The CHLORAD pathway controls chromoplast development and fruit ripening in tomato

Qihua Ling1,2,3#, Najiah Mohd. Sadali1,4#, Ziad Soufi1, Yuan Zhou1,2, Binquan Huang1,5, Yunliu Zeng1,6, Manuel Rodriguez-Concepcion7, and R. Paul Jarvis1*

1 Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
2 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
3 CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
4 Present address: Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
5 Present address: School of Agriculture, Yunnan University, Kunming, China.
6 Present address: Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
7 Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain.

These authors contributed equally.

*To whom correspondence should be addressed: paul.jarvis@plants.ox.ac.uk
Abstract

The maturation of green fleshy fruit to become colourful and flavoursome is an important strategy for plant reproduction and dispersal. In tomato (*Solanum lycopersicum*) and many other species, fruit ripening is intimately linked to the biogenesis of chromoplasts, the plastids that are abundant in ripe fruit and specialized for the accumulation of carotenoid pigments. Chromoplasts develop from pre-existing chloroplasts in the fruit, but the mechanisms underlying this transition are poorly understood. Here, we reveal a role for the CHLORAD proteolytic pathway in chromoplast differentiation. Knockdown of the plastid ubiquitin E3 ligase SP1, or its homologue SPL2, delays tomato fruit ripening, whereas overexpression of SP1 accelerates ripening, as judged by colour changes. We demonstrate that SP1 triggers broader effects on fruit ripening, including fruit softening and gene expression and metabolism changes, by promoting the chloroplast-to-chromoplast transition. Moreover, we show that tomato SP1 and SPL2 regulate leaf senescence, revealing conserved functions of CHLORAD in plants. We conclude that SP1 homologues control plastid transitions during fruit ripening and leaf senescence by enabling reconfiguration of the plastid protein import machinery to effect proteome reorganization. The work highlights the critical role of chromoplasts in fruit ripening, and provides a theoretical basis for engineering crop improvements.

Keywords: plastid, tomato, chromoplast, E3 ligase, fruit ripening, leaf senescence, plastid protein import, ubiquitin-proteasome system, crop improvement
Main text:

Ripening of fleshy fruits is a complex process that involves dramatic changes in colour, texture, aroma and flavour. The end result is that the fruit becomes an appealing food, attracting animals to help with seed dispersal. Tomato (Solanum lycopersicum) is an economically important vegetable, and one of the most well studied models of fleshy fruit ripening.

An important component of tomato fruit ripening is the transition of chloroplasts into carotenoid-accumulating plastids termed chromoplasts, which give the red, orange and yellow colours to ripe and ripening tomato fruits. This interconversion process involves the remodelling of the plastid’s internal membranes, leading to the formation of carotenoid-rich membranous sacs and the dismantling of thylakoid membranes with concomitant chlorophyll degradation. Such changes are associated with fruit softening, the conversion of starch into simple sugars, and the synthesis of compounds that are associated with taste and aroma; and the overall process is controlled by the hormone ethylene. Although chromoplasts are vital constituents of many fleshy fruits, their contribution to fleshy fruit ripening is not well understood. Indeed, the functions of these morphologically complex organelles are far from clear.

Chromoplast differentiation is accompanied by, or caused by, major changes in the plastid proteome. Tomato proteomic studies have shown that proteins related to photosynthesis are generally reduced during the chloroplast-to-chromoplast transition, whereas many non-photosynthetic plastid proteins, such as those linked to the biosynthesis of fatty acids, amino acids, carotenoids, vitamins, hormones and aroma volatiles, are accumulated. Such changes can be partially attributed to the transcriptional control. For example, genes involved in carotenoid biosynthesis are up-regulated during chromoplast formation, whereas those encoding proteins involved in photosynthesis, such as the major light-harvesting chlorophyll-binding proteins and the small subunit of Rubisco, are down-regulated. Nonetheless, post-transcriptional regulation must also have a critical role, as tomato fruit ripening is a rapid process involving dramatic plastid proteome changes, and unneeded proteins must be quickly removed. However, in contrast with the role of transcriptional control, the role of post-transcriptional regulation during chromoplast biogenesis is poorly understood.

An important mechanism underlying the transformation of plastids from one type to another involves direct action of the ubiquitin-proteasome system (UPS), and is mediated by SP1, a
RING-type ubiquitin E3 ligase located in the plastid outer envelope membrane19. Notwithstanding other hypotheses20,21, the SP1 protein was recently shown to operate within a novel pathway for chloroplast protein degradation termed CHLORAD (chloroplast-associated protein degradation)22. The CHLORAD pathway degrades chloroplast outer membrane proteins, including components of the protein import machinery. Numerous studies on chloroplasts have demonstrated the importance of this import machinery, consisting of TOC and TIC (translocons at the outer and inner envelope membranes of chloroplasts), for plastid biogenesis23-27. Significantly, components of the TOC/TIC apparatus have been detected in tomato fruit chromoplasts7, indicating that the protein import system is active in chromoplasts. In contrast, proteins associated with internal protein trafficking to the thylakoids are absent16. These observations point to a need for the active adjustment of protein translocation systems to meet the changing proteomic demands of the organelle.

