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ABSTRACT
We present a method for fitting orbit-superposition models to the kinematics of discrete stellar
systems when the available stellar sample has been filtered by a known selection function. The
fitting method can be applied to any model in which the distribution function is represented
as a linear superposition of basis elements with unknown weights. As an example, we apply it
to Fritz et al.’s kinematics of the innermost regions of the Milky Way’s nuclear stellar cluster.
Assuming spherical symmetry, our models fit a black hole of mass M• = (3.76 ± 0.22) ×
106 M�, surrounded by an extended mass M� = (6.57 ± 0.54) × 106 M� within 4 pc. Within
1 pc the best-fitting mass models have an approximate power-law density cusp ρ ∝ r−γ with
γ = 1.3 ± 0.3. We carry out an extensive investigation of how our modelling assumptions
might bias these estimates: M• is the most robust parameter and γ the least. Internally the
best-fitting models have broadly isotropic orbit distributions, apart from a bias towards circular
orbits between 0.1 and 0.3 parsec.

Key words: Galaxy: kinematics and dynamics – Galaxy: nucleus.

1 INTRODUCTION

In most stellar systems, dynamical times are so long that observa-
tions provide only an instantaneous snapshot of the stars’ positions
and velocities. Any attempt to obtain a dynamical estimate of the
system’s mass distribution must therefore rely on assumptions about
its dynamical state. The most fundamental of these is usually that
the system has settled into an equilibrium configuration, followed
by an assumption about its geometry (e.g. spherical symmetry,
axisymmetry, or triaxiality). The black hole (BH) masses deduced in
most galaxies are obtained from models that rely on this symmetric
equilibrium assumption, as are many constraints on the distribution
of dark matter. For example, models based on the steady-state
Jeans equations make these assumptions, as do models that fit
parametrized distribution functions (hereafter DFs) or those that
are based on the orbit-superposition technique of Schwarzschild
(1979).

An important exception is the stellar cluster at the centre of our
own Galaxy. There the dynamical times of certain young stars –
the so-called S stars – are so short that, by following their orbits
over time, Ghez et al. (2008) and Gillessen et al. (2009) could
obtain direct estimates of the mass of the Galaxy’s central BH
simply by fitting the stars’ orbits. This neatly avoids the usual
assumptions about the equilibrium of the cluster or its geometry.
The most recent estimates of the BH mass inferred by such analyses
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are M• = (4.02 ± 0.16 ± 0.04) × 106 M� (Boehle et al. 2016) and
(4.31 ± 0.06 ± 0.36) × 106 M� (Gillessen et al. 2017).

On the other hand, BH mass estimates obtained using the symmet-
ric equilibrium assumption to fit an instantaneous snapshot of the
old stars that make up the bulk of the Galactic centre stellar cluster
tend to produce significantly lower BH masses. Most such models
have relied on spatial binning of the individual stellar velocities to
construct an estimate of the cluster’s velocity dispersion profile(s)
and then use the Jeans equations to deduce the underlying mass
distribution. For example, using samples of ∼102 radial velocities,
Genzel et al. (1996) and Haller et al. (1996) fit a BH mass of
∼2.6 × 106 M�, under the assumption that the cluster is spherical
with an isotropic velocity distribution.

Subsequent models relaxed these initial assumptions of velocity
isotropy and spherical symmetry. Genzel et al. (2000) constructed
a sample of several hundred stars within ∼20 arcsec of Sgr A�,
including 104 with proper motion measurements and 32 that had
both proper motions and radial velocities. Their estimates of the BH
mass lay in the range 2.6 × 106 M� to 3.3 × 106 M�. Later Schödel,
Merritt & Eckart (2009) measured proper motions of ∼6000 stars
in the same region. From their anisotropic spherical Jeans models
they inferred a BH mass of 3.6+0.2

−0.4 × 106 M�.
Although the stellar cluster is approximately round in projection

within the innermost parsec or so, deeper observations (e.g. Schödel
et al. 2014) show that it becomes increasingly flattened at larger
radii. Chatzopoulos et al. (2015) fit flattened, isotropic Jeans models
to first- and second-order projected velocity moments assembled
from the sample of ∼104 proper motions and ∼2500 radial velocities
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measured by Fritz et al. (2016). They found M• = (3.86 ± 0.14) ×
106 M�, with a systematic uncertainty estimated to be at least a
factor of 2 larger than the formal uncertainty quoted here. They also
constructed explicitly the two-integral DF f(E, Lz) that underlies
their best-fitting model and confirmed that its predictions match an
extensive range of binned velocity histograms of the observations.

These results are obtained using the brightest stars as discrete
kinematical tracers. An alternative is to model the kinematics of
the unresolved stellar population. Feldmeier et al. (2014) have
employed a drift-scan technique applied to integral field spec-
troscopy to extract the kinematics of the innermost few parsecs
of the Galaxy. Applying anisotropic Jeans models to these data
results in M• = 1.7+1.4

−1.1 × 106 M�, albeit with a very high reduced
χ2. Triaxial orbit-superposition models fit to the same kinematics
yield M• = (3.0+1.1

−1.3) × 106 M� (Feldmeier-Krause et al. 2017).
It is evident that these models – all constructed using some variant

of the symmetric equilibrium assumption – struggle to reproduce
BH masses that are as high as the M• � 4 × 106 M� inferred by
following stellar orbits: the symmetric, equilibrium models produce
BH masses that are at best only marginally consistent with the
direct mass measurements. It is interesting then to try to identify
the dominant sources of systematic error in such models.

The symmetric equilibrium models mentioned so far share the
following shortcomings:

(i) They do not use individual stellar velocities directly, but
instead fit only to low-order velocity moments estimated by binning
the data: any constraints on the potential or DF that lurk in the details
of the joint (position,velocity) distribution are simply ignored.

(ii) They assume a single parameterized form for the stellar
number density distribution, even though this is difficult to measure
from discrete data (e.g. Merritt & Tremblay 1994).

(iii) They make strong assumptions about the geometry of the
cluster. The Galactic centre is a messy place, with at least one
tilted disc of young stars in addition to the S stars (Paumard et al.
2006; Yelda et al. 2014). No spherical, axisymmetric, or triaxial
model can treat such a disc properly. If one assumes that the old
stellar population is, say, axisymmetric, then it would make sense
to exclude young stars when fitting models, but identifying them
requires taking spectra, which are expensive to obtain.

Point (iii) is difficult to avoid, but some work has addressed
(i) and (ii), at least partially. For example, Do et al. (2013)
model the cluster’s number density profile as a broken power law
whose parameters are fit simultaneously with the parameters that
describe the DF and potential. Instead of binning the kinematic
data, they fit each star’s observed velocity directly under the
(implicit, unjustified) assumption that the cluster’s internal three-
dimensional velocity distribution is locally Maxwellian. They find
M• = 5.76+1.76

−1.26 × 106 M� for their sample of 265 stars.
By far the cleanest approach, however, is that adopted by

Chakrabarty & Saha (2001). They assumed only that the observed
stars are drawn from an unknown, spherical, isotropic phase-space
DF f(E), and move in the potential generated by an unknown
spherically symmetric mass distribution M(r). Making weak further
assumptions about the form of f(E) and M(r), they fit their model’s
projected DF directly to the observed stellar velocities and positions,
avoiding any binning of the data. They fit BH masses that ranged
from 2.2+1.6

−1.0 × 106 M� for models that fit only the line-of-sight
components of stellar velocities to 1.8+0.4

−0.3 × 106 M� for models
that fit all three components, inconsistent with the results from the
S stars.

Our goal in this paper is to understand why analyses that use the
steady-state symmetric assumption to model the kinematics of the
cluster’s old stars tend to yield BH masses that differ from those
obtained from the S stars. We do this by presenting new models that
avoid shortcomings (i) and (ii) above by fitting the underlying DF
of the models directly to the joint (position, velocity) distribution of
the observed stars, sidestepping the need to parametrize the cluster’s
number density profile. We do not evade shortcoming (iii), but we
do investigate some of the biases introduced by fitting symmetric
models to asymmetric galaxies. The paper is organized as follows.
Section 2 summarizes the stellar catalogue we use to constrain
the models. Our modelling procedure is described in Section 3.
In Section 4 we test the machinery by applying it to simulated
data drawn from spherical and non-spherical model clusters, before
applying it to the real Galaxy in Section 5. Section 6 summarizes
and concludes.

Throughout the paper we assume that the distance to the Galactic
centre is 8.3 kpc.

2 DATA

2.1 Discrete stellar velocities

There are two large recent catalogues of discrete stellar velocities
within 1 pc of Sgr A�. Schödel et al. (2009) report proper motions for
a sample of more than 6000 stars within an approximately 40 arcsec-
square field of view that includes the Galactic centre. Fritz et al.
(2016) provide combined proper motions and/or radial velocities
for a sample of over 104 stars that extends beyond 80 arcsec in
projection, albeit with variable coverage in different regions of the
sky. As they have spectra for many of their stars, they have better
early-type star rejection than Schödel et al. (2009). We use all
4105 stars from Fritz et al. (2016) that lie within a circle of radius
19 arcsec centred on Sgr A� as the primary source of kinematic
data for our models. This circle just touches the boundary of their
‘extended field’ sample. We treat the Schödel et al. (2009) proper
motion sample – restricted to the same radius and rescaled to our
assumed distance D = 8.3 kpc – as an independent catalogue of the
same area. This secondary catalogue has 5005 stars.

Fig. 1 shows a comparison of these two catalogues, constructed
as follows. From our primary, 19′′-radius Fritz et al. (2016) sample
we extract all stars brighter than K = 14. For each such star, we
look for matches from the Schödel et al. (2009) sample that lie
within a 0.2-arcsec-square box centred on the star and take the one
that has the closest match in proper motion. The rms discrepancy
in the on-sky components of velocity between the two matched
samples is 25 km s−1, which is at least a factor of 4 larger than
the mean quoted uncertainty in either sample. The cause of this
discrepancy is unclear. We note that Fritz et al. (2016) quote a
median uncertainty of 8 km s−1 in their measurements of the line-of-
sight components of velocity, which, being obtained from spectra,
are unlikely to be affected by whatever causes the discrepancy in
the proper motion-derived components. Nevertheless, as a crude
method of dealing with the discrepancy we simply set a floor of
20 km s−1 when modelling the uncertainty of any component of
velocity in either sample.

2.2 Outliers and contaminants

Fritz et al. (2016) estimate that as many as 4 per cent of the stars
beyond 2 arcsec in their sample could be early type. There are also
some stars with anomalously high velocities. We make no attempt
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1168 J. Magorrian

Figure 1. Comparison of proper motion measurements near the Galactic
centre. Dots plot the positions of every 5th star brighter than K = 14 within
19 arcsec of Sgr A from the sample of Fritz et al. (2016), with red streaklines
indicating their proper motions. For comparison, the blue streaklines show
the corresponding proper-motion measurements from the Schödel et al.
(2009) sample.

Table 1. Adopted zeroth- and second-order moment profiles binned into
circular annuli beyond 1 pc from the cluster centre.

rmin rmax Count RMS l.o.s. vel.
(arcsec) (arcsec) (km s−1)

30 40 1362 75
40 50 1487 75
50 60 1580 75
60 70 1652 75
70 80 1710 75
80 100 3555 75
100 120 3692 75
120 150 5726 75
150 200 9889 75
200 250 10 184 75
250 300 10 391 75
300 500 42 824 75

to identify and exclude these stars, but instead allow for them in our
modelling procedure (Section 3.4 below).

