Journal article
Electronic structure, excited states, and photoelectron spectra of uranium, thorium, and zirconium bis(Ketimido) complexes (C5R5)2M[-NCPh2]2 (M = Th, U, Zr; R = H, CH3).
- Abstract:
- Organometallic actinide bis(ketimide) complexes (C5Me5)2An[-N=C(Ph)(R)]2 (where R = Ph, Me, and CH2Ph) of thorium(IV) and uranium(IV) have recently been synthesized that exhibit chemical, structural, and spectroscopic (UV-Visible, resonance-enhanced Raman) evidence for unusual actinide-ligand bonding. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682; Jantunen et al., Organometallics, 2004, 23, 4682; Morris et al., Organometallics, 2004, 23, 5142.] Similar evidence has been observed for the group 4 analogue (C5H5)2Zr[-N=CPh2]2. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.] These compounds have important implications for the development of new heavy-element systems that possess novel electronic and magnetic properties. Here, we have investigated M-ketimido bonding (M = Th, U, Zr), as well as the spectroscopic properties of the highly colored bis-ketimido complexes, using density functional theory (DFT). Photoelectron spectroscopy (PES) has been used to experimentally elucidate the ground-state electronic structure of the thorium and uranium systems. Careful examination of the ground-state electronic structure, as well as a detailed modeling of the photoelectron spectra, reveals similar bonding interactions between the thorium and uranium compounds. Using time-dependent DFT (TDDFT), we have assigned the bands in the previously reported UV-Visible spectra for (C5Me5)2Th[-N=CPh2]2, (C5Me5)2U[-N=CPh2]2, and (C5H5)2Zr[-N=CPh2]2. The low-energy transitions are attributed to ligand-localized N p --> C=N pi excitations. These excited states may be either localized on a single ketimido unit or may be of the ligand-ligand charge-transfer type. Higher-energy transitions are cyclopentadienyl pi --> CN pi or cyclopentadienyl pi --> phenyl pi in character. The lowest-energy excitation in the (C5Me5)2U[-N=Ph2]2 compound is attributed to f-f and metal-ligand charge-transfer transitions that are not available in the thorium and zirconium analogues. Geometry optimization and vibrational analysis of the lowest-energy triplet state of the zirconium and thorium compounds also aids in the assignment and understanding of the resonance-enhanced Raman data that has recently been reported. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.].
- Publication status:
- Published
Actions
Authors
- Journal:
- journal of physical chemistry. A More from this journal
- Volume:
- 109
- Issue:
- 24
- Pages:
- 5481-5491
- Publication date:
- 2005-06-01
- DOI:
- EISSN:
-
1520-5215
- ISSN:
-
1089-5639
- Language:
-
English
- Pubs id:
-
pubs:39560
- UUID:
-
uuid:39230145-f83d-4632-92c4-6a783089e1b6
- Local pid:
-
pubs:39560
- Source identifiers:
-
39560
- Deposit date:
-
2012-12-19
Terms of use
- Copyright date:
- 2005
If you are the owner of this record, you can report an update to it here: Report update to this record