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ABSTRACT 

Dimethylsulphide (DMS) is produced by upper ocean 

ecosystems and emitted to the atmosphere where it 

may have an important role in climate regulation. 

Several attempts to quantify the role of DMS in 

climate change have been undertaken in modeling 

studies. We examine a model of biogenic DMS 

production and describe its endogenous dynamics and 

sensitivities. We extend the model to develop a one-

dimensional version that more accurately resolves the 

important processes of the mixed layer in determining 

the ecosystem dynamics. Comparisons of the results 

of the one-dimensional model with vertical profiles of 

DMS in the upper ocean measured at the Bermuda 

Atlantic Time Series suggest that the model 

represents the interaction between the biological and 

physical processes well. Our analysis of the model 

confirms its veracity and provides insights into the 

important processes determining DMS concentration 

in the oceans. 
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1.  Introduction 
 

Dimethylsulphide (DMS) is produced by marine 

ecosystems from its precursor dimethyl-

sulphoniopropionate (DMSP). DMSP is abundant in 

phytoplankton and present in sufficient concentration 

to sustain a net flux of DMS to the atmosphere. Once 

emitted to the atmosphere DMS is oxidised to form 

non-sea-salt sulphate and methanesulphonate 

aerosols. Shaw [1] and later Charlson et al. [2] 

postulated that DMS-producing phytoplankton could 

stabilise global climate. This has led to a focus on the 

role of upper ocean ecosystems in shaping climate 

[3]. 

 

The vertical physical dynamics of the mixed layer are 

a critical driving force determining ecosystem 

dynamics in the upper ocean [4]; by comparison, 

horizontal advection is believed to have little 

influence on mixed layer ecosystems [5]. The mean 

irradiance field, controlled by the interaction of light 

penetration and the mixed layer depth, and the supply 

of nutrients into the mixed layer are important 

limiting factors on biological production [6]. 

Phytoplankton blooms in the ocean occur after a 

deepening of the mixed layer brings new nutrient to 

surface waters and subsequent stratification of the 

surface waters traps phytoplankton in a relatively 

highly illuminated, high-nutrient regime, providing 

ideal conditions for the initiation of a phytoplankton 

bloom [7]. Shallowing of surface mixed layers also 

contributes to enhancing DMS production by 

initiating phytoplankton succession toward stronger 

DMSP producers, allowing a higher efficiency of 

conversion from DMSP to DMS, and by possibly 

inhibiting bacterial consumption of DMS [8]. 

 

Here we examine the dynamical properties of the 

Gabric et al. [9] model, hereafter referred to as the 

GMSK model. The depth-averaged GMSK model 

can, to some extent, include the influence of 

variations in mixed layer depth, as it averages over 

the mixed layer, but it cannot resolve or explain 

structures such as sub-surface chlorophyll maxima 

commonly observed in oceans [7]. One-dimensional 

ecosystem models resolve these effects much more 

accurately, and reveal the influence of exogenous 

physical forcings on the dynamics of the models more 

clearly. 

 

We extend the GMSK model to resolve the vertical 

structure of the ocean, and note the effect of the 

inclusion of the physical dimension on the model 

dynamics. The one-dimensional model is forced by 

seasonal changes in mixed layer depth, sea surface 

temperature, photosynthetically available radiation 

and sea surface wind speed. We compare the one-

dimensional model with vertical profiles of DMS 

measured as part of the Bermuda Atlantic Time Series 

(BATS) [10]. In contrast to the approach taken by 

Lefevre et al. [11] we do not vary the parameters 

temporally to obtain the best fit but calibrate a 

reduced parameter set to reproduce the BATS data. 

We calibrated eight of the parameters so that the 

slope of the regression line, linking model predicted 
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DMS with the DMS concentrations measured at 

BATS, was approximately unity. 

 

 

2.  The GMSK Model 
 

The equations of state of the GMSK model are given 

by equations (1) to (7) [9]. 
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In these equations P represents phytoplankton, B 

bacteria, F flagellates, Z zooplankton, N nutrient, 

DMSP the concentration of DMSP and DMS the 

concentration of DMS. The P, B, F, Z and N 

quantities are expressed as concentrations of atomic 

nitrogen (mg N m
-2

) and DMSP and DMS. as 

concentrations of atomic sulphur (mg S m
-2

). The ki 

are fixed parameters measured by [12]. The model 

averages over the mixed layer and all concentrations 

and parameter values are scaled by the depth of the 

mixed layer. 

 

The GMSK model equations were scaled by a 

characteristic time (k23) that corresponds to the 

maximum growth rate of the phytoplankton. 

Equations (1)-(5) are scaled by the characteristic 

concentration of the total nitrogen mass, No, and 

equations (6) and (7) by the characteristic total 

sulphur mass, So. 

 

The GMSK model is essentially a nitrogen-based 

ecosystem model given by equations (1)-(5) with uni-

directional coupling to a sulphur-based biochemical 

model given by equations (6) and (7). 

 

The steady state DMS concentration of the sulphur 

model is given by: 
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The stability of this point is given by the eigenvalues 

of the coefficient matrix of the DMSP and DMS 

equations of state. These eigenvalues are always 

negative, indicating that the critical point given by 

equation (8) is always an asymptotically stable node 

and the system will return to its equilibrium state 

rapidly after perturbation (ie it is highly resilient). 

The sulphur sub-model dynamics are therefore slaved 

to, and will closely follow, the dynamics of the 

ecosystem model, in particular the time evolution of 

P and Z. 

 

Equation (8) denotes a linear relationship between 

DMS and P concentrations and is a similar form to the 

empirical relationship derived by Simo and Dachs 

[13]. As linear correlations between DMS and 

chlorophyll (a surrogate measure of P) have not been 

detected in analysis of global data sets [14], the 

influence of the zooplankton in equation (8) is 

important. 

 

3.  The One-Dimensional Model 
 

The one-dimensional GMSK model is obtained from 

the depth-averaged GMSK model by resolving the 

distribution of concentrations and fluxes over depth in 

the water column and allowing diffusive and 

advective fluxes. The model equations are now 

reaction-diffusion equations of the type: 
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where C is a vector of P, B, F, Z, N, DMSP and DMS 

concentrations, G is net production (growth – loss) 

given by equations (1)-(7), kv is the vertical advection 

velocity (m/day) and D is vertical turbulent 

diffusivity (m
2
/day) [3]. Note that when the 

production terms (G) in equation (9) are replaced by 

the right-hand-sides of equations (1)-(7) the emission 

term 
  
k

30
DMS  is deleted from equation (7). The 

emission of DMS from the sea to the air is included in 

the one-dimensional model as a boundary condition at 

the sea-air interface rather than as a sink term in the 

production equations. 

 

3.1.  Boundary Conditions 

 

The upper boundary of the model is formed by the sea 

surface and the lower boundary is set at 200 metres. 

The region of the water column below the mixed 

layer acts as a reservoir of nutrient that may be 

entrained into the mixed layer when it deepens. This 

scenario allows the model to reproduce the physical 

mechanisms that initiate phytoplankton blooms [7]. 

Sinking of phytoplankton is included in the model as 

this is reasonably well documented [15, 16], but 

vertical migration by zooplankton is not included as 

the effect of turbulence on zooplankton feeding is not 

clear [7]. Similarly the effect of sedimentation of 

DMS when adsorbed onto particles is insignificant 

compared to the flux to the atmosphere and has been 

ignored [17]. 

 

The boundary condition for equation (9) is given [18] 

by: 

  

1( )k
v
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C

z
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where  is a parameter specifying the nature of the 

boundary. If 
  
k

v
0  (ie for P only) a perfectly 

absorbing boundary is specified by
 
= 1 , and a 

perfectly reflecting boundary is specified 

when
 
= 0 . A mass-conservative ecosystem model 

accords with the findings of Spitz et al. [19] that some 

ecosystem models fit real data best if mass is 

approximately conserved. Zero-flux boundary 

conditions are therefore implemented for the state 

variables on both boundaries with the exception of P 

at the bottom boundary and DMS at the top boundary. 

 

Phytoplankton sink through the water column and out 

of the upper, photic zone, and contribute to ‘marine 

snow’ that delivers nutrient to the deep ocean [15]. 

The bottom boundary condition for P therefore allows 

the sinking flux of phytoplankton to pass through it. 

The nutrient lost as phytoplankton is eventually 

replaced by processes such as upwellings associated 

with the divergence of the Ekman transport [20] that 

deliver inorganic nutrients back to the upper ocean. 

The mass falling through the bottom boundary is 

therefore uniformly reinjected into the sub-mixed 

layer as nutrient. 

 

The Liss and Merlivat [21] model of gas transfer rate 

is used as a DMS boundary condition for the one-

dimensional model: 

 
F
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= k

tr
DMS . (11) 

The boundary condition for DMS at the top boundary 

is therefore the condition: 

 

dDMS

dz
= k

tr
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The piston velocity (
 
k

tr
) is calculated from three 

equations representing different sea state / wind speed 

(w) scenarios. These are: a smooth surface regime (w 

= 0 - 3.6 m s
-1

), a rough surface regime (w = 3.6 - 13 

m s
-1

) and a breaking wave regime (w > 13 m s
-1

): 
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where 
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2
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 =
600

Sc
. 

The dimensionless Schmidt number (Sc) is the ratio 

of the absolute viscosity of seawater to the diffusivity 

of DMS in water. For a given gas, the Schmidt 

number decreases with increasing water temperature. 

The dependence of Sc on sea surface temperature for 

DMS has been experimentally derived by Saltzman et 

al. [22] 

  

Sc = 2674.0 147.12 * SST

+3.726 * SST
2

0.038* SST
3

. (14) 

 

3.2  Diffusion and Temperature Profiles 

 

The diffusivity is a function of depth and includes 

uniform mixing in the mixed layer, the gradient in 

mixing strength that occurs at the pycnocline, and a 

uniform mixing profile in the sub-mixed layer. A 

sigmoid function (equation (15)) is used to generate a 

diffusivity profile for use in the model simulations: 
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where D is the diffusivity (m
2
/day), Dmax is the 

maximum mixed-layer diffusivity (0 < Dmax < ~1000), 

Dmin is the minimum sub-mixed layer diffusivity (0 < 

Dmin < ~10) and z is the depth in the water column 

(m). The depth of the model domain is H (m) and 

MLD is the depth of the mixed layer (m). The 

quantity r (day/m
2
) is a parameter that controls the 

steepness of the pycnocline (1 < r < 50), where r ~ 20 

generates pycnoclines typical of those observed in the 

ocean. The use of this sigmoid function assumes 

homogeneity of all properties within the mixed layer, 

which is considered realistic except perhaps for 

conditions of deep convective mixing [23, 24]. 

 

An analogous function is used to describe the vertical 

temperature profile. The temperature of the mixed 

layer (Tmax) is also assumed to be homogeneous and 

the sub-mixed layer temperature (Tmin) is held 

constant. The vertical temperature profile is given by: 
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3.3. Forcings 

 

The specific growth rate of phytoplankton in the one-

dimensional GMSK model is subject to variation with 

depth due to changes in light intensity, represented by 

F(R, T) in equation (1). The relationship described by 

Walsh et al [16], which includes the effects of self-

shading, is used to describe light-limited P growth in 

this model: 
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and 
 
k

w
 is the light attenuation of seawater, 

 
k

p
is the 

light attenuation due to self-shading of 

phytoplankton, z is the depth in metres, 
  
I

0
is the 

incident surface irradiation (W/m
2
) and 

 
I

s
 is the 

phytoplankton saturating irradiation (W/m
2
). 

 

Laboratory studies of phytoplankton have also 

revealed a dependence of phytoplankton growth rates 

on temperature [25, 26]. The temperature dependence 

of phytoplankton growth used in this model was 

estimated by Eppley [26] to be: 

  
R

T
= e

0.063 T T
max( )

, (19) 

where T is the ambient temperature (
0
C) and Tmax is 

the maximum annual temperature. 

 

The one-dimensional model equations are also scaled 

by characteristic concentrations: the total nitrogen 

mass (No) for the nitrogen-based equations and a 

characteristic sulphur mass (So) for the sulphur-based 

equations. A characteristic sulphur mass is selected so 

that
  
S

0
= k

33
N

0
, and 

  
k

33
 (the phytoplankton sulphur 

as DMSP to nitrogen ratio) may be cancelled from the 

scaled sulphur equations. Depth is scaled by the 

simulation depth of the model, H, the maximum 

annual mixed layer diffusivity Dmax and a 

characteristic time Tchar is selected so that: 

  

T
char

=
H

2

D
max

.    (20) 

 

The Method of Lines [27, 28] was used to solve the 

partial differential equations of the one-dimensional 

model. 

 

4.  Results 
 

We compared the one-dimensional model with 

vertical profiles of DMS measured as part of the 

Bermuda Atlantic Time Series (BATS) [10]. The 

BATS data used in this analysis comprised 247 

measurements of DMS taken in the top 100 metres of 

the water column on 27 days spaced at irregular 

intervals (1 – 33 days apart) over a twelve month 

period. DMS measurements were usually made at 

depths of 1, 5, 10, 15, 20, 30, 40, 60, 80 and 100 

metres. 

