Journal article
Accurate forecasts of the effectiveness of interventions against Ebola may require models that account for variations in symptoms during infection
- Abstract:
- Epidemiological models are routinely used to predict the effects of interventions aimed at reducing the impacts of Ebola epidemics. Most models of interventions targeting symptomatic hosts, such as isolation or treatment, assume that all symptomatic hosts are equally likely to be detected. In other words, following an incubation period, the level of symptoms displayed by an individual host is assumed to remain constant throughout an infection. In reality, however, symptoms vary between different stages of infection. During an Ebola infection, individuals progress from initial non-specific symptoms through to more severe phases of infection. Here we compare predictions of a model in which a constant symptoms level is assumed to those generated by a more epidemiologically realistic model that accounts for varying symptoms during infection. Both models can reproduce observed epidemic data, as we show by fitting the models to data from the ongoing epidemic in the Democratic Republic of Congo and the 2014-16 epidemic in Liberia. However, for both of these epidemics, when interventions are altered identically in the models with and without levels of symptoms that depend on the time since first infection, predictions from the models differ. Our work highlights the need to consider whether or not varying symptoms should be accounted for in models used by decision makers to assess the likely efficacy of Ebola interventions.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, pdf, 3.4MB, Terms of use)
-
- Publisher copy:
- 10.1016/j.epidem.2019.100371
Authors
- Publisher:
- Elsevier
- Journal:
- Epidemics More from this journal
- Volume:
- 29
- Issue:
- 2019
- Article number:
- 100371
- Publication date:
- 2019-09-11
- Acceptance date:
- 2019-09-06
- DOI:
- EISSN:
-
1878-0067
- ISSN:
-
1755-4365
- Keywords:
- Pubs id:
-
pubs:1052933
- UUID:
-
uuid:2ce474cc-a059-4df4-b562-c3ea6b3d31b7
- Local pid:
-
pubs:1052933
- Source identifiers:
-
1052933
- Deposit date:
-
2019-09-11
Terms of use
- Copyright holder:
- Hart et al
- Copyright date:
- 2019
- Notes:
- © 2019 The Authors. Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons Attribution Licence
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record