In higher plants like \textit{Arabidopsis}, pea and tomato, TOC receptors exist in different isoforms enabling the formation of substrate-specific translocons and the operation of substrate-specific protein import pathways23,25,28. This may help to meet the requirement for different proteomes in different plastid types, as the overwhelming majority of plastid proteins are imported from the cytosol. This hypothesis has been supported by studies on SP1 in \textit{Arabidopsis}: SP1 regulates chloroplast protein import by selectively targeting TOC components for degradation by the proteasome; and this ultimately controls the plastid proteome and plastid development, which are important during developmental transitions such as de-etiolation and leaf senescence19. We hypothesized that another important developmental process, the chloroplast-to-chromoplast interconversion, may also be governed by SP1 and protein import, and that this may in turn be crucial for fruit ripening. To address these questions, which cannot be investigated in \textit{Arabidopsis} due to the lack of chromoplasts, we conducted detailed analyses of tomato plants with altered expression of two tomato SP1 homologues, SP1 and SPL2 (\textit{SP1-Like2}). We show that both E3 ligases play an important role during fruit ripening by regulating TOC components, chromoplast differentiation, and fruit metabolism, and thereby highlight a critical role for post-transcriptional control of plastid proteins during fruit ripening.
Results

Identification and analysis of the localization and expression of tomato SP1 and SPL2

By protein BLAST search analysis, we identified two SP1 homologues in tomato (*Solanum lycopersicum*), which we designated slSP1 (Solyc06g084360) and slSPL2 (SP1-Like2, Solyc12g049330) according to an established nomenclature\(^\text{19}\). Like *Arabidopsis* SP1 (and its parologue SPL2), both tomato homologues are predicted to have two transmembrane domains and a highly-conserved C3HC4-type RING finger (RNF) domain (Fig. 1a, b). Overall, the two proteins share 73.3% (slSP1) and 22.1% (slSPL2) amino acid sequence identity with *Arabidopsis* SP1, and 18.5% identity with each other; in fact, slSPL2 is substantially more similar to the *Arabidopsis* SPL2 protein (47.1% identity). Thus, we conclude that slSP1 and slSPL2 are orthologues of *Arabidopsis* SP1 and SPL2, respectively. The moderate sequence divergence between the *Arabidopsis* and tomato orthologues implies that they may have evolved specific functions in the different species.

To shed light on the functions of slSP1 and slSPL2, we first investigated their subcellular locations and gene expression profiles. Confocal microscopy analysis of translational fusions to yellow fluorescent protein (YFP) indicated that both slSP1 and slSPL2 are localized at the chloroplast envelope in tomato mesophyll protoplasts (Fig. 1c), which is entirely in line with expectations based on what is known about their counterparts in *Arabidopsis*\(^\text{19}\). These data point to a conserved role for slSP1 and slSPL2 in the plastids. While the slSPL2 gene shows a relatively low and uniform pattern of expression, slSP1 is highly expressed in meristematic tissues, leaves, ripening fruit, and late stages of development (Fig. 1d, Extended Data Fig. 1); the latter points suggested important roles for slSP1 in fruit ripening and senescence.

Tomato SP1 homologues function in both dark-induced and ageing-related leaf senescence

To investigate the function of slSP1, we generated stable transgenic tomato plants (cv. Ailsa Craig) with altered slSP1 expression. We employed both artificial microRNA knockdown (KD) and overexpression (OX) driven by the strong 35S promoter, and generated transformed plants via regeneration from *Agrobacterium*-inoculated tomato leaf explants. The efficiency of slSP1 KD and slSP1 OX in the transgenic plants was tested by quantitative RT-PCR in the T2 and T3 generations, using wild-type plants also obtained through regeneration as controls. We selected for analysis three independent KD lines in which slSP1 expression was reduced to ~20% of the wild-type level, and three independent OX lines in which slSP1
expression was increased >5-fold relative to wild type (Extended Data Fig. 2). For simplicity, in all subsequent analyses we combined the data from the individual KD and OX lines, as they gave similar results. Like the *Arabidopsis* SP1 mutant and OX plants, neither slSP1-KD nor slSP1-OX tomato plants were distinguishable from wild type during early vegetative growth suggesting that slSP1 may have special roles in developmental transitions, similar to the *Arabidopsis* protein. To investigate this possibility, we began by analysing the tomato transgenics with respect to leaf senescence, during which chloroplasts transition into gerontoplasts.

First, we studied premature leaf senescence induced by dark treatment of individual leaves, as was done previously with *Arabidopsis* plants. In this experiment, the slSP1-KD leaves remained greener and healthier than wild-type leaves, with no obvious signs of senescence, whereas the slSP1-OX plants showed much more pronounced leaf yellowing than wild-type plants, providing a clear indication of accelerated leaf senescence (Fig. 2a). These visible phenotypes were quantified by measuring chlorophyll contents, which confirmed that slSP1-KD (*p* < 0.0001) and slSP1-OX (*p* < 0.001) leaves retained more and less chlorophyll, respectively, relative to wild type after dark treatment (Fig. 2b). Moreover, photosynthetic performance (as assessed using average, whole-leaf F_{v}/F_{m} values determined from chlorophyll fluorescence images) was highest in slSP1-KD leaves, and lowest in the slSP1-OX leaves, indicating accelerated senescence (Fig. 2c). Thus, these results indicated that slSP1 is involved in leaf senescence, revealing conservation of an SP1 function seen previously in *Arabidopsis*.

While *Arabidopsis* SP1 was shown to influence dark-induced leaf senescence, it was not reported to affect natural, aging-related leaf senescence. Senescence linked to aging might be more significant in large plants like tomato, because such plants typically shed lower leaves as the plant grows, and this process involves senescence of the photosynthetically ineffective leaves to retrieve nutrients. To investigate the role of SP1 in such recurrent leaf senescence, we assessed the leaf aging process in normally growing tomato plants. Although the rate of chlorophyll loss was slower in this analysis, similar trends between the genotypes were eventually observed: measurements showed that the smallest chlorophyll content reduction occurred in the slSP1-KD leaves (*p* < 0.0001), while slSP1-OX leaves experienced the largest change (*p* < 0.01) (Fig. 2d). The photosynthetic performance data not only matched the chlorophyll content data, but also showed that the reduction in F_{v}/F_{m} was greatest in the basal leaf margins, most noticeably in slSP1-OX leaves (*p* < 0.001) (Fig. 2e,f). The latter
phenomenon is consistent with previous reports suggesting that natural leaf senescence progresses via a coordinated process across the leaf, starting from the tip and edge of the lamina29.

Next, to investigate whether sSPL2 similarly has conserved functions, related to those reported previously for SP1 in \textit{Arabidopsis}, we generated sSPL2-KD transgenic tomato plants, and selected lines showing less than 20\% of the wild-type expression level for further analysis (Extended Data Fig. 2). As with the sSP1 transgenics, we analysed the sSPL2-KD lines with respect to dark-induced leaf senescence, measuring wild-type and sSP1-KD plants alongside as controls. We found that sSPL2-KD leaves also show delayed senescence, as indicated by their greener, healthier appearance due to reduced chlorophyll content loss ($p < 0.05$) (Fig. 2g), and their higher photosynthetic performance (F_v/F_m) ($p < 0.0001$) (Fig. 2h,i), relative to wild-type plants. In fact, sSPL2-KD had an even stronger effect on senescence than sSP1-KD, which is remarkable given that \textit{sSPL2} is normally expressed at much lower levels than \textit{sSP1} ($p < 0.01$) (Fig. 1d), and much less closely related to \textit{Arabidopsis} SP1. Overall, these data revealed an important new role for sSPL2 in leaf senescence, which, together with the sSP1 data, pointed to a conserved function of SP1 homologues in leaf plastid development.

Both SP1 and SPL2 control tomato fruit ripening

The \textit{sSP1} gene is up-regulated during fruit ripening, and most highly expressed during the breaker stage when chloroplasts lose their photosynthetic apparatus and transit into carotenoid-accumulating chromoplasts (Fig. 1d, Extended Data Fig. 1). This expression pattern suggested that sSP1 may also play an important role in tomato fruit ripening. In contrast, the \textit{sSPL2} gene shows quite stable expression throughout tomato development.

Tomato fruit ripening can be divided into different stages by colour changes, which are successively called mature green, breaker, turning, pink, light red, and red stages30. To investigate potential roles for SP1 and SPL2 during fruit ripening, transgenic fruits were harvested at the onset of the breaker stage (at ~36 days post anthesis) and incubated at 25°C in the dark. Detached fruit picked at the breaker stage can be ripened in a controlled way that avoids various environmental changes, allowing for a more consistent analysis of fruit ripening31. Prior to the breaker stage, all of our transgenic lines developed normal, mature green fruits such that at the point of harvesting there was no variation in fruit size between the genotypes (Extended Data Fig. 3); this indicated that the SP1 homologues do not
influence the early growth of the fruit, which does not involve plastid type interconversions.

To precisely follow the ensuing ripening process, we employed a chroma meter, the readings of which (a*/b* values) are based on colour and provide an effective parameter for determining the different stages of tomato fruit ripeness32,33 (Fig. 3a). Across multiple fruit populations, we consistently observed a significant delay in the change from breaker to pink and red stages, in both slSP1-KD and slSPL2-KD fruits, relative to wild type; whereas slSP1-OX fruit showed a clear acceleration of this change compared to wild-type fruit. On the first day of the experiment (breaker stage; Day 1), all of the fruits looked similarly green (Fig. 3a,b). However, by Day 8, clear differences among the genotypes were already apparent: while the wild-type fruit were past the pink stage, fruit of slSP1-KD and slSPL2-KD lines were at the turning stage only, whereas those of the slSP1-OX lines had already reached the light red stage (Fig. 3a,b). Although the fruits of all the lines eventually reached the red stage (Fig. 3a,b), those of the slSP1-KD and slSPL2-KD lines took \textasciitilde23\% longer to do so than wild-type fruit, whereas slSP1-OX fruit took \textasciitilde27\% less time than wild-type fruit to reach the red stage (Fig. 3a). These results clearly demonstrate that slSP1 and slSPL2 both play an important role in tomato fruit ripening, particularly in relation to colour change.

It is interesting to note that the slSPL2-KD lines displayed a delay in fruit ripening that was broadly similar to that seen in the slSP1-KD lines. Together with the observed effect of slSPL2-KD on leaf senescence, described above, this supports the notion that slSPL2 plays a role in plastid transitions that is similarly important to that of slSP1.

SP1 controls chromoplast differentiation during tomato fruit ripening

As mentioned earlier, the ripening of fleshy fruits involves systematic changes in a variety of parameters including fruit colour, texture and aroma. Colour changes in particular are closely connected to chromoplast differentiation. In *Arabidopsis*, SP1 is critical for chloroplast development due to its role in regulating the plastid proteome through protein import control19. Because chromoplast differentiation also involves major changes in the plastid proteome11,12,34, we hypothesized that slSP1 is important for the efficient differentiation of chloroplasts into chromoplasts. To directly investigate this possibility, fruit from wild-type, slSP1-KD and slSP1-OX plants collected at the Day 8 post-breaker stage were analysed by transmission electron microscopy (TEM), to study plastid ultrastructure, using fruits at the green and red stages as controls (Fig. 4). Our decision to focus on Day 8 was based on the fact that the most extensive, between-genotype colour differences were apparent at this stage.
For consistency, we analysed only mesocarp (the middle layer of the pericarp) near the base of the fruit, in all cases.

At the green stage, wild-type fruit contained typical chloroplasts characterized by the presence of well-developed thylakoid membranes, which either formed stacks known as grana, or simple, interconnecting lamellae (Fig. 4a). At Day 8, when wild-type fruit had reached the pink stage, a majority of the chloroplasts had transformed into immature chromoplasts (Fig. 4a); these are called globular chromoplasts as they possess large plastoglobules (lipid droplets) for accumulating pigments, but they still contain rudimentary remnants of the thylakoid membranes. In wild-type fruit that had reached the red stage, the plastids had completed their differentiation into mature chromoplasts of the type typically found in ripe tomato fruit (Fig. 4a); these are called crystalloid chromoplasts, and they feature large plastoglobules and undulating-shaped envelopes that are shrunken due to the loss of lycopene crystals during the dehydration step of TEM sample preparation.

Although the slSP1-KD and slSP1-OX samples both displayed a rather homogeneous population of wild-type-like chloroplasts or chromoplasts, respectively at the green and red stages, their plastid populations in fruits at Day 8 showed striking differences (Fig. 4a), all of which accords well with the fruit colour observations (Fig. 3b). Most plastids in Day 8 fruit from slSP1-KD plants contained a relatively intact thylakoid network and few large globular structures, essentially retaining chloroplast features; in contrast, those from slSP1-OX plants had differentiated into typical mature chromoplasts, characterized by undulating membranes and loss of thylakoid structures (Fig. 4a). These trends in the Day 8 fruits were confirmed when the plastids were classified into different developmental stages (chloroplast, immature chromoplast, mature chromoplast) and counted (Fig. 4b); and when the numbers of thylakoid membranes and the sizes of plastoglobules were quantified ($p < 0.0001$ in all cases) (Fig. 4c,d). Altogether, these observations clearly showed that chromoplast differentiation was delayed in slSP1-KD fruit and accelerated slSP1-OX fruit, corresponding in both cases with the visible colour differences seen in the fruit (Fig. 3).

SP1 also influences tomato fruit softening and transcriptional reprogramming

Given that SP1 is a plastid-localized regulator, it is not difficult to imagine how it might regulate both chromoplast development and fruit colour, as the latter is directly controlled by the former. However, whether the chromoplast changes mediated by SP1 (or indeed any other factor) can in turn alter aspects of fruit ripening that are not obviously linked to plastids was
an interesting open question.

To address this issue, we measured the firmness of the ripening tomato fruit using a durometer. Reduction of firmness, or softening, is an important component of fruit ripening controlled by water accumulation, solute metabolism, and cell wall modification, and it is a major fruit quality trait\(^\text{30}\). As expected, the tomato fruits became much softer at the red stage than those at the breaker stage, in all genotypes (Extended Data Fig. 4a). At these two defined stages, no obvious differences in fruit firmness were observed between the wild-type, sISP1-KD and sISP1-OX plants, which is consistent with the visible fruit phenotypes (Fig. 3).

Although fruits of all genotypes still had comparable firmness at the Day 5 post-breaker stage, clear differences became apparent when fruit firmness was measured at later time-points (i.e., Days 9, 12 and 14 post-breaker) (Extended Data Fig. 4b). In general, sISP1-KD fruit showed significant delays in softening relative to wild-type fruit, whereas sISP1-OX displayed accelerated softening compared to the wild type.

It is well known that the fruit ripening process, including softening, is controlled by ethylene-related transcriptional regulation. This affects nuclear genes controlling ethylene synthesis (e.g., \(ACO1\), \(ACS2\), \(ACS4\), \(NR\)), cell wall degradation (e.g., \(PME\), \(PG2a\)), carotenoid biosynthesis (e.g., \(PDS\), \(PSY1\)), and master transcription factors governing ripening regulators (e.g. \(RIN\), \(TDR4\))\(^\text{35-37}\). To assess for effects of SP1 on such regulation, we measured the mRNA levels of various genes during tomato fruit development. The results revealed that the differences in colour and softening among wild-type, sISP1-KD and sISP1-OX fruits were accompanied by corresponding changes in expression of ripening-related genes (Extended Data Fig. 5). These results imply that sISP1 regulates fruit softening through transcriptional changes, which are themselves most likely indirect effects of retrograde plastid-to-nucleus signalling during chromoplast development. It is well documented that chloroplasts emit retrograde signals that report on their developmental and functional status in order to regulate nuclear gene expression\(^\text{38,39}\), and this may even occur during chromoplast biogenesis\(^\text{15,40}\). We interpret the fruit softening and transcriptional effects of sISP1 to be an example of such regulation.

Altogether, these results indicate that SP1 has a comprehensive, holistic effect on fruit ripening that extends beyond direct effects on chromoplast biogenesis, and that chloroplast-to-chromoplast transitions influence the ripening process more generally. This highlights how fruit ripening is orchestrated by remarkably complex controlling pathways.
SP1 influences tomato fruit metabolism

The striking changes in colour during tomato fruit ripening coincide with equally dramatic changes in fruit metabolism, which influence other quality traits such as flavour, nutrition and aroma. As the factories of much metabolism in plants, plastids play a profound role in this process by synthesizing pigments, amino acids, sugars and organic acids. To investigate the role of SP1 in orchestrating metabolic changes linked to a plastid type transition, we compared metabolomic profiles of fruit mesocarp from wild-type, slSP1-KD and slSP1-OX plants, at the Day 8 post-breaker and red stages, using both HPLC and GC-MS, and focusing on pigments, sugars, organic acids and amino acids.

During the ripening process, tomato fruit accumulate certain carotenoids that are virtually absent from chloroplasts, like lycopene (red) and phytoene, while the levels of photosynthesis-related chlorophylls (green) and xanthophylls such as lutein (yellow) and neoxanthin (yellow) decrease (Fig. 5a); these changes underly the change in fruit colour from green (at the breaker stage) to red (at the red stage). As expected based on the fruit colour and plastid morphology data (Fig. 3, 4), all genotypes showed a similar pigment profile at the mature red stage, but differences between the genotypes were clearly apparent at the Day 8 post-breaker stage. The slSP1-KD fruit retained much higher chlorophyll (a and b) and neoxanthin contents, and more lutein, than wild-type fruit at Day 8, whereas in slSP1-OX fruit the opposite was observed (Fig. 5a). In contrast, slSP1-OX fruit accumulated significantly higher amounts of lycopene and phytoene than wild-type fruit at Day 8, while slSP1-KD hardly accumulated these pigments at all at this stage. Another isoprenoid derivate, tocopherol, was used as a control in this analysis, and this did not vary obviously among these genotypes, indicating that SP1 specifically affects pigment changes during the chloroplast-to-chromoplast transition.

Apart from pigments, other major changes in the fruit metabolome during ripening include: the accumulation of certain organic acids, such as caffeic acid and galacturonic acid, and certain amino acids, such as arginine, glutamic acid, and methionine; and, the reduction of certain sugars, such as glycerol, and certain amino acids, such as alanine, glycine, serine and lysine (Fig. 5b). Interestingly, SP1 may also be required for the proper delivery of these shifts in primary metabolism: such changes appeared delayed in slSP1-KD fruit, and accelerated in slSP1-OX fruit, at the Day 8 post-breaker stage (Fig. 5b). Thus, the data indicate that SP1 is not only required for the metabolism of plastid pigments during tomato ripening but also plays a key role in the proper delivery of metabolic shifts in tomato fruit.
fruit development, but in fact it may have a broader role in fruit primary metabolism, most likely through the triggering of the central plastid type change.

SP1 regulates tomato plastid protein levels during plastid transitions

The SP1 E3 ligase was shown to mediate ubiquitination of chloroplast TOC components and their degradation by the UPS to control the chloroplast proteome, and thereby influence the developmental fate and functions of the organelle in *Arabidopsis* \(^{19,43}\). To investigate whether the function of slSP1 is also linked to the control of plastid protein levels, protein extracts from mature, non-senescent leaves of the different tomato genotypes were analysed by immunoblotting (Fig. 6a,b). The data showed that the abundance of Toc75 in slSP1–KD transgenic plants was strongly elevated relative to wild type \((p < 0.001)\), and significantly lower in SP1-OX transgenic plants \((p < 0.0001)\). In contrast, the levels of Tic40 (which is not a substrate of SP1 in *Arabidopsis* \(^{19}\)) did not change significantly in response to altered expression of *slSP1*. Overall, these data are in agreement with previous results on SP1 function in *Arabidopsis* \(^{19}\), and so support a conserved role of SP1 in regulating TOC proteins in tomato and *Arabidopsis*.

Next, to investigate if slSP1 is similarly involved in the plastid proteome changes that occur during leaf senescence and fruit ripening in tomato, protein extracts from whole senescent leaves and the mesocarp of fruits at the Day 8 post-breaker were analysed by immunoblotting. As with the analysis on non-senescent leaves, in both tissues the abundance of Toc75 was strongly increased in slSP1-KD samples, relative to wild type, and reduced in slSP1-OX samples, whereas the abundance of Tic40 was unchanged (Fig. 6c-f). It is noteworthy that the fold change values for Toc75 abundance in slSP1-KD (relative to wild type) in senescent leaves and ripening fruits are larger (> 3 fold) than the value in non-senescent leaves (< 2 fold), as this suggests a particularly important and specific role for slSP1 in controlling plastid protein import during leaf aging and fruit ripening. In line with the results presented earlier showing differences in photosynthetic performance in senescent leaves between the genotypes (Fig. 2e,f), we observed that an important photosystem component (PsbO/OE33) was significantly elevated in slSP1-KD senescent leaves relative to wild type \((p < 0.05)\), and slightly reduced in slSP1-OX leaves \((p < 0.05)\) (Fig. 6c,d). During tomato fruit ripening, the photosystems are known to decline dramatically\(^{11}\), and, correspondingly, we observed that the abundance of a photosystem component (PsaD) remained higher level in slSP1-KD fruit \((p < 0.05)\), and was reduced in slSP1-OX fruit \((p < 0.05)\).
In contrast, the amount of a chromoplast marker protein, PGL35, was significantly reduced in slSP1-KD fruit ($p < 0.01$). Altogether, the results support a model in which slSP1 directly degrades the TOC complex to inhibit the import of photosynthetic proteins, which in turn facilitates plastid type transitions during leaf senescence and fruit ripening.
In this study, we identified two chloroplast envelope-localized SP1 homologues in tomato, and showed that they regulate the processes of leaf senescence and fruit ripening. Knockdown of *slSP1* and *slSPL2* expression delayed both leaf senescence and fruit ripening, as judged by visible phenotype, chlorophyll content, photosynthetic performance, plastid ultrastructure, fruit firmness, and metabolism. In contrast, overexpression of *slSP1* accelerated leaf senescence and fruit ripening, according to the same parameters. The consequences of altering *slSP1* expression can be attributed to the regulation of plastid protein import by CHLORAD\(^\text{22}\), which in turn controls the plastid proteome. Previous work has shown that such regulation is particularly important during developmental stages requiring a plastid type change\(^\text{19}\), and leaf senescence and fruit ripening are two such stages; the former involves a chloroplast-to-gerontoplast transition, and the latter a chloroplast-to-chromoplast transition\(^\text{5,6}\). To date, most molecular analyses of leaf senescence and fruit ripening have been based on mRNA expression\(^\text{44,45}\), but it is reasonable to assume that other regulatory mechanisms, including protein-level control, are also involved. Indeed, our data point to a critical role for SP1 and the CHLORAD pathway in the regulation of these processes.

Previous work in *Arabidopsis* revealed an important role for SP1 in dark-induced leaf senescence, but an effect on aging-related senescence was not observed\(^\text{19}\). Here, we found that knockdown of either *slSP1* or *slSPL2* delays both dark-induced and age-related senescence of tomato leaves (Fig. 2). Because different plant species have different senescence physiologies, knowledge gained from one model may not necessarily be applicable to another\(^\text{44}\). One possible reason why SP1 apparently has a relatively more important role in age-related senescence in tomato is that such perennial plants have differing requirements for chloroplast degeneration than annual plants like *Arabidopsis*. Another possibility is that the growth habit of tomato leads to the progressive shading of lower leaves by the canopy above. Thus, SP1 may have even more profound roles in species other than *Arabidopsis*, as the latter is a model plant with relatively simple morphology compared to many other higher plants.

The parologue SPL2 displays similar subcellular localization and domain architecture to SP1, in both tomato and *Arabidopsis* (Fig. 1a-c)\(^\text{19}\), suggesting that it may have a similar mode of action to SP1. Nonetheless, the role of SPL2 in *Arabidopsis* has remained unclear\(^\text{19,46}\). Given
that it is one of just a few E3 ligases found in plastids, it is very important to understand its role. Here, we showed that SPL2 and SP1 share conserved functions. Intriguingly, knockdown of slSPL2 caused a more pronounced effect on leaf senescence than slSP1 knockdown (Fig. 2g-i), which is surprising given that the mRNA expression of slSPL2 is much lower than that of slSP1 (Fig. 1d, Extended Data Fig. 1). This lack of correspondence between phenotypic severity and expression level may reflect differential post-transcriptional regulation of the two components. In Arabidopsis, SP1 is subject to proteasomal degradation triggered by self-ubiquitination, which keeps steady-state levels of the protein very low. Thus, lower slSPL2 mRNA levels do not necessarily mean that slSPL2 protein levels are lower too. Alternatively, slSPL2 might have a relatively more potent role in the regulation of leaf senescence, for instance by preferentially targeting plastid components that limit catabolic activity. Indeed, functional differences between slSP1 and slSPL2 (e.g., in relation to target specificity) might be expected given that the two proteins share such low sequence similarity, especially in the substrate-binding intermembrane space domain. However, the true nature of such functional differences must await further investigation, for example by comparing plants overexpressing slSP1 or slSPL2.

Nonetheless, both tomato SP1 homologues play an important role in fruit ripening, as alterations in the expression of either had significant impacts on the speed and duration of fruit ripening: slSP1-OX accelerated the process; whereas slSP1-KD and slSPL2-KD both delayed the process, indicating redundant functions in fruit development (Fig. 3). Fruit ripening is a multifaceted process involving organoleptic changes in colour, flavour, texture and aroma. While these changes occur concomitantly with a dramatic plastid type transition, exactly what the regulatory significance of chromoplast differentiation is within the fruit ripening process has remained poorly explored. The specific role of SP1 in regulating plastid development provided us with a unique opportunity to address this question. First, our TEM results directly showed that SP1 controls plastid type interconversion during fruit development: while wild-type fruit at the post-breaker stage contained predominantly immature chromoplasts with residual characteristics of chloroplasts, slSP1-KD and slSP1-OX fruit contained mainly typical chloroplasts and mature chromoplasts, respectively (Fig. 4). Then (and most significantly in relation to the question posed above), we found that other aspects of fruit ripening less obviously connected to plastids were also changed, in parallel with the plastid type changes: fruit softening occurred much more slowly and quickly in slSP1-KD and slSP1-OX fruit, respectively, relative to wild-type fruit (Extended Data Fig.
and Sadali et al., page 16 of 35

3b); and, the characteristic metabolomic changes that occur between the green and red fruit stages were delayed in slSP1-KD fruit, and accelerated in slSP1-OX fruit (Fig. 5). Thus, the chloroplast-to-chromoplast transition plays a central, controlling role in the ripening process as whole, and is not merely a consequence of the process.

As a resident regulator of plastids, SP1 is not likely to control the overall ripening steps directly, given that processes such as fruit softening involve ethylene-induced transcriptional changes in the nucleus. However, our data show that the manipulation of slSP1 expression influences a wide range of ripening-related genes involved in processes such as ethylene synthesis and cell wall modification (Extended Data Fig. 5). As chloroplasts are well known to have the ability to modify nuclear gene expression, our results imply that SP1-regulated chromoplast differentiation triggers retrograde signals that help to orchestrate the ripening process. This suggests that the ability to influence nuclear gene expression may be common amongst different plastid types.

Transformation of chloroplasts into chromoplasts involves numerous pigment and metabolic changes and the reorganization of the organelle’s internal structures, all of which requires extensive reconfiguration of the plastid proteome. To achieve such dramatic proteomic changes in a relatively short time period, one may assume that the timely removal or exclusion of unwanted proteins is critical. Such post-transcriptional regulation is more efficient and quicker than transcriptional control, especially for plastid proteins which require the additional step of protein import. Our previous work demonstrated how SP1 reorganizes the TOC apparatus in Arabidopsis. In higher plants, TOC receptors exist in different isoforms which enable the formation of substrate-specific translocons and the operation of substrate-specific protein import pathways (e.g., with preference for photosynthesis-related or housekeeping precursor proteins); SP1 modifies the balance between these through selective TOC degradation. The decline in photosynthesis-related proteins during tomato fruit development implies a need for reorganization of the TOC machinery, to accommodate a different set of precursor proteins (e.g., those involved in carotenoid synthesis, lipid metabolism, and chlorophyll catabolism). Thus, slSP1 action may allow for a more rapid fruit ripening process by facilitating plastid proteome changes through TOC reorganization.

Consistently, the Toc159 and Toc34 receptor families in tomato comprise isoforms as diverse as those in Arabidopsis and pea, implying that similar regulation exists in tomato. Indeed, we observed that the abundance of a photosynthetic protein declines more quickly in slSP1-OX fruit than in wild-type fruit, but remains high in slSP1-KD fruit (Fig. 6). Unfortunately, it
was not possible to analyse the TOC receptors themselves because the available antibodies were designed to specifically recognize individual *Arabidopsis* isoforms, and consequently are ineffective in tomato. In the future, it will be interesting to develop a better understanding of the tomato TOC apparatus, and to analyse a greater range of plastid proteins in such experiments, so as to more fully appreciate the dynamics of protein import during fruit ripening in response to slSP1 regulation. Based on the similarities between slSP1-KD and slSPL2-KD plants during leaf senescence and fruit ripening, we can reasonably infer that slSPL2 influences TOC protein levels too.

Lastly, it is worth noting that the manipulation of slSP1 or slSPL2 changed the speed of ripening rather than the quality of the fully ripened fruit (as judged in relation to colour, size, firmness, metabolites, and chromoplast ultrastructure). This may reflect the fact that SP1 and SPL2 have partially redundant functions, so that one can compensate for the loss of the other, for example. Alternatively, it may signify that multiple layers of control operate during fruit ripening, so that failure of the SP1/SPL2 pathway may eventually be compensated for by other regulatory systems, such as transcriptional control or different proteolytic pathways. Such redundancy of regulation may, in wild-type fruit, allow for an optimal balance of short-term (post-transcriptional, e.g., via protein import or proteolysis) and long-term (transcriptional) control. This may also explain how green tomato varieties, such as Green Flesh and Green Giant, can still soften and sweeten in spite of the fact that they do not appear to make many chromoplasts. However, differing flesh colour does seem to influence fruit metabolite composition. Regardless, the regulatory properties of SP1 and SPL2 imbue them with significant potential for agricultural use. For example, early and late fruiting varieties of fleshy fruits might be developed; or the transportability and shelf-life of fruit could be improved by delaying ripening without compromising the quality of the ripe fruit.
References

