resolution of malaria transmission intensity maps in Tanzania, Uganda, and Kenya. Discriminant analysis achieved statistically robust agreements between historical maps of the intensity of malaria transmission and predictions based on multitemporal meteorological satellite sensor data processed using temporal Fourier analysis. The study identified land surface temperature as the best predictor of transmission intensity. Rainfall and moisture availability as inferred by cold cloud duration (CCD) and the normalized difference vegetation index (NDVI), respectively, were identified as secondary predictors of transmission intensity. Information on altitude derived from a digital elevation model significantly improved the predictions. "Malaria-free" areas were predicted with an accuracy of 96 percent while areas where transmission occurs only near water, moderate malaria areas, and intense malaria transmission areas were predicted with accuracies of 90 percent, 72 percent, and 87 percent, respectively. The importance of such maps for rationalizing malaria control is discussed, as is the potential contribution of the next generation of satellite sensors to these mapping efforts.

Introduction
Human malaria is caused by the parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae. The Plasmodium life cycle involves an asexual stage in human hosts and a sexual stage in mosquitoes of the genus Anopheles. Anopheles gambiae s.l. and An. funestus are the most widely distributed and important malaria vectors in sub-Saharan Africa (SSA). Ninety percent of the global burden of malaria, predominantly due to P. falciparum, is borne by the population of SSA (WHO, 1999), resulting in approximately 1 million deaths due to P. falciparum each year (Snow et al., 1999). The clinical spectrum of P. falciparum infection ranges in severity from mild, often self-limiting, fever, chills, and joint pains to a life-threatening illness.

Malaria transmission is often quantified through mathematical models. The basic reproductive number of a disease (R_0) is derived from a generic infectious disease model and is defined as the average number of successful offspring that a parasite is intrinsically capable of producing in a completely susceptible population (Macdonald, 1957). The vectorial capacity (VC), derived from R_0, reflects the mean number of probable inoculations transmitted from one case of malaria per unit time (Garrett-Jones, 1964) and it is expressed as

$$VC = \frac{ma^p}{-\log p}$$

where m is the relative density of female anophelines, a is the probability that the mosquito will take a human blood meal during a particular day, and p^* is the proportion of vectors surviving the parasite's incubation period (i.e., p is the daily probability of vector survival and n is the duration of parasite sexual development within the mosquito or sporogony). All of these factors, with the possible exception of a, are affected by climate and hence environmental proxy information derived from satellite sensors (Hay et al., 1996; Hay et al., 1999) can be of use in predicting malaria transmission intensities (Hay et al., 1997; Rogers et al., 2002).

Optimum temperatures for $P. falciparum$ (sporogony) are between 25 and 30 °C. Below 16 °C and above 35 °C sporogony ceases (Detinova, 1962), and thermal death of mosquitoes occurs at 40 to 42 °C (Dutta et al., 1978). Breeding site availability is associated with rainfall and increased mosquito survivorship with increasing humidity (Gill, 1920; Dutta et al., 1978). Non-climatic factors, including proximity to permanent water bodies, urbanization, population distribution, agricultural practices, and other human factors, further modify transmission (Gilles, 1993). The spatial heterogeneity of these factors contributes substantially to variations in transmission intensity. For example, one marker of malaria transmission intensity, the annual entomological inoculation rate (EIR) defined as the average number of infective mosquito bites received per...
person in a year) ranges from 0 to ~1000 across sub-Saharan Africa (Hay et al., 2000b). This heterogeneity is best captured by maps which themselves should form an important tool for rationalizing malaria control (Snow et al., 1996).

Several authors have attempted to describe the global distribution of malaria using expert opinion and climate data. Early maps were based on the position of summer isotherms (Boyd, 1930; Lyssenko et al., 1969); the known latitudinal extent of the disease (Gill, 1920); combinations of temperature, elevation, and rainfall (Dutta et al., 1978); and interpolation of limited malariometric data (Clyde, 1967; Onori, 1967). In recent years there has been a renaissance in mapping malaria in Africa (Snow et al., 1996; MARA/ARMA collaboration, 1998; Hay et al., 2000a; Rogers et al., 2002). This has been facilitated by advancements in geographic information systems (GIS) and increased availability of public domain, remotely sensed (RS) satellite data. RS surrogates of climate have been used to develop high spatial resolution maps of transmission intensity and epidemic potential (Lindsay et al., 1996; Snow et al., 1998; Craig et al., 1999; Thomson et al., 1999; Kleinschmidt et al., 2000). In this paper we discuss the utility of remote sensing for re-visiting historical efforts to describe malaria distribution in East Africa at high spatial resolution.

Materials and Methods

Historical Malaria Distribution Maps

At the time of independence, concerted efforts were made to provide atlases for use in administration and development planning in Tanzania, Uganda, and Kenya (Government of Tanganyika, 1956; Government of Uganda, 1962; Government of Kenya, 1970). The atlases included maps of synoptic rainfall and temperature, health facilities, agriculture, natural resources, and malaria. The rules used to categorize malaria transmission differed slightly between the three countries, but all were derived from expert opinion on climate and local malariology.

Uganda's map (Government of Uganda, 1962) describes four malaria epidemiological zones as follows: (1) normally malaria free: highland areas above 1500 meters where transmission is limited by low temperatures, (2) malarious near water: arid sparsely populated areas where transmission occurs only around permanent water bodies, (3) moderately malarious: areas experiencing warm moist climate with evenly distributed moderate rainfall where malaria transmission is seasonal, and (4) intensely malarious: areas below 1500 meters where transmission occurs year round, increasing after periods of heavy rainfall. In both Kenya (Government of Kenya, 1970) and Tanzania (Government of Tanganyika, 1956), five zones are defined according to the duration of the transmission season as follows: (i) Transmission for less than three months of a year; (ii) transmission for three to six months; (iii) transmission for more than six months of a year; (iv) malarious near water; and (v) malaria free: highland areas, although a precise altitude limit is not indicated in the definition.

To provide uniform categories of malaria transmission for analysis, slight reclassifications were necessary so that maps of malaria transmission intensity in Kenya and Tanzania could be directly compared with those for Uganda. This was justified by recent work suggesting that the "intensity" of transmission is strongly correlated with the length of the malaria transmission season (Tanser, 2000). Areas experiencing transmission for more than 6 months were reclassified as "intensely malarious," areas with transmission for less than 3 months and for 3 to 6 months were combined and reclassified as "moderately malarious," and areas defined as malaria-free and malarious near water, remained unchanged. The historical maps were digitized using the GIS MapInfo (MapInfo Corporation, 1985–2000) and the vector map was rasterized using IDRISI version 2.1 (Clarke University, 1997).

The **Pathfinder Advanced Very High Resolution Radiometer Land (PAL) Data**

This study uses data derived from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) sensor on board the NOAA series of polar-orbiting satellites. Public domain 8-by-8-km spatial resolution satellite data were obtained through the Pathfinder AVHRR Land (PAL) program (James et al., 1994; URL: http://daac.gsfc.nasa.gov/data/dataset/AVHRR/index.html). These data were processed using standard quality control and cloud reducing procedures outlined in Hay et al. (1999).

Normalized Difference Vegetation Index

Of the many spectral vegetation indices available, the Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) has found most application in epidemiological studies (Hay et al., 1996; Patz et al., 1996; Snow et al., 1998; Kleinschmidt et al., 2000). As a robust indicator of photosynthetic activity (Tucker et al., 1986; Myneni et al., 1995), it is thought to provide information on the response of a landscape to precipitation (Nicholson et al., 1990) and is hence of use in malaria studies. The NDVI is derived from AVHRR channels 1 (visible) and 2 (near-infrared) as follows:

\[
\text{NDVI} = \frac{\text{Ch2} - \text{Ch1}}{\text{Ch2} + \text{Ch1}}.
\]

Mid-Infared (MIR) Reflectance

AVHRR channel 3 (mid-infrared) has been shown to be sensitive to both reflected and emitted radiation, although the interpretation of this signal is less well understood than the other channels (Boyd et al., 1998). MIR suffers less from atmospheric attenuation than do channels 4 and 5 of the AVHRR (Cracknell, 1997) and has found limited use for vegetation mapping.

Land Surface and Air Temperature Indices

The land surface brightness temperature (LST) was calculated using the "split-window" equation of Price (1984) as follows:

\[
\text{LST} = \text{T}_{\text{Ch4}} + 3.33(\text{T}_{\text{Ch4}} - \text{T}_{\text{Ch5}}).
\]

This has been found to be a relatively accurate proxy of ground-based meteorological measurements of air temperature with a root-mean-square error of ± 4 °C over continental Africa (Hay et al., 2000a). A further air temperature variable (Tea) was estimated using a contextual combination of vegetation indices and LST estimates reviewed by Goetz et al. (2000).

Altitude

A 1- by 1-km spatial resolution digital elevation model (DEM) for Africa was obtained from the United States Geological Survey (USGS) (Gesch et al., 2000; URL: http://edcdaac.usgs.gov/gtopo30/README.html). Elevation is recorded in meters above sea level with a root-mean-square error reported at ± 100 meters.

Rainfall

A proxy for rainfall can be derived from the European Organisation for the Exploitation of Meteorological Satellites (EUMESAT) Meteosat series. The exact threshold temperature associated with rain-bearing clouds and the quantity of rain they deposit varies temporally and spatially so that it must be established empirically. This has been done for Africa by the Tropical Applications of Meteorology using Satellite and other data (TAMSAT) programme of the Department of Meteorology, University of Reading (URL: http://www.met.reading.ac.uk/tamsat). The northern and southern extent of the calibration...
exercise represents the most northern and southern limits of the
inter-Tropical Convergence Zone (ITCZ) where convective
atmospheric processes dominate (Dugdale et al., 1995). There
are set thresholds of -50 °C in the summer and -60 °C in the
winter, used for areas north of the ITCZ, and -40 °C throughout
the year for regions south. These results were used by the FAO-
ARTEDIS project to generate monthly cold cloud duration (CCD)
images, where each pixel represents the number of hours during
which cold cloud-top temperatures were below these
thresholds during a 10-day compositing period. The CCD has
been found to have a root-mean-square error of ±38 mm when
compared with meteorological station recordings of rainfall
across continental Africa (Hay et al., 1999).

Data Preparation and Analysis

The AVHRR data are supplied in the equal-area Goode’s inter-
rupted homolosine projection. All images were reprojected to a
Latlong coordinate system. The area covering East Africa
(29°E to 42°E and 11.8°S to 5.5°N) was subset for further analy-
sis. Temporal Fourier analysis (TFA) (Rogers et al., 1996; Rog-
ers, 2000) was applied to the five-predictor variables, NDVI, MIR,
LST, Tair, and CCD. TFA summarizes the time series data using a
series of sine and cosine functions. The periodic part of the time
series is isolated and described by its frequency (annual, bian-
nual, or triannual), amplitude (amp), and phase (phs). Ten Fou-
rier images (mean, maximum, minimum, and variance; amplitudes of annual, biannual, and triannual cycles; and phases of annual, biannual, and triannual cycles) were pro-
duced for each predictor variable.

A randomly sampled “training data” set was selected from the
historical distribution maps. Image pixels along the bound-
aries of malaria categories were excluded from the sampling
frame because such areas have a high probability of misclassi-
fication of malaria intensity. Areas covered by large permanent
water bodies were also excluded. Nine-hundred seventy-five training data pixels were selected; three-hundred for each of the
categories “malaria near water”, “moderate malaria,” and “intense malaria.” The “malaria-free” category covered a much
smaller area, so only 75 training data pixels were selected. Cor-
responding values of the predictor variables were extracted for each of the 975 training data pixels.

The kappa statistic (Cohen, 1960) was selected as a measure of agreement. Values of kappa less than 0.4 indicate poor agreement, values between 0.4 and 0.75 suggest good agree-
ment, and values above 0.75, excellent agreement (Landis et al., 1977). Using discriminant analysis (DA), predictor variables
were selected in a forward step-wise fashion by iteratively
including the variable that causes the maximum increase in the
kappa statistic (Cohen, 1960) compared with the other vari-
ables in each round of analysis until ten variables were selected.
As the environmental characteristics within the dif-
f erent malaria regions are dissimilar, DA was carried out with the assumption of different covariance matrices between the malaria groups. It was also assumed that the a priori probabili-
ties of group membership were equal. Based on the discrimi-
nant function, each pixel was assigned a malaria category. A
map of the a posteriori probabilities was then plotted for East
Africa and compared with the historical map.

Results

Pixels contaminated with water and those with predictor vari-
able values greater than 6 standard deviations from means
were discarded (n = 4). Nine-hundred seventy-one pixels were
used in the analysis. Temperature variables were strongly cor-
related (Pearson correlation coefficients of 0.99 for mean Price
LST and mean MIR reflectance; 0.81 for mean LST and mean Tair;
and 0.77 for mean MIR reflectance and mean Tair (Table 1). A
strong negative correlation (-0.67) was found between alti-
dude and Tair. Moisture availability surrogates were not as

<p>| Table 1. Correlation Coefficients of Independent Variables |</p>
<table>
<thead>
<tr>
<th>Altitude</th>
<th>Mean MIR reflectance</th>
<th>Mean Price LST</th>
<th>Mean NDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean MIR reflectance</td>
<td>-0.50</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Mean Price LST</td>
<td>-0.59</td>
<td>0.77</td>
<td>0.81</td>
</tr>
<tr>
<td>Mean Tair</td>
<td>-0.67</td>
<td>0.77</td>
<td>0.81</td>
</tr>
<tr>
<td>Mean CCD</td>
<td>Mean CCD amp1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean CCD</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean CCD amp1</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

strongly correlated, the highest correlations being CCD amp1
and NDVI amp1 (0.71) and NDVI mean and CCD mean (0.64). Non-
significant correlations were noted between malaria intensity
classes and the NDVI and CCD variables (coefficients less than 0.5).

Plots of the predictor variables by malaria intensity class
showed considerable overlap in environmental conditions
between the four malaria categories except with regard to tem-
perature (mean Price LST and altitude. Average and ranges of
mean LST distinguish well between the “malaria-free” and
“malaria near water” categories compared with other malaria
classes (Figure 1). The altitude differences between these cate-
gories are also shown in Figure 1.

In the discriminant analysis overall agreement between training data (observed) and predicted pixels was 89.9 percent
(Cohen’s kappa = 0.775; Klecka’s tau = 0.773), with greatest
agreement in the categories “malaria-free” and “malaria near
water” (Table 2). The model over predicted “malaria-free” areas
(false positive rate = 26.3 percent) and under predicted moder-
ate malaria (false negative rate = 27.7 percent (Table 3)).

Table 4 lists the top ten RS variables selected by the DA, and
minimum, maximum, and mean values for these. Six of these
are temperature variables (LST, DEM, Tair, and MIR reflectance)
while CCD variables appear three times. The DA was repeated
omitting some of the strongly correlated variables (Tair and/or
mean MIR reflectance). In each case the mean Price LST was
most discriminating. Considerably higher misclassification
rates were obtained when Tair or MIR reflectance variables were
omitted from the discriminant analysis. The DA was also done using only the first five discriminating variables; however, the
resulting a posteriori predictions were poorer (kappa = 0.706).
Including all ten variables produced the best fit, with an over-
all kappa of 0.775.

Figure 1. Relationship between land surface temperature
(Price, 1984), altitude, and historical classifications of malaria transmission intensity.
Figure 2a shows the rasterized historical transmission map with major water bodies overlaid. The historical maps were printed, and changes have since occurred along Kenya’s northeastern border with Sudan. The Tana River in eastern Kenya drains into the Indian Ocean through an arid, low altitude (less than 400 m above sea level) region. According to the historical map, intense malaria transmission occurs within a narrow band (less than 5 km) along the riverbank. Areas of differing malaria transmission intensity are color coded as follows: malaria free (white), malaria near water (light grey), moderate malaria (dark grey), and intense malaria (black). The “malaria-free” areas on the map have an average altitude of 2335 meters (range 1282 to 3634 meters) while the “malaria near water” areas average 680 meters (range 14 to 1800 meters).

Discussion

The DA was carried out using different numbers and combinations of predictor variables. The prediction resulting in the highest kappa statistic (Figure 2b) is compared with the historical map (Figure 2a). Predictions were best at the extremes of transmission and in areas that experience very characteristic environmental or climatic conditions. For example, arid areas (transmission occurring only in proximity to perennial water bodies) experience year-round high temperatures, and the thermal indices therefore identify these areas well. Similarly, “malaria-free” areas are typically at high altitude and are characterized by much lower year-round temperatures (Figure 1). In moderate and intense transmission areas, such distinction of environmental characteristics is not as pronounced. Although the main areas of malaria transmission intensity are well predicted, the boundaries within moderate transmission areas are much less distinct, such as the Indian Ocean coastline on Kenya’s southeastern border, parts of western Uganda, and large areas of central Tanzania. Incorporation of an environmental zone classification variable into the DA as an additional predictor variable may allow more of the environmental differences between moderate and intense transmission classes to be isolated (Brooker et al., 2002).

It is important to note that the historical transmission maps were based largely on expert opinion and were intended to provide only a broad representation of available information on the distribution and intensity of malaria. Criteria used for classification varied between the three countries. Tanzania’s map was based predominantly on the expert opinion of a malaria epidemiologist and, on this basis, areas along rivers are classified as intense transmission areas (Figure 2c) as was done with the Tana River in Kenya. Most misclassified pixels are found in Tanzania mainly along rivers and on the margins of transmission categories (Figure 2c), suggesting that additional factors, not identified by climatic predictors, determine transmission intensity. The mapping of a set of 8- by 8-km pixels along the boundaries of the transmission categories excluded the Tana River banks from the sampling frame, resulting in the omission of the river on the predictive map. It is possible that several other areas on the historical map where transmission occurs alongside rivers (particularly in Tanzania) should have been left out for similar reasons. Uganda’s map is influenced largely by expert knowledge of altitude and rainfall distribution and their relationship to malaria transmission. Regions of similar climate are grouped together; for example, areas experiencing “Lake Victoria weather” are described. Malaria intensity regions were classified on the basis of such similarity of climatic conditions. Kenya’s map was designed to identify persons “at risk” according to ethnic groupings, and the malaria map has been influenced by the pattern of these settlements.

There are several advantages of the approach used here over previous attempts at modeling. First, RS data provide a continuous surface, thus avoiding the use of interpolated climate data with its inherent interpretation biases; also, high temporal resolution climate data have been used. Fourier processed imagery, by summarizing climatic data according to its natural biological cycles, better relates to the biological processes involved in malaria transmission. Rainfall patterns in East Africa show a bimodal distribution (two rainy seasons in a year) in most areas, and this may be related to the selection of the timing of CCD biannual cycles and NDVI by the discriminant analysis. Although temperatures in arid areas tend to be high.

