Thesis icon

Thesis

Scalable syntactic inductive biases for neural language models

Abstract:

Natural language has a sequential surface form, although its underlying structure has been argued to be hierarchical and tree-structured in nature, whereby smaller linguistic units like words are recursively composed to form larger ones, such as phrases and sentences. This thesis aims to answer the following open research questions: To what extent---if at all---can more explicit notions of hierarchical syntactic structures further improve the performance of neural models within NL...

Expand abstract

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Computer Science
Role:
Author

Contributors

Institution:
University of Oxford
Division:
MPLS
Department:
Computer Science
Role:
Supervisor
ORCID:
0000-0003-4558-2457


More from this funder
Funder identifier:
https://ror.org/0439y7842
Funding agency for:
Kuncoro, AS
Programme:
EPSRC Doctoral Training Partnership Studentship


DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP