Journal article
An influenza A virus can evolve to use human ANP32E through altering polymerase dimerization
- Abstract:
- Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth. We find two mutations in different subunits of the influenza polymerase that enable the mutant virus to use a novel host factor, ANP32E, an alternative family member, which is unable to support the wild type polymerase. Both mutations reside in the symmetric dimer interface between two polymerase complexes and reduce polymerase dimerization. These mutations have previously been identified as adapting influenza viruses to mice. Indeed, the evolved virus gains the ability to use suboptimal mouse ANP32 proteins and becomes more virulent in mice. We identify further mutations in the symmetric dimer interface which we predict allow influenza to adapt to use suboptimal ANP32 proteins through a similar mechanism. Overall, our results suggest a balance between asymmetric and symmetric dimers of influenza virus polymerase that is influenced by the interaction between polymerase and ANP32 host proteins.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 2.3MB, Terms of use)
-
- Publisher copy:
- 10.1038/s41467-023-41308-4
Authors
- Publisher:
- Springer Nature
- Journal:
- Nature Communications More from this journal
- Volume:
- 14
- Issue:
- 1
- Article number:
- 6135
- Publication date:
- 2023-10-10
- Acceptance date:
- 2023-06-09
- DOI:
- EISSN:
-
2041-1723
- Pmid:
-
37816726
- Language:
-
English
- Keywords:
- Pubs id:
-
1546535
- Local pid:
-
pubs:1546535
- Deposit date:
-
2024-04-04
Terms of use
- Copyright holder:
- Sheppard et al.
- Copyright date:
- 2023
- Rights statement:
- Copyright © 2023, The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record