Journal article
Local Minimizers in micromagnetics and related problems
- Abstract:
-
Let $\Omega \subset{\bf R}^3$ be a smooth bounded domain and consider the energy functional ${\mathcal J}_{\varepsilon} (m; \Omega) := \int_{\Omega} \left ( \frac{1}{2 \varepsilon} |Dm|^2 + \psi(m) + \frac{1}{2} |h-m|^2 \right) dx + \frac{1}{2} \int_{{\bf R}^3} |h_m|^2 dx. $ Here $\varepsilon>0$ is a small parameter and the admissible function m lies in the Sobolev space of vector-valued functions $W^{1,2}(\Omega;{\bf R}^3)$ and satisfies the pointwise constraint $|m(x)|=1$ for a.e. $x \...
Expand abstract
Actions
Authors
Bibliographic Details
- Publication date:
- 2002-01-01
Item Description
- UUID:
-
uuid:66954678-713e-4718-bc6f-337d5881b67b
- Local pid:
- oai:eprints.maths.ox.ac.uk:195
- Deposit date:
- 2011-05-19
Related Items
Terms of use
- Copyright date:
- 2002
If you are the owner of this record, you can report an update to it here: Report update to this record