Dominance and rarity in tree communities across the globe: Patterns, predictors and threats

For affiliations refer to page 14.
Correspondence
Iris Hordijk, Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich 8092, Switzerland.
Email: irishordijk@hotmail.com

Abstract

Aim: Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important...
INTRODUCTION

Tree communities typically contain a few dominant and relatively many rare tree species, both of which contribute to ecosystem functioning, resilience and services (Dee et al., 2019; McGill et al., 2007). Communities are defined as ‘a group of interacting species populations occurring together in space’ (Roughgarden & Diamond, 1986; Stroud et al., 2015) and it is therefore important to analyse which drives local dominance and rarity, and hence, species composition. Here, dominance and rarity refer to the relative abundance of dominant and rare species in the community (Hillebrand et al., 2008). Dominant tree species make up most of the community biomass and contribute therefore most to ecosystem services, whereas rare tree species increase functional diversity and therefore ecosystem multifunctionality (Fauset et al., 2015; Grime, 1998; Mouillot et al., 2013). Habitat conversion and degradation shift the abundances of dominant and rare species within communities and may lead to species loss, with potentially strong impacts on ecosystem functioning and biodiversity (Bowler et al., 2017; Butchart et al., 2010; Doncaster et al., 2016; Fei et al., 2017; Xu et al., 2014). Quantifying broad-scale dominance and rarity patterns at a tree community level and identifying the predictors of extinction risk of locally dominant and rare tree species are therefore critical for management and conservation (Chapin et al., 2000; Enquist et al., 2019; Wilsey et al., 2009).

Patterns in community dominance and rarity are shaped by interacting biotic and abiotic factors operating at various scales. First, global patterns in the relative abundance of species generally follow the latitudinal gradient in diversity (Liang et al., 2022; Scheiner & Rey-Benayas, 1994; Ulrich et al., 2016). In general, species-rich forests have many rare species, whereas less speciose forests tend to have relatively few species that are more evenly distributed (Bazzaz, 1975; Hordijk et al., 2023). By definition, only a few
species can dominate a community, although the absolute dominance might differ between forest types (Pitman et al., 2001; Ter Steege et al., 2013); forests can either be dominated by one single species or multiple species (Hart et al., 1989; Hobi et al., 2015). Second, abiotic factors shape community dynamics by filtering out species that cannot survive in a given environment, which subsequently can increase the abundance of well adapted species (Arnillas & Cadotte, 2019; Avolio et al., 2019; Venn et al., 2011). Once a species is established, its abundance will be determined by its suitability to the abiotic environment, and by interactions with the biotic environment, such as competition and facilitation (Goldberg, 1990; Lynn et al., 2019; Meier et al., 2010). Across environmental gradients, the suitability of species to the local environment shifts, leading to differences in community composition (Cornwell & Ackerly, 2009).

Third, dominant and rare species can also directly affect each other’s abundance through interactions, whereby dominant species compete for resources and ultimately exclude rare species from the community when they reach a high abundance (Markham, 2015; Zhang et al., 2015). Besides the biotic and abiotic factors shaping tree communities, also (historical) forest management and preference for certain tree species affects tree community composition (Albert et al., 2023; Li et al., 2023; Paillet et al., 2010).

Rabinowitz identified seven forms of rarity (Rabinowitz et al., 1986). Species can be rare because they occupy a narrow geographical range, have locally low population densities, have specialized habitat requirements, or combinations of these (adding up to seven). Here we focus on species that have low local population densities. Rare species are inherently more susceptible to human disturbance than dominant species as small stochastic fluctuations in population density can drive them to local extinction (Goodman, 1987; Matthies et al., 2004; Menges, 1991). When severe enough, human activity can drive species to extinction through habitat conversion, habitat fragmentation, or the introduction of invasive species (Newbold et al., 2015; Richardson & Rejmánek, 2011). However, dominant species can also decline rapidly in abundance, particularly due to overexploitation, accidentally introduced fungal pathogens, pests, diseases or severe droughts that can decimate species across their distribution range (Gaston & Fuller, 2008; Hartmann et al., 2022). Whereas the drivers of elevated extinction risk for rare species with a narrow distribution range are well established, an assessment of the patterns and predictors of extinction risk for locally dominant and rare species with a wider geographical distribution is lacking (Gaston, 2010; Wan et al., 2017).

In this study, we use 1.2 million forest plots distributed across the globe and relate local tree dominance and rarity to ecological predictors (i.e. climate and soil characteristics) and anthropogenic predictors (i.e. population density and human development). Specifically, we answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) are locally rare species more likely to be threatened with extinction compared to dominant species within ecological communities? The species we captured in this study are generally widespread tree species that differ in their local abundances. We hypothesize that (i) at low latitudes community rarity is highest and dominance is lowest, as with an increase in species richness, the number of rare species increases and the single most dominant species becomes less dominant (Magurran & Henderson, 2003; Ulrich et al., 2016), (ii) community dominance increases in environments with higher resource limitations, as it increases competition, and human disturbance, as it selects for early successional species (Huston, 1979; Keddy, 2023; Morris, 2010; Rozendaal et al., 2019), and (iii) dominant species have a lower extinction risk under anthropogenic pressure on forests than rare species due to their higher population density (Vincent et al., 2020).

2 | METHODS

2.1 | Dataset

To assess tree community dominance and rarity in forest communities worldwide, we used the database of the Global Forest Biodiversity Initiative (GFBI database, 2021). Our analysis also includes the data of Condit et al. (2019a, 2019b). The plots include all trees with stem diameter at breast height (DBH) ≥ 5 cm. The plots in the GFBI database contain information on tree species composition and DBH of every individual tree, along with the latitudinal and longitudinal coordinates of the forest plots (Figure 1a).

The entire GFBI database consists of approximately 1.2 million plots. However, since the number of dominant and rare species can vary with spatial scale (Weiher & Keddy, 1999; Wilson et al., 1999; Zhang et al., 2012), we excluded plots that were smaller than the first quantile (0.02 ha) and larger than 1.6 ha. This resulted in the exclusion of 8.3% of the database, and resulted in a mean plot size of 0.06 ha. Within the filtered database, the correlations between plot size and community dominance or rarity explained very little variation as indicated by the low r and r^2 values (Pearson’s $r = -0.16$, $r^2 = 0.03$, $N = 670,527$, $p < 0.001$ and Pearson’s $r = 0.20$, $r^2 = 0.04$, $N = 670,527$, $p < 0.01$, respectively), the apparent significance being driven by the large number of observational data. Additionally, plots measured before 1990 were filtered out, as these plots may not represent current forest composition and do not match with the climatic data we used. This resulted in filtering out 21% of the database, and the average measurement year being 2006. The filtered GFBI dataset consisted of 858,315 forest plots (including plots in for example savannas), of which 668,812 are in the six forest biomes (boreal forest, temperate conifer forest, temperate broadleaf forest, tropical conifer forest, tropical dry forest, tropical moist forest) (Dinerstein et al., 2017). Species names in the GFBI dataset were standardized using The Plant List, at least up to genus level (The Plant List, 2013). Of the 10,141 species names, around 10% could not be matched using The Plant List, including around 20% of the genera, therefore subsequently the Global Biodiversity Information Facility (GBIF) backbone was sourced to standardize these species names as well to accepted species names (GBIF Secretariat, 2020).
2.2 Calculating community dominance and rarity

There are many definitions of dominant and rare species at different spatial levels and suitable for different communities (e.g. Avolio et al., 2019; Rabinowitz et al., 1986). This study assesses dominance and rarity at the community level. A community is defined as "a group of interacting species populations occurring together in space" (Roughgarden & Diamond, 1986; Stroud et al., 2015). Hence, we quantified dominance and rarity at the plot level, as this is the spatial scale at which tree species interact directly with each other, and therefore where the outcome of both abiotic and biotic interactions affecting species abundances are most directly reflected (Roughgarden & Diamond, 1986; Stroud et al., 2015). Classification of tree community dominance and rarity is based on basal area (m²) of each species per hectare, calculated from the tree-level DBH measurements (in cm) for each inventory plot (Figure 1b). The total basal area (BA) per species is calculated as $BA_j = \sum_{i=1}^{n_j} \pi \times (d_{i,j}/200)^2$. Where BA_j stands for the total basal area per species, and d_i for the DBH of the individual(s) of that species. Basal area integrates both the number of tree stems and the stem size, is commonly used to compute competition (Biging & Dobbertin, 1992; Contreras et al., 2011; Kunstler et al., 2016), and is correlated with the ecosystem functions of aboveground biomass and carbon sequestration (Balderas Torres & Lovett, 2013; Rao et al., 2015; Slik et al., 2010), but also with leaf area index and therefore photosynthetic capacity and respiration (Bartelink, 1997; Buckley et al., 1999; Fang et al., 2019; Jonckheere et al., 2005). In this analysis, we quantify community dominance as the percentage of basal area occupied by the single most dominant species in a given plot (cf. Friedman & Reich, 2005; Koike, 2001; Majumdar et al., 2014; Riemann et al., 2018; Zilliox & Gosselin, 2014). Values closer to 100% indicates therefore that the most dominant species contributes relatively more to plot basal area. Because we expressed the dominance metric as a percentage we quantified rarity also as a percentage, for sake of symmetry. Rarity was defined as the percentage of the total species in a plot that had the smallest basal area and accounted together for <10% of the accumulated plot basal area (Bracken & Low, 2012; Gaston, 1994; Magurran, 2004; Molina, 2013) (Figure 1b). Although in both cases dominance and rarity is expressed as a percentage to account for large biome differences in plot basal area and richness, for dominance the percentage refers to the plot basal area, and for rarity to the percentage of species making up the least 10% of the basal area (Figure 1b). We chose 10% as a threshold because this clearly distinguishes dominant from rare species, it allows to compare plots with different numbers of species, and it allows to include a representative number of plots for all biomes (which would not be the case with a species richness threshold) (Bracken & Low, 2012). This means that not every plot contains rare species, as the least dominant species might comprise >10% of the basal area of the plot. The measure of rarity can include multiple species, as long as the least 10% of the basal area threshold...
is not reached. If a species does not occur in a given plot, it is not categorized as dominant or rare species in that plot. Community dominance and rarity were calculated for each plot in the GFBI database, providing single point values that together describe the spatial variation in dominance and rarity for forests globally. The effect of plot size on richness, dominance and rarity is visualized in Figure S1.

2.3 | Mapping community dominance and rarity globally

To map community dominance and rarity across all forested biomes (including savannas), we used the approach described in van den Hoogen et al., (2019, 2021). We extracted information available at global scale that is reported to influence plant dominance, including 10 climatic variables (Kraft et al., 2015; Venn et al., 2011): mean annual temperature, temperature seasonality, isothermality, maximum temperature of the warmest month, minimum temperature of coldest month, annual temperature range, mean annual precipitation, precipitation seasonality, precipitation of the driest month, precipitation of the wettest month (Karger et al., 2017), 7 soil variables (Hillebrand et al., 2007; Stevens et al., 2004): cation exchange capacity, sand content, clay content, silt content, organic carbon, pH, saturated water content (Batjes et al., 2015; Ribeiro et al., 2018), 9 biomass and greenness variables (Bradford, 2011): tree density (Crowther et al., 2015), above ground biomass, growing stock volume (Santoro et al., 2018), annual net primary productivity (Running et al., 2011), NDVI, EVI (Didan, 2015), LAI (Myneni et al., 2015), EVI dissimilarity, Shannon index of greenness (Tuanmu & Jetz, 2015). 2 landscape characteristics: slope and elevation (Amatulli et al., 2018), 2 stand age variables: percentage secondary forests (forests younger than 150 years) and mean age of the secondary forest (Poulter et al., 2019), and 2 human disturbance variables: population density (Center for International Earth Science Information Network—CIESIN—Columbia University, 2016) and human development (Tuanmu & Jetz, 2014) (See Table 1 for details of the variables).

To assure that all predictor variables had the same spatial resolution, we extracted all these variables from global maps at a 30 arc second resolution (Poulter et al., 2019; Richardson & Rejmánek, 2011; Urbieto et al., 2008) (see Table 1 for full list of covariates). Using these covariates as independent variables, we predicted tree community dominance and rarity using random forest models, with 100 decision trees, a minimum of three variables per split, and a bag fraction (the proportion of training data to be used in the next tree, which by default is 0.5) of 0.632. To overcome computational limitations inherent in dealing with millions of observations and have a similar sample number per biome, we performed a stratified bootstrapping mapping procedure, where 1000 plots were sampled with replacement per biome (or the maximum number of plots for biomes with <1000 unique plots) and used to train the models. We repeated this bootstrapping approach 500 times for both community dominance and rarity. For every pixel we then calculated a mean and standard deviation across the 500 model-based predictions. The final maps have a resolution of 30 arcseconds and were projected in WGS84 (EPSG:4326) coordinate system, and only forested areas were visualized in the maps (FAO, 2001; Hansen et al., 2013). The modelling and mapping procedure was performed with Google Earth Engine (Gorelick et al., 2017).

We tested the predictive accuracy of our models using a spatial leave-one-out cross-validation (van den Hoogen et al., 2021). In this test, a random forest model is trained on all data except for points that fall within a predefined buffer zone from a test point. This procedure is repeated for every data point across ten randomly sampled stratified bootstrapped training sets per biome and across a range of buffer zone radii (1 km, 5 km, 10 km, 25 km, 50 km, 100 km) (Table 2). Tukey’s test indicated that the mean r² of the random forest model for buffer zone radii was significantly different (Tukey’s test, p < 0.05) indicating that they showed spatial autocorrelation, at 1 km, but did not show spatial autocorrelation at spatial scales of 5 km and beyond (Tukey’s test, p > 0.1 in all cases). Thus, no spatial autocorrelation was detected for dominance and rarity values sampled further apart than 5 km.

To further analyse confidence in the final maps, we visualized the predicted versus observed values (Figure S2) and evaluated the coefficient of variation for the community dominance and rarity map by dividing the standard deviation across the 500 model-based predictions by the mean value per pixel (Figure 2). Additionally, we evaluated the percentage of data interpolation and extrapolation for the global community dominance and rarity maps (Figure S3), as a general limitation of our approach is the limited capacity of random forest models to predict outside the range of the training data (Hengl et al., 2018). To visualize the areas of extrapolation, we assessed whether predicted pixel values of dominance and rarity are within the range of the training data (van den Hoogen et al., 2021). In general, 92% to 97% of the predicted values of dominance and rarity in the global forest pixels were predicted within the range of the training data, which is the measured tree community data (Figure S3).

2.4 | Analysing predictors of community dominance and rarity

In global datasets, tropical biomes are usually under-represented, and the GFBI database used in this present study is no exception (McGill, 2003; Meyer et al., 2016). To address the problem of under sampled tropical regions, we performed the analyses with a subset of the dataset where the proportion of plots within a biome was approximately representative of that biome’s forest cover across the globe. We therefore selected 14,282 plots, composed of at least 1000 plots from each of the six Ecoregions©Resolve for forest biomes, and proportional to the forested area within that biome (Dinerstein et al., 2017). These proportions were calculated in Google Earth Engine by overlaying the biomes with a global map of existing forest cover (Hansen et al., 2013), where areas with more than 10% canopy cover for vegetation taller than 5 m were defined as forests (FAO, 2001).
The relationship between community dominance, community rarity and species richness within the six forest biomes was evaluated with a Pearson correlation. Species richness was calculated as the number of species in the plot, and log (Ln) transformed in the correlation to ensure normality. Plots without rare species (i.e. if the least abundant species accounted for >10% of the basal area), were excluded when evaluating the relationship between dominance and rarity (58% of the plots). Also, monodominant plots were excluded when evaluating the relationship between dominance and rarity as they introduced a mathematical artefact, forcing the regression line to change from a positive to negative slope (Figure S4a,b).

The variables used to create the global map of dominance and rarity.

<table>
<thead>
<tr>
<th>Variable category</th>
<th>Variable</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>Mean annual temperature</td>
<td>Karger et al. (2017)</td>
</tr>
<tr>
<td></td>
<td>Temperature seasonality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isothermality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum temperature of the warmest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum temperature of the coldest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual temperature range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean annual precipitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation seasonality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation of the driest month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precipitation of the wettest month</td>
<td></td>
</tr>
<tr>
<td>Soil (at 15 cm depth)</td>
<td>Cation exchange capacity</td>
<td>Batjes et al. (2017), Ribeiro et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>Sand content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silt content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic carbon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saturated water content</td>
<td></td>
</tr>
<tr>
<td>Biomass and greenness</td>
<td>Tree density</td>
<td>Crowther et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Above ground biomass</td>
<td>Santoro et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>Growing stock volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual Net Primary Productivity</td>
<td>Running et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>NDVI</td>
<td>Didan (2015)</td>
</tr>
<tr>
<td></td>
<td>LAI</td>
<td>Myneni et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>EVI</td>
<td>Didan (2015)</td>
</tr>
<tr>
<td></td>
<td>EVI dissimilarity</td>
<td>Tuanmu and Jetz (2015)</td>
</tr>
<tr>
<td></td>
<td>Shannon index of greenness</td>
<td></td>
</tr>
<tr>
<td>Landscape</td>
<td>Slope</td>
<td>Amatulli et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>Elevation</td>
<td></td>
</tr>
<tr>
<td>Stand age</td>
<td>Secondary forest percentage</td>
<td>Poulter et al. (2019)</td>
</tr>
<tr>
<td></td>
<td>Age secondary forest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human development</td>
<td>Tuanmu and Jetz (2014)</td>
</tr>
</tbody>
</table>

Note: In the machine learning models to produce the maps the Nadir reflectance bands 1 to 7 are included as well (Schaaf & Wang, 2015). The variables in bold were included in the random forest models to evaluate the importance of climate, soil and human impact on dominance and rarity.
To evaluate how dominance and rarity were predicted by ecological and anthropogenic factors, we included the variables having the largest effect per variable category on dominance and rarity based on the random forest model to map the global distribution. We selected for climate mean and seasonality in temperature and precipitation (Karger et al., 2017), for soil variables soil pH and sand content at 15 cm depth (Batjes et al., 2017; Ribeiro et al., 2018), for topography elevation (Amatulli et al., 2018), for forest attributes tree density, stand age, for the landscape the percentage forest classified as secondary forest (Poulter et al., 2019), and for human impact population density and human development (Tuanmu & Jetz, 2015; University, 2016) (Table 1). To quantify the relative importance of the effect of these variables on community dominance and rarity, we used random forest models. Biome, latitude, longitude, plot size and species richness were included in the models as well, to correct respectively for the effect of different biomes, geographical locations, plot sizes and the number of species within the forest plot on dominance and rarity. Both dominance (Pearson’s r = −0.82, N = 670,527, p < 0.001) and rarity are related to species richness (Pearson’s r = 0.60, N = 670,527, p < 0.001). To ensure that the patterns we find can be assigned to the effect of dominance or rarity and not to richness, we corrected for the confounding effect of species richness by including species richness as a predictor variable in the models. See Table S2 for an overview of the variable importance values for all variables predicting dominance and rarity.

2.5 Identifying conservation status and range dominant and rare species

Here, we define dominant species as the species which make up the top 10% of plot level basal area, and rare species as the species which make up the bottom 10% of plot level basal area (Figure 1b). To assess if the definition of dominant and rare species affects the results, we also analyse the data when dominant and rare species are defined based on respectively the highest and lowest 10% of the number of stems in the plot and when dominance is defined as the single most dominant species (Figures S5–S7). Additionally, we show for species that are neither defined as dominant nor rare (the ‘locally common’ species), their distribution characteristics (Figures S5–S7). It is possible for a species to be locally dominant and locally rare within different plots within a biome because of a chance effect in

<table>
<thead>
<tr>
<th>Radius (km)</th>
<th>Dominance</th>
<th>Rarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean r^2</td>
<td>Standard deviation r^2</td>
</tr>
<tr>
<td>1</td>
<td>0.448</td>
<td>0.025</td>
</tr>
<tr>
<td>5</td>
<td>0.353</td>
<td>0.020</td>
</tr>
<tr>
<td>10</td>
<td>0.355</td>
<td>0.020</td>
</tr>
<tr>
<td>25</td>
<td>0.361</td>
<td>0.021</td>
</tr>
<tr>
<td>50</td>
<td>0.348</td>
<td>0.030</td>
</tr>
<tr>
<td>100</td>
<td>0.335</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Table 2 The r^2 of the dominance and rarity maps across a range of buffer zone radii.

Figure 2 Global tree community dominance and rarity. (a) Community dominance is the percentage basal area of the most dominant species in the forest plot. The boxplot visualizes the measured data in the six forest biomes. (b) The map of predicted community dominance in global forests, with the spatially corrected r^2 indicated. (c) Coefficient of variation for the community dominance maps. The coefficient of variation is the standard deviation divided by the mean, and is expressed in percentages. The coefficient of variation indicates the variation in the different model outcomes, the higher the coefficient of variation the larger the distances between the values of the different models and the less accurate the mean value. (d) Community rarity is defined as the percentage of rare species, which are defined as the proportion of species contributing to the least 10% basal area. The boxplot visualizes the measured data in the six forest biomes. (e) The map of predicted community rarity in global forests, with the spatially corrected r^2 indicated. (f) Coefficient of variation for the community rarity maps. The map of tree community dominance was less variable, with a maximum coefficient of variation of 15%, whereas the map of tree rarity had a maximum coefficient of variation of 30%. The predicted dominance values exhibited particularly high variation in species rich areas, whereas in Spain, France, Northern Canada and Russia, the rarity predictions are more variable.
relatively small plots, or because of within biome differences in environmental conditions. The species were therefore categorized as locally dominant or rare only if their local abundance was consistent (i.e. in at least 95% of the plot occurrences they were either dominant or rare). We use this strict categorization of dominant and rare species as we want to limit our analyses to species that have consistent abundances within the community. In total, consistently 3% of the species have been categorized as dominant, 29% as common and 68% as rare at biome level.

According to the definition of the IUCN, a species has an elevated extinction risk (i.e. threatened) if it: (i) is restricted in geographical range, (ii) has a low number of individuals, or (iii) exhibits rapid declines in population density over time (IUCN Standards and Petitions Committee, 2019). Therefore, we evaluated the conservation status (e.g. not threatened or threatened), extent of occurrence (EOO, which is a measure for the range where the species occurs), and endemism of locally dominant, common, and rare species with data generated for the first report of the Global Tree Assessment from Botanic Gardens Conservation International (BGCI, 2021a). Additionally, the population trend over three generations of locally dominant, common, and rare species was evaluated with data from IUCN Red list (IUCN, 2021b). The Global Tree Assessment database provides the most comprehensive overview of extinction risks of tree species, covering 84% of the global number of tree species. However, we are aware of the constraints of the databases used, such as the impact of spatial scale on rarity and extinction risk (Hartley & Kunin, 2003). The GBIF and Global Tree Assessment data (BGCI, 2021a) were matched using the species names. In the GBFI database 371 dominant and 7815 rare species were classified as either "not threatened", "possibly threatened" or "threatened" (BGCI, 2021a). Of the dominant species, the conservation status of 1.2% were not evaluated and 3.5% were evaluated but data is too uncertain and therefore considered data deficient. For the rare species, 4.9% was not evaluated, and 3.6% was data deficient. With a Fisher's exact test, which is used to test associations between categorical variables, we identified if there is a difference in conservation status between dominant and rare species. To identify if the conservation status (i.e. "not threatened", "possibly threatened" or "threatened") of dominant and rare species differs between biomes, we performed a Poisson regression, as this is count data, with biome, species category (dominant or rare species), and their interaction as predictors.

To evaluate the spatial range where the locally dominant and rare species occur, the extent of occurrence (EOO) was calculated for the threatened dominant and rare species. The latitude and longitude of the species distribution was extracted using the GBIF database, and distribution was refined to native countries only using GlobalTreeSearch (BGCI, 2021b; GBIF Backbone Taxonomy, 2020). EOO was calculated as the minimum convex hull in km² where the species can occur, however there can be areas within the EOO where the species is absent. The methodology for EOO follows the IUCN mapping standards (IUCN, 2021a). For each forest biome, the mean difference between EOO of in total 315 dominant and 5923 rare species was tested with a t-test. As our locally common and rare species are based on inventory plots, rather than on sampling all unique habitats, this may result in a selection of more widespread species. To check if this affects the results, we also compared the EOO of tree species in the GBFI dataset to the average EOO of tree species per forest biome (IUCN, 2021b). A one-sample t-test was performed to analyse if the EOO of the species included in GBFI within a specific forest biome differs between the average EOO of that forest biome. We also assessed if the number of species considered by IUCN Red List to have a high extinction risk was higher for locally rare species, endemic species and species with smaller distribution range (EOO) (Figure S8). We defined endemism based on whether a species was restricted to a single country (endemic) or not (non-endemic) (BGCI, 2021a). Extinction risk information was available for all dominant and 89.1% of the rare species (BGCI, 2021a). The difference in endemism between the two groups was evaluated with a Fisher's exact test.

Additionally, we used data from the IUCN Red List to evaluate for locally dominant and rare species the population trend (e.g. decreasing or increasing) and the type of threats (e.g. logging leading to mortality, ecosystem conversion or ecosystem degradation) (IUCN, 2021b; IUCN Standards and Petitions Committee, 2019). The IUCN Red List could provide population trend or threat information on of 81% of the dominant and 48% of the rare species. To identify if there is a difference between population trend or type of threats to the population between threatened dominant and rare species, a Fisher's exact test was performed. Data management and statistical analyses in this study were performed in R, version 3.6.1 (R Core Team, 2019). The data to simulate the main graphs, and the code used to perform the statistical analyses can be found at Github, following this link: tinyurl.com/376m4pra.

3 | RESULTS

3.1 | Global and regional patterns of community dominance and rarity

The contribution of dominant and rare species to local community structure shows a clear opposing latitudinal pattern at the global scale (Figure 2). These patterns are consistent across different spatial scales (i.e. it was analysed with grid sizes varying from 0.01 to 1000km²) (Figure S9). Community dominance increases gradually with latitude, where the single most dominant species comprises on average 35% of local basal area near the equator to 70% in boreal forest (Figure 2a,c). In contrast, the proportion of species that are rare (those compromising the bottom 10% of basal area) ranges from an average of 40% in tropical forest to nearly 0% in boreal forest. These results closely mirror global patterns in species richness: community rarity is positively related to species richness (Pearson’s r = 0.60, N = 670,527, p < 0.001), whereas dominance is negatively related to species richness (Pearson’s r = −0.82, N = 670,527, p < 0.001) (Figure 3).
At the biome scale, within the tropical forest biome a positive relationship between rarity and species richness (tropical moist forest: Pearson’s $r = 0.52$, $N = 6263$, $p < 0.001$), whereas the temperate and boreal forest biomes show a negative relationship (boreal forest: Pearson’s $r = -0.54$, $N = 58,522$, $p < 0.001$). While at the global scale there is a negative relationship between dominance and rarity, at the forest biome scale, species-poor communities tend to exhibit a stronger positive relationship between community dominance and rarity (boreal forest: Pearson’s $r = 0.75$, $N = 20,648$, $p < 0.001$) (Figure 3). These results suggest that two mechanisms structure these patterns at different scales: (1) at the global scale, the inverse correlation between community dominance and rarity is predicted by turnover in richness across ecosystems, and (2) at regional scales, with less variation in species richness, an increase in the abundance of the dominant species necessarily decreases the abundance of the remaining species, thereby promoting rarity.

3.2 Predictors of community dominance and rarity

When exploring the predictors underpinning community dominance and rarity with a random forest model ($N = 14,282$), biome differences explained $≈2\%$ of the variation, whereas richness explained 23% of dominance and 12% of rarity. Regarding the abiotic environment, climate was the most important predictor ($≈31\%$), followed by soil characteristics ($≈20\%$) (Figure 4a). Specifically, annual precipitation decreases community dominance ($≈8\%$), and soil sand content is an equally strong predictor for both community dominance and rarity ($≈9\%$). Dominance increases with soil sand (pseudo $r^2 = 0.08$), whereas the relationship between soil sand content and rarity is not well predicted by a generalized linear model (pseudo $r^2 = 0.001$).

Interestingly, community dominance and rarity are equally predicted by human impact (15%) and stand age (14%). Community dominance showed a gradual increase with stand age (generalized linear model, pseudo $r^2 = 0.28$), whereas community rarity shows a very slight decrease (generalized linear model, pseudo $r^2 = 0.06$) (Figure 4b).

3.3 Conservation status of dominant and rare species

BGCI categories the extinction risk of species in three broad categories; threatened, possibly threatened, or at risk (BGCI, 2021a). Both locally dominant and rare species have a similar percentage of species that are either ‘threatened with extinction’ (11% and 16%, respectively) or ‘possibly threatened with extinction’ (5% and 7%, respectively) (Figure 5a). There is no significant difference between the number of locally at-risk dominant and rare species, neither globally (Fisher’s exact test, $p = 0.89$) nor between biomes (Poisson regression, z-value $= 0.971$, $\beta = 0.10$, $p = 0.33$). Of the species threatened with extinction, dominant and rare species show a similar population decline of 95% and 75%, respectively (Fisher’s exact test, $p = 0.17$) (Figure 5b), and a similar percentage (36% and 41%, respectively) are identified as endemic (Fisher’s exact test, $p = 0.61$) (Figure 5c). Dominant species have a larger distribution range (EOO) than rare species (t-test, $p = 0.04$) (Figure 5d). These trends are consistently found when different definitions of locally dominant and rare species are used. (Figures S5–S7). Ecosystem degradation is the most important threat for both dominant and rare species, followed by mortality for dominant species and ecosystem conversion for rare species (Table S2).

FIGURE 3 The relationship between dominance, rarity and species richness in forests globally ($N = 670,527$). For the relationship between rarity and dominance, and rarity and species richness, only the plots that included rare species were considered ($N = X$). In Figure S4, the relationships between rarity and dominance, and rarity and species richness were visualized for all plots, including monodominant plots.
4 | DISCUSSION

In this study, we evaluated patterns and population status of locally dominant and rare species across forests globally. Specifically, we analysed (1) global patterns, (2) abiotic and anthropogenic predictors and (3) extinction risk and population decline of locally dominant and rare tree species. We found clear latitudinal trends, which are predicted by species richness both across and within biomes (Figure 2–4). Across biomes, community dominance decreased with annual precipitation (Figure 4b) and increased with stand age (Figure 4b). Dominant and rare species show similar levels of extinction risk, with ecosystem degradation and land use conversion being the most important causes (Figure 5a). Taken together, these results suggest that species relative abundances are clearly related to species richness and affected by human impact, and that locally dominant and rare species are equally threatened.

4.1 | Global and regional patterns of community dominance and rarity

At the global scale, higher number of tree species correlates with a decrease in the abundance of the locally most dominant species and a slight increase in the proportion of locally rare species (Figure 2), which is consistent with previous studies (Bock et al., 2007; Enquist et al., 2019; Sabatini et al., 2022; Soininen et al., 2012; Stirling & Wilsey, 2001). However, at the biome scale, the relationship between community dominance and rarity is

![Diagram](image-url)
generally positive, apart from very species rich biomes (i.e. tropical forest) where there is no significant relationship (Figure 3). Based on the definition of dominance and rarity, a stronger and consistent relationship between rarity and richness would be expected as richness is included in the calculation of rarity. However, the relationship between dominance and richness is stronger and consistent (Figure 3). These results suggest fundamentally different processes structuring global versus biome level patterns of species abundance, which is also known as Simpson's paradox (Scheiner et al., 2000; Simpson, 1951). At the global scale, patterns of community dominance and rarity are predicted by species richness, whereas at a regional scale there is more direct competition between dominant and rare species for space and resources (Markham, 2015). However, this local pattern breaks down for moist tropical forests, suggesting that other mechanisms play a role in speciose forests (Svenning et al., 2004; Volkov et al., 2003).

At biome level, local dominance declines with species richness (Figure 3), which indicates that with a higher number of species in the community, the most dominant species have a relatively smaller basal area. A higher species richness indicates higher interspecific competition, which can indeed affect tree diameter and architecture (Forrester et al., 2017; van de Peer et al., 2017). Interestingly, the relationship between richness and rarity is positive for the tropical forests, but negative for the temperate and boreal forests (Figure 3). It is widely accepted that a higher species richness leads to a higher number of rare species, and that in an ecological community most of the species are, by definition, rare (Preston, 1962). Species richness is indeed positively correlated with rarity (Pearson’s $r = 0.60$, $N = 670,527$, $p < 0.001$), which might indicate that in less species-rich forests an additional species will be present in relatively high abundance. This would mean that species have a more equal abundance in a forest containing fewer species, which is supported by the most common species-abundance distribution models and a global analysis on the relationship between richness and relative abundance of species (Hordijk et al., 2023; Ulrich et al., 2010).

4.2 Predictors of community dominance and rarity

When evaluating the effect of abiotic, biotic and anthropogenic predictors on local community dominance and rarity, the random forest model explained community dominance better ($r^2 = 0.73$) than rarity ($r^2 = 0.42$). Therefore, the relationships between the most important abiotic, biotic and anthropogenic predictors were stronger with dominance compared to rarity. Overall, rarity is best explained by richness, which might be caused by the way rarity is calculated, whereas dominance increases with stand age and soil sand content, and decreases with annual precipitation. With an increase in stand age, trees increase in diameter after the initial phase where trees mainly invest in height growth (Ryan & Yoder, 1997). Our results suggest that the basal area of the most dominant species increases with stand age, indicating that species’ basal area might differentiate more during succession due to competition. Soil sand content also increases community dominance, which might be a result of fewer tree species able to establish and dominate on less fertile soils with a lower water holding capacity (Avolio et al., 2019; Ehbrecht et al., 2021; Laurance et al., 2010). Additionally, we found that precipitation is negatively related to dominance, a possible explanation is that under more benign and productive conditions, more species are able to persist, which increases richness and reduces absolute dominance.

4.3 Conservation status of dominant and rare species

The IUCN Red list regards a species to have an elevated extinction risk (i.e. threatened) if it: (i) is restricted in geographical range, (ii) has a low number of individuals, or (iii) exhibits rapid declines in population density over time (IUCN Standards and Petitions Committee, 2019). We indeed found that endemic species and species with narrow distribution ranges have a higher risk of extinction than widespread species (Figure S8) (consistent with e.g. Chichorro et al. (2019); Cardillo et al. (2005) and Purvis et al. (2000)). However,
we also show that species that are locally dominant or rare in the community have a similar level of extinction risk (11% and 16% of the species, respectively), endemicity and range (Figure 5a). In general, the range of tree species in our dataset is larger or equal to the average range of tree species per biome ($p < 0.001$), which indicates that the species we are evaluating are relatively widespread (Gaston et al., 1997). Indeed, species can be geographically widespread, but regionally and locally rare (Rabinowitz et al., 1986). A surprisingly large proportion of locally dominant and rare species show a decline in population size (respectively 95% and 75%) (de Lima et al., 2024). This might be explained by the main threat, which is ecosystem degradation, as this has probably an equally high impact on dominant and rare species within the same community (Curtis et al., 2018; Newbold et al., 2015). Additionally, in the boreal and temperate conifer forests, where species are widespread and thought to have a high population density, the threatened status of widespread dominant and rare species shows a rapid decline in population size due to disease outbreaks and invasive species (e.g. Dutch elm disease, emerald ash borer, invasive pests) (Table S1). In this context, our results point to declining population densities across species ranges as the primary cause of elevated extinction risk for these widespread species (Boonman et al., 2024; Gaston & Fuller, 2007, 2008).

The main challenges when working with global forest inventory data and extinction risk assessments are unbalanced sampling with biomes over-represented and other biomes under-sampled and the lack of species population assessments to evaluate extinction risk, which can be particularly limited in tropical regions. To reduce this sampling bias, we analysed a weighted subset of the data for our global analyses of predictors of community dominance and rarity. Moreover, especially in the tropical forest biomes there is relatively a lower percentage of assessed locally dominant and rare species, compared to the temperate and boreal forests. Therefore, the percentage of at-risk species could differ between biomes if a higher percentage of the species in the most speciose forest biomes were assessed. Additionally, it became apparent that our dataset is biased towards species with larger ranges (although rare species can have larger distribution ranges as well, see Zizka et al., 2018). Therefore, an effort can be made to include in the future also datasets within GFBI with a focus on species with a smaller range, especially in the tropics. Another challenge when working with global forest inventory data without a standardized protocol are the different management histories of the plots and the different plot sizes within the dataset. We filtered very small and large plots out of the data but are aware that a larger plot size in the same region could lead to a higher richness, lower dominance and higher rarity. The differences in plot sizes, however, are more pronounced between biomes versus within biomes, and the more species rich biomes have generally a larger plot size (Figure S1).

Typically, the focus of plant conservation studies are on dispersal-limited species and localized endemics with naturally low geographical range distributions, usually in more species rich regions (e.g. Corlett, 2016; Myers et al., 2000; With & King, 1999). However, we find that geographically widespread species also have high levels of extinction risk, a conclusion which has not previously been reported at this global scale to our knowledge. Widespread and dominant species are key for ecosystem functioning, such as carbon sequestration to mitigate climate change, and their decline is therefore a major concern (Gaston & Fuller, 2007; Grime, 1998). Furthermore, we show that the primary predictors of population decline and elevated extinction risk for both rare and dominant species are land degradation, land conversion for farming and agro-industry, and species mortality mainly due to logging (Table S1), consistent with global studies (Curtis et al., 2018; DeFries et al., 2010; Foley et al., 2005). Together, our results bring a new perspective on biodiversity loss, highlighting the importance of implementing conservation and restoration actions to bend the curve of biodiversity loss (Cazzolla Gatti et al., 2022; Leclère et al., 2020) and reverse the trajectory of species decline and elevated extinction risk for geographically widespread species (Thakur et al., 2018). Together, our findings and previous works emphasize the need to develop more holistic, ecosystem scale, biodiversity conservation efforts that explicitly include the protection of widespread species, which are not traditionally a high priority of conservation and restoration actions. However, these results capture broad-scale macro-ecological patterns at the biome and global scale, contingent on the specific dataset we use. To responsibly manage local forest ecosystems and tree species, it is important to consider the local environmental and social context (Swanson et al., 2021).

5 | CONCLUSIONS

The attention of conservation biologists has focused primarily on species with narrow range distributions (endemics and dispersal-limited species), as these species that have a higher intrinsic risk of extinction. In this study, we focus on global and biome level patterns in community dominance and rarity, and show that across ecosystems, annual precipitation is a strong predictor of the variation in dominance and rarity, with lower dominance in regions characterized by high precipitation levels. Within forest communities, stand age and successional dynamics influence patterns of community dominance, indicating the effect of habitat disturbance on species abundances. We show that relatively widespread tree species which are locally dominant or rare are equally threatened by anthropogenic pressures, with land degradation being the largest threat. Although forests are continuously changing over time and space, there is a clear footprint of human activity on the abundance of both dominant and rare species. Our results therefore suggest that conservation efforts should focus not only on the geographically limited species but also incorporate the more widespread but locally rare or dominant species that are also critical for functioning of forest ecosystems.

AUTHOR CONTRIBUTIONS

Iris Hordijk, Tom W. Crowther and Daniel S. Maynard conceived of the study. Iris Hordijk extracted and analysed the data, and Thomas Lauber and Devin Routh assisted in the map making process. Iris
Hordijk drafted the manuscript with assistance from Daniel S. Maynard, Lalasia Bialic-Murphy and Tom W. Crowther. Members of the GFB! consortium (all authors not mentioned previously) provided data for the analysis. All authors assisted with revisions and gave final approval for publication.

AFFILIATIONS

1Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
2Wageningen University and Research, Wageningen, The Netherlands
3Department of Geography, University of Zürich, Zürich, Switzerland
4Department of Science IT, University of Zürich, Zürich, Switzerland
5Botanic Gardens Conservation International, Richmond, UK
6Naturalis Biodiversity Centre, Leiden, The Netherlands
7Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands
8Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
9Department of Forest Resources, University of Minnesota, St Paul, Minnesota, USA
10Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
11Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
12Joint Research Unit CTFC – AGROTECNO – CERCA, Solsona, Spain
13Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
14Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
15Mamaiki Whenua–Landcare Research, Lincoln, New Zealand
16Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
17Centre for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
18GIP ECOFOR, Paris, France
19Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
20Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamouskour, Côte d’Ivoire
21Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
22Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
23Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
24Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
25UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
26Spatial Ecology and Conservation Laboratory, Center for Latin American Studies, University of Florida, Gainesville, Florida, USA
27Forestry School, Tecnológico de Costa Rica TEC, Cartago, Costa Rica
28Fundación ConVida, Universidad Nacional Abierta y a Distancia, UNAD, Cartago, Costa Rica
29Institute for Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
30Center for Tropical Research, Institute of the Environment and Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
31Silviculture and Forest Ecology of the Temperate Zones, University of Göttinngen, Göttinngen, Germany
32Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
33Museo de Historia natural Noel Kempff Mercado, Santa Cruz, Bolivia
34European Commission Joint Research Centre, Ispra, Italy
35UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
36Compensation International S. A. Ci Progress-GreenLife, Bogotá D.C., Colombia
37School of Geography, University of Leeds, Leeds, UK
38Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
39Proceedings of the National Academy of Sciences, Washington, District of Columbia, USA
40Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
41United Nation Framework Convention on Climate Change, Bonn, Germany
42Cirad, UMR-AMAP, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
43Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, Uganda
44Isotope Bioscience Laboratory – ISOFYS, Ghent University, Ghent, Belgium
45Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSID), Stefan cel Mare University of Suceava, Suceava, Romania
46Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
47Bavarian State Institute of Forestry, Freising, Germany
48Spatial Ecology and Conservation Laboratory, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
49Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
50German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
51Department of Agriculture, Food, Environment and Forest Research (DAGRI), University of Firenze, Florence, Italy
52Biological Institute, Tomsk State University, Tomsk, Russia
53Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
54Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
55Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
56IFER – Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
57Global Change Research Institute CAS, Brno, Czech Republic
58Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
59Department of Biology, University of Missouri-St Louis, St Louis, Missouri, USA
60Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
61Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
62Andes to Amazon Biodiversity Program, Madre de Dios, Peru
63Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico
64Department of Physical and Biological Sciences, The College of Saint Rose, Albany, New York, USA
65Department of Biology, West Virginia University, Morgantown, West Virginia, USA
66Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
67Nature Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
68World Agroforestry (ICRAF), Nairobi, Kenya
69Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guadeloupe), Campus Agronomique, Kourou, French Guiana
70Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
71Institute of Forestry, Belgrade, Serbia
72National Institute of Amazonian Research, Manaus, Brazil
73Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
74Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
75IRET, Herbar National du Gabon (CENAREST), Libreville, Gabon
76Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
ACKNOWLEDGEMENTS

This research has been funded by a grant from DOB Ecology. Swiss National Science Foundation, Ambizione grant #PZ00P3_193612 to DSM. JCS considers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant DNRF173), and his VILLUM Investigator project “Biodiversity Dynamics in a Changing World”, funded by VILLUM FONDEN (grant 16549). The GFBI data from New Zealand were drawn from the Natural Forest plot data collected between January 2009 and March 2014 by the LUCAS programme for the New Zealand Ministry for the Environment and sourced from the New Zealand National Vegetation Survey Database'. Russian Science Foundation Project 21-46-07002 for the plot data collected in the Krasnoyarsk region. Instituto de Conservación da Natureza, Brazil.

