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Periodic breathing at high altitude
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Periodic breathing is often associated with heart disease or stroke, and commonly Cheyne—
Stokes breathing has a period of about a minute. Periodic breathing also commonly occurs
in healthy subjects at high altitude, and here the periods may be much shorter, of the
order of 15-20 s. In this paper we study such periodic breathing using the classical model
of Grodinset al. (1967,J. Appl. Physiol.22, 260-276), together with a prescription for

the dependence of ventilation on the bloodGfncentration, modulated by the reduced
oxygen pressure (the ‘Oxford fan’). The model focusses on the fast dynamics of the arterial
blood CQ, and differs in this respect from our previous work which emphasised the brain
CO, concentration; in this sense our model is in fact a generalization of the conceptually
simpler Mackey—Glass model.

Keywords Grodins model; periodic breathing; peripheral chemoreceptor; differential-
delay equations.

1. Introduction

Periodic breathing (PB) denotes the clinical observation of rhythmic fluctuations of
respiration over a timescale of the order of tens of seconds to a few minutes. This is due
to (and conversely, causes) corresponding changes in the respiratory blood gases (oxygen
and carbon dioxide). Cardiovascular changes (measured, for instance, by blood flow in the
major vessels) are a natural accompaniment to PB, due to the physiological interaction of
these processes. PB is said to have been recognized by Hippocrates though the modern
descriptions are attributed to the Irish physicians John Cheyne and George Stokes in the
19th century. PB is a feature of severe disease of the heart and/or nervous system, but is also
anormal feature in preterm infants, healthy elderly subjects during sleep, and adults taken
to high altitude (see Tobin & Snyder, 1984 or Yamashiro & Kryger, 1993 for reviews).

The earliest alpine climbers were aware of the effects of altitude on respiration. One of
the earliest scientific accounts is given by Mosso (1898), and other early accounts are by
Douglas & Haldane (1909) and, on the effects of altitude, Douefiad (1913). A recent
account which summarizes much of the early history, and in particular summarizes the
achievements of many mountain expeditions, on Everest and elsewhere, is that @ftWard
al. (2000).
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The control of respiration over PB timescales is effected by two sets of chemoreceptors,
one in the brainstem (that responds exclusively t@)c@nd the other in the carotid body
(that responds to both£and CQ). Instability in these feedback control loops is thought
to underlie the oscillations that constitute PB (Cherniack & Longobardo, 1986), including
that at altitude (Masuyamet al., 1989); this is the conceptual framework for a number of
mathematical models (Mackey & Glass, 1977; Klebal.,1982; Carley & Shannon, 1988;
Longobardoet al., 1989; ElHefnawyet al., 1990, Batzel & Tran 2000a, 2000b, 2000c),
including ours (Fowleret al., 1993; Kalamangalam, 1995; Fowler & Kalamangalam,
2000). The particular focus of our work has been the use of the classical simulation of
Grodinset al. (1967) as a base from which to construct (and analyse) reduced, asymptotic
mathematical descriptions. We have shown that separation of characteristic timescales
identifies the central receptor’s role in mediating the slower (time periods of around one
minute) forms of PB, due to the dynamics of £@istribution. Here we report results
of a similar analysis of C®dynamics at the peripheral receptor. The influence piO
only included through its parametric effect on the £€ontroller, but this is sufficient to
predict instability, and also the relatively short oscillation periods associated with hypoxia
at high altitude. The recent papers by Batzel & Tran (2000b, 2000c) have a very similar
ethos, but differ from the present work insofar as we identify @te of key dimensionless
parameters, and are able to derive simplified models on the basis of formal asymptotic
approximations.

2. A reduced Grodins model

The Grodins model is a compartment model, which describes the evolution of the blood
gas concentrations of oxygen and carbon dioxide in three principal compartments: lungs,
brain, and other tissues. Grodiatsal. (1967) also include the cerebrospinal fluid (CSF)
as a further compartment. Figure 1 is a schematic illustration of how the compartments
are linked by arterial and venous blood flow. The concentrations in each compartment
are described by ordinary differential equations, but the passage time of blood flow
between compartments provides (significant) delays, and it is these delays which cause
the complexity of the model. They are also responsible for the instability which leads to
periodic breathing.

The equations of the Grodins model which concern us are those farti@@sport,
and the three equations (1.1), (1.4) and (1.7) of Grodtred. (1967) can be written in the
approximate form

KL Paco, = —V Paco, + 863Kco,QIPvco, — Pacal,
Kco,KePaco, = MRaco, + Kco, Qe[ Paco, (t — 7aB) — Paco,]
—Dco,[Peco, — Pcsreals
Kco,KTPrco, = MRrco, + (Q — Q)Kco,[Paco,(t — tar) — Preo,l. (2.1)

The meaning of these equations is as follows.denotes a partial pressure, and
the suffix CQ indicates these are partial pressures of carbon dioxide; théa a
time derivative of P. However V is not a time derivative as such, but is simply the
conventionally used symbol for the ventilation rate, in units of litres per minute. From
the mathematical point of view, it can be defined as the local time average of the rate
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FiG. 1. A schematic illustration of the compartments of the Grodins model. The system is driven by the supply of
O3 to the lungs, and by the generation of £@ithin the tissues. The rate of exchange at the alveoli in the lungs
is controlled by the ventilatiol .

of inspiration. The other suffixes a, L, B, T, v, and CSF refer to arterial blood, lungs,
brain, tissues, venous blood, and cerebrospinal fluid compartments, respectively. In fact,
blood gases are measured as concentrations, and these are converted to partial pressures
by assuming a locally linear proportionality factéico,. The other quantities ar&,
compartment volumedyIR, metabolic production rates, ar@, blood flow rate;Qg is

the blood flow rate to the brain. The delaysepresent passage time of blood flow between
compartments as indicated by the suffixes; thyis represents passage time of arterial
blood (from the lungs) to the brain. (In this simple model, the pulmonary circulation is
ignored, so that the heart and lungs are located next to each other.) The factor 863 arises in
converting inhaled dry gas volumes at standard temperature and pressure (STPD) to body
temperature and pressure saturated (BTPS) (West, 1990).

Various assumptions have been made in writing (2.1). In particular, we have equated
alveolar partial pressureBa and arterial partial pressurd®;: this is reasonable. The
Grodins model includes an equation for CSFGfncentrations, but we ignore this here
since the transport coefficiefico, in (2.1) is small; then (2.1) provides three equations
for the four partial pressures: arterial, venous, brain, tissues. They must be supplemented
by an equation which represents the partitioning of the blood I6&d between brain and
tissues: this is

QRco, = QePsco,(t — wB) + (Q — Q) Prco, (t — w); (2.2)

hererp is the passage time of venous blood from brain back to the lungs, for example. In
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addition, blood flow responds to changes in ventilation, and we will provide a model for
such variations later.

Non-dimensionalization

We begin by writing the model dimensionlessly. Suppose a typical blood flow raé,is
and a typical flow to the brain iQj. Reasonable values a@" = 6 | min—1, Qg =075
| min—1, so that Qi < Q*. We also letP* be a normal alveolar (and thus arterial) £0
partial pressure, andp be a normal ventilation rate. Such values &e = 40 mm Hg
(~ 40 Torr) andVg = 5 I min~1.
Now it is a matter of observation that GQevels in the body do not vary enormously.
For example, venous blood returning to the lungs may only have a @a@tial pressure
of 45 mm Hg. Thus the blood is rather a large reservoir forpbO@ith relatively small
amounts being permanently exchanged at the tissues and at the lungs. We take advantage
of this in non-dimensionalizing the model by writing the partial pressures in the form

MR .
Pa002 = P*[1+8pa], PBCOZ = Wm(goi + P* |:1+ ;pB:| i
B

Prco, = P*[1+ ¢+ eprl, Puco, = P*[1+e(1+ pv)],

where the parametetsandy and the partial pressufe* are defined below. In particular,
we expects to be relatively small, to reflect the small variation of £i@ the body. We
also define dimensionless blood flows by putting

Q=0Q%q, Qs = Qzus, (2.4)

and we define the dimensionless ventilation rate

(2.3)

finally we choose the dimensionless timescale
Ks
Qs
The parameteP* in (2.3) is explicitly taken to be
863MR *
pr = 303MRrco, O (2.7)
(Q* — QB)VO
The dimensionless form of (2.1) and (2.2) is then
1,
Zpa =q(1+ pv— pa) — (1 + ¢pa)v,
ps = (1 —ds) +dslypalt — tj5) — Pal,
(2.8)

)
-

+ pe(t — ‘C\TB) _

- prt TC,"T)] :

)
pvsz(t—T\TT)‘i‘%[C
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TABLE 1 Typical values of the parameters, as given by Grodins et al. (1967)
and Batzel & Tran (2000a).

Symbol  Units Typical value
Grodins Batzel & Tran
Qg I min—1 0.75 0.8
Q [ min—1 6 6
Vo I(BTPS) mir1 5 3.6
KL I((BTPS) 3 3.2
Kg | 1 0.9
Kt | 39 14.1
Kco, I(STPD) ! mm Hg™! [0.005] 0.0057
MRgco, I(STPD) mirt 0.05 0.042
MRrco, I(STPD) mir? 0.182 0.178
p* mm Hg 40 40
Dco, ISTPD)mimimmHg!l 082x107° —
TaB min (sec) 0.18 (11) 0.2 (12)
TaT min (sec) 0.32 (19) 0.32 (19)
T min (sec) 0.59 (35) 0.42 (25)
B min (sec) 0.11 (7) —
863 mm Hg I(BTPS) I(STPD)! 863
Ge I(BTPS) min 1 mm Hg 1 1.8
Gp I((BTPS) mim 1 mm Hg 1 30
Ic, Ip mm Hg 37
Q min (s) 0.1(6)

The parameters appearing in these equations are defined, and have typical values (using

the parameter values in Table 1) as follows:

Grodinset al. (1967) give expressions for the delays (their equations (8.10)—(8.13)) which

Qg
= gr ~013
Vo
- ~o1s
* = 863Kco, 0"
863K *K
A= w ~ 11.5,
KL QB
M G
n= 7RBC01 .C ~ 58,
Kco, QgVo
k b
— K
Ss— w ~ 0-18,
KTQB
GcP*
y=——9C" _~278
863K o, Q*
M *
c:M(Q—*—:L)—l%l.
MRrco, \ Qg

(2.9)
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are variable, depending on blood flow. In this paper we will take the delays as being
constant, although we allow them to depend on blood flow, which is elevated in hypoxic
conditions. This anticipates our later suggestion that time-dependent blood flow variation
is relatively small. In this case, the dimensionless delays are defined by

.1 avaBJr@}

faB = Kg q OB
r;-rz i 5VaT+ 8Var ’
Kg | d q—4as
1 [ws 8V
g = | =+ =2
Kg | 9B q
1 [ 8w sV
I\TT L vT + vT ’
Kg | 4908 q

(2.10)

whereVag ~ 1.062 |, Vag ~ 0-015 |, Va7 ~ 1.062 |, Va1 ~ 0735 |, VyT ~ 294 |,

Vyt ~ 0-188 |, Vg ~ 0-06 |, Vi,g ~ 0-188 | are blood vessel volumes. The numerical
values are those given by Grodies al. (1967). The previously undefined quantiB¢

is defined to be the central controllgain, i.e. a typical value of the rate of change of
ventilation with brain CQ partial pressureGe ~ d\'/o/dPBcoz. With this choice, the
dimensionless ventilation rate would have anO(1) derivative as a function opfg, in
consideration of the central controller. For the peripheral controller, this is not necessarily
the case, but it is convenient to use the same scaling so that both central and peripheral
control can be framed within the same dimensionless model.

The timescal&p/ Qg is about 80 s, comparable to observed periods of Cheyne—Stokes
breathing in patients with heart failure, for example, but significantly larger than the 20 s
periods which can be found in hypoxia at altitude (\Wetsal,, 1986). We have used this
timescale to begin with because it relates directly to our previous work (Fetddr 1993;
Fowler & Kalamangalam, 2000), although the presentation here is much more direct and
simpler to follow. Previously, noting that > 1, we supposed effectively that, would
rapidly approach a quasi-steady state related smd thenpg would evolve over the 80 s
timescale, satisfying a differential delay equation on the assumption that for the central
chemoreceptor control located in the brainsteroan be taken as a function of brain €0
i.e.v = v(pg). This procedure effectively assumes that peripheral chemoreceptor control
is stable.

In this paper, we focus on shorter timescales comparable to the transport time from lung
to the peripheral chemoreceptor; we will in fact suppose that the central controller response
is stable, but we investigate possible instability due to the peripheral chemoreceptor.
Therefore, we now rescale time as

8Vap
Kg’

t ~1pc= (2.112)
so that the relevant dimensional timescale is

Vas
t]= — ~ 11s. 2.12
[t] o s (2.12)
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The dimensionless model (2.8) can now be written in the form

APa =g+ py— pa) — 1+ epa)v,

Ps = (1 —0gs) + tPcUB[Y Palt — TaB) — PBl.

. -4 . (2.13)
pr = s[1+ (ql_?E’) {Ppalt — Tar) — pr — 1}],
R 5 t—7 .
By = Prit — &7) + % [c+ LU L) —m)],
where the additional parameters are
1 SV,
A= ~066, Tpc= —22 ~ 013
Atpc Kg (2.14)
i = utpc ~ 0-8, § = stpc ~ 0-023
and the new dimensionless delays are
~ 1 NaB
TaB= — + —
% qa 0Os
2.1 &aT NaT
al — —— )
-4
q q—aJ08 (2.15)
~ &vB NvB
wB=—+—,
Os q
AT = &vT T
VT =
q—égs q
where
\7aB
= ~ 011
NaB Vo 3
V. \V
far= ot~ L gar= -~ 0692
aB ~aB (2.16)
VvB

V,
fe = 5o~ 0452 mve = o~ 0177,

(S VaB aB

Wt Wt
= ~ 276 = — ~0177.
&t Vag 8 T Vos
\entilation controller

We now consider the formulation for ventilatiol J. Grodinset al.(1967) in fact proposed
two forms, their equations (9.1) and (9.2), in which they t&oto be the sum of two terms,
representing respectively the central and peripheral controllers:

V =V + Vp. (2.17)
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In the first (earlier) form, the central controllég was assumed to be a (linear) function of
hydrogen ion H concentration and Cpartial pressurésco, at the brain; in the second
form, the brain H and CQ concentrations were replaced by CSF ebncentration, or its
equivalent partial pressuf:srcg (via the dissociation constaKico,). As we mentioned
above, the rate of transfer of G@ the CSF is small, and thus the time constant associated
with the CSF H concentration is long. Therefore we can ignore the dependen¢eoaf
Pcskca, in consideration of the much shorter timescales of concern here.

The second ternVp represents the peripheral controller in the carotid artery, and is
taken by Grodin=et al. to depend on the blood oxygen partial pressBge, (t — tag)

(the delaytyg is slightly smaller than that to the brainstem). In the second form of the
controller, there is an additional dependence on bloddddncentration at the carotid
receptor. The F concentration is related by a buffering relation (Grodins’ equation (3.6))
to CO, concentration, thus this second controller allovisso depend (additively) on both
0O, and CQ in the blood.

It should be mentioned that Grodins’ controller formulations were based on Gray’'s
(1946) ‘multiple factor’ theory, surmising an additive dependence of ventilation on the
respiratory gases at the centre and periphery. It is now accepted that a multiplicative
(‘Lloyd—Cunningham’) interaction of the second two terms is more accurate (ldowt
1958). In addition, the ventilatory responses to&@d G are known to interact: hypoxia
(low oxygen) increases the dependence (gair\y @h CO, and hypercapnia (high GO
increases the ventilatory response to oxygen (Belleillal. 1979; Cherniack, 1981). These
effects are shown in Figs 2(a) and (b), where the resulting family of curves is known to
physiologists as the ‘Oxford fan’.

Specific forms of the central and peripheral controllers used by Kical. (1982)
which take account of these observations are

. MRg
T Ik
B +

Vp = Gpexp[—0-05 Pag, (t — 7a0)[[Paco, (t — Ta0) — Ipl+,

and we will use these to motivate our choice of controller below. In these expressions,
[x]+ = max(x, 0), tap represents the delay in transport between lung and carotid body, and
Ic andlp are threshold values for activation of the respective controllers. The odd choice of
threshold in the central controller is becaugés actually a threshold for the arterial GO
concentration, related byaco, = Psco, — MRsco,/Kco, Qg in steady-state conditions.

We write V = V¢ + Vp in dimensionless form, using (2.3) and (2.5). With the choice
of Tpc as timescale, this gives

(2.18)

v =[vo+ psl, + 9lrpc+ ypat — 1)1., (2.19)
where Grodin®t al’s (1967) equation (8.14) leads to
1
r=-4+ 10 (2.20)
q 08
in which
V.
o= —2 ~ 0.06, (2.21)
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FIG. 2. (a) The integrated respiratory response to carbon dioxide (dimensional units). Ventilation is an increasing
function of Pac, (carbon dioxide partial pressure), whose slope is perturbefyy (oxygen partial pressure)

to produce the ‘Oxford fan’. (b) A similar effect d?;co, on the respiratory response to oxygen. Both figures
adapted from Cherniack (1981).

with the Grodins choic&,o = 0-008 |. We also have
_ Ge(P* = Ig)

v , 2.22
0 Vo (2.22)
G —0-05P50,(t —
g= pexpy 20, ( T)]’ (2.23)
Gc
and
P*—1p
rec=——). 2.24
PC (P* — |c) (2.24)
If we use the values given in Table 1, then we fing = 1.08, rpc = 1, and

g ~ 011, 1.4, 3-6 & assumed arterial oxygen partial pressures of 100, 50, 30 mmHg,
respectively, the first of these being normal, and the other two representing conditions of
hypoxia at high altitude. Evidently the peripheral controller gain responds dramatically to
lower oxygen pressure, and it is this effect we wish to study. We do so by focusing on the
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peripheral controller, assuming the response of the central controller is sufficiently slow
that it can be considered constant; thus we choose

v=vc+0g[l+ypalt—1)l,, (2.25)

wherevc (= [vo+ pgl, ) isthe ventilation due to the central controller, and we will consider

g to vary parametrically, representing local conditions of hypoxia. The short-timescale
variation of oxygen in the blood is not included explicitly. In our numerical solutions, we
will use a smoothed form of (2.25), in a similar manner to our previous work (Fowler &
Kalamangalam, 2000). In discussing the values of the parameters, we have simply taken
Vo to be a representative value of the ventilation rate. It is natural to chapse that, for
example,vgp = 1 in (2.22), or so that in steady statggs = 0. The difference is cosmetic,

and to be precise, we will defing so thatpg = 0 in the steady state; equivalentjys = 0

in steady state and thi%* is the steady arterial C{partial pressure. The precise definition

of Vo required is given below, in (3.12).

Blood flow

Grodinset al. (1967) propose two equations describing blood flow. These can be written
in the (dimensional) forms

©Q=U-Q,
19Qs = Ug — Qs,

where the equilibrium blood flokd and brain blood flonwJg are functions ofPao, and
Paco,. Grodins gives complicated algebraic formulae for these, the essence of which
is that decreasing arterial oxygen levels below (normal) partial pressure of 100 mm Hg
cause increased blood flow to the tissues and to the brain, while for arterjale@€ls
above (normal) 40 mm Hg, blood flow also increases. Blood flow thus behaves similarly
to ventilation. Figures 3 and 4 show graphs of the Grodins blood flow curves as a function
of Pacq,, under conditions of normoxia and hypoxia. We define dimensionless blood flow
functionsu andug by

(2.26)

U=Q*(B—1+u), U= Qi(Bs—1+up), (2.27)

where 8 and g are (dimensionless) enhancement factors which increase in hypoxia,
andu andug are dimensionles® (1) functions of Pacg,, or, when suitably scaledps;
specifically, and g are defined so that = ug = 0 a& normal CQ levels, P* = 40
mm Hg. From Grodins’ formulae, we find = 1, 1.22, 1.56 for P;o, = 100, 50, 30
mm Hg respectively, an@dg = 1, 1.34, 1.79 for the same three values. Figure 5 shows
the dependence ¢f and8g on Pag, in Grodins’ formula.

The blood flow equations can then be written in dimensionless form, usings the
timescale, as

vij=-1+u—aq,

. (2.28)
vOg = g — 1+ U — O,



PERIODIC BREATHING AT HIGH ALTITUDE 303

14 +
12 +
10 | 30
Q 8 50
6
100
4 L
2 L
O L
0 10 20 30 40 50 60
Pacq

FiG. 3. Blood flow (I min—l) as afunction of Py, (mm Hg) for blood oxygen partial pressures of 100 (normal),
50, 30 mm Hg, according to Grodirs al. (1967).

Paco,

FIG. 4. Blood flow to the brain (I miml) as afunction of Paco, (mm Hg) for blood oxygen partial pressures of
100 (normal), 50, 30 mm Hg, according to Grodetsl. (1967).

where

v="2 ~05. (2.29)

One feature of Fig. 3 is that for the smaD (¢)) variations inPaco, which occur normally,
the variation in the equilibrium blood flow curves is also small. We formalize this by
writing
u=1+eW(pa),
(2.30)
ug = 1+ eWg(pa)-

The dimensionless function andWg according to Grodins’ formulation are shown in
Figs6 and 7.
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FiG. 5. Enhancement factog$ andpg as functions oPag, in mmHg.
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FiG. 6. The dimensionless blood flow functidil( pg) in (2.30) according to Grodins’ formula.
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FIG. 7. The dimensionless brain blood flow functivvs (pa) in (2.30) according to Grodins’ formula.
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3. Analysis of the model

The model we wish to study is (2.13) for the gas partial pressures, together with (2.25)
for the ventilation, (2.28) with (2.30) for blood flow, and equations such as (2.15) for the
delays.

Simplifications

As it stands, the model requires numerical simulation. However, major simplifications
ensue with the use of some judicious approximations. The first of these & ihamall,
so that if we neglect terms @ (5), we have

Py~ prit — 7). (3.1)

Next, we observe thaé is very small. This implies thapt varies slowly, and then
application of the method of averaging to (2.4 Bhplies thatpy ~ pr, its average value,
and hence alspy ~ pt ~ pr; furthermore pr tends to a steady state given approximately
(for smalls) by

1=q(pr+1-pa), (3.2)

where the overbar denotes the time average. Becpuse pr is slowly varying, (2.13)
can be replaced at leading ordesiands$ by

Pp =S[1—qd+ pv — pa)l. (3.3)

and this can be useful in discussing steady states.
The principal simplification follows if we supposgeis small, and we take the blood
flow functions as in (2.30); theq andgg satisfy

vg = B+ eW(pa) —Q,

) (3.4
vOg = Bg + eWs(pPa) — .

If we neglectO(e) in these, then we can take blood flow as relatively constant, thus

q=pB+0(), og=ps+O(). (3.5)
This implies that the delays are approximately constant, and in particular
1
T=—, (3.6)
B

sinceng in (2.21) is small. We also negle€l(e) in (2.13), so that it can be written (using
(3.2) together withpy =~ pr(t — 7y1) & pr) in either of the equivalent forms

APa=q(l+ pv— pa) — v, (3.7)
or

Ap=[1+B(p—p —], (3.8)
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where we writep = p,, and the overbar denotes the average. This latter equation reduces
the model to a single delay-differential equation fgrin which the delay arises through
the ventilation, given by (2.25):

v=vc+g[l+yp.l,. (3.9)

wherep, = p(t — t). This equation is mathematically analogous to the model of Mackey
& Glass (1977), as we discuss further in the conclusions.

Steady state

We begin by consideration of the steady state under normal conditions (arterial oxygen of
100 mm Hg, arterial carbon dioxide of 40 mm Hg). From (2.13), we find that the steady-
state partial pressures are given by

Pa= PT, PB=7Pa Pv=Pr+3C, (3.10)
and the steady ventilation rate is

1+ éc
p= —1°C (3.11)
1 + Spa

We earlier decided to choosé) so thatp, = ps = 0 in steady state, thus from (2.19) and
(3.11), we finally have

vo =1+ 8Cc— grpc, (3.12)

and this determines (via (2.22)) ; specifically,

_ Ge(P*—1¢)

Vo = : 3.13
0 1+ 68c—grpc ( )
The quantities in (3.13) are independenVofif we assumdp = Ic), except forP*, which

is given by (2.7), and is inversely proportional\fg. Thus (3.13) provides an equation for

Vo whose solution is close to the value given in Table 1.

Steady state at altitude

Now suppose oxygen partial pressure is reduced. The effect of this is to enhance blood
flow, so thatg ~ g andgs =~ Bg. At least while oxygen partial pressure is not too low,

Bs — 1 isquite small, so thapg (via (2.13)) isslowly varying. In fact, even if not, the slow
response oPcsrcg to Peco, implies that the central controller responds to the average
CO, partial pressure. Thus from (2.323)e have

 uBs 1),

P~ yPp (3.14)
BB
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brain CQ is reduced at altitude, and thus the central contribution to ventilation is reduced:

n(Bs — 1)]
BB L

Now we revert to the approximating system in the single equation form (3.8), with
ventilation given by (3.9). Clearly from (3.8), the steady state is determined=byl. (In
fact there is a mild increase in ventilation at altitude, but this can be understood through
the inclusion ok in (2.13), thusv = 1/(1+ ¢pa), and the increase of ventilation is caused
by a decrease gb, (which we now describe).) From (3.9) and (3.15), the resultant steady
arterial CQ pressurep = p is then given by

_1
%} +gll+ypl, ~1. (3.16)

Note that this is inaccurate b9 (8) at sea level, wherep ~ 1 andg ~ 0.1, because we
have neglected th® () excess ofp, above pr, which implies (via (3.11)) that the steady
ventilation rate is actually &+ O(3).

Sincevg ~ 1, the central controller is switched off first ggncreases at high altitude,
and from this it follows that

okay [vo +yp-— (3.15)

[voJrVF_)—

140

—_ < Oc,

%1+ 0 9=0
1+yp= (3.17)

1
aa g > Qc,
where
BB

- 3.18
%= s -1 (3.18)

and we have takem = 1.

As Py, decreases, the peripheral ggiimcreases, as does the blood flow to the brain
Bs; henceg. decreases, and thus the ragitg. increases. Figure 8 shows the dependence
of g/gc on oxygen pressure. From the figure, we have that g; for Pyo, < 597
mmHg. At altitudes above the critical height (perhaps around 3000 m) where arterial
oxygen pressure is about 60 mm Hg, the theory implies that the central controller fails
to provide any ventilatory drive, and ventilation relies solely on the peripheral controller.
We now suppose this to be the case.

The underlying map

Itis a further convenience to normalize the delay to be one, by rescaling the time In
this case (3.8) and (3.9) can be written (takigg= 0) as

)‘p:‘r+p_p_v*»

. (3.19)
v =gr[l+ypl,,
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FiG. 8. Variation ofg/gc with arterial oxygen partial pressure (mm Hg).

sincer = 1/8. The system (3.19) takes the form of a delay-recruitment equation,

Ap=—p+ f(pw), (3.20)

where
f(p)=1t+p—grll+ypl,. (3.21)

Itis well known (e.g. Chovet al., 1992) that the dynamics of the differential-delay equation
(3.20) are related to the underlying difference n@p= f (p1). In particular, the stability
properties of the map are mirrored in the differential-delay equation wher®. Figure 9
shows the effect of decreasing arterial oxygen partial pressure on this map. The slope of the
curve at the fixed poinp = p is —gry, S0 that the fixed point of the map is unstable (to
atwocycle) if gry > 1; as oxygen pressure decreagedgecreases bug increases more
rapidly, so thaigry also increases, and instability occurs fyo, < 76 mmHg. In this
situation periodic breathing will occur for sufficiently smajland this will include periods

of apnea (i.e. Cheyne—Stokes breathingpdf, < 60 mm Hg. Because of the monotonic
decreasing form off (p), there is no further bifurcation agincreases, and a period two
cycle of increasing amplitude is the result.

Instability

The linear stability of the fixed poinp of (3.21) is studied by seeking values of the
exponento in solutions of the formp — p o« exp(ot); substituting this into (3.21) and
linearizing yields the transcendental equation

o=—-AM1+TI¢e7], (3.22)
where

I =gyr. (3.23)
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FiG. 9. Form of the underlying mag (p) given by (3.21) for arterial oxygen partial pressures of 50 mm Hg and
30 mm Hg.

FI1G. 10. The linear stability curve of (3.19). The portion to the left and above the curve is stable.

Transition to instability occurs wheth = iw, which gives the instability curve inl", A)
space shown in Fig. 10. When= 0, instability occurs fod” > 1, as stated above. For our
typical value ofz = 0-66, we have instability foi” = 1.75, or for Pao, < 63-8 mmHg.
There is a small window of arterial oxygen partial pressures for which periodic breathing
without apnea occurs, but mostly it will be of Cheyne—Stokes type, with apneic periods.

Numerical simulations

We have solved (2.13) numerically. The principal result of this is shown in Fig. 11, which
compares the linear stability result for the approximating single equation (3.8) with that of
the more complicated three-equation model (2.13), and shows that the simpler model gives
agood description.

This figure also shows that apneic breathing is the rule for large endygbr
equivalently low enougtPao,; values less than about 60 mmHg give apneic pauses. In
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FiG.11. The stability map of Fig. 10 together with numerical results from solving (2.13). Evidently the stability
curve is displaced slightly downwards. Asterisks indicate periodic solutions where apneic periods occurred. A
fourth-order Runge—Kutta method was used, with time step 0.01; the piecewise smooth functions in the ventilation
controller functions were smoothed with a sharp tanh profile.

the simplified theory, Cheyne—Stokes breathing is predictedfgr2-7, or Pao, < 54
mm Hg; this is within the accuracy of the approximations involved.

One can also understand why the apneic/non-apneic transition curve bends around
below the stability curve. In the simplified theory, the model is exactly linear until
ventilation reaches zero: all unstable oscillations must lead to apnea. However, the
neglected ternepay in (2.13) is nonlinear, and allows equilibration of the oscillations
without apnea near the stability curve, as we see.

The simplified model also allows us to understand in a qualitative way the length of
apneic pauses. Since the model is driven by the requirement that the mean ventilation
v ~ 1, the length of the apneic pauses adjusts itself in order that this be true. Figure
12 shows apneic breathing Bio, = 40 mmHg and. = 0-66. This is deep within the
instability region, agd” = 4-87 at this value. The cycle time is about 24 s, of which about
half is in apnea.

Westet al. (1986) commented that the linear stability theory of Kredacal. (1982)
underpredicted cycle length at altitudes above about 4000 metres (their Fig. 2). If account
is taken of the nonlinear effect of apnea, this is readily understood. At altitude, the average
Paco, is reduced, followingPao, down (at 4000 m altitudePao, is in the region of
50 mmHg (Wardet al, 2000)); at sufficient elevation, the central ventilatory control is
switched off, and in this situation apnea ensues. The effect of this is to increase the cycle
period above that dictated by linear theory, and Fig. 12 indicates that periods of order 20 s
are perfectly possible in this theory.

4. Conclusions

Periodic breathing is a common occurrence at altitude, and is often associated with apneic
breathing. A particular feature of such breathing is its low perie@Q s) as compared with

the minute long oscillations found in patients with congestive heart failure, often associated
with decreased blood flow and consequent increased delay time in transit of blood gases to
the central chemopreceptor.
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FiG.12. Apneic breathing af' = 4-87, (P30, = 40 mmHg) and. = 0-66. The graph o/ (in dimensionless

units) is synthetically modulated by a sine wave to resemble the breath by breath output of a spirogram;
specifically, V. = V(1 + sin6zt). The horizontal time axis has been converted to dimensional units by
multiplication by[t] = 11 s.

In contrast, periodic breathing in hypoxia is associated with the increased gain of the
peripheral controller, and we have shown that it can be described by a very simple model
describing CQ fluctuations in the arterial blood, which reduces in its simplest form to
a delay-differential equation of delay-recruitment type, similar to the famous model of
Mackey & Glass (1977), although the provenance of the equation is very different. This
distinction may be elaborated in future work.

At significant altitudes, the resulting periodic breathing is inevitably apneic, but the
period of the cycle (as illustrated in Fig. 12) at higher elevations (thus highbecomes
approximately ¥/ Q* (see (2.12)), with half of the cycle being in apnea. This is similar
to observed breathing patterns (e.g. Wasdl, 1986, Fig. 1). Decreasing periods to as low
as 15 s at 8000 m would be associated in this model with decre¥dgii@*, or eqivalently
enhanced blood flow. It remains to be seen whether these observations remain valid when
oxygen transport is explicitly included in the model, and not just through its effect on
the peripheral controller gain, but the resemblance of the simple theory to observation is
encouraging.

In this model, the principal parameters controlling instability arand I". I" is a
complicated function of metabolic GQproduction and ventilatory control parameters, but
in a particular individual is primarily a (decreasing) function of arterial oxygen pressure.
Thus the horizontal axis in Fig. 12 also represents decredigg or increasing altitude.
Using (2.9) and (2.11), is defined by

KL

A= e
863K co,Vas’

(4.1)

instability is promoted ifl" > 1 (mild elevation) by reduced, for example by reduced
effective lung volume. But the essential result is associated directly with increasing
altitude.
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