This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Voltammetric detection of glutathione; an adsorptive stripping voltammetry approach

Madalena C.C. Areiasa, Kenichi Shimizub and Richard G. Comptonb*

aDepartamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/nº Cidade Universitária - Recife, PE, Brazil - CEP 50.740-560

bDepartment of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom

*Corresponding author: richard.compton@chem.ox.ac.uk

Keywords: copper(II), glutathione, glassy carbon electrode, thiols, cyclic voltammetry
Abstract

A simple, sensitive, and rapid detection of glutathione by cyclic voltammetry using a bare glassy carbon electrode is reported in which glutathione forms a 1:1 complex compound with copper(II) ion. This complex compound is adsorbed onto the electrode surface and undergoes electrochemical oxidation at a characteristic oxidation potential of ca. −0.20 V vs standard mercury/mercurous sulphate reference electrode, which is used to detect the glutathione concentration. The linear dynamic range is obtained for a glutathione concentration of 1 µM to 12.5 µM, and the sensitivity is found to be 0.1 ± 0.002 µA µM⁻¹. The low limit of detection (n=3) of 0.14 µM and the precision of 1.8% are achieved using a simple, unmodified electrode. The robustness of the present methodology is demonstrated by the successful quantitative analysis of glutathione in the presence of cysteine.

1. Introduction

Glutathione (γ-glutamyl-cysteinyl-glycine, GSH) is the most common low-molecular-weight thiol in the animal cells at the concentration range of 0.5 to 10 mM.¹ This is known to decrease in response to protein malnutrition and oxidative and nitrosative stresses.²,³ GSH is also found in the physiological fluids at the concentration of around 2–12 µM for a healthy individual;⁴ the concentration is reportedly lower for patients with a number of pathological conditions such as diabetes, macular degeneration, and HIV disease.⁵,⁶ For these reasons, GSH is considered as a promising biomarker for various diseases. Measurement of GSH concentration is however complicated by its instability in solution as it is readily oxidized to form disulphide.⁷ For this reason, conventional methods derivatize GSH to form a stable compound before it is analysed by high performance liquid chromatography⁸–¹⁴ or capillary electrophoresis¹⁵, that are coupled with fluorescence⁸–¹³, UV-visible spectroscopy¹⁴,¹⁵,
mass spectrometry,[16] and electrochemical detectors.[17] These approaches are generally time-consuming and expensive, and it is rather more desirable to develop a system that is simple, rapid, and low cost for long-term continuous monitoring of the GSH concentration.

Electrochemical sensors are a promising alternative to the conventional approach. The thiol group of GSH undergoes oxidative dimer formation at an electrode surface allowing the reagent to be quantitatively analysed using various voltammetric and amperometric techniques.[18-39] Table 1 summarises previously reported approaches to the electrochemical detection of glutathione. Most techniques involve modification of the electrode surface to improve the electrode-substrate affinity or the use of pulse voltammetric techniques to reduce capacitive charge. While the techniques listed in Table 1 have successfully detected GSH, the electrode modification can increase the operating cost and complicate the use of the electrochemical sensors. Recently, it was shown that captopril, a thiol containing therapeutic drug for hypertension, can be electrochemically detected at an unmodified glassy carbon electrode (GCE) in the presence of copper (II) ion.[40] This was related to complex formation between the molecule and copper (II) ion which facilitated the oxidative dimer formation of the thiol functional group. This system is applied herein to detect GSH, a thiol containing amino acid, which is reportedly forms a complex compound with copper (II) ion in aqueous media.[7,39,40] Successful application of this work can greatly simplify the electrochemical detection of the physiologically important molecule and make it more cost-effective by avoiding the need for any electrode modification and employing a conventional GCE.

Table 1: Summary of electrochemical techniques reported for glutathione detection.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Modification</th>
<th>Method</th>
<th>E_{det}</th>
<th>LDR (µM)</th>
<th>Sensitivity (µA µM⁻¹)</th>
<th>LOD (µM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>No</td>
<td>CV</td>
<td>−0.2 V vs. MSE</td>
<td>1-10</td>
<td>0.10</td>
<td>0.14</td>
<td>This work</td>
</tr>
<tr>
<td>GC</td>
<td>DEPD</td>
<td>CV</td>
<td>+0.09 V vs. SCE</td>
<td>20-100</td>
<td>0.044</td>
<td>6.2</td>
<td>[18]</td>
</tr>
<tr>
<td>GC</td>
<td>DEPD</td>
<td>CV</td>
<td>+0.17 V vs. SCE</td>
<td>40-160*</td>
<td>0.12*</td>
<td>0.55*</td>
<td>[19]</td>
</tr>
<tr>
<td>GC</td>
<td>Catechol</td>
<td>CV</td>
<td>+0.11 V vs. SCE</td>
<td>1-80</td>
<td>0.029</td>
<td>0.93</td>
<td>[20]</td>
</tr>
<tr>
<td>Substrate</td>
<td>Electrode</td>
<td>CV vs.</td>
<td>Limit of Detection</td>
<td>Linear Dynamic Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC Catechol</td>
<td>CV</td>
<td>+0.2 V</td>
<td>6-59</td>
<td>0.01</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP Ferrocene</td>
<td>CV</td>
<td>+0.53 V</td>
<td>0.148-2×10³</td>
<td>N/S</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC Enzyme/Os-PVP</td>
<td>CV</td>
<td>+0.02 V</td>
<td>1-200</td>
<td>1.2×10⁻³</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDD 5-thio-2-</td>
<td>CV</td>
<td>+0.85 V</td>
<td>10-100</td>
<td>0.022</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPPG No</td>
<td>CV</td>
<td>+0.65 V</td>
<td>0.10</td>
<td>0.039</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC SWCNT/TOQ</td>
<td>CV</td>
<td>+0.0 V</td>
<td>0.07-500</td>
<td>6.5×10⁻³</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABPP No</td>
<td>CV</td>
<td>+0.05 V</td>
<td>100-280</td>
<td>0.57</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP Prussian blue</td>
<td>CV</td>
<td>+0.2 V</td>
<td>2-500</td>
<td>2.6×10⁻⁴</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP TTF-TCNQ</td>
<td>CV</td>
<td>+0.2 V</td>
<td>5-340</td>
<td>0.090</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC CoTSPc-PLL</td>
<td>CV</td>
<td>+0.2 V</td>
<td>0.05-2.16</td>
<td>1.5</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 2,7-bis(ferrocenyl ethyl) fluoren-9-one</td>
<td>CV</td>
<td>+0.41 V</td>
<td>52.9±4.19×10⁻¹</td>
<td>1.99</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC Cafeic acid</td>
<td>CV</td>
<td>+0.22 V</td>
<td>0.3-5×10⁻¹</td>
<td>0.212</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>CV</td>
<td>−0.22 V</td>
<td>0-60</td>
<td>1.9×10⁻³</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au MWCNT</td>
<td>CV</td>
<td>+0.08 V</td>
<td>99-8.8×10⁻¹</td>
<td>1.22×10⁻³</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC Hg(II)-DPTA-Pb(II)</td>
<td>DPV</td>
<td>+0.45 V</td>
<td>0.032-32.5</td>
<td>N/S</td>
<td>0.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP TiO₂-ferrocene carboxylic acid</td>
<td>DPV</td>
<td>+0.33 V</td>
<td>0.1-12</td>
<td>0.994</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPPG Nitrophenyl</td>
<td>SWV</td>
<td>−0.1 V</td>
<td>8.1-1×10⁻¹</td>
<td>0.051</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPPG MWCNT/FeT₄MPyP</td>
<td>SWV</td>
<td>−0.025 V</td>
<td>1.5-5×10⁻¹</td>
<td>0.703</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CILC Cu(OH)₂</td>
<td>SWV</td>
<td>+0.1 V</td>
<td>1-50</td>
<td>N/S</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABPP: acetylene black-packed powder; BDD: Boron doped diamond; GC: Glassy carbon; CP: Carbon paste; CILC: Carbon ionic liquid composite; SP: Screen printed; BPPG: Basal plane pyrolytic graphite; EPPG: Square wave voltammetry; LOD: Limit of detection; LDR: Linear dynamic range; SWCNT: Single-walled carbon nanotubes; MWCNT: Multi-walled carbon nanotubes; DEPD: N,N-diethyl-p-phenylenediamine; Os-PVP: Osmium-Polyvinylpyridine; TOQ: Synthetic triptycene orthoquinone; TTF-TCNQ: Tetrathiafulvalene-tetracyanoquinodimethane; CoTSPc-PLL: Cobalt tetrasulfonated phthalocyanine immobilised in poly(L-lys); Pip-Buff: Piperazine-N,N'-bis(2-ethanesulfonic acid) buffer; FeT₄MPyP: Fe(III) tetra-(N-methyl-4-pyridyl)-porphyrin; RPMI-1640: Bicarbonate system produced by Roswell Park Memorial Institute; PBS: Phosphate-buffered saline. N/S: Not specified. SCE: Saturated Calomel Electrode. (*) Derived from the figure given in the reference.
2. Experimental

2.1 Chemicals and Materials

Potassium nitrate (KNO₃, 99+%, but containing around 0.2 ppm of the copper(II)) was purchased from Fisher Scientific (Loughborough, UK). Copper(II) nitrate trihydrate (Cu(NO₃)₂·3H₂O, 99+%), sodium bicarbonate (NaHCO₃, 99+%) and hexaamineruthenium(III) chloride ([Ru(NH₃)₆]Cl₃, 99+%), Glutathione (GSH, C₁₀H₁₇N₃O₆S, 98+%) and Cysteine (C₃H₇NO₂S, 97+%) were obtained from Sigma-Aldrich (Gillingham, UK). Aqueous stock solutions of Glutathione and Cysteine were prepared freshly for every experiment. All solutions were prepared with ultrapure water from Millipore SimPak® 1 purification pack (lot# F5BA50456) with resistivity not less than 18.2 MΩ cm. Alumina powders (1.0, 0.3 and 0.05 µm) were obtained from Buehler (Coventry, UK). Oxygen free N₂ gas (99.998%, BOC Gases plc, Guildford, UK) was humidified by passing through a trap containing ultrapure water. A standard mercury/mercurous sulphate reference electrode (MSE, [Hg/Hg₂SO₄, saturated K₂SO₄], + 0.64 V vs. standard hydrogen electrode) was purchased from BASi (West Lafayette, USA). A platinum wire (diameter 1 mm, Goodfellow Cambridge Ltd, Huntingdon, UK) was used as a counter electrode.

2.2 Voltammetry

All electrochemical experiments were performed in a glass electrochemical cell (volume 10 mL) using a three-electrode system in a Faraday cage with a PGSTAT 101 potentiostat/galvanostat from Metrohm-Autolab BV (Utrecht, The Netherlands).

A glassy carbon working electrode (GCE, 0.0707 cm² in area) was purchased from CH Instruments (Austin, USA). The area of the electrode was confirmed by conducting cyclic voltammetry in aqueous 1 mM hexaamineruthenium(III) chloride at several different scan rates. Prior to experiment, a bare GCE was polished to a mirror finish using aqueous
slurries of 1.0, 0.3 and 0.05 µm alumina in descending order of size and rinsed thoroughly with ultrapure water in between. The GCE was then placed in deaerated 0.1 M KNO₃ and the potential was cycled between −0.5 V and +0.1 V vs. MSE at the scan rate of 100 mV s⁻¹ until voltammograms became reproducible (ca. 5 cycles). Note that it is important to avoid alumina residues which interfere with the electrochemical measurement by providing an absorption platform for and/or catalysing the oxidation of the reagent.⁴³,⁴⁴ Thereafter, the cleaned GCE was activated by being immersed in deaerated 0.1 M NaHCO₃ solution, and the potential was cycled between −1.6 V and +1.6 V vs. MSE at a scan rate of 100 mV s⁻¹ until stable voltammetric response was obtained (also normally 5 cycles). Without going through this pre-treatment, the oxidation of copper-GSH complex compound can still be observed at GCE; the precision of the voltammetric response is however found to be very poor (around 32 %). Carboxyl functional groups are reportedly generated at the GCE surface⁴⁵ during the pre-treatment, by which adsorption of the copper(II)-GSH complex compound is improved and the voltammetric response is stabilized. The treated GCE was thereafter rinsed thoroughly with ultrapure water and stored under the ambient conditions. Solutions containing copper(II), GSH, and 0.1 M KNO₃ separately were mixed in the following manner immediately prior to each electrochemical measurement: A pre-determined amount of copper(II) was first pipetted into a deaerated 0.1 M KNO₃ solution followed by the addition of GSH. The final mixture was stirred vigorously for 4 min to allow the formation of copper(II)-GSH complex. GCE was then inserted and rested in the solution for 60 s before cyclic voltammograms were recorded between −0.5 V to +0.5 V vs. MSE at a scan rate of 50 mV s⁻¹. Stable cyclic voltammograms were observed after the third scan, and the scan was triplicated thereafter. For the investigation of the interference from cysteine, a mixture of GSH and cysteine (5 µM each) was added to the above mentioned solution and waited for additional 20 min. before immersing GCE in order to allow the system to reach equilibrium.
All experiments were performed in solutions degassed with N\textsubscript{2} and at 25 °C. All experiments were carried out in triplicate.

3. Results and discussion

In the following, the electrochemical analysis of GSH in 0.1 M KNO\textsubscript{3} in the presence and absence of copper(II) is first conducted. Then, the formation of copper(II)-GSH complex is investigated using UV-Visible spectroscopy and cyclic voltammetry. The mechanism of electro-oxidation of the copper(II)-GSH complex compound at the GCE surface is thereafter carefully examined. Subsequently, a calibration plot is constructed for GSH and analytical parameters are determined, and the possible interference of cysteine is investigated.

3.1 Glutathione oxidation in presence of copper(II)

Electro-oxidation of 10 µM GSH in the absence of copper (II) was first investigated by recording a cyclic voltammogram of a bare GCE in 0.1 M KNO\textsubscript{3} at the scan rate of 50 mV s-1. The resulting voltammogram represented in Figure 1 (blue line) shows a small increase in current at around +0.4 V during anodic scan in comparison to the voltammogram recorded in only 0.1 M KNO\textsubscript{3} (Figure 1, black dash line). The direct oxidation of GSH is likely responsible for this current increase; a similar result with a slightly cathodically shifted peak has been observed in 0.1 M phosphate buffer solution containing 1 mM GSH using a specially prepared carbon paste electrode using an ionic liquid as a pasting liquid[39] Another small anodic peak, which appears at ca. −0.20 V vs. MSE (Figure 1, blue line) is attributable to the oxidation of a copper(II)-GSH complex compound. This is due to the presence of copper(II) impurity in the KNO\textsubscript{3} salt (4.3 µM as determined in our previous study[40], and the copper (I) ion is not stable under the experimental conditions). To confirm this, we observed
that the anodic peak becomes more prominent as the copper concentration is increased to 14.3 µM (Figure 1, red line). The redox activity of the uncomplexed copper ion itself is negligible at that concentration (Figure 1, pink line).

![Cyclic voltammograms of a bare GCE in 0.1 M KNO₃ (black dash line), in 0.1 M KNO₃ with 10 µM GSH (blue line), in 0.1 M KNO₃ 14.3 µM copper(II) ion (pink line), and in 0.1 M KNO₃ 14.3 µM copper(II) ion with 10 µM GSH (red line). All voltammograms are recorded at the scan rate of 50 mV s⁻¹. The results shown are from the third cycle.](image)

Fig. 1. Cyclic voltammograms of a bare GCE in 0.1 M KNO₃ (black dash line), in 0.1 M KNO₃ with 10 µM GSH (blue line), in 0.1 M KNO₃ 14.3 µM copper(II) ion (pink line), and in 0.1 M KNO₃ 14.3 µM copper(II) ion with 10 µM GSH (red line). All voltammograms are recorded at the scan rate of 50 mV s⁻¹. The results shown are from the third cycle.

To further investigate the presence of a copper(II)-GSH complex compound, a mixture of 0.05 M copper(II) and 0.2 M GSH was analysed by UV-Visible spectroscopy. Figure 2 shows that GSH nor copper alone absorb between 400 nm and 250 nm, whereas the mixture has a maximum absorption at 293 nm. This absorption profile is consistent with that of the copper(II)-GSH complex compound reported in the literature.[³⁹]
Fig. 2. UV-Vis spectra of 0.4 mM GSH (black dashed), 0.1 mM copper(II) (red) and, 0.2 mM GSH + 0.05 mM copper (II) mixture (blue) in water. Analyte was contained in a quartz cuvette with light path length of 10 mm. Spectra were recorded using a Shimadzu UV-Vis Spectrophotometer, UV-1800. All experiments were performed using ultra-pure water as a reference. A molar extinction coefficient found from the figure is 4700 L mol\(^{-1}\) cm\(^{-1}\).

3.2 Effect of scan rate on the peak current

To gain deeper understanding of the mechanism of the oxidation of copper(II)-GSH complex compound at the GCE surface, cyclic voltammograms were recorded in 0.1 M KNO\(_3\) with 10 µM GSH and 14.3 µM of copper(II) at scan rates between 0.025 V s\(^{-1}\) and 0.50 V s\(^{-1}\). The resulting voltammograms are presented in Figure 3A which shows an increase in current with the scan rate. It is moreover found that there is a direct correlation between the anodic peak current and the scan rate as illustrated in Figure 3B. This behaviour is indicative of that the oxidation process is of a surface-bound species. The surface coverage, which is determined by integrating the area under the oxidation peak, suggests that 1.5 (± 0.2) \(\times\) 10\(^{10}\) mol cm\(^{-2}\) of copper(II)-GSH complex compound is adsorbed on the electrode surface. Furthermore, the surface coverage does not depend on the scan rate as shown in Figure 3C; this is consistent with the proposed surface controlled process.\(^{[46]}\)
3.3 Reaction mechanism

A previous report$^{[47]}$ shows that oxidized glutathione (GSSG) forms a very stable complex compound with copper(II) ($\beta = 1.66 \times 10^{16}$) at the stoichiometric ratio of 1:2. This suggests that the copper(II)-oxidized glutathione complex, Cu$_2$(GSSG), is the product of the oxidation of GSH under the current experimental condition. In contrast, while the formation of the copper(II)-GSH complex has been reported,$^{[17,39,41]}$ stoichiometry of this complex has not been fully investigated. Accordingly further voltammetry was carried out to explore these possibilities.
Cyclic voltammograms were recorded at GSH concentrations of between 1.0 µM to 25 µM in the presence of 14.3 µM of copper(II) in 0.1 M KNO₃. The resulting peak current is plotted against the GSH concentration in Figure 4B. Under the excess copper concentration, the anodic peak current indicating the oxidation of copper-GSH complex increases with the concentration of the GSH ligand, as the number of the redox active species in the solution increases. The peak current increases with the GSH concentration until 14.3 µM. Thereafter, the peak current appears to be relatively stable, as the GSH concentration surpasses that of copper. The intercept of the two extrapolated best-fit lines of the peak current versus the GSH concentration (Figure 4B) is found at 16.0 µM, indicative of that the stoichiometric ratio of the complex compound is 1:1. Therefore, it can be concluded that the copper(II)-GSH complex compound ([Cu–SG]⁺) is likely oxidized at the electrode surface according to the following reaction:

\[2[Cu–SG]^+ \rightarrow Cu_2(GSSG) + 2e^- \] \hspace{1cm} (1)

3.4 Calibration Plot for Glutathione

Calibration curve was derived from Figure 4B using the GSH concentration range of 1.0 µM to 12.5 µM. The best-fit line of Figure 4B for the concentration range up to 12.5 µM reveals the following relationship (n = 3):

\[I_p/\mu A = (0.10 \pm 0.002)[Glutathione/\mu M] \quad R^2 = 0.995 \] \hspace{1cm} (2)

where \(I_p \) is the peak current. Physiological fluids, such as plasma and urine contain roughly 2.0 µM to 12 µM of GSH. Therefore, the linear dynamic range obtained in this study,
i.e., from 1.0 µM to 12.5 µM, suggests that samples can be analysed without pre-treatment such as dilution or pre-concentration. This is particularly important in order for clinical analysis laboratory application to be cost- and time- effective as well as to reduce the chemical waste. The reproducibility of the anodic peak current determined after triplicated collection of cyclic voltammograms at 10 µM GSH was 1.8%. The limit of detection (LOD) was calculated using the following formula:

\[LOD = \frac{3\sigma}{S} \]

where \(\sigma \) is the standard deviation and \(S \) is the sensitivity and found to be 0.14 ± 0.004 µM. This value is one of the lowest among the presently reported methods (Table 1).

![Fig. 4](image-url)

Fig. 4. (A) Cyclic voltammograms of a bare GCE in 0.1 M KNO\(_3\) in presence of 14.3 µM of copper(II) and various GSH concentrations. Black dashed: No glutathione; red: 1.0 µM; blue: 2.0 µM; pink: 4.0 µM; green: 6.0 µM; dark blue: 8.0 µM; violet: 10.0 µM; brown: 12.5 µM. All voltammograms were recorded at 50 mV s\(^{-1}\). The results shown are from the third cycle. (B) Plot of the peak currents obtained from the Figure 4A as a function of glutathione concentration. The calibration curve (red line, \(R^2=0.995 \)) was obtained from glutathione concentration range from 1.0 µM to 12.5 µM. The limit of detection was 0.14 ± 0.004 µM. The blue line is the best-fit of data points obtained from glutathione concentration range from 17.5 µM to 25.0 µM. The extrapolation of the two lines gives the stoichiometric concentration of glutathione (16.0 µM), indicating that the stoichiometric ratio of the glutathione to copper(II) is 1:1.

3.5 Glutathione selectivity in presence of Cysteine

Cysteine is a thiol containing amino acid that exists in physiological fluids at 5.0–15 µM alongside of GSH\(^{[10]}\). Due to the structural similarity, it may interfere with the
electrochemical detection of GSH. Cyclic voltammogram recorded in 0.1 M KNO₃ in the presence of 10 µM cysteine and excess copper shows an anodic peak which appeared at ca. −0.20 V vs. MSE (Figure 5, pink line). As the direct oxidation of this molecule is at much more anodic potential [39], the peak observable in the figure is likely of the copper(II)-cysteine complex. [51,52] In comparison to the voltammogram recorded in the solution containing the equivalent amount of GSH (Figure 5, blue line), the anodic peak for cysteine is broader and less intense. When a voltammogram is recorded in a solution that contained equimolar concentrations of GSH and cysteine, the anodic peak current showed, at first, significant increase above that of the system which contained GSH alone (result not shown). Thereafter, successive scans showed gradual decrease of the peak current. It was found that reproducible voltammograms can be obtained after the reaction mixture was equilibrated for 20 min prior to the electrochemical analysis (Figure 5, line green). Accordingly this equilibration time was included in the procedure to determine glutathione concentration in the presence of cysteine.

Fig. 5. Cyclic voltammograms of a bare GCE in 0.1 M KNO₃ with 44.3 µM copper(II) ion recorded at 50 mV s⁻¹ in presence of 10 µM GSH (blue line), 10 µM cysteine (pink line), and a mixture of 10 µM glutathione and 10 µM cysteine (green line). The dashed black line is recorded in 0.1 M KNO₃ alone, and the red line is recorded in absence of the thiol compounds. The results shown are from the third cycle.
3.6 Determination of Glutathione in presence of Cysteine

The detection of glutathione in presence of cysteine was carried out by the standard addition. A mixture of 5 µM GSH and 5 µM cysteine was prepared as an analyte and added to four standard solutions that contained 3.0 µM to 10.0 µM of GSH standard and 44.3 µM of copper(II) in 0.1 M KNO₃. A standard solution was prepared 4 min prior to the addition of an analyte, and voltammograms were recorded after the wait period of 20 min.

Figure 6A shows the anodic peak current increases with respect to the concentration of the GSH standard. The voltammograms were highly reproducible with around 1.7 % error after triplicated collection. There is a linear correlation between the peak current, I_p, and the concentration of the GSH standard as shown in Figure 6B. The relation between the peak current and the GSH concentration can be expressed as (n=3):

$$I_p/\mu A = (0.10 \pm 0.001) [\text{Glutathione}/\mu M]$$

$$R^2 = 0.999$$

(3)

The gradient in the above equation is closely similar to that observed from the calibration curve of GSH (Eqn. 1) indicating that presence of cysteine does not interfere with the electrochemical detection of copper(II)-GSH complex compound at a bare GCE surface. Extrapolating the best-fit line to the zero current, this analysis confirms a concentration of 5.3 µM of glutathione for the analyte, which is in good agreement with the original amount of the reagent (5.0 µM).
Fig. 6. (A) Cyclic voltammograms of a bare GCE recorded at 50 mV s\(^{-1}\) in 0.1 M KNO\(_3\) containing 44.3 µM of copper(II) and various amount of GSH standard (Black: 3.0 µM; red: 6.0 µM; blue: 8.0 µM and pink: 10.0 µM) in presence of an analyte (5 µM glutathione + 5 µM cysteine). The results shown are from the third cycle. (B) Plot of the peak currents obtained from the Figure 6A as a function of the concentration of the GSH standard. The red line is the best-fit of data points between 3.0 µM to 10.0 µM. The extrapolation of the red line shows the GSH concentration in the analyte (5.3 µM).

4. Conclusions

We demonstrate in this work the electrochemical detection of glutathione based on the complex formation with copper(II) on an unmodified glassy carbon electrode. The copper(II) forms a 1:1 complex compound with GSH, which gives a characteristic voltammetric response of a surface bound species that undergoes oxidation on the electrode surface and at ca. \(-0.20\) V vs. MSE (2\([Cu-\text{SG}]^+ → Cu_2(\text{GSSG}) + 2e^+\)). The limit of detection obtained in this work is one of the lowest among the various voltammetric techniques that has been reported for this reagent. Furthermore, the detection technique described in this work has the sensitivity of 0.10 ± 0.002 µA µM\(^{-1}\) and the dynamic linear range up to 12.5 µM. It is highlighted in the manuscript that the current method of the GSH detection is not interfered by the presence of cysteine as the sensitivity (0.10 ± 0.001 µA µM\(^{-1}\)) obtained from the standard addition is identical to that from the calibration curve of the GSH only system. The
low overpotential, a sufficient dynamic linear range, the high sensitivity, and no necessity of electrode surface modification make this approach a highly compatible clinical application.

Acknowledgements

MCCA thanks the granting authority of Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq for a fellowship. KS is supported by a Marie Skłodowska-Curie Intra-European Fellowship within the 7th European Community Framework Programme.

References