Ling and Sadali et al., page 19 of 35

Acknowledgements

We are grateful to Errin Johnson and Raman Dhaliwal for transmission electron microscopy conducted in the Sir William Dunn School of Pathology EM Facility, to David Hauton and James McCullagh for IC-MS conducted in the Mass Spectrometry Research Facility in the Department of Chemistry, to Pedro Bota for GC-MS conducted in the Department of Plant Sciences, to Pedro Bota and Rita Ross for technical assistance, and to M. Rosa Rodriguez Goberna for HPLC conducted at CRAG, Spain. This work was supported by a Khazanah-Oxford Centre for Islamic Studies Merdeka Scholarship (to NMS), by Strategic Priority Research Program (Type-B; project number: XDB27040211), Chinese Academy of Sciences (to QL), by the Spanish Agencia Estatal de Investigación (grants BIO2017-84041-P and BIO2017-90877-REDT; to MRC), and by the Biotechnology and Biological Sciences Research Council (BBSRC; grants BB/H008039/1, BB/K018442/1, BB/N006372/1, BB/R005591/1, BB/R009333/1 and BB/R016984/1; to RPJ).

Author contributions

QL and NMS designed and conducted the experiments, analysed the data, and wrote the manuscript. ZS, YZ and BH assisted with the fruit phenotypical analyses, immunoblotting, preparation of samples for the TEM and metabolomic experiments, and data analysis. MRC performed the HPLC analysis of pigments and analysed the results. RPJ conceived of the study, supervised the work, analysed the data, and wrote the manuscript.

Competing interests

The application of CHLORAD as a technology for crop improvement is covered by a patent application.
Figure Legends

Fig. 1 | Sequence, localization and gene expression analysis of slSP1 and slSPL2. a, Domain maps illustrating the structural organization of slSP1 and slSPL2. Transmembrane domains (TMD) are shown in red and RING finger domains (RNF) are shown in blue. b, Amino acid sequence alignment of the C3HC4-type RNF domains of Arabidopsis SP1 (At1g63900) and SPL2 (At1g54150), slSP1 and slSPL2, and Homo sapiens MULAN (NM_024544), a human mitochondrial outer-membrane protein which controls mitochondrial dynamics\(^5\). Residues conserved in at least three of the four sequences are shaded black. The critical conserved Cys and His residues are indicated with asterisks. c, Confocal microscopy images of tomato leaf protoplasts transiently expressing slSP1-YFP and slSPL2-YFP. The YFP fluorescence signal is shown in green, and chlorophyll autofluorescence is shown in red; an overlay of these two is also shown (Merge). Bright field images confirm the intactness of the protoplasts. Scale bar corresponds to 10 μm. d, Quantitative RT-PCR analysis of slSP1 and slSPL2 expression in different tomato organs and at different developmental stages, normalized to the expression of slACTIN. Fruit developmental stages analysed were: 0.5 cm diameter developing (0.5 cm), pre-mature green (Pre MG), mature green (MG), breaker, pink, and red. Values are means ± SEM of 3-6 biological replicates.

Fig. 2 | Analyses of the roles of slSP1 and slSPL2 in tomato leaf senescence. a-c, Effect of slSP1 on dark-induced leaf senescence. Individual leaves of 2-month-old wild type (WT), slSP1 knockdown (KD), and slSP1 overexpression (OX) tomato plants were covered with aluminium foil for a number of days, as was done previously with Arabidopsis plants\(^9\). The leaves were analysed before (Day 1) and after (Day 30) the dark treatment. Representative leaves at Day 30 were photographed (a). Leaves were analysed in relation to both: chlorophyll content (b) \((n = 12-18\) leaves; \(****p = 0.0001\) [Day 30, KD] and \(***p = 0.0004\) [Day 30, OX], compared with WT); and photosynthetic performance \((F_v/F_m)\) (c) \((n = 9-10\) leaves; \(****p = 0.0001\) [KD] and \(***p = 0.0002\) [OX], compared with WT). Leaves in c were analysed on Day 30. d-f, Effect of slSP1 on age-related leaf senescence. The leaves of similar tomato plants growing under standard conditions (i.e., without a dark treatment) were analysed over a more extended time period; Day 1 corresponds to the beginning of the experiment when the plants were 2 months old. Leaves were analysed in relation to both:
chlorophyll content (d) \((n = 10-20 \text{ leaves}; \ *p = 0.0462 \ [\text{Day 30, KD}], \ ****p = 0.0001 \ [\text{Day 45, KD}], \ \text{and} \ **p = 0.0046 \ [\text{Day 45, OX}], \ \text{compared with WT}); \ \text{and photosynthetic performance} \ (F_v/F_m) \ (e,f) \ (n = 8-10 \text{ leaves}; \ ****p = 0.0001 \ [\text{KD}] \ \text{and} \ ****p = 0.0009 \ [\text{OX}], \ \text{compared with WT}). \ \text{Leaves in} \ e \ \text{and} \ f \ \text{were analysed on Day 45. A colour spectrum representing the range of} \ F_v/F_m \ \text{values recorded is shown to the left of the leaf images} \ (e), \ \text{and average values were calculated using the images shown and other similar images} \ (f). \ g-i, \ \text{Effect of} \ \text{slSPL2} \ \text{on dark-induced leaf senescence. Individual leaves of} \ 2\text{-month-old} \ WT, \ \text{slSPL2-KD} \ \text{and} \ \text{slSP1-KD} \ \text{plants were dark treated as in} \ a-c \ \text{for a number of days. Chlorophyll contents were measured on the same leaf before} \ (\text{Day 1}) \ \text{and after} \ (\text{Day 16}) \ \text{the dark treatment} \ (g) \ (n = 16-19 \text{ leaves}; \ ****p = 0.0001 \ [\text{Day 30, KD}] \ \text{and} \ ****p = 0.0001 \ [\text{Day 30, OX}], \ \text{compared with WT}). \ \text{Photosynthetic performance} \ (F_v/F_m) \ \text{was measured on Day 16} \ (h,i). \ A \ \text{colour spectrum representing the range of} \ F_v/F_m \ \text{values recorded is shown to the left of the leaf images} \ (h), \ \text{and average values were calculated using the images shown and other similar images} \ (i) \ (n = 10 \text{ leaves}; \ ****p = 0.0001 \ [\text{slSPL2-KD}] \ \text{and} \ ****p = 0.0001 \ [\text{slSP1-KD}], \ \text{compared with WT}). \ \text{All values are means ± SEM of at least eight experiments. The} \ p \ \text{values were derived from an unpaired two-tailed Student’s} \ t\text{-test}; \ \text{WT was used as the reference group for the statistical analyses.}

