Journal article icon

Journal article

Phase field cohesive zone modeling for fatigue crack propagation in quasi-brittle materials

Abstract:
The phase field method has gathered significant attention in the past decade due to its versatile applications in engineering contexts, including fatigue crack propagation modeling. Particularly, the phase field cohesive zone method (PF-CZM) has emerged as a promising approach for modeling fracture behavior in quasi-brittle materials, such as concrete. The present contribution expands the applicability of the PF-CZM to include the modeling of fatigue-induced crack propagation. This study critically examines the validity of the extended PF-CZM approach by evaluating its performance across various fatigue behaviors, encompassing hysteretic behavior, S-N curves, fatigue creep curves, and the Paris law. The experimental investigations and validation span a diverse spectrum of loading scenarios, encompassing pre- and post-peak cyclic loading, as well as low- and high-cyclic fatigue loading. The validation process incorporates 2D and 3D boundary value problems, considering mode I and mixed-modes fatigue crack propagation. The results obtained from this study show a wide range of validity, underscoring the remarkable potential of the proposed PF-CZM approach to accurately capture the propagation of fatigue cracks in concrete-like materials. Furthermore, the paper outlines recommendations to improve the predictive capabilities of the model concerning key fatigue characteristics.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1016/j.cma.2024.116834

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Engineering Science
Role:
Author
More by this author
Role:
Author
ORCID:
0000-0003-4074-4576


Publisher:
Elsevier
Journal:
Computer Methods in Applied Mechanics and Engineering More from this journal
Volume:
422
Article number:
116834
Publication date:
2024-03-13
Acceptance date:
2024-02-03
DOI:
EISSN:
1879-2138
ISSN:
0045-7825


Language:
English
Keywords:
Pubs id:
1617831
Local pid:
pubs:1617831
Deposit date:
2024-02-27

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP