Journal article
Endomorphism rings of permutation modules over maximal Young subgroups
- Abstract:
-
Let K be a field of characteristic two, and let λ be a two-part partition of some natural number r. Denote the permutation module corresponding to the (maximal) Young subgroup Σλ in Σr by Mλ. We construct a full set of orthogonal primitive idempotents of the centraliser subalgebra SK(λ) = 1λSK(2,r)1λ = EndKΣr(M<...>
Expand abstract
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Version of record, pdf, 211.9KB)
-
- Publisher copy:
- 10.1016/j.jalgebra.2006.02.040
Authors
Funding
Mathematisches Forschungsinstitut Oberwolfach
More from this funder
Bibliographic Details
- Publisher:
- Elsevier Publisher's website
- Journal:
- JOURNAL OF ALGEBRA Journal website
- Volume:
- 307
- Issue:
- 1
- Pages:
- 377-396
- Publication date:
- 2007-01-01
- DOI:
- EISSN:
-
1090-266X
- ISSN:
-
0021-8693
Item Description
- Keywords:
- UUID:
-
uuid:3716204c-fcd6-4466-a87e-220cfaf32e1d
- Local pid:
- pubs:5226
- Source identifiers:
-
5226
- Deposit date:
- 2012-12-19
Terms of use
- Copyright holder:
- Elsevier BV
- Copyright date:
- 2007
- Notes:
- Copyright 2006 Elsevier B.V. All rights reserved. Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www.elsevier.com/open-access/userlicense/1.0/
- Licence:
- Other
Metrics
If you are the owner of this record, you can report an update to it here: Report update to this record