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Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous
studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate
nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature
there is no guidance available with regard to which approach is more appropriate for representing the spreading
of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be
made to distinguish between situations where these two models are appropriate. Here we provide a link between
individual-based and continuum models using a multiscale approach in which we analyze the collective motion of
a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy
a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation,
whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum
description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function
is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective
cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles.
Results suggest that when using continuum models to represent cell population spreading, we should take care to
account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
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I. INTRODUCTION

A. Biological motivation

Continuum models of collective cell spreading based on
linear diffusion, which give rise to cell density descriptions of
the form

∂C

∂t
= D0∇2C, (1)

are routinely used to model the collective movement of cell
populations [1–6]. Several authors have also suggested that the
traditional linear diffusion mechanism can be generalized to a
nonlinear diffusion model

∂C

∂t
= D0∇ · [D(C)∇C] (2)

with D(C) = Cn and n > 0 [1,3,5,7]. This degenerate nonlin-
ear diffusion equation is known as the porous media equation
(PME) [8,9], which is degenerate in the sense that D(0) = 0.
In Eqs. (1)–(2) D0 is the free cell diffusivity and D(C) is the
nonlinear diffusivity function.

One of the main arguments supporting the use of the PME
to model the spreading of cell populations is that the solution
of the PME can have distinct boundaries, called interfaces,
beyond which the population density is zero [8–10]. These
sharp-fronted solutions are thought to represent sharp-fronted
cell density profiles [1]. Other justifications for using the PME
borrow from arguments that arose in the ecology and animal
dispersal literature [11–13]. In particular, Murray discusses
how the PME can represent “population pressure” in biological
systems [14].

Although many theoretical treatments of the PME are
partly justified by their relevance to biological motility
problems [7,10,15–18], the assumption that the evolution
of a spreading cell population is governed by the PME
has never been formally justified. Often the PME has been
used in preference to the linear diffusion equation because
of model calibration arguments. For example, Sherratt and
Murray [3] modeled a set of wound closure experiments
using two different continuum models. One model involved a
linear diffusion motility mechanism, and the other involved a
degenerate nonlinear diffusion motility mechanism, where the
nonlinear diffusivity function was given by D(C) = C4. The
results presented in this previous work show that the solutions
of the model incorporating degenerate nonlinear diffusion
provided a better fit to the experimental data than the solutions
of the model with a linear diffusion motility mechanism.
Similarly, Sengers and coworkers [5] modeled a set of
in vitro cell invasion assays describing two different skeletal
cell types, including MG63 cells and human bone marrow
stromal cells (HBMSCs). They collected detailed experimental
data that described the evolution of cell density profiles, and
the solution of a reaction-diffusion equation was fitted to the
experimental data using a least-squares approach. Key results
from the study by Sengers and coworkers are shown in Fig. 1,
where detailed cell density data are compared with the solution
of the reaction-diffusion model. These results show that the
spreading of the HBMSC population was best described by a
linear diffusion motility mechanism [Fig. 1(a)] whereas the
spreading of the MG63 population was best described by
a degenerate nonlinear diffusion motility mechanism with a
nonlinear diffusivity function given by D(C) = C [Fig. 1(b)].
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FIG. 1. (a) Experimental cell density profiles from an in vitro cell spreading assay using human skeletal HBMSC cells. Experimental cell
density data (histograms) are matched with the solution of a continuum model (solid lines) with a linear diffusion mechanism. The numerical
solutions of the continuum model are smooth fronted. (b) Experimental cell density profiles from an in vitro cell spreading assay using
human skeletal MG63 cells. Experimental cell density data (histograms) are matched with the solution of a continuum model (solid lines)
with a nonlinear degenerate diffusion mechanism with D(C) = C. The numerical solutions of the continuum model are sharp fronted. Full
experimental and modeling details are available in Ref. [5]. Reprinted from J R Soc Interface (2007), Sengers BG, Please CP, and Oreffo ROC,
Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration, 4, 1107–1117 (2007)
with permission from the Royal Society.

These previous observations raise several important ques-
tions:

(1) Why is the spreading of certain cell populations best
described by a linear diffusion mechanism?

(2) Why is the spreading of certain cell populations best
described by a PME model?

(3) When we apply the PME to represent collective cell
spreading, how do we choose the exponent n in the nonlinear
diffusivity function D(C) = Cn?

Currently there is no accepted mathematical or physical
justification available to answer to any of these questions.
Instead of relying on ad hoc arguments based on intuition
or model calibration, here we take a different approach and
show that the PME plays an important role in describing the
spreading of cell populations when we consider the effects of
varying the cell aspect ratio together with volume exclusion.

Having an understanding of how to choose the appropriate
motility term in a partial differential equation (PDE) model
to describe the spreading of cell populations has very broad
and important implications. This is because continuum models
of cell population spreading are routinely used in several
applications including wound healing [1,2], developmental
biology [6], and cancer biology [19]. If we choose to model the
spreading of a cell population using a PDE, we must somehow
choose the most appropriate motility term in the PDE. Making
this choice is fraught with difficulties because many different
motility mechanisms can be used to match experimental data
via model calibration arguments [20]. Instead of relying on
intuition or calibration, here we consider several discrete
motility mechanisms and analyze their relationship with a PDE
model by considering the continuum limit of the processes.

B. Connection with existing work

Recently we [21–24] and others [25–28] have used
discrete interacting random walk models, called exclusion

processes [29], to represent collective cell spreading.
Exclusion processes are lattice-based random walk models
in which each lattice site can be occupied by, at most,
one agent. Simulations of exclusion process models provide
us with microscopic data, and averages constructed using
these microscopic data provide a macroscopic continuum
description of the system that can be related to the solution of a
PDE [22–25].

Previous applications of exclusion process models have
considered each biological cell to be represented by a single
agent that occupies a single lattice site. These existing
models are appropriate for modeling “round” cells where
the longitudinal and transverse length scales of the cell are
approximately equal. This is true of our previous work [21–24]
and the previous work of others [25–28]. Our new work is
motivated by the fact that cells are not always round, but
are often elongated or rod shaped, such as the population of
cells shown in Fig. 2(a). In this case the cell length along the
longitudinal axis is approximately four times the cell length
along the transverse axis, giving an aspect ratio of L = 4.
By developing new exclusion process-based models using
elongated agents to represent elongated cells, the current work
is a major extension of existing work, which was limited to the
simplest possible case where L = 1 [22].

In Sec. II we develop exclusion process models relevant to
populations of cells with different, fixed aspect ratios. These
models are simulated on a square two-dimensional lattice with
spacing �. Each site is indexed (i,j ) where i,j ∈ Z+, and each
site has position (x,y) = (i�,j�). The length of the lattice
is given by the x coordinate, 1 � x � xmax, and the vertical
height of the lattice is given by the y coordinate, 1 � y � ymax.
A population of interacting agents is considered in which each
agent has an aspect ratio of L and occupies L (horizontally
or vertically) adjacent lattice sites. For example, an agent that
is parallel to the x axis with L = 2 might occupy sites (i,j )
and (i + 1,j ). Alternatively, an agent that is parallel to the
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FIG. 2. (Color online) (a) An image from an in vitro wound-
healing scratch assay showing a population of human peritoneal
mesothelial cells. During the assay cells are motile and proliferative
resulting in the leading edge of the population moving in the positive
y direction. This image was taken about 10 hours after wounding,
and full details of this experiment are described by Maini et al. [1,2].
The typical length scale of each cell is 10–20 μm. Reprinted from
Appl. Math. Lett., Maini PK, McElwain DLS, and Leavesley D,
Travelling waves in a wound healing assay, 17, 575–580 (2004) with
permission from Elsevier. (b) A portion of a lattice partly occupied
by a single red agent (gray) with L = 4 that is parallel to the x

axis and occupies sites (i − 1,j + 1), (i,j + 1), (i + 1,j + 1), and
(i + 2,j + 1).

y axis with L = 2 might occupy sites (i,j ) and (i,j + 1).
By considering the continuum limit of these discrete models,
we provide a novel motivation for the use of the PME to
represent the spreading of cell populations. Our analysis also
shows that the relevant continuum model simplifies to the
linear diffusion equation when L = 1. Therefore, our work
provides a connection between the use of linear diffusion
and degenerate nonlinear diffusion models in this context.
Further, our results suggest that the differences between these
two models can arise due to differences in agent aspect ratio,
and we conclude that measurements of the cell aspect ratio
ought to be made to help distinguish between the use of the
linear diffusion equation and the PME. In Sec. III we provide
simulations and analysis of more complex systems with inter-
acting subpopulations that are relevant to more complicated
situations.

II. A POPULATION OF HORIZONTALLY
ALIGNED AGENTS

A. Discrete simulations

To illustrate the influence of varying the aspect ratio of
agents, we first consider the simplest system with a population
of uniformly aligned agents, each with the same aspect ratio,
L. In the first instance we consider the case where all agents
are parallel to the x axis. For example, the red agent in
Fig. 2(b) has L = 4 and occupies four adjacent lattice sites:
(i − 1,j + 1), (i,j + 1), (i + 1,j + 1), and (i + 2,j + 1). The
motility of a population of N such agents is simulated as
follows: During each time step of duration τ , N agents are
selected independently at random, one at a time, and given
the opportunity to move. This is called a random sequential
update method [30]. When chosen, an agent attempts to
move with probability Pm ∈ [0,1]. We interpret Pm as the
probability that an agent will attempt to move a distance
� in the time interval τ . For example, if the agent in
Fig. 2(b) were to move in the positive x direction, at the end of
the motility event sites (i,j + 1), (i + 1,j + 1), (i + 2,j + 1),
and (i + 3,j + 1) would be occupied, and site (i − 1,j + 1)
would be vacant. Similarly, if the agent in Fig. 2(b) were to
move in the negative y direction, at the end of the motility
event sites (i − 1,j ), (i,j ), (i + 1,j ), and (i + 2,j ) would be
occupied, while sites (i − 1,j + 1), (i,j + 1), (i + 1,j + 1),
and (i + 2,j + 1) would be vacant. If, during the attempted
motility event, any target site is occupied by any agent other
than the agent attempting to move, then that motility event is
aborted.

Using this mechanism with a population of horizontally
aligned agents with L = 4, we conducted simulations on a
lattice with 1 � x � 400 and 1 � y � 20. The central part of
this lattice is shown in Fig. 3(a). Periodic boundary conditions
were imposed at y = 1 and y = 20, and reflecting boundary
conditions were imposed at x = 1 and x = 400. All lattice sites
between 181 � x � 220 were initially occupied so that the
initial distribution of agents was composed of 10 columns of
adjacent nonoverlapping agents, each with L = 4. The system
was allowed to evolve, and we observe the spreading of the
population in Figs. 3(a)–3(c) at t = 0,100,300, respectively.
To complement this single microscopic realization, we also
generated averaged agent density data in Fig. 3(d) for the
same problem at t = 0,100,300.

To generate these data, we construct an appropriate measure
of the averaged agent density profile using the following
argument. If Cm(i,j ) is the occupancy of site (i,j ) during
the mth realization, then for M realizations starting from
the same initial condition, we can estimate the occupancy of
any site within a particular column by constructing a double
average across the height of the column ymax, and over M

identically prepared realizations, given by

〈C(x,t)〉 = 1

ymaxM

M∑
m=1

ymax∑
y=1

Cm(i,j ). (3)

Our previous work has shown that when the initial occupancy
of all sites within every column of the lattice is constant, and
we perform simulations with periodic boundary conditions on
the horizontal boundaries, then the dynamics of the system

021901-3



MATTHEW J. SIMPSON, RUTH E. BAKER, AND SCOTT W. MCCUE PHYSICAL REVIEW E 83, 021901 (2011)

x
100 300200

L = 1      Dx(C) = 1

0

1

  C
<C>

x
100 300200

L = 2      Dx(C) = 4C

0

1

  C
<C>

x
100 300200

L = 3      Dx(C) = 9C2

0

1

  C
<C>

x
100 300200

L = 4      Dx(C) = 16C3

0

1

  C
<C>

t = 300

x
100 300200

y
1

20

t = 100

x
100 300200

y
1

20

t = 0

x
100 300200

y
1

20(a)

(b)

(c)

(d) (e)

(f) (g)

L = 4

L = 4

L = 4

FIG. 3. (Color online) (a) Simulations start with all sites occupied
where 181 � x � 220 so that the initial population is composed of 10
adjacent columns of nonoverlapping horizontally aligned agents each
with L = 4. (b)–(c) Simulation results are given at t = 100,300 for
Pm = � = τ = 1. Results in (d)–(g) show averaged agent density
data for a series of simulations, similar to those shown in (a)–(c),
for L = 4,3,2,1, respectively. In (d)–(g) we consider 10, 13, 20, 40
adjacent columns of nonoverlapping horizontally aligned agents with
L = 4,3,2,1 so that all sites with 181 � x � 220, 181 � x � 219,
181 � x � 220, 181 � x � 220 are initially occupied. In each case,
the column density of agents averaged over M = 100 identically
prepared simulations, 〈C(x,t)〉, is shown in blue (solid) at t =
0,100,300. These simulation profiles are compared with the solution
of Eq. (6) shown in red (dotted) with the arrows showing the direction
of increasing time. The solution of Eq. (6) is obtained numerically
using the method described in the main text with δx = 0.25, δt = 0.1,
and ε = 1 × 10−6.

reduces to a one-dimensional problem where we need only
consider the x component of the density information [22–24].
Under these conditions the double average given by Eq. (3)
is a useful measure of the x component of the agent
density [22–24]. Using Eq. (3) with M = 100 identically
prepared realizations, the density data in Fig. 3(d) show how
the population spreads away from the initial closely packed
distribution. For comparison purposes, we simulated three
further problems similar to the results in Figs. 3(a)–3(d),
except that the agents have different aspect ratios L = 3,2,1.

Details of these these additional simulations are given in
Figs. 3(e)–3(g).

Comparing the discrete density profiles in Figs. 3(d)–3(g)
we see the importance of accounting for differences in agent
aspect ratio; the evolution of the density profiles is very
different as L is varied. For example, we see that the agent
density near x = 200 decreases faster as L increases. This
observation is intuitively reasonable. Consider a single agent
with L = 1 located at (i,j ). If this agent moves in the positive
x direction, the density of sites (i,j ) and (i + 1,j ) are altered.
In comparison, consider the movement of an agent with L = 4.
If the agent occupies sites (i − 3,j ), (i − 2,j ), (i − 1,j ), and
(i,j ), and the agent moves in the positive x direction, this event
alters the density at site (i + 1,j ) as well as the distant site
(i − 3,j ). This argument illustrates why the density profiles in
Figs. 3(d)–3(g) spread faster as L increases: The movements of
larger agents affect the population density over a wider region
of the lattice relative to the same event acting on a population
of smaller agents.

At this stage we would like to point out a common difficulty
regarding the interpretation of experimental measurements.
The agent density profiles in Figs. 3(d)–3(g) represent spread-
ing cell density profiles. In the absence of any detailed
knowledge about the underlying discrete motility mechanism,
a standard approach to using a mathematical model to represent
this kind of data would be to fit (what is thought to be) the
solution of an appropriate model to these density data [3,5].
Given that each density profile in Figs. 3(d)–3(g) remains
symmetric relative to the initial distribution, it would be
reasonable to fit the solution of a linear diffusion equation to
these data using a least-squares approach [5,31]. As we have
already observed, each of the density profiles in Figs. 3(d)–3(g)
is quite different, and this model calibration procedure would
lead us to arrive at different estimates of the free cell diffusivity,
D0, for each value of L. Instead of this ad hoc model calibration
procedure, in Sec. II C we will show that different values of
L are related to different diffusion mechanisms with different
nonlinear diffusivity functions D(C); however, the free cell
diffusivity, D0, for each result in Figs. 3(d)–3(g) is the same.

B. Convergence behavior of the agent density profiles

It is useful to investigate how density data obtained from
Eq. (3) converge to a reliable estimate as either the vertical
height of the lattice, ymax, or the number of identically
prepared realizations, M , increases. In the simplest possible
case, we could repeat any of the simulations in Figs. 3(d)–3(g)
by setting ymax = 1 and performing M = 1 realization only.
Under these conditions the density profiles given by Eq. (3)
would contain large fluctuations, and it would be impossible
to deduce anything meaningful by inspecting the resulting
density profile. The reason for this is that there are insufficient
numbers of agents on the lattice to draw conclusions about
the mean agent density profile. There are two simple ways to
overcome this problem. Either (i) we can increase the vertical
height of the lattice ymax or (ii) we can increase the number
of identically prepared realizations M . Both these approaches
ensure that the average density profiles obtained using Eq. (3)
are constructed using very large numbers of agents resulting in
a reliable approximation to the agent density profile. Since we
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FIG. 4. (Color online) Convergence of the column averaged agent
density profiles obtained using Eq. (3) for a suite of simulations that
start with all sites occupied where 181 � x � 220 so that the initial
population is composed of 10 adjacent columns of nonoverlapping
horizontally aligned agents each with L = 4 [equivalent to the
results in Fig. 3(d)]. All simulations are performed until t = 300
for Pm = � = τ = 1. Results in (a) correspond to a lattice with a
vertical height ymax = 20. Four density profiles are shown where
averages are constructed with M = 1,10,100,200 shown in blue,
red, green, and brown (dark gray, light gray, lighter gray, darker
gray), respectively. The details of the column averaged density
profile in the tail region between 240 � x � 260 is shown in (b).
Similar results in (c) correspond to averages generated using M = 10
identically prepared realizations. Four density profiles are shown
where averages are constructed on lattices with different vertical
heights ymax = 2,20,200,400 shown in blue, red, green, and brown
(dark gray, light gray, lighter gray, darker gray), respectively. The
details of the column averaged density profile in the tail region
between 240 � x � 260 is shown in (d).

are performing simulations we are free to choose ymax and/or
M to be as large as we wish, meaning that we can generate
very reliable density profiles.

To demonstrate how the density profiles described by
Eq. (3) converge as either ymax or M increases, we provide
additional simulation data in Fig. 4. In Fig. 4(a) we repeat the
simulation shown in Fig. 3(d) and present density information
at t = 300. This density profile is obtained using a lattice with
ymax = 20, and we show agent density data obtained from
Eq. (3) using M = 1,10,100 and M = 200 identically pre-
pared realizations. The results in Fig. 4(a) indicate that the
density profile obtained with M = 1 contains large fluctua-
tions, while the results with M = 10,100,200 show rapidly
smoothing profiles where the fluctuations decrease quickly
as M increases. For low values of M , the density data are
unreliable. This is particularly true near the leading edges of
the profile since there are a small number of agents in this
region. To emphasize the rapid convergence of the density
data as M increases, we also show details of the density
profile at the leading edge where 240 � x � 260 in Fig. 4(b).
In this leading-edge region we observe rapid convergence
of the density profile even though the number of agents

present in this location in any particular realization of the
discrete algorithm is relatively small. The key to obtaining
reliable density information at all locations on the lattice is
to consider a sufficiently large number of identically prepared
realizations so that the fluctuations about the mean profile
become sufficiently small.

Instead of considering a fixed value of ymax and increasing
M as we did in Fig. 4(a)–4(b), we could also consider
fixing a value of M and considering the density profiles as
ymax increases. Results in Fig. 4(c) show equivalent density
profiles that were given in Fig. 4(a) except here we consider
M = 10 and we increase the vertical height of the lattice
from ymax = 2,20,200 to ymax = 400. As we vary the vertical
height of the lattice, we alter our initial condition so that all
parts of the lattice with 181 � x � 220 are occupied by 10
adjacent columns of nonoverlapping agents with L = 4. This
change in initial condition alters the number of agents in each
simulation. For example, with ymax = 2,20,200,400 our sim-
ulations contain 20,200,2000 and 4000 agents, respectively.
Similar to the results in Fig. 4(a), we observe that the density
profiles with small ymax display large fluctuations. However,
we observe rapid convergence of the density profiles as ymax is
increased. This means that we can reliably estimate the average
density profile at any location across the lattice. In Fig. 4(d)
we zoom in on the region where 240 � x � 260 showing that
the density data at the leading edge also converge to a reliable
approximation of the agent density profile.

In summary, when we consider simulations where the initial
occupancy of all sites within each column of the lattice is
constant, and we impose periodic boundary conditions on
the horizontal boundaries of the lattice, the density profiles
obtained using Eq. (3) with sufficiently large ymax and/or
sufficiently large M are reliable at all locations across the
lattice.

C. A continuum model

To connect the discrete mechanism with a continuum model
we average the occupancy of site (i,j ) over many statistically
identical realizations to obtain 〈Ci,j 〉 ∈ [0,1] [22–24]. After
averaging, we form a discrete conservation statement describ-
ing δ〈Ci,j 〉, which is the change in average occupancy of site
(i,j ) during the time interval from t to t + τ . For a system
with a population of horizontally aligned agents, each with the
same aspect ratio L, the discrete conservation statement can
be written as

δ〈Ci,j 〉 = Pm

4

(
L∏

s=1

〈Ci−s,j 〉 +
L∏

s=1

〈Ci+s,j 〉
)

(1 − 〈Ci,j 〉)

+ Pm

4

0∑
m=1−L

[
m+L−1∏

s=m

〈Ci−s,j+1〉(1 − 〈Ci−s,j 〉)
]

+ Pm

4

0∑
m=1−L

[
m+L−1∏

s=m

〈Ci−s,j−1〉(1 − 〈Ci−s,j 〉)
]

− Pm

4

(
L−1∏
s=0

〈Ci−s,j 〉
)

(1 − 〈Ci−L,j 〉)
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− Pm

4

(
L−1∏
s=0

〈Ci+s,j 〉
)

(1 − 〈Ci+L,j 〉)

− Pm

4

0∑
m=1−L

[
m+L−1∏

s=m

〈Ci−s,j 〉(1 − 〈Ci−s,j−1〉)
]

− Pm

4

0∑
m=1−L

[
m+L−1∏

s=m

〈Ci−s,j 〉(1 − 〈Ci−s,j+1〉)
]

.

(4)

Positive terms on the right of Eq. (4) represent motility
events that increase the occupancy of site (i,j ), while negative
terms on the right of Eq. (4) represent motility events that
decrease the occupancy of site (i,j ). The first term on the
right of Eq. (4) represents the change in occupancy of site
(i,j ) caused by a motility event where an agent moves in the
positive x direction, and the right-most end of this agent moves
into site (i,j ). All other terms in Eq. (4) can be interpreted in
a similar way.

The discrete conservation statement is related to a PDE
model in the appropriate limit as � → 0 and τ → 0 simul-
taneously, and discrete values of 〈Ci,j 〉 are written in terms
of a continuous variable C(x,y,t). To see this relationship, all
terms in Eq. (4) are expanded in a Taylor series about (i,j ).
These Taylor series are truncated so that we neglect terms of
O(�)3 and higher. Dividing the resulting expression by τ , we
then take limits as � → 0 and τ → 0 jointly, with the ratio
(�2/τ ) held constant [32]. In the continuum limit we obtain a
PDE that can be written as

∂C

∂t
= D0

∂

∂x

[
Dx(C)

∂C

∂x

]
+ D0

∂

∂y

[
Dy(C)

∂C

∂y

]
,

Dx(C) = L2CL−1, Dy(C) = L2[C(1 − C)]L−1, (5)

D0 = Pm

4
lim

�,τ→0

(
�2

τ

)
.

This is a key result as the limiting PDE model is a nonlinear
diffusion equation that is degenerate in the sense that Dx(0) =
Dy(0) = 0 for L � 2. This is similar to the PME except
that here we have anisotropic nonlinear diffusivity functions
with Dx(C) �= Dy(C) for L � 2, whereas for the PME we
have isotropic nonlinear diffusivity functions with Dx(C) =
Dy(C) [8,9]. The anisotropic nonlinear diffusivity functions in
Eq. (5) reflect the fact that crowding effects in a population of
horizontally aligned agents with L � 2 mean that the ability
of an agent to move horizontally is not the same as the ability
of an agent to move in the vertical direction. We also see that
Eq. (5) relaxes to a linear diffusion model when L = 1 [22,29]
since Dx(C) = Dy(C) = 1 in this case.

The PDE model given by Eq. (5) is relevant in the limit
as � → 0 and τ → 0 simultaneously while holding the ratio
(�2/τ ) constant [32,33]. To apply this model to a particular
biological system we set the lattice spacing equal to the cell
diameter [26–28,34]. In dimensional variables, using ∗ to rep-
resent dimensional quantities, �∗ is approximately 10–20 μm
[28,34]. To select the dimensional time step τ ∗, we interpret
τ ∗ as an inspection time after which the location of an isolated
agent is recorded. By making a large number of repeated
inspections, separated by the time interval τ ∗, we can infer the

probability that an isolated agent undergoes a motility event
during the interval τ ∗ as Pm ∈ [0,1]. Rather than specifying the
dimensional inspection time τ ∗ and the probability of motility
Pm separately, it is more relevant to specify their ratio Pm/τ ∗,
which is a measure of the probability that an isolated agent
undergoes a motility event during any particular inspection
period regardless of the length of that period. This means that
the individual values of Pm and τ ∗ do not uniquely specify
the motility rate; rather, it is the ratio Pm/τ ∗ that uniquely
determines the agent motility. Without loss of generality,
we always work with dimensionless simulations by setting
� = τ = 1. In this way, the nondimensional time step can be
rescaled to any particular dimensional time step τ ∗ without
difficulty. Similarly, the nondimensional lattice spacing can
be rescaled to the appropriate dimensional lattice spacing �∗.
Given that the continuum-discrete comparisons we present in
Secs. II D and II F all show a good correspondence between the
discrete data and the solution of the corresponding continuum
models, we conclude that nondimensional simulations with
� = τ = 1 are appropriate for studying the continuum limit of
these discrete mechanisms. These nondimensional simulations
can then be simply rescaled to represent any particular
application of the model.

D. Continuum-discrete comparison: One-dimensional
spreading

To test how the PDE model predicts the movement of a
population of horizontally aligned agents, we consider the
simulation data in Figs. 3(d)–3(g). The configuration of these
simulations reduces the system to a one-dimensional problem
as previously described in Sec. II A [22]. Accordingly, we
compare the column density of agents, averaged over many
simulations, with the numerical solution of a one-dimensional
form of Eq. (5):

∂C

∂t
= D0

∂

∂x

[
Dx(C)

∂C

∂x

]
. (6)

The numerical solution of Eq. (6) is obtained using a
finite difference approximation with constant grid spacing
δx and implicit Euler stepping with constant time steps δt .
Picard linearization, with absolute error tolerance ε, is used to
solve the resulting nonlinear algebraic systems [35]. We solve
Eq. (6) on 1 � x � 400 with reflecting boundary conditions
at x = 1 and x = 400 and an initial condition given by

C(x,0) = H (xL) − H (xR), (7)

where H is the Heaviside function and xL and xR

are chosen so that the initial condition for the contin-
uum model matches the initial condition for the dis-
crete simulations. For L = 1,2,3,4, we choose (xL,xR) =
(181,220),(181,220),(181,219),(181,220), respectively. Nu-
merical solutions of Eqs. (6)–(7) are superimposed on the
discrete profiles in Figs. 3(d)–3(g). The solution profiles of
Eqs. (6)–(7) are symmetric about x = x0 = (xL + xR)/2. For
L � 2 these solutions have compact support on −s(t) < x −
x0 < s(t), where x = x0 ± s(t) describes the location of the
interface where C(x,t) = 0 [8,9]. In Sec. II E we will derive an
analytical expression for the interface location x = x0 ± s(t).
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Comparing the solution of Eqs. (6)–(7) with the simu-
lation data shows that we have an excellent match when
L = 1. This is a known result that has been demonstrated
previously [22]. More interestingly, we see that for L � 2,
the solution of Eqs. (6)–(7) also matches the simulation
data reasonably well. In particular, for L � 2 the solution of
Eqs. (6)–(7) accurately predicts the evolution of the density
profiles in regions of the lattice where C(x,t) �≈ 0. On the
other hand, the continuum-discrete comparison is not as good
near the interface x = x0 ± s(t) where the solution of the PDE
is sharp fronted [8,9]. The discrepancy between the simulation
data and the solution of Eq. (6) in this neighborhood increases
as L increases.

There are at least two possible reasons why we observe the
discrepancy between the continuum and discrete profiles as
L increases. First, when we derived the continuum model we
made the initial assumption that the occupancy of lattice sites
could be related using a truncated Taylor series expansion. The
Taylor series relating the occupancy of sites (i + a,j + b) and
(i,j ) is given by

Ci+a,j+b = Ci,j + (a�)1

1!

∂Ci,j

∂x
+ (b�)1

1!

∂Ci,j

∂y
+ (a�)2

2!

∂2Ci,j

∂x2

+ 2ab�2

2!

∂2Ci,j

∂x∂y
+ (b�)2

2!

∂2Ci,j

∂y2
+ O(�3),

(8)

where a,b ∈ Z. By using Eq. (8), we implicitly assumed that
the corresponding solution of the governing PDE, C(x,y,t),
was sufficiently differentiable so that the density profile could
be expanded in a Taylor series. It is only in retrospect, after
forming the PDE model, that we know the solution of the PDE
will be smooth for L = 1 since this case gives rise to the linear
diffusion equation. However, when L � 2, the governing
PDE model turns out to be a degenerate nonlinear diffusion
equation that can support sharp-fronted solutions [8,9]. These
sharp-fronted solutions are not differentiable at the interface
x = x0 ± s(t) but are but are differentiable elsewhere. Given
that our discrete-continuum comparison shows that the PDE
matches the simulation in all locations except near the interface
x = x0 ± s(t), this appears to be a plausible explanation for
the discrepancy between the continuum and discrete models.

Second, the discrepancy between the continuum and
discrete models could also be due to the failure of the
independence assumption underlying the discrete conserva-
tion statement (Eq. (4)). To form the conservation state-
ment, we assume that the occupancy status of lattice sites
are independent. This is a standard assumption made by
us [22–24] and others [25,36] and it allows us to interpret
products of various occupancy (or vacancy) probabilities
as a net transition probability. Intuitively, the independence
assumption becomes less appropriate as L increases. For
example, consider a single agent with L = 1 located at (i,j ).
If this agent attempts to move in the positive x direction,
the discrete conservation statement requires that we treat
the occupancy of sites (i,j ) and (i + 1,j ), averaged over
many identically prepared realizations, as independent. In
comparison, if we consider an agent with L = 4 occupying
sites (i − 3,j ), (i − 2,j ), (i − 1,j ), and (i,j ), and that agent
moves in the positive x direction, the conservation statement

requires us to treat the occupancy of sites (i − 3,j ), (i − 2,j ),
(i − 1,j ), (i,j ), and (i + 1,j ), averaged over many identically
prepared realizations, as independent. This independence
assumption is less satisfactory for L = 4 than for L =
1, and, in general, the independence assumption becomes
less appealing as L increases. Therefore, this assumption
could also contribute to the decrease in the quality of
the continuum-discrete comparison as L increases (Fig. 3).
Although we are making progress toward understanding how
to relax the independence assumption for spatially uniform
problems [37], considerable work remains to understand how
to relax the independence assumption for spatially variable
problems.

E. Analytical approximations

Although we observe a slight discrepancy between the
discrete and continuum models near the interface x = x0 ±
s(t), and note that this discrepancy increases with L, the
overall comparison between the continuum and discrete data is
good; even with L = 4, the continuum PME model accurately
predicts the averaged agent distribution near x = x0. Given
this demonstrated relationship, we now make use of certain
analytical results to gain further insight into the discrete model.
In addition to the numerical solutions of Eqs. (6)–(7), which
we denote C(x,t), Eq. (6) has an exact similarity solution [8,9],
which we denote Cs(x,t). The similarity solution is relevant for
−∞ < x < ∞ with a source-type initial condition Cs(x,0) =
mδ(x − x0), where m = ∫ ∞

−∞ Cs(x,t) dx. The source solution
can be written as

Cs(x,t) = 1

(t − t0)1/(L+1)

{
2(L − 1)

PmL2(L + 1)

×
[
a2 − (x − x0)2

(t − t0)2/(L+1)

] }1/(L−1)

, L � 2,

(9)

where the constant a is given by

a =
[
PmL2(L + 1)

2(L − 1)

]1/(L+1)
{

m �
[

3L−1
2(L−1)

]
√

π�
(

L
L−1

)
}(L−1)/(L+1)

,

(10)

with �(z) indicating the Gamma function. Here x0 and t0 are
shifts in space and time, reflecting the invariance of Eq. (6)
under translation in both space and time. This source solution
represents spreading mound-shaped profiles centered at x =
x0, with compact support over a finite domain. For large L

these profiles are mesa-shaped with steep sides and flat tops.
For the same source-type problem with linear diffusion, the
analogous solution is [31]

Cs(x,t) = me−(x−x0)2/Pm(t−t0)

√
πPm(t − t0)

, L = 1, (11)

which is a Gaussian curve that does not have compact support.
The source-type solutions, Cs(x,t), are an excellent

approximation to the solution of Eqs. (6)–(7) despite
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FIG. 5. (Color online) Comparison of the numerical solution of
Eqs. (6)–(7), shown in red (solid), and the source solution Eq. (10),
shown in green (dotted), for L = 2 and Pm = 1. Numerical solutions
of Eq. (6) are shown at t = 100,300,500 for an initial condition
with C(x,0) = 1 for 180 � x � 219 and C(x,0) = 0 elsewhere on
0 � x � 400. The source solution is superimposed using appropriate
time and space shifts, x0 = 200.5 and t0 = 100. The arrows show the
direction of increasing t .

differences in the initial distributions, C(x,0) and Cs(x,0).
Formally, we have [8,9,38]

C(x,t) ∼ Cs(x,t) as t → ∞. (12)

For intermediate times a good approximation is found with
appropriate values x0 and t0. For example, in Fig. 5 we compare
numerical solutions of Eqs. (6)–(7) for L = 2 [the problem
previously described in Fig. 3(f)] with the source solution,
Eqs. (9)–(10), for three representative times, with the choice
x0 = (xL + xR)/2 and t0 = 100. This choice for x0 is simply
the center of the initial distribution. The shift in time t0 was
chosen using a trial-and-error approach where we visually
matched the analytical and numerical results. The numerical-
analytical comparison, given in Fig. 5, is extremely good and
improves as t increases. The high quality of the numerical-
analytical comparison negates any need for sophisticated
methods to determine t0, especially given that Eq. (12) holds
regardless of the value of t0 [8,9,38].

A further use of the source solution is that it provides
analytical insight into the time dependence of the profiles
in Fig. 3. For example, the location of the moving front
x = x0 ± s(t) is formally connected to the source solution
via [8,9]

s(t) − x0 ∼ a(t − t0)1/(L+1) as t → ∞, L � 2; (13)

again, for intermediate times the approximation (13) is
extremely good, especially after careful choice of t0. In the
linear diffusion case, L = 1, there are no moving fronts, and
information is effectively propagating with infinite speed; on
the other hand, the power-law relationship (Eq. (13)) shows
explicitly that the front speed is finite for L � 2 and that this
speed decreases as L increases. Further, the source solution
shows that the peaks of the spreading profiles at x = x0 in
Figs. 3 and 5 decrease in height according to

C(x0,t) ∼
[

2(L − 1)a2

PmL2(L + 1)

]1/(L−1)

(t − t0)−1/(L+1)

as t → ∞, L � 2;

that is, the height, C(x0,t), decreases more quickly as L

increases. This is consistent with our previous observations
of the density profiles extracted from the simulations (Fig. 3).

Finally, we make the point that the source-type solutions to
Eq. (6) are valid on −∞ < x < ∞. In order to facilitate the
numerical-analytical comparison we had to generate numerical
solutions on a truncated finite domain with 1 � x � 400.
Comparing analytical solutions that are valid on an infinite
domain with numerical solutions on a truncated domain is
a standard approach used when testing and validating the
performance of a numerical code. This approach has been
used by us [39] and others [40] and is valid for sufficiently
small times where the numerical solution on the truncated
finite domain does not interact with the boundary conditions
applied at the ends of the domain.

F. Continuum-discrete comparison: Two-dimensional spreading

To complement the one-dimensional simulation data in
Fig. 3, we also present two-dimensional data in Fig. 6 on a
lattice with 1 � x � 200 and 1 � y � 200. We consider two
initially close-packed horizontally aligned populations. In the
first case we consider a population with L = 2, and agents
are initially placed so that all sites with 75 � x � 124 and
75 � y � 124 are occupied by N = 1250 agents, as shown
in Fig. 6(a). Reflecting boundary conditions are imposed
along all boundaries. Simulation data in Figs. 6(a)–6(b), show
how the population of agents spreads over time. For this
particular geometry, the double average used to collapse the
two-dimensional data into one-dimensional density profiles in
Sec. II A is inappropriate, and we must consider a more general
average [22]. If Cm(i,j ) is the occupancy of site (i,j ) during
the mth realization, then the average occupancy of site (i,j ) is
given by

〈C(x,y,t)〉 = 1

M

M∑
m=1

Cm(i,j ). (14)

To generate two-dimensional density data from these simula-
tions we considered M = 100 identically prepared realizations
to approximate 〈C(x,y,t)〉, using Eq. (14). This averaged data
were contoured using standard MATLAB routines. Numerical
solutions of Eq. (5), with initial and boundary conditions to
match the discrete simulations, were also generated and con-
toured. The continuum and discrete contours are superimposed
in Fig. 6(c), showing an excellent match.

In the second case we consider a population with L = 4, and
agents are initially placed so that all sites with 75 � x � 122
and 75 � y � 122 are occupied by N = 576 agents, as shown
in Fig. 6(d). Reflecting boundary conditions are imposed
along all boundaries. Simulation data in Figs. 6(d)–6(e), show
how the population of agents spreads over time. To gener-
ate two-dimensional contour data, we considered M = 100
identically prepared realizations to approximate 〈C(x,y,t)〉 at
t = 300 using Eq. (14). Corresponding numerical solutions of
Eq. (5) are superimposed in Fig. 6(f), showing a good match.
By comparing the continuum-discrete match in Figs. 6(c)
and 6(f), we see that the 〈C(x,y,t)〉 = 0.75 contours match
very well for both the L = 2 and L = 4 populations. In
comparison, if we compare the 〈C(x,y,t)〉 = 0.50 contour,
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FIG. 6. (Color online) (a) Two-dimensional simulations start
with all sites occupied where 75 � x,y � 124 so that this region
is completely occupied by N = 1250 horizontally aligned agents
with L = 2. (b) A snapshot of a single realization at t = 300 for
Pm = � = τ = 1. (c) The 〈C(x,y,t)〉 = 0.50 contour is shown in
blue (light gray), and the 〈C(x,y,t)〉 = 0.75 contour is shown in
brown (dark gray). These contours are obtained from the discrete
model, averaged over M = 100 identically prepared realizations.
The discrete contours are superimposed on the equivalent contour
data taken from a numerical solution of Eq. (5). (d) Two-dimensional
simulations start with all sites occupied where 75 � x,y � 122 so
that this region is completely occupied by N = 576 horizontally
aligned agents with L = 4. (e) A snapshot of a single realization
at t = 300 for Pm = � = τ = 1. (f) The 〈C(x,y,t)〉 = 0.50 contour
is shown in blue (light gray), and the 〈C(x,y,t)〉 = 0.75 contour
is shown in brown (dark gray). These contours are obtained from
the discrete model, averaged over M = 100 identically prepared
realizations. The discrete contours are superimposed on the equivalent
contour data taken from a numerical solution of Eq. (5). In all cases
the solution of Eq. (5) is obtained numerically using the method
described in the text with an initial condition and boundary conditions
that matches the discrete simulations. Numerical solutions of Eq. (5)
are obtained with δx = δy = 0.5, δt = 0.25, and ε = 1 × 10−6.

we see an excellent match for the L = 2 population, whereas
the match for the L = 4 population is not as good. This
observation is consistent with the results in Fig. 3 where we saw
that the continuum-discrete match became less satisfactory
as L increased and the continuum-discrete match was less

satisfactory in the low-density region of the lattice near the
leading edge of the population. Despite this observation, we
conclude that comparing the discrete-continuum contours in
Fig. 6 shows that the two-dimensional discrete contours match
the solution of Eq. (5).

Both the simulation data and the solution of Eq. (5)
(Fig. 6) show an anisotropic distribution of agents: The
contours are elongated in the x direction relative to the
y direction. This anisotropy is a consequence of the anisotropic
crowding effects. For example, an agent in Fig. 6(a) attempting
to move in the x direction requires one adjacent site to be
vacant for that motility event to be successful. In comparison,
an agent in Fig. 6(a) attempting to move in the y direction
requires two adjacent sites to be vacant for that motility event
to be successful. Therefore, it is not surprising that we see the
contours in Fig. 6(c) elongated in the x direction. We see more
pronounced anisotropic spreading in Fig. 6(f) for the L = 4
population because the anisotropic crowding effects are more
pronounced as L increases. Unfortunately, this anisotropic
spreading cannot be analyzed analytically with a similarity
solution since Eq. (5) does not admit any useful similarity
reduction. Now that we have demonstrated that it is possible
to compare discrete and continuum models using either one-
or two-dimensional data, for simplicity we will present only
one-dimensional data from this point forward.

III. A POPULATION COMPOSED OF DIFFERENTLY
ALIGNED AGENTS

A. Discrete simulations

We have presented a biologically motivated argument
suggesting that the PME plays a role in describing the
collective movement of rod-shaped agents. However, in the
previous section we assumed that the entire population was
uniformly aligned. To relax this assumption, we now present
simulation results and corresponding continuum models that
describe a population of agents composed of a horizontally
aligned subpopulation that interacts with a vertically aligned
subpopulation. Both subpopulations have L � 2 and undergo
motility events and rotation events that maintain volume
exclusion. Column-averaged density profiles, which are fur-
ther averaged over many identically prepared realizations,
are denoted 〈Ch(x,t)〉 and 〈Cv(x,t)〉 for the horizontal and
vertical subpopulations, respectively. Similarly, the continuum
density profiles for the horizontally aligned subpopulation and
the vertically aligned subpopulation are denoted Ch(x,t) and
Cv(x,t), respectively. Figure 7(a) shows a lattice fragment
where sites (i,j − 1) and (i + 1,j − 1) are occupied by a
horizontal agent, while sites (i + 1,j ) and (i + 1,j + 1) are
occupied by a vertical agent.

Each subpopulation undergoes motility events with prob-
ability Pm ∈ [0,1] in the same way as described previously
for the single population case. In addition to motility events,
we now allow each subpopulation to rotate around an angle
of ±π/2. These rotation events convert members of one
subpopulation into members of the other subpopulation during
the simulation. Rotations occur with probability Pr ∈ [0,1].
The discrete algorithm for marching the system forward a
single time step of length τ consists of four steps that can be
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FIG. 7. (Color online) (a) A portion of lattice that is partly
occupied by a two agents, each with L = 2. The agent parallel with
the x axis is shown in red (dark gray) and occupies sites (i,j − 1) and
(i + 1,j = 1), while the agent parallel to the y axis is shown in green
(light gray) and occupies sites (i + 1,j ) and (i + 1,j + 1). (b)–(c)
Simulation data for a system without rotation for Pm = � = τ = 1
and Pr = 0. The horizontal subpopulation is originally distributed
so that each column between 160 � x � 199 is completely occupied
giving 20 adjacent columns of nonoverlapping agents that are parallel
to the x axis, each with L = 2. The vertical subpopulation is originally
distributed so that each column 200 � x � 239 is completely
occupied, giving 40 adjacent columns of nonoverlapping agents that
are parallel to the y axis, each with L = 2. Snapshots of a single
realization at t = 0 and t = 500 are shown in (b)–(c), respectively.
(d)–(e) Column-averaged occupancy data averaged over M = 100
identically prepared realizations for the horizontal subpopulation
〈Ch(x,t)〉 and the vertical subpopulation 〈Cv(x,t)〉, respectively, at
t = 0 and t = 500 are shown in blue (solid). Numerical solutions
of a one-dimensional form of Eq. (15)–(16), Ch(x,t) and Cv(x,t),
are shown in red (dotted) at the same time points using initial and
boundary conditions that match the discrete simulations. Numerical
solutions are obtained using δx = 0.1, δt = 0.01, and ε = 1 × 10−6.

described as follows: (i) If there are Nh horizontal agents on the
lattice, then Nh horizontal agents are selected independently
at random, one at a time. When chosen, a horizontal agent
attempts to move with probability Pm ∈ [0,1]. (ii) If there
are Nv vertical agents on the lattice, then Nv vertical agents
are selected independently at random, one at a time. When
chosen, a vertical agent attempts to move with probability

Pm ∈ [0,1]. (iii) If there are Nh horizontal agents on the
lattice, then Nh horizontal agents are selected independently
at random, one at a time. When chosen, a horizontal agent
attempts to rotate with probability Pr ∈ [0,1]. (iv) If there are
Nv vertical agents on the lattice, then Nv vertical agents are
selected independently at random, one at a time. When chosen,
a vertical agent attempts to rotate with probability Pr ∈ [0,1].
Once these four steps have been completed, we increment time
from t to t + τ . We note that in general, the values of Nh and
Nv can change during each time step for Pr > 0. Our approach
is appropriate for small values of Pr where the change in the
values of Nh and Nv are small per time step [24]. Separating the
motility and rotation events like this is similar to an operator
splitting method for solving continuum reaction diffusion
equations [39]. In addition to this simple time marching
algorithm, we also simulated all discrete results presented
in this paper using a more sophisticated Gillespie algorithm
[41] and found that the simple time marching algorithm and
the Gillespie algorithm gave indistinguishable results for the
parameter values presented here.

For any rotation event, the agent attempts to pivot about
one of the lattice sites occupied by that particular agent. For
simplicity we choose the pivot site randomly so that each
site occupied by the agent has an equal probability of acting
as the pivot site. Once the pivot site is chosen, the agent
must then choose a rotation direction, and for simplicity we
will choose the rotation direction so that either clockwise or
anticlockwise rotations are equally likely. This means that each
agent of length L can potentially undergo 2L different rotation
events. These potential rotation events are only permitted
provided that volume exclusion is maintained. In particular,
we only allow rotation events when the final state as well
as the intermediate state(s) of the rotation event ensure that
volume exclusion is maintained. For example, the green agent
in Fig. 7(a) could undergo one of four different types of
rotations: (i) pivot clockwise about (i + 1,j ) to become a
horizontal agent occupying sites (i + 1,j ) and (i + 2,j ), (ii)
pivot anticlockwise about (i + 1,j ) to become a horizontal
agent occupying sites (i,j ) and (i + 1,j ), (iii) pivot clockwise
about (i + 1,j + 1) to become a horizontal agent that occupies
sites (i,j + 1) and (i + 1,j + 1), or (iv) pivot anticlockwise
about (i + 1,j + 1) to become a horizontal agent that occupies
sites (i + 1,j + 1) and (i + 2,j + 1). For the configuration
shown in Fig. 7(a), any of these four rotation events would be
permitted because the target site and all other intermediate
sites encountered by that green agent during the potential
rotation event are vacant. In comparison, if we consider the
potential rotation events for the red agent in Fig. 7(a) we see
that a clockwise rotation about site (i + 1,j − 1) (illustrated
with a clockwise arrow) would be aborted because the target
site (i + 1,j ) is occupied. Similarly, an anticlockwise rotation
about site (i,j − 1) (illustrated with an anticlockwise arrow)
would not be permitted. This is because, as the red agent
pivots anticlockwise about site (i,j − 1), part of the red agent
that initially occupies site (i + 1,j − 1) would rotate across
site (i + 1,j ). For the configuration shown in Fig. 7(a), site
(i + 1,j ) is occupied, and hence this rotation event would not
maintain volume exclusion.

To implement these rotation events in the discrete algorithm
we assessed each rotation event separately by ensuring that two
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conditions were satisfied. First, the algorithm checked that the
final target site(s) associated with each particular rotation event
of interest were vacant. Second, the algorithm checked that all
intermediate sites that the agent would rotate across during
the rotation event were vacant. Only if all the target sites and
all intermediate sites are vacant is the particular rotation event
permitted.

B. A continuum model

Using this rotation mechanism, together with the motility
mechanism described previously for the single population
model, we can now write down conservation of occupancy
statements for both the horizontal, 〈Ch(x,y,t)〉, and the
vertical, 〈Cv(x,y,t)〉, subpopulations that are analogous to
Eq. (4). Accounting for all possible interactions, expanding
all terms using truncated Taylor series about site (i,j ) and
considering the limits as � → 0 and τ → 0, again keeping
(�2/τ ) constant, we obtain the following system of coupled
PDEs:

∂Ch

∂t
= D0L

2 ∂

∂x

[
C

(L−1)
h (1 − Cv)

∂Ch

∂x

]

+D0L
2 ∂

∂x

(
CL

h

∂Cv

∂x

)

+D0L
2 ∂

∂y

[
C

(L−1)
h (1 − Cv)(1 − Cv − Ch)(L−1) ∂Ch

∂y

]

+D0L
2 ∂

∂y

[
CL

h (1 − Ch − Cv)(L−1) ∂Cv

∂y

]
+ ρ(L − 1) (1 − Ch − Cv)L(L−1) (CL

v − CL
h

)
, (15)

∂Cv
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= D0L

2 ∂
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[
CL
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∂x

]

+D0L
2 ∂

∂x

[
C(L−1)

v (1 − Ch)(1 − Cv − Ch)(L−1) ∂Cv

∂x

]

+D0L
2 ∂

∂y

(
CL

v

∂Ch

∂y

)

+D0L
2 ∂

∂y

[
C(L−1)

v (1 − Ch)
∂Cv

∂y

]
− ρ(L − 1) (1 − Ch − Cv)L(L−1) (CL

v − CL
h

)
, (16)

where

D0 = Pm

4
lim

�,τ→0

(
�2

τ

)
, ρ = lim

τ→0

(
Pr

τ

)
. (17)

These equations are complicated nonlinear advection-
diffusion-reaction equations describing the evolution of the
two subpopulation densities. We see that the source terms in
Eqs. (15)–(16) are equal in magnitude and opposite in sign,
ensuring that the total agent density, C(x,y,t) = Ch(x,y,t) +
Cv(x,y,t), is conserved. This is expected: although we allow
both subpopulations to rotate and transform from horizontal
to vertical agents, or alternatively from vertical to horizontal
agents, the total number of agents present on the lattice remains
fixed with time so the total agent density is conserved.

The condition that ρ = limτ→0(Pr

τ
) implies that for our

simulation data to match the PDE models we require

Pr = O(τ ) so that ρ is finite [24,32,33]. Accordingly, we
expect that the continuum PDE model will be valid for small
values of Pr only. We have previously found that a similar
condition applies to models of agent proliferation where we
require that the proliferation rate be sufficiently small for
the continuum model to be valid [24]. Therefore we will
only attempt to match simulation data and solutions of the
continuum model for small values of Pr .

C. Continuum-discrete comparison: One-dimensional
spreading

To demonstrate the performance of Eqs. (15)–(16) we first
generated discrete results shown in Figs. 7(b)–7(c) for no
rotation (Pm = 1,Pr = 0). The horizontal subpopulation is
originally distributed so that each column between 160 � x �
199 is completely occupied giving 20 columns of adjacent
nonoverlapping horizontal agents, each with L = 2. This
means that initially we have Nh = 400 horizontal agents.
The vertical subpopulation is originally distributed so that
each column 200 � x � 239 is completely occupied giving
40 columns of adjacent nonoverlapping vertical agents, each
with L = 2. This means that initially we have Nv = 400
vertical agents. Snapshots of a single realization at t = 0
and t = 500 are shown in Figs. 7(b)–7(c), respectively. We
see that both subpopulations are able to move away from
the initially close-packed distribution. Comparing the column-
averaged density profiles extracted from M = 100 identically
prepared realizations (〈Ch(x,t)〉, 〈Cv(x,t)〉) with the solution
of Eqs. (15)–(16) (Ch(x,t), Cv(x,t)) for initial and boundary
conditions that match the discrete simulations, we see that
the continuum model does an excellent job of predicting the
averaged behavior of the discrete simulations. In general we
observe that the interface between the two subpopulations at
x = 200 remains sharp while the horizontal subpopulation
moves in the direction of decreasing x and the vertical
subpopulation moves in the direction of increasing x. Similar
to the results for the single population of horizontally aligned
agents (Fig. 3), we see that the match between the PDE model
and the discrete data is very good except near the leading
edges of the profile where both the continuum solutions for
Ch(x,t) and Cv(x,t) are sharp fronted. We also observe that
the horizontal subpopulation is more mobile than the vertical
subpopulation. For example, by t = 500, the horizontal agents
have been able to move so that 〈Ch(x,t)〉 < 1 everywhere
across the lattice. In comparison, by t = 500 the vertical agents
have been less successful at moving, and we still observe
〈Cv(x,t)〉 = 1 in the region 200 � x � 225. This unequal
spreading is caused by the anisotropic nature of the crowding
effects that previously gave rise to the anisotropic density
contours in Fig. 6.

In Figs. 8(a)– 8(d) we present similar results for the same
problem described in Fig. 7 but now with a small rotation rate
(Pm = 1,Pr = 0.01). In this case we observe the distribution
of agents in a single realization in Figs. 8(a)– 8(b) at t = 0
and t = 500, respectively. These snapshots clearly show the
influence of the rotation events. At the leading edge of
the horizontal subpopulation, which is attempting to move in
the negative x direction, there is sufficient space available to
allow certain rotation events that gives rise to a number of
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FIG. 8. (Color online) (a)–(b) Simulation data for a system with
rotation for Pm = � = τ = 1 and Pr = 0.01. The initial condition
is the same as in Fig. 7. Snapshots of a single realization at
t = 0 and t = 500 are shown in (a)–(b), respectively. (c)–(d)
Column-averaged occupancy data averaged over M = 100 identically
prepared realizations for the horizontal subpopulation, 〈Ch(x,t)〉,
and the vertical subpopulation, 〈Cv(x,t)〉, respectively, at t = 0
and t = 500 are shown in blue (solid). Numerical solutions of a
one-dimensional form of Eq. (15)–(16) are shown in red (dotted)
at the same time points using initial and boundary conditions that
match the discrete simulations. Numerical solutions are obtained
using δx = 0.1, δt = 0.01, and ε = 1 × 10−6.

vertical agents. Similarly, at the leading edge of the vertically
aligned subpopulation, which is attempting to move in the
positive x direction, there is sufficient space available to
allow certain rotation events that gives rise to a number
of horizontal agents. Comparing the column averaged den-
sity profiles extracted from M = 100 identically prepared
realizations (〈Ch(x,t)〉, 〈Cv(x,t)〉) with the solution of the
corresponding continuum model (Ch(x,t), Cv(x,t)) shows
that the continuum model captures the essential features of
the discrete simulations. In general, however, the continuum-
discrete comparison in Fig. 8 is not as good as in Fig. 7. There
are two possible reasons for this. First, the continuum models
are strictly valid in the limit τ → 0 with Pr = O(τ ), meaning
that the rotation rate must be sufficiently small. Although
we present results for Pr = 0.01, we also generated results
for Pr = 0.001 and observed an improved continuum-discrete
match. Of course, setting Pr = 0.001 means that there are far
less rotation events, and these results did not demonstrate the
effects of rotations as much as the simulations in Fig. 8 with
Pr = 0.01. Second, even with Pr = 0 (Fig. 7) we see that there
is a small discrepancy between the continuum and discrete
profiles at the leading edge where the continuum profiles are
sharp fronted. All of our results show a small discrepancy
in this region which is the same region where rotations are
likely to occur because there is sufficient space. In general, the
discrepancy between the continuum and discrete profiles could
arise due to a combination of these two effects. Nevertheless,
the continuum models successfully predict the main features
of the discrete simulations.

IV. DISCUSSION AND CONCLUSIONS

Multiscale modeling of cell biology processes is critical
because experimental data often comprise both population-
level (macroscopic) and individual-level (microscopic) mea-
surements [21]. These complicated observations are difficult
to integrate into a modeling study that uses a single-scale
model in isolation. As a result, there is great interest in being
able to describe a model of cellular processes both from the
viewpoint of a single cell and a population of cells [6,25,42,43].
Our work is primarily focused on investigating cell motility
mechanisms that appear relevant at the level of an individual
cell and then analyzing the discrete motility mechanism to
understand the resulting population-level response in terms of
the corresponding continuum model.

Previous applications of exclusion process models to collec-
tive cell spreading problems have all made the assumption that
cells can be represented as round agents that move on a lattice
so that each agent occupies a single lattice site [22,26–28,34].
Our current work is motivated by the observation that cells
are often rod shaped and elongated (Fig. 2(a)). To model
the collective motion of a population of interacting cells, we
consider a generalized exclusion process model where each
cell is represented by an agent. Agents reside on a lattice,
and each agent can occupy L � 1 adjacent lattice sites. By
making standard assumptions, we use conservation principles
to arrive at a continuum description of the collective motion of
a population of rod-shaped agents. We confirm the well-known
result that “round” agents (L = 1) correspond to a linear
diffusion mechanism whereas elongated rod-shaped agents
L � 2 obey a degenerate nonlinear diffusion equation that
is related to the PME. Comparing average density data from
the simulations with numerical solutions of the corresponding
continuum PDE models shows that the continuum models
derived here can accurately describe the mean behavior of
the discrete models.

Certain previous modeling approaches have considered
different ways to represent the influence of varying cell shape
and cell size. For example, the work of Basse et al. [44]
and Begg et al. [45] considered continuum size-structured
models of the cell cycle where proliferation events alter
the physical size of cells considered in the system. These
particular studies have application to understanding cancer
therapy and phytoplankton dynamics. Although these models
did not consider spatial movement, they represent an approach
to account for changes in cell size in a continuum model.

We also remark that our work is a first attempt to bridge a
gap between different types of discrete models that are used to
represent collective cell motion. For example, Cellular Potts
Models (CPMs) represent biological cells exactly as they are
observed in experiments by replicating the pixels that cells
occupy in certain experimental images [46]. The changes
in shape, position, and orientation of cells in the CPM are
described with the same precision as in experimental movies.
The CPM typically represents an individual biological cell as
an agent on a lattice, and that particular agent might occupy
more than one lattice site [46]. Therefore the CPM is very
different from a traditional exclusion process model where
each biological cell is represented as an agent that occupies a
single lattice site [22,26–28]. From this point of view, the work
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in the current manuscript begins to address questions about the
relationship between the CPM and exclusion process models
of cell motility. By generalizing the exclusion process model
to allow each agent to occupy multiple lattice sites, we are
making the generalized exclusion process model more like a
CPM relative to traditional exclusion process models.

Two recent studies have attempted to identify a continuum
description of the CPM by relating CPM results to the solution
of a PDE model. Turner and coworkers [47] related their
CPM results to a linear diffusion equation, while Lushnikov
and coworkers [48] related their CPM results to a nonlinear
diffusion equation. Both these previous works demonstrated
a good match between the CPM results and the solution of
the corresponding PDE model. In our work we have extended
a traditional exclusion process model to account for variable
agent aspect ratio and have analyzed the relevant continuum
limit of this discrete model. Our generalized exclusion process
model is more like the CPM relative to traditional exclusion
process models, as previously outlined; however, much work
remains to be done to obtain and complete understanding of the
relationship between exclusion process models and the CPM.
For example, our work does not include dynamic changes in
cell shape or cell size during the simulations. These effects are
routinely incorporated into the CPM.

The models presented in this work can be extended to
consider other applications. For example, here we consider
the case where agents are elongated and rod shaped so that
each agent occupies L adjacent lattice sites on a square lattice
where the dimension of the agent, relative to the lattice spacing,
is (L × 1). It is also possible to consider larger square agents
that occupy L2 lattice sites so that the dimension of the agent,
relative to the lattice spacing, is (L × L). For these larger
square agents there is no need to consider any rotation events on
a square lattice because these agents are rotationally symmetric
with respect to the lattice. Following the same conservation
arguments for these larger square agents, we arrive at an
isotropic PME with Dx(C) = Dy(C) = L2[C(1 − C)](L−1).
Further extensions will be investigated in future work.
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