Journal article
The stability of finite sets in dyadic groups
- Abstract:
- We show that there is an absolute $c>0$ such that any subset of $\mathbb{F}_2^\infty$ of size $N$ is $O(N^{1-c})$-stable in the sense of Terry and Wolf. By contrast a size $N$ arithmetic progression in the integers is not $N$-stable.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
Actions
Authors
Bibliographic Details
- Publisher:
- Polskiej Akademii Nauk, Instytut Matematyczny Publisher's website
- Journal:
- Acta Arithmetica Journal website
- Volume:
- 192
- Issue:
- 2020
- Pages:
- 155-164
- Publication date:
- 2019-10-18
- Acceptance date:
- 2019-06-11
- DOI:
Item Description
- Keywords:
- Pubs id:
-
pubs:937085
- UUID:
-
uuid:23151004-6d4c-4f75-b7a8-f79f6e7ebbc7
- Local pid:
- pubs:937085
- Source identifiers:
-
937085
- Deposit date:
- 2019-06-11
Terms of use
- Copyright holder:
- Instytut Matematyczny
- Copyright date:
- 2019
- Rights statement:
- © Instytut Matematyczny PAN, 2020
Metrics
If you are the owner of this record, you can report an update to it here: Report update to this record