The relationship between adolescents’ pain catastrophizing and attention bias to pain faces is moderated by attention control

Lauren C. Heathcotea, Tine Vervoorta, Christopher Ecclestona, Elaine Foxa, Konrad Jacobsd, Dimitri M.L. Van Ryckeghemb, Jennifer Y.F. Laua,⁎

Abstract

This study considered the attentional functioning of adolescents with varying levels of pain catastrophizing. Specifically, we investigated the relationship between pain catastrophizing and attention bias to pain faces in adolescents. Adolescents (N = 73; age, 16-18 years) performed a dot-probe task in which facial expressions of pain and neutral expressions were presented for 100 milliseconds and 1250 milliseconds. Participants also completed self-report pain catastrophizing and attention control measures. We found that although there was no main effect of pain catastrophizing on attention bias towards pain faces, attention control did significantly moderate this relationship. Further analysis revealed that lower levels of attention control were significantly associated with increasing attentional vigilance towards pain faces only when high pain catastrophizing was present. In addition, we found that poorer attention control was related to increased attention bias for pain faces (regardless of pain catastrophizing level) when these faces were presented for relatively longer durations (ie, 1250 milliseconds) but not for short durations (ie, 100 milliseconds). This study supports a dual process model of attentional processes in pain, thus replicating previous findings within the psychopathology literature but extending them to the study of pain. Theoretical and clinical implications of our findings are discussed.

Keywords: Attention bias, Pain catastrophizing, Attention control, Dual process model, Adolescents

1. Introduction

Pain functions to capture attention, motivating avoidance of potential bodily harm.17 However, when pain is perceived as potentially severe or harmful, individuals may selectively attend to pain and cues for pain over competing demands. Consequently, these individuals may experience increased attentional capture and disruption by pain. This may be particularly true among individuals who catastrophize about pain, characterized by excessive magnification and elaboration regarding the causes and consequences of pain.62 Indeed, some findings have indicated that attentional capture by pain/pain-related information (termed attention bias) is amplified with greater pain-related catastrophizing.12,23,28,48,49,51,56 However, evidence is not unequivocal; some studies fail to identify expected relationships,13,26,41,54,56 whereas others find evidence counter to expectations.6,57,58 These findings suggest that the relationship between attention bias to pain and pain catastrophizing may be moderated by other variables.

Attention control, the ability to focus effortfully in the face of distraction and flexibly shift attention, is likely to be important in understanding the variable relationship between pain catastrophizing and attention bias to pain. This suggestion draws on dual process models—mostly invoked in the context of anxiety disorders16—in which anxiety is a consequence of an imbalance between a fast impulsive responding system and a regulatory control system. Specifically, attention control has been proposed as an important variable moderating the association between anxiety and attention bias to threat.16,22,32,33,50 Studies have indeed revealed that only anxious participants with poor attention control showed an attention bias towards threat. Recently, these findings were extended to a sample of chronic fatigue patients.25 However, no studies have investigated such dual process models within the context of pain. Furthermore, there are no studies with younger people, despite the developmental importance of mastery over attention in adolescence10,36 and the neurodevelopment of brain regions engaged in goal-directed attention.36,38,47 Indeed, only 1 published study to date has investigated the relationship between pain catastrophizing and attention bias to pain in a sample of youth, but without considering attention control.51

Our interest is in the attentional functioning of adolescents with varying levels of pain catastrophizing. We had 2 objectives: first,
to examine the relationship between adolescent pain catastrophizing and attention bias to visual pain stimuli (facial expressions), assessed using dot-probe methodology; and second, to examine the moderating role of adolescents’ self-reported attention control on the relationship between pain catastrophizing and attention bias. Based on predictions of the dual process model, we hypothesized that (1) adolescents’ level of pain catastrophizing would be positively associated with an attention bias towards pain faces and (2) self-reported attention control would further moderate the association between pain catastrophizing and attention bias to pain faces such that catastrophizing would relate to attention bias particularly when attention control is low. Additionally, because attention is temporal and dynamic, we presented pain faces at 2 presentation times, to explore the hypothesized associations at early and later stages of processing.

2. Methods

2.1. Participants

Participants were recruited from 2 educational establishments (a senior school and a further education college) in the south of England. Research assistants contacted both educational establishments and the principals gave verbal consent to make contact with adolescents as potential participants. All participants were completing A-level qualifications (year 12 or senior year). A teacher at the school contacted all participants, inviting them to take part in the study during regular school hours. We conducted a brief screening with teachers to exclude participants who had chronic pain, in which no participants were identified and thus excluded. Participants gave written informed consent. We invited 8 school classes to take part, 78 adolescents, who all agreed to participate. Exclusion criteria were the presence of visual difficulties or a learning disability. Two participants were excluded from analysis on the basis that they did not complete at least 25% of items on one or both of the questionnaires. Because of technical issues in retrieving recorded dot-probe data, 2 additional participants were excluded. One participant was excluded from analysis as he had turned 19 by the testing session date.

The final sample entered in the analyses consisted of 73 adolescents (56 girls) aged 16 to 18 years (mean = 16.8 years, SD = 0.72). The study was approved by the University of Oxford Central University Research Ethics Committee.

2.2. Measures

Adolescents’ catastrophic thinking about pain was assessed with the Pain Catastrophizing Scale for Children (PCS-C).11 This instrument is adapted from the adult Pain Catastrophizing Scale.48 The PCS-C also consists of 13 items and yields a total score that can range from 0 to 52, with higher scores indicating more pain catastrophizing, as well as 3 subscale scores for rumination (eg, “when I am in pain, I keep thinking of other painful events”), magnification (eg, “when I am in pain, I become afraid that the pain will get worse”), and helplessness (eg, “when I am in pain, I feel like I can’t go on like this much longer”). The PCS-C has been shown to be both reliable and valid for children above 9 years.11 Cronbach alpha in this study was 0.93 for the total score.

Adolescents’ attention control was assessed with the Attention Control Scale (ACS).16 The ACS consists of 20 items and yields a total score that can range from 20 to 80, with higher scores indicating good attention control. The ACS has 2 subscale scores for attention focussing (eg, “my concentration is good even if there is music in the room around me”) and attention shifting (eg, “it is easy for me to alternate between two different tasks”). The ACS has shown both good reliability and predictive utility, predicting resistance to interference in Stroop-like spatial conflict tasks and attentional disengagement from threat stimuli among highly anxious people.16 Furthermore, Matthews et al.34 showed greater activation in brain areas related to top–down regulation of emotion (ie, rACC) in those reporting greater attention control. Attention control has also been measured with good reliability and validity in children.37 Cronbach alpha in this study was 0.83 for the total score.

2.3. Stimulus materials

The stimulus set consisted of 12 pictures of 6 adult faces (of 3 males and 3 females). All pictures were drawn from 1-second video clips of simulated facial expressions of pain. These pictures were taken from a larger collection of stimuli, previously created and validated in the laboratory by Simon et al.,46 who provided permission for using these stimuli. For these stimuli, actors were videotaped while producing neutral facial displays and simulated facial expressions of different pain intensities. For this study, we used neutral facial expressions and facial expressions of moderate pain. We selected facial expressions of moderate rather than severe pain on the basis of evidence that differences in anxiety-linked vulnerability may reflect the intensity of stimulus threat required to elicit the attentional vigilance response. That is, although strongly threatening stimuli have been shown to universally attract attention as an adaptive mechanism, moderately threatening stimuli are more sensitive to picking up anxiety-linked differences in attentional responding, that is, more ambiguous facial expressions would reveal greater variability among individuals. Using these 12 pictures, 6 study slides were generated. Each slide consisted of 2 pictures of the same adult, presenting a neutral face or a moderate pain face. Using the Facial Action Coding System,18 these video clips were previously reliably coded on occurrence and intensity of facial expression of pain.48 Furthermore, 2 neutral pictures of 2 other adult faces from the stimulus set of Simon et al. were selected to create filler trials that consisted of a neutral-neutral picture pair of the same adult face. Additionally, 2 pictures of 2 other neutral faces used previously by Vervoort et al.61 were selected for the practice trials. The present stimuli have been used in previous research examining attention bias to pain.37 The validity of the present stimulus set used during the experimental phase is supported by previous findings of significantly different observer pain ratings between neutral and moderate pain facial expressions (see Ref. 60).

2.4. Dot-probe task

The dot-probe task measures attention bias by simultaneously presenting a pain-related and neutral stimulus, one of which is then replaced by a dot. Participants are required to make a decision about the location of the dot, and although pain-related and neutral stimuli are not critical for responding, attention capture is inferred by speeded reaction times (RTs) to the dot in a location where a pain-related or neutral stimulus was previously presented. All stimuli were presented against a black background. Each trial in the dot-probe task began with a 500-millisecond presentation of a white fixation cross in the middle of the screen. Participants were instructed to fixate their gaze on this location. Then, 1 picture pair appeared and remained visible for either
watched the participants performing practice trials to ensure that they understood the instructions. Participants were given the following instructions: “During this computer task, a white cross will be shown at the centre of the screen. Try to focus your eyes on this cross when it appears. After the white cross appears, 2 pictures of people will be shown. One picture will be shown at the top of the screen, one picture will be shown at the bottom of the screen. Immediately after the pictures are shown, a small white square will appear where one of the pictures was (ie, at the top or bottom part of the screen). Your task is to indicate, using 2 keys on the keyboard, as fast as possible, where you have seen the square. Press ‘Q’ when you have seen the square at the upper part of the screen. Press ‘M’ when you have seen the square at the bottom part of the screen. Try to be as fast and accurate as possible. Sometimes, a number will be shown at the location of the white cross. When this happens, you have to type this number using the keyboard. Try to make as few errors as possible.” Participants were also informed that there would be a break in the middle of the computer task, and that they should take around 1 minute to silently look away from the computer screen. After completing the dot-probe task, participants completed the questionnaires. Upon completion, participants were debriefed as to the nature of the study, and given a £5 Amazon voucher.

2.6. Data reduction and statistical plan

To investigate the relationship between adolescent pain catastrophizing and selective attention to pain (i.e., hypothesis 1), mean RTs on congruent and incongruent trials were used as dependent variables in the analyses. Analyses used a 2 × 2 factorial repeated-measures design with congruency (congruent/ incongruent) and presentation time (100 milliseconds/1250 milliseconds) as within-subject factors and centred pain catastrophizing score entered as a covariate. Repeated-measures Analysis of Covariance was chosen because the design of our study includes presentation time as a within-subjects variable and we were interested in whether the effects of pain catastrophizing and selective attention to pain varied across presentation times. Pain catastrophizing was entered as a covariate to retain the full range of scores on this continuous measure, rather than arbitrarily splitting participants into groups, thereby retaining greater variance to observe relationships. In case of a significant catastrophizing × congruency interaction, attention bias indices were calculated to ease interpretation of the direction of differences between congruent and incongruent trials, and Pearson correlation analyses were performed to examine their relationship with catastrophizing. Bias scores were calculated by subtracting the average detection time on congruent trials from the average detection time on incongruent trials. A positive bias index indicates increased selective attention to pain faces, whereas a negative index is indicative of attentional avoidance. A mean bias index (across 100 and 1250 milliseconds) was calculated in case the congruency × catastrophizing × presentation time 3-way interaction did not reach significance, whereas separate bias indices were calculated for 100 and 1250 milliseconds and used within separate analyses in case the 3-way interaction also reached significance.

For all analyses, the cutoff for statistical significance was set at \(P < 0.05 \), and effect sizes were reported using the partial eta squared index (\(\eta^2_p \)). Following Cohen\(^1\) and Olejnik and Algina\(^2\), small effect size = 0.01; medium effect size = 0.06; and large effect size = 0.14.

To investigate the potential moderating role of attention control on the relationship between adolescent pain catastrophizing and...
selective attention to pain (ie, hypothesis 2), analyses were rerun but with the centered attention control score also entered as a covariate. Again a repeated-measures ANCOVA was selected to reflect the within-subject variable of presentation time, which could moderate the effects of our key variables. In case of a significant catastrophizing × congruency × attention control 3-way interaction, additional moderation analyses were performed to interpret interaction effects (ie, whether the association between the predictor variable [pain catastrophizing] and the outcome [attention bias] is significant only for high levels of the moderator variable [attention control], low levels of the moderator variable, or both). Moderation analyses followed the procedure outlined by Holmbeck.24 To this end, 2 steps were performed: First, 2 new conditional continuous moderator variables were computed by (1) subtracting 1 SD from the centred moderator variable (high levels of adolescent attention control) and (2) adding 1 SD to the centred moderator variable (low levels of adolescent attention control). Next, 2 additional ANCOVAs were performed—incorporating each of these new conditional continuous moderator variables—to test the significance for low (1 SD below the mean) and high (1 SD above the mean) values of the conditional moderator variable. In case of significant 3-way interactions including presentation time, congruency, and one of the continuous variables (ie, either attention control or pain catastrophizing), we calculated separate correlation analyses between the continuous variables and the attention bias indices (ie, attention bias at 100 milliseconds and attention bias at 1250 milliseconds) to ease interpretation of direction of effects (see Ref. 30 for a similar procedure). In case the 4-way interaction (ie, including presentation time) also reached significance, these analyses were performed separately for 100 and 1250 milliseconds, otherwise the average bias index (across 100 and 1250 milliseconds) was used. In all analyses, Greenhouse–Geisser corrections (with adjusted degrees of freedom, or NDF) were performed whenever the sphericity assumption was violated (Mauchly test of sphericity was $P < 0.05$).

3. Results

3.1. Participant characteristics

The mean level of adolescents’ pain catastrophizing was 21.62 (SD = 11.03) and the mean level of attention control was 47.15 (SD = 8.51). Girls reported significantly higher levels of pain catastrophizing thoughts compared with boys ($t(71) = -2.01$, $P < 0.05$, $d = 0.48$), but did not differ on the measure of attention control ($t(71) = 1.49$, ns, $d = 0.35$). Pain catastrophizing was significantly negatively correlated with attention control ($r = -0.26$, $P < 0.05$). No significant correlations were observed with child age (both $r ≤ 0.21$, not significant [NS]).

3.2. Attention bias analyses

3.2.1. Data preparation

Consistent with previous research,55,57,61 trials with errors and responses shorter than 200 milliseconds or longer than 2000 milliseconds were discarded. Within the present sample, the number of errors made by participants ranged from 0 to 24 (mean = 5.73), and 0.05% of the RTs fell outside the range of 200 to 2000 milliseconds. Probe detection latencies that were 3 SDs above or below the individual mean RT of correct responses were also considered outliers and excluded from analyses.30,57,61 This was the case for 1.43% of the RTs. Statistical analyses were run on 96.34% of the data.

3.2.2. Relationship between adolescent pain catastrophizing and selective attention to pain

Mean RTs and SDs on different trial types are presented in Table 1. The RTs were analysed using a 2 (congruency: congruent/incongruent) × 2 (presentation time: 100 milliseconds/1250 milliseconds) repeated-measures analysis of covariance (ANCOVA) with pain catastrophizing entered as a covariate. Analyses revealed no main effect of congruency ($F(1,71) = 0.27$, NS, $\eta^2_p = 0.004$), indicating no overall selective attention to pain. Likewise, there was also no significant effect of catastrophizing ($F(1,71) = 0.50$, NS, $\eta^2_p = 0.007$) or presentation time ($F(1,71) = 2.88$, NS, $\eta^2_p = 0.039$), nor were there any significant 2- or 3-way interactions (all $F ≤ 0.88$, NS, all $\eta^2_p ≤ 0.012$), indicating that attention deployment to either pain or neutral faces did not depend on adolescents’ level of pain catastrophizing, presentation time (ie, 100 milliseconds/1250 milliseconds), or the interaction between both.

3.2.3. Moderating role of attention control in the relationship between adolescent pain catastrophizing and selective attention to pain

To investigate the moderating role of attention control, a similar repeated-measures ANCOVA was run but with the centered attention control score also entered as a covariate. Analyses revealed a significant 3-way interaction of pain catastrophizing with congruency and attention control ($F(1,69) = 4.55$, $P < 0.05$, $\eta^2_p = 0.062$), indicating that the relationship between pain catastrophizing and attention bias to pain is dependent on levels of attention control. Furthermore, there was also a significant attention control × congruency × presentation time interaction ($F(1,69) = 4.26$, $P < 0.05$, $\eta^2_p = 0.058$), indicating that the relationship between attention control and attention bias to pain varies with different presentation times (100 milliseconds/1250 milliseconds). No other main or interaction effects were observed (all $F ≤ 3.75$, NS, all $\eta^2_p ≤ 0.051$). Below, we first report on the 3-way interaction between pain catastrophizing, congruency, and attention control, and we then report on the 3-way interaction between attention control, congruency, and presentation time.

To interpret the significant pain catastrophizing × congruency × attention control interaction, 2 univariate ANCOVAs were performed with the average bias index (ie, across 100 and 1250 milliseconds) entered as the dependent variable, pain catastrophizing as the predictor variable, and high (1 SD above the mean) or low (1 SD below the mean) values of self-reported attention control as a covariate. As shown in Figure 1, findings indicated a crossover interaction, indicating that pain catastrophizing differentially impacted attention bias to pain dependent on high vs low levels of adolescents’ attention control. Specifically, for adolescents reporting high levels of attention control, pain catastrophizing was negatively associated with attention to pain. Conversely, for adolescents reporting low levels of attention control, pain catastrophizing was positively associated with attention to pain. Although these patterns did not significantly

Table 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Congruent Trials</th>
<th>Incongruent Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 milliseconds</td>
<td>454 (55)</td>
<td>453 (55)</td>
</tr>
<tr>
<td>1250 milliseconds</td>
<td>458 (53)</td>
<td>459 (56)</td>
</tr>
</tbody>
</table>
differ from 0 for adolescents reporting low attention control ($F(1,69) = 1.13, \text{NS}, \eta^2_p = 0.016$) and only approached significance for adolescents reporting high attention control ($F(1,69) = 3.31, P = 0.07, \eta^2_p = 0.046$), the significant crossover interaction indicates that these patterns are significantly different from each other. Inspection of Figure 1 also suggests that attention control affects attention bias to pain differently for high catastrophizing adolescents relative to low catastrophizing adolescents. Indeed, additional analyses within high catastrophizing adolescents showed that attention control was negatively associated with attention bias to pain such that lower levels of attention control were associated with increasing attention bias to pain such that lower levels of attention control were associated with increasing attention bias to pain for low catastrophizing adolescents. Indeed, lower levels of attention control were significantly associated with increasing vigilance towards pain faces only within high catastrophizing adolescents. No such pattern emerged among low catastrophizing adolescents. We also found that poorer attention control was related to increased attention bias for pain faces (regardless of pain catastrophizing level) when these faces were presented for relatively longer durations but not for short durations.