TABLE 3. AGREEMENT BETWEEN HISTORICAL AND PREDICTED MAP OF MALARIA TRANSMISSION INTENSITY

<table>
<thead>
<tr>
<th>Malaria intensity</th>
<th>Agreement (%)</th>
<th>False positive rates (%)</th>
<th>False negative rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria free</td>
<td>95.1</td>
<td>26.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Malaria near water</td>
<td>90.0</td>
<td>5.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Moderate malaria</td>
<td>72.3</td>
<td>19.0</td>
<td>27.7</td>
</tr>
<tr>
<td>Intense malaria</td>
<td>66.6</td>
<td>19.6</td>
<td>13.4</td>
</tr>
<tr>
<td>All categories</td>
<td>83.9</td>
<td>16.1</td>
<td>16.1</td>
</tr>
</tbody>
</table>

TABLE 4. TEN MOST DISCRIMINATING RS VARIABLES BY RANK

<table>
<thead>
<tr>
<th>Rank</th>
<th>Predictor variable</th>
<th>kappa statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean Price LST</td>
<td>0.464</td>
</tr>
<tr>
<td>2</td>
<td>CCD variance</td>
<td>0.562</td>
</tr>
<tr>
<td>3</td>
<td>CCD phase3</td>
<td>0.639</td>
</tr>
<tr>
<td>4</td>
<td>DEM</td>
<td>0.691</td>
</tr>
<tr>
<td>5</td>
<td>CCD phase2</td>
<td>0.712</td>
</tr>
<tr>
<td>6</td>
<td>LST phase1</td>
<td>0.735</td>
</tr>
<tr>
<td>7</td>
<td>T_mm phase1</td>
<td>0.752</td>
</tr>
<tr>
<td>8</td>
<td>MIR amp3</td>
<td>0.763</td>
</tr>
<tr>
<td>9</td>
<td>NDVI amp2</td>
<td>0.779</td>
</tr>
<tr>
<td>10</td>
<td>T_mm amp3</td>
<td>0.872</td>
</tr>
</tbody>
</table>

LST = Price land surface temperature, CCD = cold cloud duration, T_mm = air temperature, MIR = mid-infrared, amp3 = amplitude of biannual cycle, phase1 = timing of annual cycle, phase2 = timing of biannual cycle, phase3 = timing of triannual cycle.
all year round, they usually peak annually, and the DA picks up the timing of the annual cycles of LST and T_{max} in these areas. Furthermore, aside from providing good definitions of areas that do not support stable transmission, stable transmission areas are defined more clearly than models that have used other statistical procedures (Craig et al., 1999).

There is additional scope for the refinement of the climate-based model in several areas; the rationale for this would depend on the level of detail of the information required for use in decision support for malaria control purposes. The inclusion of additional databases such as rivers and other smaller permanent water bodies and the use of higher spatial resolution RS data may improve prediction in the moderate and intense transmission areas in Tanzania and Uganda. Historical maps, however, are likely to be inaccurate at higher resolution and, perhaps, appropriate empirical data could be used to improve the accuracy of predictions. The aim of this study was to demonstrate the utility of RS data in predicting malaria transmission intensity, and the challenge of future research will be to use empirical data to assess the accuracy of these predictions.

Acknowledgments

Information used in this study includes data produced through funding from the Earth Observing System Pathfinder Program of NASA’s Mission to Planet Earth in cooperation with National Oceanic and Atmospheric Administration. The data were provided by the Earth Observing Data and Information System (EODIS), Distributed Active Archive Center at Goddard Space Flight Center which archives, manages, and distributes this dataset. Thanks are also due to Fred Snidjers of the Food and Agriculture Organisation’s (FAO) Africa Real Time Environmental Monitoring using Imaging Satellites (ARTEMIS) project for permission to use Meteosat CCD data. We also thank Jennifer Small for help in implementing methods developed at the University of Maryland Department of Geography for the derivation of air temperature estimates from AVHRR data. J.A. Omumbo is supported by a Wellcome Trust prize studentship (#060063), S.I. Hay is supported on a Wellcome Trust Advanced Training Fellowship (#056642), and R.W. Snow is on a Wellcome Trust Senior Fellowship (#033340). This paper is published with the permission of the Director, KEMRI.

References

CHAPTER 7:

Modelling malaria risk in East Africa at high spatial resolution

JA Omumbo, SI Hay, AJ Tatem, RW Snow, DJ Rogers

Tropical Medicine and International Health, in press
SUMMARY

Objectives: Malaria risk maps have re-emerged as an important tool for appropriately targeting the limited resources available for malaria control and evaluating progress towards targets set for coverage of anti-malarial interventions. In sub-Saharan Africa such maps are few and in most cases are not based upon empirical data or standardized criteria.

Methods: Statistical techniques applied to high spatial resolution remotely sensed climate surrogate data; digital human settlement surfaces and land use data have been used to predict the intensity of malaria transmission as defined categorically according to the childhood parasite ratio (PR) in East Africa. Discriminant analysis was used to train the environmental and settlement predictor variables to distinguish between four classes of PR risk that have been previously shown to relate to disease outcomes in the region.

Results: 330 independent empirical estimates of the PR were identified from Kenya, Tanzania and Uganda. Surrogate markers of climate recorded on-board earth orbiting satellites, population settlement, elevation and water bodies all contributed significantly to the predictive models of malaria transmission intensity in the sub-region. The accuracy of the model was increased by stratifying East Africa into two ecological zones. In addition, forcing the discriminant analysis to include urbanization as a predictor of malaria prevalence improved the consistency of the predictive map with expert opinion malaria maps. The overall accuracy achieved with ecological zone and urban stratification was 62.1% with surrogates of precipitation (normalised difference vegetation index) and temperature (land surface temperature) being among the most discriminating predictors of the PR.

Conclusion: Although a high degree of statistical accuracy was achieved in the predictive map presented, the study revealed several difficulties in mapping malaria at high spatial resolution with currently available malariometric data. Current high spatial resolution empirically-driven models of malaria are limited by the poor resolution of malaria data. This can only be addressed in small areas studies and is perhaps not suitable or necessary for maps that are aimed for use in intervention targeting. It is suggested that lower resolution models could be more appropriate for current intervention targeting needs in East Africa.

INTRODUCTION

The risks of morbidity and mortality due to Plasmodium falciparum vary spatially and temporally across the African continent (Trape & Rogier, 1996; Snow et al., 1997; Snow & Marsh, 2002). There are a number of factors that determine the age-specific patterns of disease risk following infection but the most significant is the role played by acquired functional immunity which is dependent in turn on the frequency and duration of infection from birth (Snow & Marsh, 1998). A number of indices are used to describe the frequency of encounters with malaria infection; these include the entomological inoculation rate (EIR), the vectorial capacity (VC), infant parasite conversion rates and the parasite ratio (PR). The relationship between these markers of infection risk is complex (Macdonald, 1953; Smith & McKenzie, 2004) and most of them, with the exception of the PR, are rarely recorded in Africa (Hay et al., 2000,
The PR has been used since the 1950's to characterise the intensity of malaria transmission. It is determined through cross-sectional surveys of children and expressed as the percentage found to be infected with *P. falciparum* (Metselaar & Van Theil, 1959). This measure has been shown to correspond categorically to the log of the annual EIR (Beier *et al.*, 1999; Hay *et al.*, 2004a) and, more recently, has been used to discriminate between malaria morbidity and mortality rates across Africa and globally (Snow *et al.*, 1999; Snow *et al.*, 2004; Snow & Marsh, 2002).

The need for maps of malaria's distribution has been recognised by malaria epidemiologists for as long as the disease has been studied (Gill, 1914; 1920; Boyd, 1930; Lysenko & Semashko, 1968; Lysenko & Beljaev, 1969; Dutta & Dutt, 1978). More recently, advances in Geographic Information Systems (GIS) and Remote Sensing (RS) have fuelled a renaissance in malaria risk mapping in Africa (Snow *et al.*, 1996; Hay *et al.*, 1998; Hay *et al.*, 2000; Lindsay *et al.*, 1998; Craig *et al.*, 1999; Thomson *et al.*, 1999; Rogers *et al.*, 2002; Tanser *et al.*, 2003). Relatively few of the available models of the spatial determinants of malaria risk have used empirical data (Snow *et al.*, 1998; Kleinschmidt *et al.*, 2000; 2001). Those available for Kenya and Mali, for example, have not fully exploited the wealth of newer high spatial resolution RS imagery available and have been based almost solely on climatic determinants of risk. Furthermore, influences of human settlement and water bodies are considered inadequately. In this paper we re-examine the distribution and intensity of malaria transmission across East Africa through the use of high spatial resolution satellite sensor imagery, rigorously selected PR data (Omumbo & Snow, 2004), ecozonation (Omumbo *et al.*, 2002), as well as, urbanization, water body and land use parameters that are known to affect transmission (Omumbo *et al.*, 2005).

MATERIALS AND METHODS

Parasite prevalence

A continuous comprehensive search of published and unpublished literature for malarialometric data in the East Africa region has been maintained since 1996 as part of the Mapping Malaria Risk in Africa (MARA) collaboration (Snow *et al.*, 1996; http://www.mara.org.za). The methods used to identify the PR data in the East Africa region and the criteria used for their selection are presented elsewhere (Omumbo *et al.*, 1998; 2004; Omumbo & Snow, 2004). In brief, electronic database searches, contacts with local malarialists, extraction of data from Ministry of Health archives, manual searches of local journals, conference proceedings and post-graduate theses all provided the basis of the search strategy. Kenyan, Tanzanian and Ugandan survey data were selected for the present analysis according to the following inclusion criteria: more up to date assessments of infection risk (>1979); community-based surveys; age ranges within 0-15 years (surveys where only infants were sampled were excluded); surveys that sampled a minimum of 50 children and those that provided adequate details on survey location and denominators. Finally, repeat cross-sectional surveys on the same populations by the same investigators within a 24 month period were pooled to a single estimate while surveys undertaken by varied investigators at different times in the same location were reduced to one estimate by excluding either the earlier survey or smaller sample size.
Longitude and latitude co-ordinates (in decimal degrees) were determined for each parasitological survey using a variety of sources: 1:50,000 scale topographic maps (Directorate of Overseas Surveys, 1971), digital administrative unit maps in Kenya (UNEP-Global Resources Information Database, 1992) or public domain digital gazetteers (GDE Systems Inc., 1995; World Resources Institute, 1995). The centroid co-ordinates served as a unique identifier for each survey and, combined with a description of the survey, were used to describe the spatial extent of each sample. Surveys were classified as representing one of five spatial dimensions: First, using ArcView 3.2 (ESRI, Redlands, CA, USA), for surveys representing a single village, the central longitude and latitude was used to define an area of 1 km radius encompassing the community. The second spatial classification reflected surveys that sampled from several villages but presented the data as a single PR (5 and 7 surveys in Kenya and Tanzania respectively). In this case, a polygon was created to enclose the villages. The third, fourth and fifth spatial criteria corresponded to surveys undertaken at the 5th (sub-location: average area covered 9.4 km²), 4th (location: average area covered 15.4 km²) or 3rd (division: average area covered 34.1 km²) administrative levels in Kenya (Hay et al., 2004b).

Predictor variables

Satellite sensor derived data at 1 x 1 km spatial resolution were obtained for East Africa (19.995 °E -52.005 °E and 23.755 °N - 13.005 °S) from the United States' Geological Survey, Distributed Active Archive Centre (URL: http://edcdaac.usgs.gov/1KMcomp10d.asp). These data were archived from the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration's (NOAA) series of afternoon ascending polar-orbiting meteorological satellites (Eidenshink & Faundeen, 1994). All ten bands of raw channel and quality control data were downloaded for the 93 ten-day composites (dekads) from 31 months (Apr-Dec 1992, Jan-Sep 1993, Feb-Dec 1995 and Jan-May 1996) and re-sampled to a latitude and longitude co-ordinate reference system. Data quality control flags, solar and zenith scan angle correction and maximum value compositing procedures were implemented with ERDAS Imagine 8.5 (Leica Geosystems GIS & Mapping, Atlanta, USA). For more comprehensive details on these procedures see Green & Hay, (2002) and Hay et al., (2000).

Monthly time-series of three primary predictor variables were derived from these images for analysis: (i) the normalized difference vegetation index (NDVI), an indicator of photosynthetic activity and surrogate for moisture availability (Hay et al., 1998; 2000); (ii) the land surface temperature (LST); whose accuracy is similar to that of spatially interpolated temperature data obtained from ground meteorological stations in Africa (Hay & Lennon, 1999; Hay et al., 2000); and (iii) the middle infrared reflectance (MIR); a satellite “temperature” band that is sensitive to both reflected and emitted radiation (Boyd & Curran, 1998) and included since it suffers less from atmospheric attenuation than LST (Cracknell, 1997).

Cold Cloud Duration (CCD) data were also derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series and used as a surrogate measure of rainfall. CCD image pixels represent the number of hours during which cold cloud top temperatures below a geographically variable threshold were experienced during a 10-
day compositing period. CCD threshold temperatures have been derived empirically for areas of Africa between 0-27°N of latitude (Snijders, 1991). The CCD has been found to have a root mean square error of ±38 mm when compared with meteorological station recordings across continental Africa (Hay, 2000; Hay & Lennon, 1999). The 0.01-degree spatial resolution CCD data used for this study were re-sampled to 1 x 1 km spatial resolution.

Landcover data at full spatial resolution (1:100,000) were requested and downloaded from the Africover project’s website (http://www.africover.org). Africover urban and water body themes were produced from visual interpretation of digitally enhanced Landsat Thematic Mapper (TM) images (bands 4, 3, 2) acquired, mainly in 1999, across Kenya. Previous work has shown these variables to be important local modifiers of the PR (Omumbo et al., 2004). The urban area and water body polygons were overlaid on a 1x1 km grid of the same dimensions as the satellite imagery and the percentage area of each pixel occupied by the land-cover class calculated. Altitude data available and obtained from a global digital elevation model (Hastings & Dunbar, 1998) were resampled to 1x1 km spatial resolution using ERDAS Imagine 8.5 (Leica Geosystems GIS & Mapping, Atlanta, USA).

Previous statistical modelling efforts for vector-borne diseases in eastern Africa have shown that predictions are improved markedly by clustering data according to areas of ecological similarity (Brooker et al., 2001; 2002a; 2002b). The factors that influence the distribution and/or abundance of vectors vary between ecological zones (ecozones). Studies of tsetse fly distributions, for example, show that at the limits of the continental range of flies, a single climatic variable can be used to explain tsetse distributions while in areas of greater fly abundance, several climatic variables are needed for an adequate description (Rogers & Robinson, 2004).

In the present analysis we have defined two broad ecological zones across East Africa (Omumbo et al., 2002; 2004). Ecozone 1 (Figure 1) represents areas at the edge of the distribution of malaria vectors where climatic conditions do not favour the propagation of vectors for most parts of the year. Within these areas it is possible to define vector distributions or abundance using a single climatic variable. Thus Ecozone 1 is composed of arid areas where transmission is limited by low rainfall (vector breeding is restricted to rainy seasons or to areas near water bodies (Figure 1, Area A)), and highland areas where low temperatures limit vector and parasite development (Figure 1, Area B)). The ecology of Ecozone 2 is diverse and in general climatic conditions favour the proliferation of malaria vectors and parasites allowing for longer transmission seasons. This ecozone can be described as being well within the climatic range of malaria vector distribution and more than a range of environmental variables are required to describe malaria transmission. Ecozone 2 tends also to be more densely populated (particularly in Uganda) and better served by perennial rivers.

Statistical analysis

Since monthly climate data are serially correlated and thus have information redundancy, they were pre-processed using temporal Fourier analysis (TFA). TFA summarises the correlated data and in so doing, captures epidemiologically important seasonal variations and these are then described in statistically uncorrelated outputs.
The origins, mathematical basis and arguments for the biological appropriateness of TFA are developed in detail elsewhere (Rogers et al., 1996; 2002; Rogers & Randolph, 2000). 14 outputs were recorded from the TFA for each satellite time-series variable. These included the amplitudes of the annual (a1), bi-annual (a2) and tri-annual (a3) cycles; the phases (in months) of annual (p1), bi-annual (p2) and tri-annual (p3) cycles; the proportion of the variance in the original time-series described by the annual (d1), bi-annual (d2), tri-annual (d3) and all cycles (da), as well as the maximum (mx), minimum (mn), mean (a0) and variance (vr) of the cycle recomposed from the first three cycles. All these variables and in addition, the elevation derived from the DEM and percentage of urban and water bodies derived from Africover, were available to the discriminant analysis.

Discriminant analysis (DA) was used to identify environmental and population variables that discriminated best between four categories of prevalence namely; 0-<5, 5-<25%, 25-<75%, and >=75%). These classes correspond closely to categorical descriptions of malaria morbidity and mortality burden that have been described previously for Africa (Snow et al., 2003). Ideally the training data should include surveys from areas where malaria transmission does not occur. Such data, however, are rare for malaria prevalence studies as surveys are generally not conducted in places where and at times when malaria is absent. Furthermore, in areas of seasonal transmission, a prevalence of zero is not indicative of the absence of transmission as it may have been recorded outside the transmission season. It is difficult to define any sites in East Africa, other than unpopulated areas or mountains, as truly malaria-free. Very few of the PR surveys identified in this study recorded a true zero prevalence (N=10). All ten studies were from areas described according to expert opinion as high altitude or of seasonal transmission. A zero category was not used in this analysis due to the small number of studies and this group has been included in the lowest infection risk class (PR=0-<5%).

The DA procedures used have been applied previously to trypanosomiasis distribution mapping and are outlined in detail by Rogers et al., (1996), Rogers & Randolph, (2000) and Rogers & Robinson, (2004). Variables were selected iteratively on the basis of the generation of the maximum kappa statistic (Cohen, 1960; Jensen, 1996) compared with the other variables in each round of selection. The procedure was repeated until either the maximum kappa value was generated or 10 most discriminating variables were selected. It was assumed that the probabilities of membership in any of the four categories of prevalence were equal (i.e. the prior probabilities were 1/number of prevalence categories). Predictions were completed for all data and the effect of forcing urbanization was tested separately within each ecological zone.

For each training data point, a predictor variable value was extracted using IDRISI Version 2 (IDRISI project, Clarke Labs, Worcester, MA) and output in a database for use in the DA. A customised mapping program (written in Microsoft QuickBASIC Version 4.0) was used to derive a discriminant function based on comparing the training data with the predictor variables. Each image pixel was assigned to one of the 4 PR prevalence categories on the basis of the discriminant function and a predictive image derived. Predictions were not made for pixels where environmental conditions were significantly different from the training data pixels.
The accuracy of a predictive map is influenced by several factors, notably the sample sizes of data available in each class (in some cases these may not be large enough to provide a high confidence level in the prediction). Accuracy and agreement was assessed by comparison of observed values with predicted values by means of a classification or confusion matrix (Jensen, 1996). Agreement was estimated using the kappa (K) and tau (T) statistics; related indices of agreement that compensate for the agreement that would be expected due to chance. Values of kappa <40% indicate poor agreement; values between 40% and 75% suggest good agreement and values above 75%, excellent agreement (Landis & Koch, 1977). Three measures of accuracy were determined; the overall accuracy (OA) determined by the proportion of pixels in the main diagonal divided by the total number of training data pixels), the producer's accuracy (PA) and the consumer's accuracy (CA). PA and CA measure accuracy for individual prediction classes. PA (or omission error) refers to the probability of a training data pixel being correctly classified and is the proportion of training data (observed) pixels in a category of prevalence that are classified correctly. CA (or commission error) is a measure of the probability that predicted pixels represent the true classification on the ground and is the proportion of predicted pixels that are classified correctly (Story & Congalton, 1986).

RESULTS

The malaria prevalence data

The data search identified 330 parasite survey data points that fulfilled the inclusion criteria. The spatial distribution of these data is shown in Figure 1. 217 studies were from Kenya, 86 in Tanzania and 27 in Uganda (for details of the PR data see Omumbo & Snow, 2004). The mean sample size was 375 children with a median (interquartile range) of 204 (120; 427). Thirty five surveys described a PR 0-<5% (N=10 for PR=0), 80 surveys recorded a prevalence between 5-<25%, 177 surveys recorded a prevalence between 25-<75% and 38 surveys reported prevalence's in the childhood populations surveyed greater than or equal to 75%.