2.3 Profile beyond 19′′

Most of the stars in our discrete sample are on orbits that, in three
dimensions, take them well beyond the 0.76 pc radius implied by
our 19′′ radius cut. Having some estimate of the outer profile of the
cluster helps constrain the orbits of these more loosely bound stars.
We take the Nuker-law profile fit by Chatzopoulos et al. (2015),
scaled to match the number of stars in our primary sample between
15 and 17 arcsec, and use that to predict star counts within the
circular annuli listed in Table 1. Based on the results presented
in Feldmeier et al. (2014) and Fritz et al. (2016), we assume that
the rms line-of-sight velocity of the stars within each annulus is
75 km s−1. In Section 4.1 below we show that the masses fit by our
models are only very weakly dependent on the details of the profiles
adopted in Table 1; these profiles serve more as a weak prior on the
orbit distributions fit by the models.

3 MODELLING PROCEDURE

We would like to learn what constraints these data place on the
cluster’s mass and orbit distribution. The observed stellar catalogue
is taken to be a sample drawn from the cluster’s underlying DF. A
flexible way of representing the orbit distribution is by expanding
this DF as

f (x, v) =
K∑

k=1

fkek(x, v), (1)

in which ek(x, v) are basis functions and fk are weights that
will be constrained by the data. By Jean’s theorem ek should be
functions only of the integrals of motion J in the assumed potential.
Because the DF should be non-negative everywhere these ek are
often chosen to be non-negative functions with compact support
(e.g. Merritt 1993; Kuijken 1995; Pichon & Thiebaut 1998; Wu &
Tremaine 2006). A particularly common choice is to take ek = δ(J
− Jk) for some set of representative orbits Jk (e.g. Schwarzschild
1979; McMillan & Binney 2012): this is the basis for so-called
‘Schwarzschild’ models. The basis we adopt for this paper is given
in Section 3.2 below. Sections 3.3–3.5 explain how we calculate
the observables for each of our basis elements. Sections 3.6 and 3.7
describe how we fit the coefficients fk.

The stars are treated as tracer particles that move in the potential
generated by an underlying mass distribution that we would like to
constrain. Therefore we do not assume that the mass density profile
is proportional to the tracer number density profile: the two are
treated independently.

3.1 Coordinate system and potential

We use a coordinate system whose origin O is at the BH. The z-
axis is parallel to the Galactic rotation axis and the x-axis points
towards the sun. The y-axis then points in the direction of decreasing
Galactic longitude l as viewed from the sun. We assume that the
cluster has a spherically symmetric mass distribution, with a BH
of mass M• at r = 0, surrounded by a cluster with some specified
mass-density profile ρ(r). For example, in our most basic models
we take a mass density of the form (Dehnen 1993; Tremaine et al.
1994)

ρ(r) ∝ r−γ

(
1 + r

rs

)−4+γ

, (2)

with scale radius rs = 10 pc, which is well beyond the region where
the discrete kinematics are available. The latter extend to ∼1 pc,
which sets a convenient scale at which to normalize the cluster
mass. Our simplest mass models then have three free parameters:
the BH mass, M•, the extended mass M� enclosed within 1 pc, and
the power-law slope γ of its inner-density distribution.

3.2 Distribution function

Although we assume that the potential is spherical, we allow the
distribution of stars to be axisymmetric about the Oz axis. We
ignore variations in stellar populations and assume that the stellar
number density is a function f(x, v) only of the stars’ phase-space
coordinates. By Jeans’ theorem this distribution function (hereafter
DF) can depend only on the binding energy E per unit mass, the total
angular momentum L per unit mass, and its component Lz projected
along the z axis. We divide (E, L2, Lz) space into K blocks and
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Dynamical models of the Galaxy’s central parsec 1169

Figure 2. Lindblad diagram illustrating the arrangement of the blocks used
to represent the cluster DF f (E, L2) for the case nE × nL2 = 6 × 4. Valid
orbits have L2 < L2

c (E) (heavy solid curve). The nL blocks in a given range
of E are equispaced in L2 with maximum L chosen to just include the
boundary of physically allowed orbits.

parametrize the DF as

f (E, L2, Lz) =
K∑

k=1

fk1Vk
(E, L2, Lz), (3)

where Vk is the physically accessible volume of (E, L2, Lz) space
enclosed by the kth block and the indicator function 1V (w) = 1 if
w ∈ V and is zero otherwise. That is, the DF takes on the constant
value fk within the kth block. Apart from the constraint that the DF
must be non-negative, the parameters fk ≥ 0 are allowed to vary
freely.

Fig. 2 shows an example of how these K blocks are chosen. We
split (E, L2, Lz) integral space into a grid of K = nE × nL2 × nLz

(usually either 200 × 10 × 1 or 200 × 10 × 8) abutting
rectangular blocks in the following way. First we first select a
range of energies E0, ..., EnE to cover by choosing Ei = −�(ri),
where the ‘apocentre’ radii ri are spaced logarithmically between
r0 = 0.008 pc (about 0.2 arcsec) and rnE = 200 pc. The latter is
much larger than any of the projected radii for which we have data
(Section 2), but we find that such extensive sampling is essential
when considering models with extended mass distributions, such
as those in Section 5 below. Then for each (Ei , Ei+1) the vertical
(L2) co-ordinates of the block edges are equispaced between 0 and
L2

c(Ei+1), where Lc(E) is the angular momentum of a circular orbit
of energy E. This scheme ensures that any orbit whose energy lies
between E0 and EnE is included within one of the blocks. The Lz

boundaries (not shown in Fig. 2) are spaced linearly between Lz =
−L and Lz = +L, which allows the models to have a net sense
of rotation about the z-axis. A complete axisymmetric dynamical
model then has 16 003 parameters: the three parameters (M•, M�, γ )
specifying the potential, plus the parameters f1, . . . , f16 000 describing
the DF.

Expressions for the number density distribution ν(R, z) and
higher-order velocity moments of each orbit block are straightfor-
ward to calculate by hand, but tedious to write out. From these we
can easily use numerical quadrature to calculate the corresponding
projected moments.

3.3 Projected DF and discrete likelihoods

We assume that the discrete kinematical data set is a fair sample
of the cluster’s DF, modulated by a selection function S(w), which
gives the probability that a star at phase-space location w = (x,
v) would be included in the sample. For all of the examples we
consider in this paper, this S will depend only on the star’s (y, z)
coordinates. In most cases we adopt the simplest possible model
for S, a step function that returns 1 when the star’s projected radius,√

y2 + z2, is less than 19 arcsec, and 0 otherwise. This is a drastic
simplification that relies on an assumption that all of the observed
stars are approximately at the same distance and that there are no
spatial variations in stellar populations. We explore different choices
of the selection function in Section 5, including one that models the
effects of dust extinction.

The likelihood of observing a star at phase-space position w =
(x, v) is then simply

pr(w|f , �, S) = 1

I

∫
dw′ S(w′)pr(w|w′)f (w′|�), (4)

in which pr(w|w′
) is the probability that a star having true phase-

space coordinates w
′ = (x

′
, v

′
) is observed to be at w = (x, v),

f(w
′ |�) is the orbit-block DF (3) and the denominator

I =
∫

dw
∫

dw′ S(w′)pr(w|w′)f (w′|�) (5)

ensures that the resulting pdf is correctly normalized. We ignore
perspective effects and assume that the on-sky coordinates (y, z)
of each star are known perfectly and that every observed star lies
somewhere in the range |x| < xmax = 200 pc along the line of sight.
We assume that each measured component of velocity vl (with l =
x, y, z) follows an independently distributed normal distribution
with dispersion 	vl equal to the quoted uncertainty or 20 km s−1,
whichever is larger (Section 2). That is, we take

pr(w|w′) = δ(y − y ′)δ(z − z′)pr(v|v′), (6)

with

pr(v|v′) =
∏

l=x,y,z

{
1√

2π	vl
exp

[
− (vl−v′

l
)2

2	v2
l

]
, if vl measured,

1, otherwise.

(7)

The likelihood of the discrete kinematical data set D is then

pr(D|f , �) =
N∏

n=1

∑K

k=1 Pnkfk∑K

k=1 Ikfk

, (8)

where

Pnk =
∫

Vk

dw′
n S(w′

n)pr(wn|w′
n, �) (9)

is the probability that a star drawn from the kth orbit block would
yield the observed wn = (xn, vn), and the common normalizing
factor

Ik =
∫

dw
∫

Vk

dw′ S(w′)pr(w|w′, �) (10)

is the probability that a star drawn at random from that block would
be included in the discrete catalogue.

In this work we consider selection functions S = S(x) that depend
only on the stars’ positions. Then Ik is easy to calculate from
the three-dimensional density profile of each block. The matrix
elements Pnk are more involved. For each star n we calculate Pn1,
..., PnK using the following Monte Carlo procedure. We begin by
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1170 J. Magorrian

setting Pn1 = = PnK = 0. Then we draw Nsample = 105 samples of
the star’s unknown true velocity v

′
from a sampling density

fs(v′) = pr(vn|v′, �)

×
∏

l=x,y,z

{
1, if vl measured,

U(v′
l | − vmax, vmax), otherwise,

(11)

where the uniform pdf U(x|a, b) = 1
b−a

if a < x < b and is zero
otherwise. We follow McMillan & Binney (2013) in using the same
random seed to draw the measured components of each v

′
for each

trial potential: this reduces noise (but not bias) in the resulting Pnk

as the potential is varied. The extent of the sampling distribution
in the unmeasured components of velocity is set by a conservative
bound on the maximum velocity that the star could possibly have in
the assumed potential, namely v2

max = −2�(x ′ = 0, y ′, z′). Having
(y ′, z′, v′

x, v′
y, v′

z) each position x
′
along the line of sight belongs to

a single DF cell k. We then walk along x
′
, identifying the values

of x that mark boundaries between DF cells. For each cell k that
we encounter on this walk, we increment the corresponding Pnk by
pr(vn|v′

, �)	x
′
/Nsamplefs(v

′
), where 	x

′
is the x

′
-extent of the cell.

3.4 Interlopers and misidentified stars

Our machinery is designed to model the kinematics of the old stellar
population at the Galactic centre. Both Schödel et al. (2009) and
Fritz et al. (2016) point out that their catalogues are contaminated
by stars from the less relaxed young population. Given the inconsis-
tencies between the two catalogues identified in Section 2, it is also
conceivable that some stars could be misidentified when measuring
their proper motions.

We account for these possibilities in a simplistic way, replacing
Pnk by

(1 − fc)Pnk + fcP
∞
nk , (12)

where fc is a contamination fraction and P ∞
nk is the probability that

a star drawn from block k would be observed at on-sky position
(yn, zn) without any constraints on its velocity. That is, we assume
that every star’s measured on-sky position is perfectly correct and
consistent with the assumed S(w), but we allow for the possibility
that its measured velocity is competely bogus.

Strictly speaking, this is not a true model for interlopers because
it assumes that every star included in the catalogue is bound and
belongs to the old population. Nevertheless, one might expect that
the very general form of the DF in our models means that they
have plenty of freedom to ‘fit around’ any small additional bumps
in the projected (y, z) number-count distribution caused by genuine
interlopers, but that attempting to fit the velocities of such stars
would lead to devastating biases on the fitted potential.

3.5 Binned projected zeroth and second moments

These discrete kinematics are supplemented by information on the
number counts of stars cb within spatial bins b = 1, ..., B and
the associated rms line-of-sight velocity moments σ 2

b ≡ 〈v2
x〉b. For

example, in the application to the Galactic centre data set, the binned
kinematics probe projected radii R > 19′′ (e.g. Table 1), beyond
the radius where discrete kinematics are used. More generally,
we assume that the stars in the discrete data set and within each
spatial bin are independent (i.e. no double counting of stars) and
that each bin contains enough stars that we may approximate the
underlying Poisson distributions by normal distributions. Then the

likelihood (8) gains an extra factor to account for the binned data,
becoming (dropping an uninteresting normalization constant)

pr(D|f , �, S) =
[

N∏
n=1

∑
k Pnkfk∑
k Ikfk

]
exp

[
− 1

2
χ2

]
, (13)

in which χ2 = χ2
0 + χ2

2 has contributions

χ2
0 =

B∑
b=1

(
cb − ∑

k Q
(0)
bk fk√

cb

)2

χ2
2 =

B∑
b=1

(
cbσ 2

b − ∑
b Q

(2)
bk fk√

2cbσ 2

)2

, (14)

from the zeroth- and second-order binned moments, respectively.
Here the matrix Q

(0)
bk is the probability that a star drawn from

block k is found in bin b. Its elements are calculated by first
writing down the (straightforward but tedious) expression for the
number-density profile νk(r) of orbit block k and then integrating
numerically along the lines of sight encompassed by bin b. Similarly,
Q

(2)
bk is the kth orbit block’s contribution to the number-weighted

second moment integrated over the bth bin and is calculated by
numerically integrating the analytical expression for the second-
moment distribution νv2

x(r) of the kth orbit block.
In the absence of selection effects (i.e. when all Ik = 1) the

expression (13) reduces to that used by Chanamé, Kleyna & van der
Marel (2008).

3.6 Anisotropic and isotropic spherical models

Our models assume a spherically symmetric potential �(r), but
when nLz

> 1 they have the freedom to fit rotating, axisymmetric
DFs f (E, L2, Lz) in this potential. We can enforce spherical
symmetry on the DF by merging the nLz

orbit blocks for each E
and L2 to produce a DF that is flat in Lz: having computed the Pnk,
Q

(0)
nk , Q

(2)
nk and Ik projection matrices for an axisymmetric model, we

can construct the projection matrices for the corresponding spherical
model simply by adding up the nLz

elements corresponding to each
(E, L2) block. Similarly, the matrices for spherical isotropic models
are obtained by summing the nL2 × nLz

elements for each block
in E.

3.7 Finding the best-fit model

We follow the usual procedure (Rix et al. 1997) of reporting the
likelihood of the best-fitting non-negative DF for each assumed mass
distribution: for each potential we find the vector of DF values (f1, ...,
fK) that maximizes the likelihood (13), subject only to the constraint
that the DF is everywhere non-negative. That is, we assign

pr(D|�, S) ≡ max
{fk≥0}

pr(D|f , �, S). (15)

To enforce the non-negativity {fk ≥ 0} constraint, we follow
Chanamé et al. (2008) in writing fk = x2

k /Vk and then using a
conjugate gradient method to find the set {xk} that maximizes the
likelihood (13). We start from an initial guess of x2

k = 1/K , which
assigns the same probability mass fkVk = 1/K to all orbit blocks.

3.8 Computational costs

For the models presented in this paper, the dominant expense in
constructing and fitting a single model for an assumed potential �
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Dynamical models of the Galaxy’s central parsec 1171

is the calculation of the Pnk matrix elements (Section 3.3). It takes
about 5 CPU seconds per star to calculate the contribution of all
K orbit blocks from 105 samples of the star’s velocity. The next
biggest expense is typically the calculation of the normalization
coefficients Ik (equation 10). If S(w) varies over an orbit, then
this requires numerical integration; the integral over velocities
can be carried out analytically, but the integration over the spatial
coordinates must be carried out numerically.

The likelihood maximization requires a few thousand iterations
to converge for our spherical anisotropic models with nE × nL2 ×
nLz

= 200 × 10 × 1 orbit blocks. This takes about a minute for our
test models with 1000 stars (Section 4 below) to about 10 minutes
for our models of the real Galaxy with 4105 stars (Section 5).
Axisymmetric models with nE × nL2 × nLz

= 200 × 10 × 8 take
significantly longer to converge.

4 TESTS WITH MOCK OBSERVATIONS OF
SIMULATED CLUSTERS

Before applying our modelling machinery to the real Galactic
centre, we first test it against mock data drawn from a variety
of simple model clusters. The density profiles of these simulated
clusters vary, but each has a central BH of mass 4 × 10 M� and an
extended mass of M� = 106 M� enclosed within 1 pc.

To generate the simulated data for each cluster, we solve for the
cluster’s DF and from that draw a large number of stellar positions
and velocities, scattering each component of velocity by a random
number drawn from a normal distribution with standard deviation
equal to the assumed observational uncertainty of 20 km s−1. The
mock observations consist of a discrete sample of 103 such stars
that lie within a projected radius of 19 arcsec of the BH, plus stellar
number counts and second-order line-of-sight velocity moments
summed over the on-sky annuli given in Table 1.

4.1 A spherically symmetric cluster

Our first simulated cluster is spherically symmetric. Its mass- and
number-density profiles are given by equation (2) with a scale radius
rs = 10 pc and inner slope γ = 1 (Hernquist 1990). The cluster
has an isotropic velocity distribution. To construct our simulated
catalogue, we use the standard Eddington inversion procedure (e.g.
Binney & Tremaine 2008) to find its DF f (E) and then draw stellar
positions and velocities from that.

4.1.1 Recovery of M• and M� assuming the correct
(unnormalized) density profile

The most basic test of the modelling procedure outlined in Section 3
is whether it can recover the parameters of the mass distribution
when the correct underlying functional form (2) is assumed. This
profile has four free parameters: M•, M�, γ , and rs. A full scan
over all four would be prohibitively expensive. So, we start by
constructing models that assume the correct shape (γ = 1) and
radial scale (rs = 10 pc) for the mock cluster, leaving only the pair
of mass normalization parameters (M•, M�) to be constrained.

For each (M•, M�) pair we calculate the potential and set up
a grid of K = nE × nL2 × nLz

= 200 × 10 × 8 orbit blocks with
apocentre radii spaced logarithmically between 0.008 pc � 0.02′′

and 200 pc. Then we calculate the Pnk matrix for the 1000 discrete
stars, the Q

(0)
bk and Q

(2)
bk matrices for the binned moments, and the

normalization factors Ik assuming the selection function S equals 1
inside projected radius R > 19′′ and zero outside. Having calculated
these matrices, we use the maximization procedure of Section 3.7
to find the likelihood pr(D|�, S). To fit spherical anisotropic or
isotropic model to the data, we can merge these axisymmetric DF
blocks as described in Section 3.6 before carrying out the likelihood
maximization.

Fig. 3 shows the resulting likelihoods, pr(D|M•, M�, S), under
various assumptions about the underlying galaxy model. From top
to bottom, the rows show the results for spherical isotropic models
(nL2 = nLz

= 1), spherical anisotropic models (nL2 = 10, nLz
=

1), and axisymmetric f(E, L2, Lz) models (nL2 = 10, nLz
= 8). The

left-most column shows models that fit all three components of
each discrete velocity. The middle column shows fits to proper
motions only (i.e. the Pnk matrix is recalculated assuming complete
ignorance of the line-of-sight component of velocity), while the
rightmost column shows the result of fitting only to the line-of-
sight component, ignoring proper motions.

In all but one case the correct (M•, M�) = (4, 1) × 106 M� is
well within the 95 per cent credible interval returned by the models
(assuming a flat prior on either M• and M� or on their logarithms).
The spherical isotropic models provide particularly tight constraints
on (M•, M�). This is not surprising, because such models have
no freedom in their internal dynamics once their radial mass- and
number-density profiles are given. The number-density distribution
is not completely determined by the discrete observations, however.
Therefore, the greater the number of components of velocity used
for the discrete stellar sample, the tighter the constraints on the mass
parameters from the isotropic models become.

The spherical anisotropic models have much more freedom, as is
evident from the widening of their likelihood contours compared to
the isotropic ones. Again, the tightest constraints are obtained when
all three components of velocity are available. The axisymmetric
models have yet more freedom. On closer inspection of the spherical
anisotropic and the axisymmetric models we find that the χ2 of
the fit to the binned outer data (equation 14) is typically very
small, varying between about 0.1 and 2 (for the 24 data points
implied by Table 1), provided M� > 0.5 × 106 M�. Nevertheless,
these binned outer profiles are essential for ruling out the most
outlandish orbit distributions: the likelihood contours of models fit
only to the discrete inner stellar data are much noisier, showing
that without the constraints provided by the outer binned data the
anisotropic models are freer to overfit the details of the discrete
stellar distribution. There is an extremely steep increase in χ2 as
M� falls below the threshold value of 0.5 × 106 M�. This is the
cause of the sharp cutoff in the bottom edge of the contours plotted
in Fig. 3.

We note that the best-fitting M• in the anisotropic and axisymmet-
ric models shown in Fig. 3 tends to be an overprediction of the true
value. There is a corresponding underprediction of M�, consistent
with the characteristic mass estimate of the combined BH + cluster
system being better constrained than either M• or M� individually.
As a quick check of the significance of these systematically high
best-fitting M• values we have generated a number of further discrete
realizations of the cluster model and fit axisymmetric models to
those. In some cases the resulting best-fitting values of M• are
higher than the true one, while in other cases they are lower. So,
although we are unable to prove formally that our implementation
of the DF-superposition method produces unbiased estimates of M•
and M�, the results plotted in Fig. 3 do not constitute evidence for
such a bias.
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1172 J. Magorrian

Figure 3. Likelihoods pr(D0|M•, M�, S) of models fit to data D0 of the simulated cluster described in Section 4. These models assume the correct form for
the stellar potential, leaving only the BH mass M• and cluster mass M� as free parameters. From top to bottom the panels show results for spherical isotropic,
spherical anisotropic, and axisymmetric models. The left-hand column shows results for the case in which all three components of velocity are available for
the inner discrete data. The middle and right-hand columns show results when only proper motions and line-of-sight velocities, respectively, are available.
Successive contours are spaced by 	log pr(D0|M•, M�, S) = 1, with the innermost contour starting at 0.5 below the peak value of log pr(D0|M•, M�, S); this
innermost contour would then indicate the ‘1σ ’ uncertainty on M• or M� if the likelihood were perfectly Gaussian. In each panel the red dot indicates the
correct value of the parameters (M•, M�). The fainter black dots show the locations at which the log likelihoods have been calculated to construct the contours.

4.1.2 Testing for overfitting

When DF-superposition models are fit to integrated stellar kinemat-
ics the likelihood becomes a Gaussian, pr(D|f, φ) ∝ exp[− 1

2 χ2], in
which χ2[f] is some quadratic form in the orbit weights (f1, ..., fK).
Valluri, Merritt & Emsellem (2004) have pointed out that the usual
‘maximum-likelihood’ procedure for considering only the very
best-fitting orbit weights f for each potential leads anomalously low
values of χ2: the models overfit the data. We have just seen that our
models tend to produce fits to binned, outer data that are too good to
be true, with χ2 < 2. Magorrian (2006) provided an explanation for
such behaviour, starting from the observation that this χ2 is a hugely
degenerate quadratic form in the orbit weights. He argued that the
the correct resolution of the overfitting problem was to marginalize f
after adopting a suitable prior, but nevertheless found that in an
example problem the standard ‘maximum-likelihood’ procedure
does produce reliable BH masses, albeit with formal uncertainties on
M• that are slightly too tight. The situation with discrete kinematical
data is less clear, however, because the likelihood (8) is not a
Gaussian. In the following we carry out some simple checks to
test for overfitting in the discrete case.

Let D0 be the ‘observed’ discrete stellar kinematics of our
simulated cluster, and let f the the smooth underlying DF from which
these are drawn. When we feed this D0 into our DF-superposition
modelling code, it produces some best-fitting DF, represented as a
weighted sum of orbit blocks. We call this fitted DF f0. Assuming
the correct potential � is used, we expect the likelihood pr(D0|f0,
�) of this fitted model to be larger than or equal to the likelihood
pr(D0|f, �) of the ‘true’ model f, because the block DF f0 has
sufficient flexibility to fit the details of the ‘observed’ data D0,
while including (an approximate, discretized version of) the true f
as a special case.

Fig. 4 shows that this is indeed the case. The heavy vertical
red line in each panel indicates the log likelihood log pr(D0|f0, �,
S) of the best-fitting model for each of the cases considered in
Fig. 3. The log-likelihoods of the best-fitting spherical, isotropic
models (left-hand column) are within ∼1 of the log likelihoods
of the smooth models f from which the data were generated. The
best-fitting spherical anisotropic models have log pr(D0|f0, �, S)
larger than log pr(D0|f, �, S), the difference becoming even larger
for more general axisymmetric models.
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Dynamical models of the Galaxy’s central parsec 1173

Figure 4. Log likelihoods of various realizations of the models shown in Fig. 3. In each panel the zero point of the horizontal axis indicates the log likelihood
log pr(D0|f, �, S) of the initial data set D0 drawn from the simulated cluster’s underlying smooth DF f. The heavy vertical red line indicates the log-likelihood
log pr(D0|f0, �, S) of the DF-superpostion model f0 that best fits these data. Notice that this log pr(D0|f0, �, S) is always at least as large as log pr(D0|f, �, S)
and becomes larger as f0 becomes more flexible (top to bottom rows). The histograms plot the distribution of log likelihoods log pr(Di|f0, �, S) of an ensemble
of data sets D1, D2, ..., each of 1000 stars drawn from this best-fitting DF f0.

From each of these best-fitting models f0 we draw further discrete
realizations D1, D2, ...., each of 1000 stars subject to the selection
function S. A minimal sanity check of the fit f0 is then whether the
(log) likelihood of the original data set, log pr(D0|f0, �, S), is typical
in the sense that it lies among the (log) likelihoods {log pr(Dn|f0,
�, S)} of these resampled data sets (see also Binney & Wong 2017,
who carry out a similar test for the models of the MW’s globular
cluster system). The distribution of these log likelihoods is plotted as
the histograms in each panel of Fig. 4. By the central limit theorem
each distribution is approximately Gaussian: the log-likelihood is a
sum of 1000 terms, all drawn from the same projected PDF. For our
samples of 1000 stars, the dispersion of this Gaussian ranges from
about 20 for models fit only to line-of-sight components of velocity
up to around 50 for models fit to all three components. It is clear that
the spherical isotropic models pass this test, whereas axisymmetric
models do not: for the latter pr(Dn|f0, �, S) � pr(D0|f0, �, S),
demonstrating that the fit f0 to D0 is very special indeed in these
cases.

Although we do not plot them here, the log likelihoods of samples
Dn drawn from the original smooth DF f have approximately the
same variance as those drawn from f0, but have means close to the
log likelihood log pr(D0|f, �, S) of our original sample. Therefore,

for the simulated observational set-up we consider here, a condition
that is broadly equivalent to the χ2 � N ± √

2N plausibility cri-
terion for integrated stellar kinematics is that log pr(D|f , �, S) �
log pr(D0|f0, �, S) ± 	

√
N/1000, where 	 � 20 for models that

fit only the line-of-sight components of velocity, up to 	 � 50 for
models fit to all three components. Our spherical isotropic models
pass this test. Spherical anisotropic models do show a tendency
to overfit, but much less so than the axisymmetric models. In the
remainder of this paper we focus on fitting only spherical anisotropic
models.

4.1.3 Degeneracies in the DF

This overfitting is a symptom of the decision to consider only a
single, very special best-fitting DF f0 for each potential �. This
f0 achieves its remarkably good fit by itself becoming implausibly
noisy. One way of dealing with this (e.g. Valluri et al. 2004, and
references therein) is by penalizing non-smooth DFs by maximizing
a penalized likelihood log pr(D|f, �) + λP[f], in which a penalty
function P is introduced to quantify some measure of ‘smoothness’
of the DF f. The weight λ given to the penalty function might
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1174 J. Magorrian

Figure 5. Likelihoods of spherical anisotropic models fit to data comprising
all three components of velocity from our simulated cluster assuming a mass
density (2) with the correct slope γ = 1 but with a scale radius rs = 100 pc
that is a factor of 10 too large. Fitting only the proper motions produces
similar results.

be chosen by using experiments such as those in Section 4.1.2
above to ensure that the favoured model’s likelihood is within a
plausible range of values. This is sensible if one wants to pick out
a single representative DF for the assumed potential and believes
that the smoothness conditions imposed by the penalty function are
reasonable.

This is less satisfactory if one wants to compare different
potentials or does not want to exclude DFs with sharp features. An
alternative solution (e.g. Magorrian 2006) is to note that, although
the ‘best’ f0 fits the data implausibly well, there will be vastly more
‘nearby’ DFs that produce fits that are formally slightly worse, but
with likelihood values that are in fact more plausible. The natural
remedy is somehow to take account of these neighbouring DFs.
In the present case, in which we approximate the DF as a discrete
sum of orbit blocks, this could be achieved by marginalizing the
weights fk, but carrying out such a calculation is beyond the scope
of this paper.

4.1.4 How well is the radial mass profile constrained?

We have just seen that our modelling machinery can successfully
constrain the mass normalization M� of the stellar cluster, provided
that the functional form and scale radius of the mass density profile
were somehow known in advance. To investigate how well the
models behave in more realistic situations, we begin by fitting
models that adopt the correct γ = 1 for the mass-density slope,
but take the scale radius of the mass distribution to be rs = 100 pc
instead of the correct 10 pc.

The resulting likelihood contours are plotted in Fig. 5. They show
that the models predict the correct BH mass, but underestimate the
extended mass enclosed within 1 pc by a factor of at least 2. Our
motivation for choosing this 1 pc reference radius was that it is ap-
proximately equal to the maximum projected radius of the discrete
kinematics (R = 19′′ � 0.74 pc), but the figure demonstrates that
this is actually a very poor choice. It turns out that it is much better
to choose a reference radius that accounts for the three-dimensional
distribution of the sampled stars. The selection function for our
discrete stellar sample defines a very long, narrow cylinder of
radius 19′′ whose axis includes the observer and the BH at the
centre of the cluster. The RMS three-dimensional radius of stars
within this cylinder is approximately 5 pc: in three dimensions the
stellar sample is strongly elongated along the line of sight. The

Figure 6. Dependence of log-likelihood of on γ and M�(5pc) for models
fit to all three components of velocity in our simulated data set. The models
use the correct value of M•, but assume a scale radius rs = 100 pc that is a
factor of 10 too large.

rs = 10 pc simulated cluster from which we drew the kinematics
has an extended mass of 13.4 × 106 M� within this 5 pc.

Fig. 6 shows the effects on the likelihood of varying the density
slope γ in a model that assumes the correct M•, but takes rs =
100 pc, a factor 10 too large. Although the overall peak occurs for
γ ∼ 1.8 – presumably because that squeezes more mass close to the
BH – the best-fitting models all have M�(5pc) ∼ 10 × 106 M�. This
is systematically lower than the true M�(5 pc) = 13.4 × 106 M�,
but significantly less biased than the models’ estimate of M�(1 pc)
and, remarkably, almost independent of γ . The log likelihood of this
best-fitting γ = 1.8 model is only 0.5 less than that of the model that
uses the correct mass distribution. This is perhaps not surprising,
given the limited radial extent of the discrete data we use. Changing
the reference radius much from 5 pc increases the bias on the mass
estimate and breaks the independence from γ .

4.2 Non-spherical clusters

All of our tests so far have involved fitting spherical and axisymmet-
ric models to simulated observations of spherical clusters. Having
shown that our axisymmetric models tend to overfit the data, we
have confined our attention to spherical models. Now we investigate
how well these spherical models perform when applied to simulated
observations of non-spherical clusters.

4.2.1 Effects of a tilted ring of young stars

Although the old population of our Galaxy’s stellar cluster is roughly
spherical in its inner parsec or so, there is a substantial population of
young stars distributed in a ring-like structure in the innermost few
tenths of a parsec. Ideally one would like to remove any such young
stars from the sample, but that relies on spectroscopic identification,
which is not always available. To investigate the effects of such non-
spherical contaminants, we adopt a very simple model of the Milky
Way’s young star population based on the fits in Paumard et al.
(2006) and Yelda et al. (2014). Our model is a razor-thin ring of
stars moving on circular orbits with radii 1′′ < r < 13′′. Their face-
on number density distribution goes as r−2. Referred to our (x, y, z)
coordinate system (Section 3.1), the disc’s normal vector is taken
to be n = (− cos I, sin Icos �, −sin Isin �) with (I, �) = (130◦,
96◦). We add stars from this tilted ring population to the sample of
1000 stars drawn from the simulated spherical cluster introduced
in Section 4.1. There is no change to the potential of the simulated
cluster: the ring stars are treated as massless test particles.
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Figure 7. As for Fig. 3, but illustrating the effects of a non-spherical contaminant population on the masses returned by spherical, anisotropic models. The
top row shows the result of adding 40 stars from the tilted ring distribution described in the text, the middle row the result of adding 100. For reference, the
dashed red contours plot the likelihoods (repeated from the middle row of Fig. 3) of models fit to the uncontaminated spherical population. The bottom panel
compares the anisotropy parameters of models that assume that correct potential, but are fit to the uncontaminated sample (dashed red curves) versus those
contaminated by 100 disc stars (solid blue curves).

As in Section 4.1.1 we test our DF-superposition modelling
procedure by giving it the correct form for the radial mass profile,
leaving only the mass normalization parameters M• and M�(1pc) as
parameters to be determined. Fig. 7 plots the likelihood as functions
of these two parameters for spherical anisotropic models fit to all
three components of velocity of the population of 1000 ‘old’ stars
used for Fig. 3, to which we have added a further 40 (4 per cent
contamination fraction, top row) or 100 (very high 10 per cent
contamination fraction, bottom row) stars from the ‘young’ tilted
ring population. We note first that the models that fit only to line-of-
sight velocities are largely unaffected by this contamination: they
are just as wrong afterwards as they were before. The models that
use proper motion information are more interesting: increasing the
fraction of disc contaminants biases the inferred orbit distribution
towards tangential orbits (β < 0) for r � 13′′, which in turn depresses
the estimate of M•. This depression is less pronounced when all three
components of velocity are available.

We have investigated whether our simple model for outliers
(Section 3.4) can correct this bias, but find that setting fc > 0 just
depresses the estimate of M• further. This failure is not too suprising
though: the outlier model is intended to account for stars whose
velocities are simply mismeasured, not significant populations of
stars that break the underlying symmetry assumption.

4.2.2 Fitting spherical models to a simulated flattened cluster

Although the Milky Way’s central star cluster is approximately
round in projection for projected radii R < 1 pc, it does become
flattened further out. Most of the stars that lie within the R <

19′′ � 0.74 pc cylinder we use to sample the discrete kinematics
have three-dimensional radii r � 1 pc, placing many of them in
the region where the cluster starts to become strongly flattened. To
test to what extent this is likely to bias the masses returned by our
models, we consider kinematics from a simulated flattened cluster.

Our starting point for constructing this simulated cluster is the
multi-Gaussian fit to the Milky Way’s NIR projected light distri-
bution between 10 and 2500 arcsec made by Schödel et al. (2014,
their table 4). At smaller radii their multi-Gaussian parametrization
introduces a central core of almost constant density. To produce
a more realistic, cusped density profile we add to this a further
component having surface brightness

I (R) = I0

(
R

R0

)−0.5 (
1 + R

R0

)−3.5

, (16)

with R0 = 20′′ and I0 = 107 L�,4.5 μm/pc2. We deproject the result-
ing surface brightness distribution under the assumption that the
cluster is axisymmetric and viewed edge on. We assume that mass
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