Figure 1. Average bias indices for pain faces as a function of low (1 SD below the mean) and high (1 SD above the mean) levels of adolescents' attention control, $^*P < 0.05; ^{\dagger} P < 0.10.$

To our knowledge, this is the first study to examine the relationship between attention bias toward pain-related information, level of attentional control, and individual differences in catastrophic beliefs about pain and its consequences. The study was cast within and supports a dual process model of attentional processes in pain. Dual process models provide a theoretical account of how phenomena occur from both implicit and explicit processes, and they have furthered our understanding of several clinical disorders. For example, adult studies have demonstrated that attention control moderates the relationship between anxiety-related variables (e.g., trait and state anxiety, post-traumatic stress symptoms) and attention bias to threat. Our study extends these previous findings within the psychopathology literature to the study of pain. We find that both automatic and controlled attentional processes are important in the relationship between attention to pain and pain cognitions. As such, these findings may explain why some studies find positive associations between pain catastrophizing and attention biases, whereas others find negative or no associations. Our findings may have implications for the literature on Attention Bias Modification (ABM), a training technique that targets and shifts attention biases, possibly by enhancing attention control. These ABM techniques have been used mostly to reduce anxiety and depression, but they are being extended to adult pain conditions. Although not definitive, there is some suggestive data that ABM may increase attention control, rather than shift biases per se. Our findings indeed suggest that attention control may be important to the association between pain catastrophizing and attention bias, perhaps allowing individuals to subsequently disengage from pain-related threat.

4. Discussion

In this study, we investigated the relationship between pain catastrophizing and attention bias to facial expressions of pain in adolescents. We further investigated the moderating role of self-reported attention control. We hypothesized that (1) adolescents’ level of pain catastrophizing would be associated positively with an attention bias towards pain faces and (2) attention control would moderate the association between pain catastrophizing and attention bias to pain faces. Results partially supported our hypotheses. Although there was no main effect of pain catastrophizing on attention bias towards pain, attention control did significantly moderate this relationship. We found a crossover interaction indicating that although pain catastrophizing was negatively associated with attention bias to pain among adolescents reporting high attention control, the opposite pattern was observed among adolescents reporting low attention control. Although separate analyses examining effects at low and high attention control did not reach significance, the observed crossover interaction suggests that low levels of attention control are relevant in understanding increasing attention to pain stimuli among high pain catastrophizing adolescents. Indeed, lower levels of attention control were significantly associated with increasing vigilance towards pain faces only within high catastrophizing adolescents. No such pattern emerged among low catastrophizing adolescents. We also found that poorer attention control was related to increased attention bias for pain faces (regardless of pain catastrophizing level) when these faces were presented for relatively longer durations but not for short durations.

4. Discussion

In this study, we investigated the relationship between pain catastrophizing and attention bias to facial expressions of pain in adolescents. We further investigated the moderating role of self-reported attention control. We hypothesized that (1) adolescents’ level of pain catastrophizing would be associated positively with an attention bias towards pain faces and (2) attention control would moderate the association between pain catastrophizing and attention bias to pain faces. Results partially supported our hypotheses. Although there was no main effect of pain catastrophizing on attention bias towards pain, attention control did significantly moderate this relationship. We found a crossover interaction indicating that although pain catastrophizing was negatively associated with attention bias to pain among adolescents reporting high attention control, the opposite pattern was observed among adolescents reporting low attention control. Although separate analyses examining effects at low and high attention control did not reach significance, the observed crossover interaction suggests that low levels of attention control are relevant in understanding increasing attention to pain stimuli among high pain catastrophizing adolescents. Indeed, lower levels of attention control were significantly associated with increasing vigilance towards pain faces only within high catastrophizing adolescents. No such pattern emerged among low catastrophizing adolescents. We also found that poorer attention control was related to increased attention bias for pain faces (regardless of pain catastrophizing level) when these faces were presented for relatively longer durations but not for short durations.

To our knowledge, this is the first study to examine the relationship between attention bias toward pain-related information, level of attentional control, and individual differences in catastrophic beliefs about pain and its consequences. The study was cast within and supports a dual process model of attentional processes in pain. Dual process models provide a theoretical account of how phenomena occur from both implicit and explicit processes, and they have furthered our understanding of several clinical disorders. For example, adult studies have demonstrated that attention control moderates the relationship between anxiety-related variables (e.g., trait and state anxiety, post-traumatic stress symptoms) and attention bias to threat. Our study extends these previous findings within the psychopathology literature to the study of pain. We find that both automatic and controlled attentional processes are important in the relationship between attention to pain and pain cognitions. As such, these findings may explain why some studies find positive associations between pain catastrophizing and attention biases, whereas others find negative or no associations. Our findings may have implications for the literature on Attention Bias Modification (ABM), a training technique that targets and shifts attention biases, possibly by enhancing attention control. These ABM techniques have been used mostly to reduce anxiety and depression, but they are being extended to adult pain conditions. Although not definitive, there is some suggestive data that ABM may increase attention control, rather than shift biases per se. Our findings indeed suggest that attention control may be important to the association between pain catastrophizing and attention bias, perhaps allowing individuals to subsequently disengage from pain-related threat.

This study also extends the limited paediatric literature examining attention biases within the context of pain, with only 4 published studies, and among these, only 1 within the context of pain catastrophizing. This dearth of research is surprising, given the significant number of children suffering from (chronic) pain, the hypothesized pivotal role of attention in the development and maintenance of pain problems, and the importance of pain catastrophizing in understanding deleterious pain outcomes (e.g., increased pain/disability) among clinical and nonclinical paediatric samples, and the need for novel treatment approaches targeting anxiety-related factors in paediatric patients with chronic pain. Furthermore, given neuroimaging and behavioural evidence that brain areas underlying executive functions such as attention control are still developing during adolescence, examining attention control as a moderating factor on the association between pain catastrophizing and attention bias to pain-related stimuli may be particularly important.
important within adolescence. Samples spanning childhood, adolescence, and adulthood will be important to examine whether and at what point in child development these associations are most stable.

This study is also one of few studies to explore attentional capture by pain temporally (at 100 and 1250 milliseconds stimulus presentation times) and is the first study to do so with adolescents. We found an additional interaction between attention control, congruency, and presentation time, suggesting that the relationship between attention control and attention bias to pain faces varies at early and later stages of processing. Specifically, adolescents high in attention control selectively avoided pain faces at the longer but not shorter presentation time. This is perhaps unsurprising, given the inherently aversive nature of pain facial expressions and the fact that 1250 milliseconds (but not 100 milliseconds) is arguably enough time to exert effortful attentional control to shift away from aversive stimuli. Importantly, although our results may at first seem different from a recent meta-analysis revealing a more pronounced attention bias towards pain-related information when stimuli were presented for 1250 milliseconds, this is not necessarily the case, because the studies included in the meta-analysis did not consider whether associations varied with attention control. Furthermore, the present study comprised healthy adolescents, whereas the meta-analysis included only adults with chronic pain limiting the generalizability of the meta-analysis findings. Interestingly, we found no effect of presentation time on the association between pain catastrophizing and attention control in predicting attention bias (as indicated by a nonsignificant 4-way interaction), suggesting that attention control moderates the association between pain catastrophizing and both early and later attentional capture by pain stimuli in a similar way. Future studies should replicate our findings and examine the efficacy of briefly presented stimuli (ie, 100 milliseconds) to capture attention in youth. Future studies may also benefit from using technologies such as eye-tracking to further reveal the temporal nature of this relationship. Eye-tracking technologies could supplement dot-probe methodology used in this study by providing continuous indices of the focal point of attention, allowing precise examination of the temporal dynamics of selective attention in youth and by overcoming issues of reliability reported in this study and in previous studies.

This study has limitations. First, most of our sample is female. Second, we used an unselected adolescent sample and did not collect detailed information regarding pain history. We relied on a brief screening with teachers to exclude participants who had chronic pain. Nonetheless, given epidemiological findings, we might expect that some individuals in our sample were experiencing recurrent pain, which could have impacted our findings. Third, we used painful faces as our salient threat cues. Although faces are more relevant than words, they limit us to general effects that are not specific to individual participants. Future studies may benefit by increasing personal salience such that pain faces cue a potential personal pain experience. Fourth, we used a single self-report measure of attention control. Although the ACS has shown good utility in predicting attentional performance in experimental tasks, it will be important for future studies to also include other measures of attention control such as flanker tasks (that are reliant on behavioural responses and RTs) and an antisaccade task (ie, reliant on eye movement patterns). These measures may be particularly important in child and adolescent samples, because attention control is still changing during this period and may be more challenging to self-report. Furthermore, although the ACS assesses an individual’s general capacity to focus in the face of distraction and to shift attention, these capacities may differ from the ability to control attention in pain-specific contexts. In particular, individuals high in pain catastrophising may exhibit more difficulties in attention control in pain than non-pain contexts. The fact that we find a significant moderation effect of general attention control attests to the importance of this general capacity in influencing pain-specific constructs; however, examining attention control within the context of pain may further our understanding of this effect. Finally, this study is cross-sectional, so causal hypotheses are untested. Although pain catastrophizing may indeed impact attention bias to pain, the reverse may also be true. Indeed, according to a dual process framework, the interaction between attention bias and attention control may be useful in predicting pain catastrophizing. Given the hypothesized role of attention bias in the development and maintenance of chronic pain problems, and the possibility of using attention bias modification techniques for prevention and intervention strategies, future studies using longitudinal and training designs to investigate the dynamic interplay between attention biases, attention control, and pain catastrophizing will be valuable.

The current findings extend our understanding of the attentional functioning of adolescents with varying levels of pain catastrophizing. Our findings attest to the importance of attention control as a moderating variable on the association between pain catastrophizing and attention bias to pain, thus advancing theory and informing potential interventions.

Conflict of interest statement
The authors have no conflicts of interest to declare.

This study was funded in part by Action Medical Research for Children and in part by the Economic and Social Research Council (ESRC) (ESRC Grant Reference: ES/I032959/1).
Lauren Heathcote is a DPhil student at the University of Oxford, and a Research Training Fellow for Action Medical Research for Children, a UK-based charity (Grant Reference: GN2122). Tine Vervoort is a post-doctoral fellow of the Fund for Scientific Research—Flanders (Belgium) (F.W.O.). Lauren Heathcote and Tine Vervoort are members of Pain in Child Health, a research training initiative of the Canadian Institutes of Health Research. Elaine Fox is supported by an ERC Advanced Investigator Award (Ref: 324176).

Acknowledgements
The authors thank Alexander Crawford and Holly Dawson for their assistance in school recruitment and data collection.

Article history:
Received 14 January 2015
Received in revised form 12 March 2015
Accepted 23 March 2015
Available online 31 March 2015

References

Conflict of interest statement
The authors have no conflicts of interest to declare.

This study was funded in part by Action Medical Research for Children and in part by the Economic and Social Research Council (ESRC) (ESRC Grant Reference: ES/I032959/1).
Lauren Heathcote is a DPhil student at the University of Oxford, and a Research Training Fellow for Action Medical Research for Children, a UK-based charity (Grant Reference: GN2122). Tine Vervoort is a post-doctoral fellow of the Fund for Scientific Research—Flanders (Belgium) (F.W.O.). Lauren Heathcote and Tine Vervoort are members of Pain in Child Health, a research training initiative of the Canadian Institutes of Health Research. Elaine Fox is supported by an ERC Advanced Investigator Award (Ref: 324176).

Acknowledgements
The authors thank Alexander Crawford and Holly Dawson for their assistance in school recruitment and data collection.

Article history:
Received 14 January 2015
Received in revised form 12 March 2015
Accepted 23 March 2015
Available online 31 March 2015

References

