- Abstract:
-
Given a Lie n-algebra, we provide an explicit construction of its integrating Lie n-group. This extends work done by Getzler in the case of nilpotent L∞-algebras. When applied to an ordinary Lie algebra, our construction yields the simplicial classifying space of the corresponding simply connected Lie group. In the case of the string Lie 2-algebra of Baez and Crans, we obtain the simplicial nerve of their model of the string group.
- Publication status:
- Published
- Peer review status:
- Peer reviewed
- Version:
- Author's Original
- Publisher:
- Cambridge University Press Publisher's website
- Journal:
- Compositio Mathematica Journal website
- Volume:
- 144
- Issue:
- 4
- Pages:
- 1017-1045
- Publication date:
- 2008-07-01
- Acceptance date:
- 2007-11-24
- DOI:
- EISSN:
-
1570-5846
- ISSN:
-
0010-437X
- Pubs id:
-
pubs:693826
- URN:
-
uri:1b553eb9-e300-437b-be81-bc0222e3ab6d
- UUID:
-
uuid:1b553eb9-e300-437b-be81-bc0222e3ab6d
- Local pid:
- pubs:693826
- Keywords:
- Copyright holder:
- Foundation Compositio Mathematica
- Copyright date:
- 2008
- Notes:
- © Foundation Compositio Mathematica 2008. This is the Author's Original version of the article. The final version is available online from Cambridge University Press at: https://doi.org/10.1112/S0010437X07003405
Journal article
Integrating L∞-algebras
Actions
Authors
Bibliographic Details
Item Description
Terms of use
Metrics
Altmetrics
Dimensions
If you are the owner of this record, you can report an update to it here: Report update to this record