Journal article
Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python
- Abstract:
- Fitting complex models to epidemiological data is a challenging problem: methodologies can be inaccessible to all but specialists, there may be challenges in adequately describing uncertainty in model fitting, the complex models may take a long time to run, and it can be difficult to fully capture the heterogeneity in the data. We develop an adaptive approximate Bayesian computation scheme to fit a variety of epidemiologically relevant data with minimal hyper-parameter tuning by using an adaptive tolerance scheme. We implement a novel kernel density estimation scheme to capture both dispersed and multi-dimensional data, and directly compare this technique to standard Bayesian approaches. We then apply the procedure to a complex individual-based simulation of lymphatic filariasis, a human parasitic disease. The procedure and examples are released alongside this article as an open access library, with examples to aid researchers to rapidly fit models to data. This demonstrates that an adaptive ABC scheme with a general summary and distance metric is capable of performing model fitting for a variety of epidemiological data. It also does not require significant theoretical background to use and can be made accessible to the diverse epidemiological research community.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 1.8MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.epidem.2018.05.009
Authors
- Publisher:
- Elsevier
- Journal:
- Epidemics More from this journal
- Volume:
- 25
- Pages:
- 80-88
- Publication date:
- 2018-05-26
- Acceptance date:
- 2018-05-24
- DOI:
- EISSN:
-
1878-0067
- ISSN:
-
1755-4365
- Pmid:
-
29884470
- Language:
-
English
- Keywords:
- Pubs id:
-
pubs:854084
- UUID:
-
uuid:2fa6a606-0694-4f3a-a368-12f82e06cff7
- Local pid:
-
pubs:854084
- Source identifiers:
-
854084
- Deposit date:
-
2018-06-19
Terms of use
- Copyright holder:
- Irvine and Hollingsworth
- Copyright date:
- 2018
- Notes:
- © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record