Journal article
Vanishing of intersection numbers on the moduli space of Higgs bundles
- Abstract:
-
In this paper we consider the topological side of a problem which is the analogue of Sen's S-duality testing conjecture for Hitchin's moduli space of rank 2 stable Higgs bundles of fixed determinant of odd degree over a Riemann surface. We prove that all intersection numbers in the compactly supported cohomology vanish, i.e. "there are no topological L^2 harmonic forms on Hitchin's space". This result generalizes the well known vanishing of the Euler characteristic of the moduli space of rank...
Expand abstract
Actions
Authors
Bibliographic Details
- Journal:
- Adv.Theor.Math.Phys.
- Volume:
- 2
- Issue:
- 5
- Pages:
- 1011-1040
- Publication date:
- 1998-05-15
- EISSN:
-
1095-0753
- ISSN:
-
1095-0761
- Source identifiers:
-
16318
Item Description
Terms of use
- Copyright date:
- 1998
- Notes:
- 30 pages (published version)
If you are the owner of this record, you can report an update to it here: Report update to this record