 

The model was integrated for 730 days, with the 

second 365 days (366 – 730) being used to compare 

with the BATS data. We used a genetic algorithm 

[29] to calibrate eight of the 33 model parameters to 

minimize the squared error between the model and 

BATS data at the 247 BATS data points. We also 

calibrated the phytoplankton sulphur (as DMSP) to 

nitrogen ratio so that the slope of the regression line 

linking the DMS concentration predicted by the 

model and the BATS DMS concentration was 

approximately unity. These parameters and their 

calibrated values are presented in Table 1. 

 



 5 

Table 1: Parameter values tuned to fit BATS data. 

PAR PROCESS UNITS VALUE 

k4 Z grazing rate (per 
individual) on P 

m
3
mgN

-1 

d
-1 

0.0137 

k19 Z specific N excretion 
rate 

d
-1 

0.0177 

k20 Proportion of N uptake 
excreted by Z 

- 0.8096 

k23 Maximum rate of N 
uptake by P 

d
-1 

0.2392 

k29 Maximum DMS photo-
oxidation rate 

d
-1 

0.9267 

k33 Phytoplankton 
S(DMSP):N ratio 

- 0.8000 

kv Phytoplankton sinking 
velocity 

md
-1 

0.3559 

Is Phytoplankton saturating 
irradiance 

Wm
-2 

71 

 

The comparison of the one-dimensional model output 

with the BATS data is presented in Figure 1. 

 

 
Figure 1: Comparison of time series of water column 

concentrations of DMS produced by the model with 

those measured at BATS: the depth-time distribution of 

DMS concentration produced by the model (a) and 

interpolated from the BATS data (b), scatter plot of 

BATS measurements and model predictions at same 

time and depth points (c) and depth-time location of 

BATS measurements (d). Contour lines are drawn at 1, 

2, 4, 6 and 8 nM in panels (a) and (b). 
 

The broad scale structures of Figures 1 (a) and (b) are 

quite similar, with both the model and data 

evidencing a broad, low concentration DMS peak at 

about day 80 - 100 and a clearly defined, high 

concentration DMS peak at about day 230. The large 

bloom occurs at a depth of 30 metres on day 232 in 

the BATS data, and at a depth of 24 metres on day 

216 in the model predictions. 

 

Comparisons of descriptive statistics of the model and 

measured data are presented in Table 2. 

 
Table 2: Model predictions vs BATS data. 

FEATURE MODEL BATS 

Mean DMS conc (nM) 2.0 1.9 

Std dev of DMS conc (nM) 1.7
 

1.5 

Max DMS conc (nM) 8.9
 

12.3 

Day of max DMS conc  216
 

232 

Depth of max DMS conc (m) 24 30 

 

The maximum in the BATS data is largely 

attributable to one data point with a very high 

concentration (approximately 7 standard deviations 

above the mean and 50% higher than the next highest 

concentration) on day 232. Due to the few data 

defining the maximum, and the paucity of data in the 

preceding 46 days, we elected not to calibrate the 

model to reproduce the timing exactly (although this 

was possible) but to improve the overall variation 

explained by the model. Figure 1 and Table 1 reveal 

that the model does a good job of reproducing the 

major characteristics of the BATS data. As the model 

only explains 44% of the variation in the data, it does 

not do a good job of reproducing the fine detail, but 

this is to be expected as the model uses a 

homogeneous mixed layer specified by equation (15) 

and does not resolve many of the factors that lead to 

fine scale variations in DMS concentration. 

 

5.  Discussion 
 

Comparison of the calibrated one-dimensional model 

results with vertical profiles of DMS measured at 

BATS reveals that the model does a good job 

resolving spatial and temporal variations in DMS 

concentration. The model predicted the mean and 

standard deviation of the annual concentration of 

DMS accurately, as well as explaining up to 44% of 

the variation in the observed data. It also accurately 

predicted the timing and depth of major and minor 

peaks in DMS concentration, but underestimated the 

magnitude of the peaks. This may be in part due to 

the model using a homogeneous mixed layer that 

prevented it from resolving the finer detail of the 

spatial and temporal variation of the BATS data. 

 

The multi-faceted approach employed in our 

evaluation of the GMSK model has provided insights 

into the important mechanisms in the model that 

would not have become evident if we had just 

evaluated the model’s ability to reproduce observed 

data. These insights may provide useful information 

for the design of future field studies and may also 

provide an opportunity to rigorously test the process 

representation of the GMSK model. 
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