Journal article icon

Journal article

Vanishing of intersection numbers on the moduli space of Higgs bundles

Abstract:

In this paper we consider the topological side of a problem which is the analogue of Sen's S-duality testing conjecture for Hitchin's moduli space of rank 2 stable Higgs bundles of fixed determinant of odd degree over a Riemann surface. We prove that all intersection numbers in the compactly supported cohomology vanish, i.e. "there are no topological L^2 harmonic forms on Hitchin's space". This result generalizes the well known vanishing of the Euler characteristic of the moduli space of rank...

Expand abstract

Actions


Authors


More by this author
Institution:
University of Oxford
Department:
Oxford, MPLS, Mathematical Inst
Role:
Author
Journal:
Adv.Theor.Math.Phys.
Volume:
2
Issue:
5
Pages:
1011-1040
Publication date:
1998-05-15
EISSN:
1095-0753
ISSN:
1095-0761
URN:
uuid:2b2ba072-d7ae-44fa-86d1-e5b658c5c6c9
Source identifiers:
16318
Local pid:
pubs:16318
Language:
English
Keywords:

Terms of use


Metrics


Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP