Journal article icon

Journal article

High-grade metamorphism and partial melting in Archean composite grey gneiss complexes

Abstract:
Much of the exposed Archean crust is composed of composite gneiss which includes a large proportion of intermediate to tonalitic material. These gneiss terranes were typically metamorphosed to amphibolite to granulite facies conditions, with evidence for substantial partial melting at higher grade. Recently published activity–composition (a−x) models for partial melting of metabasic to intermediate compositions allows calculation of the stable metamorphic minerals, melt production and melt composition in such rocks for the first time. Calculated P−T pseudosections are presented for six bulk rock compositions taken from the literature, comprising two metabasic compositions, two intermediate/dioritic compositions and two tonalitic compositions. This range of bulk compositions captures much of the diversity of rock types found in Archean banded gneiss terranes, enabling us to present an overview of metamorphism and partial melting in such terranes. If such rocks are fluid saturated at the solidus, they first begin to melt in the upper amphibolite facies. However, at such conditions, very little (< 5%) melt is produced and this melt is granitic in composition for all rocks. The production of greater proportions of melt requires temperatures ∼800–850 °C and is associated with the first appearance of orthopyroxene at pressures below 8–9 kbar or with the appearance and growth of garnet at higher pressures. The temperature at which orthopyroxene appears varies little with composition providing a robust estimate of the amphibolite–granulite facies boundary. Across this boundary, melt production is coincident with the breakdown of hornblende and/or biotite. Melts produced at granulite facies range from tonalite–trondhjemite–granodiorite for the metabasic protoliths, granodiorite to granite for the intermediate protoliths and granite for the tonalitic protoliths. Under fluid-absent conditions the melt fertility of the different protoliths is largely controlled by the relative proportions of hornblende and quartz at high grade, with the intermediate compositions being the most fertile. The least fertile rocks are the most leucocratic tonalites due to their relatively small proportions of hydrous mafic phases such as hornblende or biotite. In the metabasic rocks, melt production becomes limited by the complete consumption of quartz to higher temperatures. The use of phase equilibrium forward-modelling provides a thermodynamic framework for understanding melt production, melt loss and intracrustal differentiation during the Archean.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1111/jmg.12227

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS Division
Department:
Earth Sciences
Oxford college:
St Cross College
Role:
Author
ORCID:
0000-0002-6959-0462
More by this author
Role:
Author
ORCID:
0000-0001-6024-6457


Publisher:
Wiley
Journal:
Journal of Metamorphic Geology More from this journal
Volume:
35
Issue:
2
Pages:
181-195
Publication date:
2016-11-24
Acceptance date:
2016-10-15
DOI:
EISSN:
1525-1314
ISSN:
0263-4929


Language:
English
Keywords:
Pubs id:
pubs:1081642
UUID:
uuid:16ba3a81-f1c5-4e90-a173-232ec8c461ee
Local pid:
pubs:1081642
Source identifiers:
1081642
Deposit date:
2020-01-10

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP