Journal article
Statistical attribution of the influence of urban and tree cover change on streamflow: a comparison of large sample statistical approaches
- Abstract:
- The strengths and weaknesses of different statistical methodologies for attributing changes in streamflow to land cover are still poorly understood. We examine the relationships between high (Q99), mean (Qmean), and low (Q01) streamflow and urbanization or tree cover change in 729 catchments in the United States between 1992 and 2018. We apply two statistical modeling approaches and compare their performance. Panel regression models estimate the average effect of land cover changes on streamflow across all sites, and show that on average, a 1%-point increase in catchment urban area results in a small (0.6%–0.7%), but highly significant increase in mean and high flows. Meanwhile, a 1%-point increase in tree cover does not correspond to strongly significant changes in flow. We also fit a generalized linear model to each individual site, which results in highly varied model coefficients. The medians of the single-site coefficients show no significant relationships between either urbanization or tree cover change and any streamflow quantile (although at individual sites, the coefficients may be statistically significant and positive or negative). On the other hand, the GLM coefficients may provide greater nuance in catchments with specific attributes. This variation is not well represented through the panel model estimates of average effect, unless moderators are carefully considered. We highlight the value of statistical approaches for large-sample attribution of hydrological change, while cautioning that considerable variability exists.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Access Document
- Files:
-
-
(Preview, Version of record, 2.9MB, Terms of use)
-
- Publisher copy:
- 10.1029/2021WR030742
Authors
- Publisher:
- American Geophysical Union
- Journal:
- Water Resources Research More from this journal
- Volume:
- 58
- Issue:
- 5
- Article number:
- e2021WR030742
- Publication date:
- 2022-05-09
- Acceptance date:
- 2022-04-20
- DOI:
- EISSN:
-
1944-7973
- ISSN:
-
0043-1397
- Language:
-
English
- Keywords:
- Pubs id:
-
1254840
- Local pid:
-
pubs:1254840
- Deposit date:
-
2022-06-09
Terms of use
- Copyright holder:
- Anderson et al.
- Copyright date:
- 2022
- Rights statement:
- ©2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
- Licence:
- CC Attribution (CC BY)
If you are the owner of this record, you can report an update to it here: Report update to this record