Publications.

D/S/023225/09 and D/032548/10 funded by the Spanish Agency for International Development Cooperation [Agencia Española de Cooperación Internacional para el Desarrollo (AECID)] and Fundación Biodiversidad, in cooperation with the Universidad Mayor de San Simón (UMSS), the FOMABO (Manejo Forestal en las Tierras Tropicales de Bolivia) project and CIMAL (Compañía Industrial Maderera Ltda.). All persons who made the Third Spanish Forest Inventory possible, especially the main coordinator, J. A. Villanueva (IFN3). Research
was supported by APVV 20-0168 from the Slovak Research and Development Agency. E.C. acknowledges funding from the project SustES—Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797); We acknowledge collaboration with the International Boreal Forest Research Association (IBFRA, http://ibfra.org). We thank the ‘Ministère des Forêts, de la Faune et des Parcs du Québec for access to their database of permanent sample plots. We thank the Amazon Forest Inventory Network (RAINFOR), the African Tropical Rainforest Observation Network, and the ForestPlots.net initiative for their contributions from Amazonian and African forests. These were supported by many projects including an ERC Advanced Grant 291585 ("T-FORCES") and a Royal Society Wolfson Research Merit Award to O.L.P.; RAINFOR plots were additionally supported by the Gordon and Betty Moore Foundation and the UK Natural Environment Research Council (NERC), notably NERC Consortium Grants AMAZONICA (NE/F005806/1), TROBIT (NE/D005590/1), and BIO–RED (NE/N012542/1). This study was supported by GACR project 21-27454S from the Czech Science Foundation. Financial support from DBT, Govt. of India, through the project ‘Mapping and quantitative assessment of geographic distribution and population status of plant resources of Eastern Himalayan region’ is highly acknowledged (Reference no. BT/PR7928/NDB/52/9/2006 dated 29.09.2006). GBFI data from Mexico was funded by many projects including the National Forestry Commission (CONAFOR), Council of Science and Technology of the State of Durango (COCYTED), the Natural Environment Research Council, UK (NERC; NE/T011084/1), and local support of Ejidos and Comunidades. The French National Forest Inventory (NFI campaigns, raw data 2005 and following annual surveys) was downloaded by GBFI at https://inventaire-forestier.ign.fr/spip.php?rubrique159 (site accessed on 1 January 2015); the Italian Forest Inventory (2005 and 2015) was downloaded by GBFI at https://inventarioforetale.org/. Financial support from the Czech Science Foundation (project no. 21-26883S). Open access funding provided by Eidenossische Technische Hochschule Zurich.

CONFLICT OF INTEREST STATEMENT
The authors declare no competing interests.

DATA AVAILABILITY STATEMENT
Tree community dominance values are available in the ETH research collection: https://www.research-collection.ETHZ.ch/handle/20.500.11850/682380

ORCID
Iris Hordijk https://orcid.org/0000-0002-6302-6254
Lourens Poorter https://orcid.org/0000-0003-1391-4875
Jingjing Liang https://orcid.org/0000-0001-9439-9320
Sergio de-Miguel https://orcid.org/0000-0002-9738-0657
Han Y. H. Chen https://orcid.org/0000-0001-9477-5541
Bruno Héralt https://orcid.org/0000-0002-6950-7286
Jean-Francois Bastin https://orcid.org/0000-0003-2602-7247
Christian Ammer https://orcid.org/0000-0002-4235-0135

Helge Bruelheide https://orcid.org/0000-0003-3135-0356
Géraldine Derriouët https://orcid.org/0000-0001-7239-2881
Jiri Dolezal https://orcid.org/0000-0002-5829-4051
Brian Enquist https://orcid.org/0000-0002-6124-7906
Leena Finér https://orcid.org/0000-0001-7623-9374
Andreas Hemp https://orcid.org/0000-0002-5369-2122
Cang Hui https://orcid.org/0000-0002-3660-8160
Andrzej M. Jagodziński https://orcid.org/0000-0001-6899-0985
Elizabeth Kearsley https://orcid.org/0000-0003-046-3606
Cory Merow https://orcid.org/0000-0003-0561-053X
John R. Poulsen https://orcid.org/0000-0002-1532-9808
Francesco Rovero https://orcid.org/0000-0001-6688-1494
Ferry Slik https://orcid.org/0000-0003-3988-7019
Krzysztof Stereńczak https://orcid.org/0000-0002-9556-0144
Tran Van Do https://orcid.org/0000-0001-9059-5842
Chunyu Zhang https://orcid.org/0000-0003-3091-5060
Xiuhai Zhao https://orcid.org/0000-0003-0879-4063

REFERENCES
BGCI. (2021a). State of the world’s trees. BGCI.
Bowler, D. E., Hof, C., Haase, P., Kröncke, I., Schweiger, O., Adrian, R., Baert, L., Bauer, H.-G., Blick, T., Brooker, R. W., Dekoninck, W.,

GBIF database. (2021). Global forest biodiversity initiative. http://www.gifbinitiative.org Please be aware that the map on the GBIF website may not include all the plots we incorporated in this study due to updates in the database.

van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E., & Muys, B. (2016). Additional supporting information can be found online in the Supporting Information section at the end of this article.

Biosketch

The leading author of this manuscript is especially interested in (1) how environmental filtering, the surrounding landscape and land use history affect tree species presence, (2) how traits and the local biotic and abiotic environment affect tree species abundances, and (3) how abundances of tree species contribute to ecosystem functioning.