The malaria transmission predictive model

DA was performed initially without controlling for ecological zone or urbanization and the accuracy of the prediction tested. OA (the proportion of correctly classified pixels over all prevalence categories), was 72.4% (K = 0.502, T = 0.494). On visual comparison with historical (Government of Tanganyika, 1956) and contemporary (Craig et al., 1999; Omumbo et al., 2002) modelled malaria risk maps, the resulting predictive map was found to be significantly anomalous in southern Tanzania. In this area, the model over-predicted areas of low malaria prevalence (PR=5-<25%). The results were improved by stratifying the analysis according to two ecozone classes and by forcing the inclusion of urbanization as a predictor (Figure 2, Area A). These modifications marginally reduced OA in both Ecozone 1 [OA =64.0%; K = 0.483; T = 0.478 (Table 1a)] and Ecozone 2 [OA = 61.4 %; K = 0.45; T= 0.308 (Table 1b)] but provided an output with fewer large-area anomalies when compared with historical (Figure 3b) and more recent climate-driven maps (Figures 3c & d). The overall accuracy for the combined ecozone/urban adjusted map shown in Figure 2 was 62.1% (K =0.477, T = 0.495).
PA and CA values by ecological zone class are also provided in Tables 1a & 1b. In both Ecozones 1 & 2, training data predictions were poorest for the PR category 25-<75% (PA=53.6% & PA=45.6% respectively). CA was poorest for the PR category >=75% also for in both ecozones (CA=42.9% (Ecozones 1) and 33.2% (Ecozone 2)).

The top ten most discriminating predictor variables selected during the DA and subsequently used in the final prediction were: NDVI a1, LST a2, LST p2, CCD min, Africover water body %, DEM, MIR p1, CCD mean, MIR p2, percent urban (Africover classification). Vegetation, rainfall and ‘water body area’ were chosen as significant predictors in the “dry” Ecozone 1. In Ecozone 2 where we assume water was not generally limiting, temperature variables were most abundant among the predictor variables selected: LST mean, LST p1, MIR min, LST p2, MIR p1, CCD max, NDVI p1, DEM, LST a2, Africover urban %.

DISCUSSION

We have developed a predictive model of four categories of malaria prevalence in East Africa. The model is driven by empirical data and fully exploits the potential of currently available satellite-derived climate surrogate and other digital environmental data. The significance of non-climatic determinants of malaria transmission, such as urbanization, in determining the intensity of malaria is highlighted. The application of an ecological zone stratification increased overall accuracy by 6.1% and increased kappa values from 0.394 to 0.477, values. Similar improved results have been seen with the use of ecozone stratification for other models of malaria in West Africa (Kleinschmidt et al., 2001) and for schistosomiasis (Brooker et al., 2002).

The modelling approach used here differs in a number of important respects to previous empirical malaria mapping efforts (Snow et al., 1998; Kleinschmidt et al., 2000; 2001). Firstly, rigorous efforts have been made to ensure that the training data were of highest quality. To this end, historical, and possibly outdated, data have been excluded while only samples with large sample sizes that were randomly selected were included. For studies that overlapped spatially, an attempt was made to select the ‘best’ estimate for the study site. Secondly, much higher spatial resolution satellite data than have been utilised previously are used here. The environmental data, furthermore, have been summarised using TFA and so relate to the seasonal cycles of transmission. Thirdly, the influences of non-climatic factors such as urbanization have been allowed for. Urbanization has been conclusively shown to reduce *P. falciparum* entomological inoculation rates (Hay et al., 2000; 2004a; Robert et al., 2003) and human infection risks (Omumbo et al., 2004) independent of climate and was seen to be an important influence in this study.

The methods used in this study have produced statistically accurate maps (OA>60%). The highest prevalence categories, however, were over predicted (PA>75% compared with CA<43%). The confidence of this measure is difficult to predict as there were very few training data pixels in this category (N=38). It is important to assess the consistency of this prediction with what is known of malaria transmission across the region and previous malaria maps.
Historical maps of malaria for East Africa (Figure 3b) were largely based on expert opinion and knowledge of climatic patterns. Malaria intensity is defined according to the duration of transmission seasons; at one extreme are highly seasonal areas where transmission is limited to rainy seasons and at the other extreme transmission is more stable, occurring during well-defined seasons (usually the rainy seasons) each year. The map developed in this study is compared with the historical map (Figures 3a & 3b). While there are similarities at the low extreme of transmission (Figure 3a; Area A) there is a marked anomaly in Tanzania in the region south of Lake Victoria where the model appears to have under-predicted high prevalence areas (Figure 3a; Area B). The reasons for this are not clear but may be due to the lack of training data from the region (Figure 1; Area C). It is possible that none of the available training data were able to adequately describe the environmental conditions found in the area. This area of Tanzania has been described very rarely in malaria studies since historical times (Omumbo & Snow, 2004). Climate based models (Figure 3c; Area A Craig et al., 1999) suggest climatic conditions in this area are highly suitable for vector and parasite development but do not describe the variations in transmission intensity that are likely exist. Highland areas defined as malaria-free according to the historical map are, in general, predicted well as are areas in north western Kenya at the low extremes of transmission.

Despite efforts to maximise the accuracy of the predictive map developed in this study, the measures of statistical accuracy derived suggest that there are still many transmission modifying factors that are unaccounted for. A kappa value of 0.477, though good, is far from excellent. It is clear that clustering the training data according to appropriate ecological strata markedly improves predictions. Appropriate spatial definitions of such strata, however, are not available. Only 2 ecozones were defined for this study but it is possible that 2 classes are inadequate to describe the ecology of the study area.

The marked improvement in the visual consistency of urban-forced predictions suggests that hitherto undefined population factors may improve predictions further. The definition of ‘urban’ in this study was problematic. The extents of urban centres are poorly defined and a clear definition of ‘urbanized’ is unavailable to date. The effect of urbanization on malaria transmission is largely mediated through changes in local habit brought about by urbanization and development of infra-structure and so on. These factors are ill-defined for Africa and so their inclusion in the model was not possible. Many of the areas of poor prediction revealed here could be improved through additional targeted sampling. Such targeted sampling stratified according to relevant ecological zones have been shown to improve prevalence maps of helminths and schistosomiasis markedly (Montresor et al., 1998) and could possibly benefit malaria mapping where spatially random malarialmetric data are not available to date.

The training data set highlights first that there is a paucity of reliable information across vast areas of East Africa (Figure 1), as such providing the impetus for modelling and mapping the risks for areas where there are no data. The most poorly represented areas are those where transmission is least intense or population densities are lowest. As mentioned above, one of the greatest limitations of the PR samples is that the study sites are not a random sample of ecological settings across East Africa and therefore do not adequately represent the spectrum of transmission conditions across the region. Instead the data used are derived inevitably from populations of “special interest”, representing areas where research groups or malaria control
agencies perceive risk or serve specific research interests. The training data are biased by a priori knowledge of where the highest PRs are likely to exist. The lack of more than one PR estimate for each site is an additional limitation. Aside from precluding the investigation of seasonal influences, the accuracy of any single PR estimate cannot be assessed. In this study we have had to assume that each PR estimate used was measured accurately, is comparable with other estimates across the region and is a true representation of transmission in the study site. None of these assumptions can be verified without further sampling.

In using high spatial resolution environmental data we have also had to assume that the resolution of the PR data is comparable. This was not the case in practice. None of the studies described the exact spatial extent from which samples were drawn. Where administrative units were used as a sampling frame, the distribution of populations within these samples was not considered. The result is that possibly very low spatial resolution data have been used to describe transmission at high spatial resolution resulting in errors which are most evident in areas where environmental conditions are most variable. We conclude that perhaps it is not possible to address this question at this spatial resolution (particularly due to the poor resolution of the PR data) and it may be better to develop maps on a smaller scale with purposive sampling according to well-defined ecological zone strata. In this way local factors such as population distribution and effects of urbanization can be investigated concurrently. Longitudinal studies from such sites would also be more meaningful.

This area remains a challenge and the need for small area studies could be addressed within the framework of demographic surveillance sites. Maps are still needed, however, to provide a bigger picture to address the needs of intervention targeting which has been problematic to date. It has often been argued that without at least a basic knowledge of risk, efforts to control malaria will lack the ability to target limited resources to maximise coverage appropriately among those most at risk (Snow et al., 1996). Such evidence-based intervention targeting has not been possible due to the lack of an appropriate tool to define areas of risk. The international community has been effective in raising the importance of malaria control as a priority health investment for Africa through the Roll Back Malaria (RBM) Partnership (WHO, 1999; WHO 2003). Nevertheless five years after the formation of RBM, countries in East Africa still have very low coverage of interventions likely to reduce the burden of malaria in this sub-region. National surveys in East Africa show that less than 5% of children less than 5 years old are protected by an insecticide-treated net (ITN) (Monasch, 2004). In addition there are large disparities in the spatial components of access to ITN in all these countries. A recent Demographic and Health Survey in Kenya showed that the highest rates of ITN use were in Nairobi, the province least likely to experience malaria risk (CBS, 2003).

The importance of very accurate high spatial resolution malaria maps is arguable given that the aim of the maps is to target interventions usually done at the district level. Thus can be achieved successfully with lower resolution data and perhaps that is the way forward for malaria mapping.
ACKNOWLEDGEMENTS

This study received financial support from The Wellcome Trust, UK; International Development Research Centre, Canada; the South African Medical Research Council, the MARA/ARMA collaboration and the Kenya Medical Research Institute. The Wellcome Trust supports JAO, SIH and RWS as part of their Prize Studentship (#060063), Research Career Development (#069045) and Senior Research Fellow (#058992) programmes respectively. The authors acknowledge the contribution of malaria control personnel and scientists in East Africa who shared unpublished data. We are grateful to the Africover team for their efficiency and advice. Carlos Guerra is thanked for help with manipulating extractions and Africover data. This paper is published with the permission of the director of KEMRI.

REFERENCES

Gill CA (1920). The rôle of meteorology in malaria. *Indian Journal of Medical Research* 8, 633-693.

TABLES AND FIGURES

Table 1a: Classification matrix for urban-forced prediction stratified by ecozone: Ecozone 1 (OA=64%; K=0.483; T=0.478)

<table>
<thead>
<tr>
<th>Predicted prevalence (%)</th>
<th>0-<5</th>
<th>5-<25</th>
<th>25-<75</th>
<th>>=75</th>
<th>N</th>
<th>PA%</th>
<th>CA%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-<5</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>24</td>
<td>75</td>
<td>81.8</td>
</tr>
<tr>
<td>5-<25</td>
<td>3</td>
<td>21</td>
<td>7</td>
<td>2</td>
<td>33</td>
<td>63.6</td>
<td>60</td>
</tr>
<tr>
<td>25-<75</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>2</td>
<td>28</td>
<td>53.6</td>
<td>60</td>
</tr>
<tr>
<td>>=75</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>75</td>
<td>42.9</td>
</tr>
<tr>
<td>N</td>
<td>22</td>
<td>35</td>
<td>25</td>
<td>7</td>
<td>89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1b: Classification matrix for urban-forced prediction stratified by ecozone: Ecozone 2 (OA=61.4%; K=0.45; T=0.308)

<table>
<thead>
<tr>
<th>Predicted prevalence (%)</th>
<th>0-<5</th>
<th>5-<25</th>
<th>25-<75</th>
<th>>=75</th>
<th>N</th>
<th>PA%</th>
<th>CA%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed prevalence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-<5</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>100</td>
<td>91.7</td>
</tr>
<tr>
<td>5-<25</td>
<td>0</td>
<td>35</td>
<td>8</td>
<td>4</td>
<td>47</td>
<td>74.5</td>
<td>71.4</td>
</tr>
<tr>
<td>25-<75</td>
<td>1</td>
<td>14</td>
<td>68</td>
<td>66</td>
<td>149</td>
<td>45.6</td>
<td>89.5</td>
</tr>
<tr>
<td>>=75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>34</td>
<td>100</td>
<td>32.7</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
<td>49</td>
<td>76</td>
<td>104</td>
<td>241</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

133
Figure 1: Distribution of PR surveys according to ecological strata; Ecozone 1 (light blue) comprises arid and high altitude areas. Ecozone 2 (green) comprises ecologically diverse areas. Black dots show the distribution of PR studies.
Figure 2: Urban forced prediction with ecological zone stratification. Legend: White=0-<5%, yellow=5-<25%, light green=25-<75%, dark green= > =75%PR. Blue areas are water bodies.
Figure 3: Comparison of malaria maps available for East Africa

Figure 3a: Empirical model of malaria transmission in East Africa. Ecozone stratified and urban-forced prediction [PR 0-<5%, PR 5-<25%, PR 25-<75%, PR >=75%, no prediction; | water body

Figure 3b: Historical, expert opinion, map of malaria transmission for Kenya (Butler, 1959), Uganda (Government of Uganda, 1962) and Tanzania (Government of Tanganyika, 1956). | malaria free; | malaria near water; | transmission for 3-6 months in a year; | transmission for >=6 months in a year

Figure 3c: MARA fuzzy climate suitability model: 0=unsuitable; 1=suitable; FCS=fuzzy climate suitability. FCS=0, FCS=0.1, FCS=0.1-0.25, FCS=0.25-0.5, FCS=0.5-0.75, FCS=0.75-0.9, FCS=0.9-1.0

Figure 3d: Discriminant analysis based predictions of historical maps of malaria in East Africa using 8x8 km satellite-derived surrogates of climate (Omumbo et al., 2002). | malaria free; | malaria near water; | transmission 3-6 months in a year; | transmission >=6 months in a year.
CHAPTER 8:

Conclusions, limitations and future work
8.1. Summary

In Chapter 1 the determinants of *P. falciparum* distribution across SSA where presented emphasising both the biotic and abiotic factors. Climate, through its effect on *P. falciparum* and mosquito vector development and survival, has repeatedly been shown to be a major determinant of the limits of the distribution and intensity of *P. falciparum* transmission. As presented in Chapters 1 and 2, satellite-derived climate databases and their analysis have improved markedly over the past 5 years. The applications of these multi-temporal, high spatial resolution satellite data, with better ordination using temporal Fourier analysis techniques have been exploited in this thesis to examine the relationships between malaria risks and climate whilst retaining a basic biological framework.

The paucity of empirical data of transmission to train climate data has, to-date, been a major limitation for past efforts at malaria mapping. The thesis was structured to tackle this through an extensive data search that identified 2003 *P. falciparum* prevalence studies from across Kenya, Uganda and Tanzania (Chapters 2 & 3). Following the application of rigorous selection criteria (based on sample sizes >50, year of study post 1979, age range of sample 0-15 years old, and limiting inclusion to only randomly selected community based samples), 330 out of 2003 data points were selected as the most representative data available of the range of transmission intensities across East Africa. The study has used these data to investigate several features of malaria transmission. Firstly, they were used to perform a validation of a frequently used climate-
driven model of malaria distribution, the MARA model (Craig et al., 1999) (Chapter 4), secondly to investigate an important relationship between transmission and urbanization (Chapter 5) and finally the data were used to predict *P. falciparum* prevalence for unsampled sites across East Africa (Chapter 7).

The comparison of empirical *P. falciparum* prevalence data for Kenya with the MARA climate-driven model of the likelihood of stable transmission (Chapter 4) highlighted the limitations of this model to stratify *P. falciparum* malaria risk. The MARA model has been used previously to define areas of risk by applying cut-offs of fuzzy climate suitability criteria (FCS). An assessment of the distribution of PRs within these cut-offs showed that previous definitions of stable endemicity (FCS>=0.75) based on the MARA model may have been overly restrictive. A high proportion (58/137) of studies with high PR values (>=25%) characteristic of stable transmission areas were found in areas with FCS values <0.75.

The investigation of the relationship between transmission and urbanization in Kenya, Uganda and Tanzania, showed that rural studies had a 10% higher infection prevalence compared with urban studies. In addition, there were no studies from urban sites that recorded a PR>75%. The classification of studies as urban vs. rural was challenging and had to be based on inference from an amalgamation of data sources where survey reports did not provide adequate information. There continues to be a need for better operational definitions of urbanization and geographical descriptions of urban extents and for more data from urban areas in order to stratify risk more accurately.
The utility of Fourier processed data for predicting malaria distribution was demonstrated in Chapter 6 where the data were used to improve the historical classifications of malaria. The satellite data were able to predict historical classifications of malaria with an overall accuracy of 89.9% \((kappa=0.775)\) with areas of the least intense transmission being predicted with greatest accuracy (96%). In Chapter 7 the strictly selected empirical data were used to train climate data and non-climatic variables, notably urbanization, to provide a more comprehensive map of malaria transmission for East Africa. Surrogates of moisture availability (NDVI) and temperature (LST) were found to be among the principal predictors of malaria transmission with an overall prediction accuracy of 62% and mapped output was improved with the inclusion of urban criteria and ecological zonation.

8.2. The limitations of the \(P. falciparum\) prevalence training data

Ensuring the reliability and accuracy of PR data was perhaps the most challenging aspect of the study. Several factors affect the accuracy and reliability of individual \(P. falciparum\) estimates and their comparability between studies including the accuracy and reliability of microscopy, which was not possible to control for in the selection criteria. A pre-requisite for successful modelling using the statistical methods employed in this study is that training data capture the entire range of environmental conditions under which malaria occurs. As outlined in Chapter 3, the prevalence studies in this study were highly clustered, being concentrated in high transmission, densely populated areas while sparsely populated areas such as NE Kenya and south and western Tanzania were poorly
represented. The selection of survey sites is likely to have been based on convenience, the need to answer specific research questions or on proximity to medical or malaria research centres. National surveys would be a more appropriate alternative in order to randomly select data that represent the true range of ecological conditions in East Africa and so avoid the selective nature of retrospective literature sourced data. Truly national sample surveys, however, have rarely been undertaken in any of the three East African countries (Chapter 3).

The clustering of the data also presented the additional problem of spatial correlation. This is important to consider as the discriminant analysis techniques used in the study assume that prevalence observations are independent and spatially correlated data can not be considered independent observations. There are several ways in which future studies can improve on the spatial limitations of the training data including conducting studies in sites that have not been sampled previously or using stratified sampling techniques based on ecological zone strata and obtaining truly spatially random community-based samples.

Very few survey reports gave information on the season during which prevalence studies were conducted. Most reports provided a month of survey and for areas where rainfall patterns are known, it was possible to deduce that most studies were conducted during peak transmission seasons. Where available, such longitudinal data have been averaged but for most studies, the season of survey was not considered due to lack of information provided in the original reports.
Very rarely were details of randomisation methods provided in the reports and the sample selection and analysis has assumed that surveys described as randomly selected were indeed random. For a proportion (88/330) of the selected surveys it was either not absolutely clear that children included were selected at random or samples included a few volunteers. Bias caused by differences in age groups sampled were minimised by restricting samples to include only children under 0-15 years old but even small differences in the weights of age-structured samples might have influenced the final childhood parasite prevalence estimate. Again it was not possible to correct every survey by individual years of age due to the paucity of information in the original reports and this might have influenced final prevalence estimates.

Despite these limitations, the selected data set probably represents the best combined data available for East Africa to-date. There are still many data gaps and although additional sampling from previously un-sampled areas would be ideal, the cost and manpower required for such an exercise makes it prohibitive. For these reasons, malaria mapping will continue to rely on modelling for data poor areas. Although beyond the scope of this study, validation is a crucial step in model development. None of the currently available models have been validated according to field studies and this should be an important step in future modelling efforts.
Figure 8.1. Summary of available malaria maps for East Africa
Figure Legends

Figure 8.1a: Historical map of malaria distribution for Kenya (Butler, 1959), Uganda (Government of Uganda, 1962) and Tanzania (Government of Tanganyika, 1956). =malaria free; =malaria near water; =transmission for 3-6 months in a year; =transmission for >=6 months in a year

Figure 8.1b: MARA FCS model. 0=unsuitable; 1=suitable; FCS=fuzzy climate suitability; =0; =<0.1; =0.1-0.25, =0.25-0.5; =0.5-0.75; =0.75-0.9; =0.9-1.0

Figure 8.1c: Epidemic risk model (Highland Malaria Risk project (Cox et al., 1999)). Epidemic risk classes: =low; =moderate; =high; =non-epidemic areas <1000m ASL

Figure 8.1d: Satellite-derived predictions of EIR for East Africa (Rogers et al., 2002). EIR range: =0-4; =5-30; =31-89; =90-259; =260-703; =no prediction

Figure 8.1e: Modelled predictions of stable endemicity for Kenya (Snow et al., 1998). =high; =moderate; =low; =unstable endemicity

Figure 8.1f: Satellite-derived predictions of the malaria seasonality for Kenya (Hay et al., 1998a). =>6 months; =3-6 months; =<3 months transmission; =no transmission

Figure 8.1g: Discriminant analysis predictions of malaria transmission intensity in East Africa using satellite-derived surrogates of climate (Omumbo et al., 2002). =malaria free; =malaria near water; =transmission 3-6 months in a year; =transmission >=6 months in a year

Figure 8.1h: Empirical model of the PR in East Africa based on 1x1km resolution RS environmental surrogate data. =0<5%; =5-25%; =25-<75%; =75%; =no prediction; =water body.
8.3. A comparison of previous East African malaria maps

As described in Chapter 1, there are several malaria endemicity maps available for East Africa. The different measures used to describe malaria's endemicity include the duration (in months) of periods of transmission within a year or seasonality (Figures 8.1a, 8.1f & 8.1g), the suitability of climate to support transmission ranging from suitable to unsuitable (Figure 8.1b), epidemic prone areas (Figure 8.1c), climate-based predictions of the EIR (Figure 8.1d), predictions of stable endemicity for 4th level administrative units (Figure 8.1e) and the risk of *P. falciparum* infection (Figure 8.1h). A comparison of these maps reveals some striking similarities particularly at the extremes of transmission.

All of the maps presented show that East Africa is characterised by a wide range of endemicities with areas of no transmission at one extreme and highly intense, stable transmission at the other extreme. The maps also show that this diversity is particularly marked in Kenya where a major proportion of surface area is represented by areas of low risk. Tanzania is the least diverse with all maps showing that most of the country experiences moderate-high, perennial transmission. Within the broad area of stable endemicity are small restricted areas of lower transmission intensity, notably highland areas in the Usambara Mountain range of North Eastern Tanzania. Similar highland areas are found in the western highlands of Kenya and in South Western Uganda.

Cox *et al.*, (1999) model a single stratum of malaria risk, *i.e.* areas potentially at risk of epidemics (brown areas in Figure 8.1c). Their distribution is similar in all the
transmission maps presented in that areas defined as 'epidemic prone' correspond well with areas defined as low risk or malaria-free on the other maps.

Historical definitions of transmission were used to compare the spatial extents of transmission intensity classes between climate based models (Figure 8.2) and empirical data driven models (Figure 8.3). Correspondence between historical malaria-free areas (Figure 8.2a; area a) and areas of zero fuzzy climate suitability was good. Similar correspondence was found between the historical map and the predictions of the historical map made using satellite-derived climate surrogate data (Figure 8.2b). Areas with a predicted EIR >90 infective bites/person/year also showed good correspondence with historical intense transmission areas (>=6 months in a year; Figure 8.2c). Comparison of the historical map with empirical data driven maps for Kenya, however, revealed poor agreement in most areas (Figure 8.3a; areas e) but was good within a few smaller highly intense transmission areas (Figure 8.3a & 8.3b; areas g).
Figure 8.2. Comparisons between historical classifications of malaria and available maps of malaria distribution for East Africa

Legend for historical map:
- Malaria free
- Malarious near water
- Transmission for 3-6 months in a year
- Transmission for >=6 months in a year
Figure 8.3. Comparisons between historical classifications of malaria and empirical maps of malaria distribution for Kenya

Legend for historical map:

- Malaria free
- Malarious near water
- Transmission for 3-6 months in a year
- Transmission for >=6 months in a year
A selection of points for Kenya randomly selected according to the four strata of malaria in the historical map (Figure 8.1a) was used to make comparisons between Figures 8.1b; 8.1e & 8.1g. Each of the comparison maps was reclassified in IDRISI (The IDRISI Project, Clarke University, 1997) according to 4 strata representing malaria free/unstable, low risk, moderate and high transmission. Thresholds of 0; >0-<0.25; 0.25-<0.75 and >=0.75 FCS were selected as have been used previously for the fuzzy climate suitability map of Craig et al., (1999). Using a GIS, approximately 100 points were randomly selected from each of the strata "malaria free," "malaria near water," "moderate" and "intense" transmission in the historical map (Table 8.1). These points were then used to extract endemicity class values from each of the comparison maps. Overall agreement between the maps varied as follows; 77.3% for Butler, 1959 vs. Omumbo et al., 2002 (Table 8.1a), 64.3% for Butler, 1959 vs. Craig et al., 1998 (Table 8.1b), 43.0% for Butler, 1959 vs. Snow et al., 1998 (Table 8.1c) and 62.0% for Craig et al., 1998 vs. Snow et al., 1998 (Table 8.1d).

The high level of agreement between Butler, 1959 and Omumbo et al., 2002 maps was not surprising as the latter was based on training data derived from the former. A comparison of the geographic extents of transmission categories between maps by Butler, 1959 and Snow et al., 1998 is difficult as the latter was attributed to administrative boundary units and probably contributes to the low agreement between the two maps (Table 8.1c). The agreement between Butler, 1959 and Craig et al., 1998 is notable though. Both maps are solely climate driven and this is perhaps the reason for their similarity (Table 8.1b).
Table 8.1a. Agreement between Butler, 1959 and Omumbo et al., 2002

<table>
<thead>
<tr>
<th></th>
<th>Butler, 1959</th>
<th>Omumbo et al., 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>malaria free</td>
<td>malaria near water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - 6 months</td>
</tr>
<tr>
<td>malaria free</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>malaria near water</td>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>3 - 6 months</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>>= 6 months</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>135</td>
</tr>
<tr>
<td>Overall agreement</td>
<td>77.3%</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.1b. Agreement between Butler, 1959 and Craig et al., 1999

<table>
<thead>
<tr>
<th></th>
<th>Butler, 1959</th>
<th>Craig et al., 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>malaria free</td>
<td>zero</td>
</tr>
<tr>
<td>malaria free</td>
<td>88</td>
<td>7</td>
</tr>
<tr>
<td>malaria near water</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>3 - 6 months</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>>= 6 months</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td>138</td>
</tr>
<tr>
<td>Overall agreement</td>
<td>64.3%</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.1c. Agreement between Butler, 1959 and Snow et al., 1998

<table>
<thead>
<tr>
<th></th>
<th>Butler, 1959</th>
<th>Snow et al., 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>malaria free</td>
<td>unstable</td>
</tr>
<tr>
<td>malaria free</td>
<td>85</td>
<td>4</td>
</tr>
<tr>
<td>malaria near water</td>
<td>43</td>
<td>26</td>
</tr>
<tr>
<td>3 - 6 months</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td>>= 6 months</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>74</td>
</tr>
<tr>
<td>Overall agreement</td>
<td>43.0%</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.1d. Agreement between Craig et al., 1999 and Snow et al., 1998

<table>
<thead>
<tr>
<th></th>
<th>Craig et al., 1999</th>
<th>Snow et al., 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zero</td>
<td>>0 - 0.24</td>
</tr>
<tr>
<td>unstable</td>
<td>93</td>
<td>2</td>
</tr>
<tr>
<td>low</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>moderate</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>high</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>74</td>
</tr>
<tr>
<td>Overall agreement</td>
<td>62.0%</td>
<td></td>
</tr>
</tbody>
</table>

150
All available maps have used climate data to predict malaria but few (Figure 8.1d-h) have used empirical data to train these climate data sets. Most available empirical data are derived from moderate to intense transmission sites. The predictions of EIR (Figure 8.1d) demonstrate this. EIR data were unavailable for low malaria transmission areas (displayed in grey) resulting in a very patchy distribution map particularly for Kenya where low risk areas predominate.

The high transmission risk areas north of Lake Victoria in Uganda and Kenya as well as the southern part of the Indian Ocean coastline are similar in all four maps. Also similar are the low risk areas of NE Kenya where transmission is limited by the unavailability of mosquito breeding sites for most of the year. These areas are classified as low endemicity (Figure 8.1e), supporting transmission for <3 months in a year (Figure 8.1f), malarious near water (Figure 8.1g) and have been predicted as low transmission risk areas (PR=0-<5%) in this study (Figure 8.1h). The abiotic factors that drive transmission at its extremes are likely to be more distinct than those in areas of moderate transmission. In highland areas, for example, transmission is limited by low temperatures, and in arid areas it is limited by low rainfall. These areas are the least difficult to stratify.

There is considerably more overlap in transmission determinants in areas of intermediate transmission and the boundaries of these vary significantly between the different transmission maps. It is here that the use of empirical data is most important. Although a poor correlation ($R^2=0.28$; $p<0.001$) was found on a regression analysis between the PR data as continuous variable and the categories of satellite data based predictions of the
historical map presented in Figure 8.1g. Figure 8.3 suggests a definite signal in the
distribution of the PR across differing levels of malaria transmission intensity. The
signal, however, is not clear and it is suggested in Chapter 7 that this may be due to the
course resolution of the PR data used compared with the high spatial resolution of the
environmental data sets.

Figure 8.3. Boxplot of PR by malaria prevalence category. 1 = malaria-free
(N = 19), 2 = transmission near water (N = 56), 3 = transmission for 3–<6 months a
year (N = 102), 4 = transmission for >=6 months a year (N = 153). Outliers (open
circles) are cases with values between 1.5 and 3 box lengths from the upper edge
of the box. The box length is the interquartile range and the line within the box
represents the median.

In the absence of ground verification or other gold standard, it is difficult to make
meaningful comparisons of these diverse maps. This analysis shows that climate data do
provide consistent information about the potential for transmission but, as revealed by the poorer agreement when empirical data are included, there are other determinants of transmission that climate either captures poorly or not at all. Much has been done in this study to address this deficiency and the result of these efforts is shown in Figure 8.1h but there are important areas that require further attention.

8.4. Future aims for mapping malaria and suggested steps to make improvements

The significance of developing malaria models will be determined by their usefulness in the prevention and control of malaria. This study has shown that there is a wide scope for developing improved models. Investment could be made in higher resolution climate and empirical malariometric data and the range of ecological databases available expands almost daily. How does one decide what is important? For the malaria programme manager at the district level, high spatial resolution classifications may not be a priority. Information from currently available maps showing areas for which data are not available, on the other hand, may be useful for targeting surveillance studies. Additional data particularly from low transmission areas are still required as these areas remain poorly characterised.

An important application for high resolution data is in mapping urban malaria. The marked heterogeneity of transmission within urban micro-environments is a well-recognised phenomenon, however, characterising these that high resolution satellite data
derived from passive RS systems requires further investment given the dynamic nature of urbanization in SSA (Chapter 5).

The study has iteratively improved our understanding of the determinants of malaria endemicity in East Africa, how these might be modelled and the limitations of existing approaches. It is by no means comprehensive but it is a beginning. It is hoped that areas requiring improvement and validation can be addressed by future studies.
REFERENCES

162

172
MARA/ARMA collaboration (1998). Towards an atlas of malaria transmission in Africa: First technical report of the MARA/ARMA. Durban, South Africa, South African Medical Research Council, IDRC, Canada and Wellcome Trust, UK.

children from satellite data and bed net use surveys: The importance of spatial
correlation in the interpretation of results. American Journal of Tropical Medicine
and Hygiene, 61: 2-8.

Thomson M.C., Connor S.J. (2001). The development of Malaria Early Warning

example of Brazzaville. 3. Relationships between urbanization and the intensity
of malaria transmission. Transactions of the Royal Society of Tropical Medicine
and Hygiene, 81: 19-25.

the example of Brazzaville. Part II. Results of entomological surveys and
epidemiological analysis. Transactions of the Royal Society of Tropical Medicine
& Hygiene, 81(Supplement 2): 34-42.

Trape J.F., Zoulani A, Quinet M.C. (1987). Assessment of the incidence and
prevalence of clinical malaria in semi-immune children exposed to intense and

Trape J-F., Lefebvre-Zante E., Legros F., Ndiaye G., Bouganali H., Druiilhe P.,
Salem G. (1992). Vector density gradients and the epidemiology of urban malaria
in Dakar, Sénégal. American Journal of Tropical Medicine and Hygiene, 47: 181-
189.

reducing transmission. Parasitology Today, 12: 236-204.

trends. Analysis of the provisional UNHCR population statistics. Geneva,

APPENDIX

The data collection proforma
MARA/ARMA collaboration (Mapping Malaria Risk in Africa)

Data collection proforma

SECTION 1: DATA REFERENCE

ADMINISTRATIVE INFORMATION

<table>
<thead>
<tr>
<th>Regional Centre Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date data transcribed (dd/mm/yyyy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data transcribed by (name)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Data checked at co-ordinating centre

DATA REFERENCE

1.1 Category of document

<table>
<thead>
<tr>
<th>Journal</th>
<th>MOH report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book</td>
<td>Other report</td>
</tr>
<tr>
<td>Thesis</td>
<td>Personal communication</td>
</tr>
</tbody>
</table>

1.2 Reference source

<table>
<thead>
<tr>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year of publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Origin / Journal

<table>
<thead>
<tr>
<th>Journal</th>
<th>Non-journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Issue no.</td>
</tr>
<tr>
<td>Pages from to</td>
<td>Total pages from to</td>
</tr>
<tr>
<td>Specific pages from to</td>
<td></td>
</tr>
</tbody>
</table>

Does this report contain:

- Parasite ratios (section 3)
- Entomology (section 4)
- Burden of disease (section 6)
- Incidence (section 7)

<table>
<thead>
<tr>
<th>How many data points are there in this report?</th>
</tr>
</thead>
<tbody>
<tr>
<td>188</td>
</tr>
</tbody>
</table>
SECTION 2: SURVEY LOCATION

2.1 Geographic location of survey

<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>First level administrative unit (province)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second level administrative unit (e.g. district)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third level (e.g. area, division)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth level (e.g. location)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nearest large town</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community level name (village, settlement)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 Survey location geo-reference

N.B. Latitude refers to North (+) or South (-)

Longitude refers to East (+) or West (-)

Decimal degrees:

<table>
<thead>
<tr>
<th>Point</th>
<th>Point name</th>
<th>Degrees Latitude</th>
<th>+/- N/S</th>
<th>Degrees Longitude</th>
<th>+/- E/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

or,

Degrees and decimal minutes:

<table>
<thead>
<tr>
<th>Point</th>
<th>Point name</th>
<th>Latitude</th>
<th>+/- N/S</th>
<th>Longitude</th>
<th>+/- E/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degrees, minutes and seconds:

<table>
<thead>
<tr>
<th>Point</th>
<th>Point name</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Deg</td>
<td>Min</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 Is the survey location a:

<table>
<thead>
<tr>
<th>Point</th>
<th>Polygon</th>
<th>Multiple points (with pooled results)</th>
<th>Administrative unit</th>
</tr>
</thead>
</table>

2.4 How did you geo-reference?

<table>
<thead>
<tr>
<th>Method</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa Data Sampler</td>
<td>Scanned topographic map</td>
</tr>
<tr>
<td>Africa Data Sampler estimate</td>
<td>Topographic map, manually</td>
</tr>
<tr>
<td>Other digital map</td>
<td>Encarta</td>
</tr>
<tr>
<td>HealthMap</td>
<td>GPS</td>
</tr>
<tr>
<td>Geoname</td>
<td>Other (specify):</td>
</tr>
<tr>
<td>Co-ordinates given in report</td>
<td></td>
</tr>
</tbody>
</table>

If a topographic map was used, indicate its scale (e.g. 1:5 000)

2.5 Climatological and geographical data

<table>
<thead>
<tr>
<th>Is a graph, map or table available (of area, rainfall, temperature, disease profile, seasonal abundance of infection or vectors, etc.)?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

N.B. (Please attach photocopies of these to the proforma)

2.6 General information on the survey area:

<table>
<thead>
<tr>
<th>Is malaria transmission in the area:</th>
<th>Yes</th>
<th>No</th>
<th>Not stated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemic/unstable/highland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endemic/stable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the population studied refugees or displaced persons?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is rice grown in the area?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there an irrigation scheme?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there a swamp/wetlands/dam etc. close by?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is the area: Urban Peri-urban Rural Not stated

<table>
<thead>
<tr>
<th>Is the area:</th>
<th>Urban</th>
<th>Peri-urban</th>
<th>Rural</th>
<th>Not stated</th>
</tr>
</thead>
</table>

Comments:

190
SECTION 3. THE PARASITE SURVEY

3.1 Description of survey

(Tick the relevant box/es)

<table>
<thead>
<tr>
<th>Survey of school children</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCH/EPI survey</td>
</tr>
<tr>
<td>Drug resistance screening survey (include only initial, pre-intervention screening results)</td>
</tr>
<tr>
<td>Randomly-selected community-based survey (e.g. control populations in intervention studies)</td>
</tr>
<tr>
<td>Non-randomly-selected community-based survey (includes surveys which ask for volunteers)</td>
</tr>
<tr>
<td>Longitudinal survey of the same individuals</td>
</tr>
<tr>
<td>Longitudinal survey of randomly selected individuals</td>
</tr>
<tr>
<td>Total population survey</td>
</tr>
<tr>
<td>No details given</td>
</tr>
</tbody>
</table>

3.2 Survey methodology

Describe the methodology used to select subjects *(Indicate criteria for inclusion and exclusion)*
3.3 Parasitological methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy using Giemsa stain</td>
<td>No details given</td>
</tr>
<tr>
<td>Microscopy using Field’s stain</td>
<td>Other (specify):</td>
</tr>
<tr>
<td>Microscopy with no details of staining</td>
<td>Rapid test (specify):</td>
</tr>
</tbody>
</table>

If microscopy, how many fields examined before regarded negative? [Blank]
How many white blood cells counted for density counts? [Blank]

Quality control performed? Yes No Not stated

Which species are presented in report?

- P. falciparum
- P. vivax
- P. malariae
- P. ovale
- Species not specified

Are the data presented as asexual and sexual forms separately? Yes No Not stated

Comments:
3.4 Dates of survey

<table>
<thead>
<tr>
<th>Date given?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date started (mm-yyyy)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date ended (mm-yyyy)</td>
<td>-</td>
</tr>
</tbody>
</table>

Season of survey

<table>
<thead>
<tr>
<th>Season of survey</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry season</td>
<td>Long wet season</td>
</tr>
<tr>
<td>Long dry season</td>
<td>Short wet season</td>
</tr>
<tr>
<td>Short dry season</td>
<td>Combination</td>
</tr>
<tr>
<td>Wet season</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

3.5 Parasite Ratios – enter *P. falciparum* only where possible.

<table>
<thead>
<tr>
<th>Age, lower limit</th>
<th>Age, upper limit</th>
<th>Number examined</th>
<th>Number positive</th>
<th>Percent positive</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>