Fig. 3 | **Examination of the effects of slSP1 and slSPL2 on tomato fruit ripening.** a, Fruit from the indicated genotypes were harvested at breaker stage (Day 1) and then monitored daily using a Chroma Meter, all the way through to the mature red stage. How the recorded colour (a*/b*) values relate to different stages of fruit ripening is indicated to the right. The data shown were derived from fruit populations harvested from two individual T2 generation tomato plants from each of two independent transformants per genotype. Values are means ± SEM of 30-40 fruits per genotype. b, Representative fruit of each genotype from the experiment shown in a were photographed at the breaker stage (Day 1), at the Day 8 post-breaker stage, and at the red stage.

Fig. 4 | **Ultrastructural analysis of the effects of slSP1 on the chloroplast-to-chromoplast transition in ripening tomato fruit.** a, Fruit from wild-type (WT), slSP1-KD (KD), and slSP1-OX (OX) plants at the breaker stage (Day 1), the Day 8 post-breaker stage, and the red (R) stage, were analysed by transmission electron microscopy. Images of representative
plastids in each genotype at each stage are shown. Scale bar correspond to 1 μm. The plastids were classified by their ultrastructure as follows: Stage I (S.I; chloroplast-like), Stage II (S.II; immature chromoplast-like), and Stage III (S.III; mature chromoplast-like). **b-d**, Quantitative data derived from the analysis in **a**. The proportion of plastids at each of the three developmental stages defined above (I, II and III) in fruit at the Day 8 post-breaker stage was determined (**b**) \((n = 3 \text{ tomato lines})\). Total numbers of thylakoid lamellae per plastid in each genotype at Day 8 were counted (**c**) \((n = 30 \text{ plastids})\). Diameters of plastoglobules in plastids of each genotype at Day 8 were measured (**d**) \((n = 52 \text{ plastids})\). All values are means ± SEM.

Fig. 5 | **Metabolic profile analyses of the effects of slSP1 on tomato fruit ripening.**
Relative metabolite contents of pericarp tissue samples from wild-type (WT), slSP1-KD (KD), and slSP1-OX (OX) fruits at the Day 8 post-breaker (8d) and red stages were determined. **a**, Levels of pigments and derivatives were measured by HPLC, and their relative amounts are shown. Left, carotenoid levels; right, chlorophyll and tocopherol levels \((n = 3-6 \text{ samples})\). **b**, Levels of organic acids, soluble sugars, and amino acids were measured by IC-MS or GC-MS. Histograms show the relative amounts of metabolites typically influenced by fruit ripening \((n = 3-6 \text{ samples})\). All values are expressed relative to the corresponding value for WT-8d, which in each case is set to 1. Values are means ± SEM.

Fig. 6 | **Analysis of the role of slSP1 in regulating the plastid proteome during leaf senescence and fruit ripening.** **a,b**, Immunoblot analysis of total protein extracts from leaves of 2-week-old plants of the indicated genotypes, using Toc75, Tic40, and histone H3 (as a loading control) antibodies \((n = 10-15 \text{ experiments}; ***p = 0.0003 \text{ [Toc75, KD] and ****p = 0.0001 [Toc75, OX]}, \text{ compared with WT})\). **c,d**, Immunoblot analysis of total protein extracts from leaves of 2-month-old plants that had been induced to senesce by dark treatment, using Toc75, Tic40, PsbO (OE33), and H3 antibodies \((n = 3-8 \text{ experiments}; ****p = 0.0001 \text{ [Toc75, KD], ****p = 0.0001 [Toc75, OX], *p = 0.0156 [PsbO, KD], and *p = 0.0398 [PsbO, OX]}, \text{ compared with WT})\). **e,f**, Immunoblot analysis of total protein extracts from Day 8 post-breaker stage fruit, using Toc75, Tic40, PsAD, PGL35 and H3 antibodies \((n = 3-4 \text{ experiments}; **p = 0.0073 \text{ [Toc75, KD], *p = 0.0206 [Toc75, OX], *p = 0.0117 [PsAD, KD], **p = 0.0080 [PsAD, OX], and **p = 0.0068 [PGL35, KD]}, \text{ compared with WT})\). In each case, the protein bands were visualized by chemiluminescence imaging, and then
quantified by using Aida software. The data obtained for proteins of interest were normalized relative to corresponding H3 data. All values are expressed relative to the corresponding value for WT, which in each case is set to 1. Values are means ± SEM of at least three replicates. The p values were derived from an unpaired two-tailed Student’s t-test; WT was used as the reference group for the statistical analysis. Positions of molecular weight markers are shown to the right of the images (a,c,e).
Figure a

Top row:
- **WT**
- **KD**
- **OX**

Bottom row:
- **WT**
- **KD**
- **OX**

Figure b

Bar chart showing Plastids at stage, Day 8 (%)
- **WT**, **KD**, **OX**
- **Stage I**, **Stage II**, **Stage III**

Figure c

Bar chart showing Number of thylakoid membranes/plastid:
- **WT**
- **KD**
- **OX**

Figure d

Bar chart showing Diameter of plastoglobules (nm):
- **WT**
- **KD**
- **OX**
Methods

Plant growth conditions

Tomato (*Solanum lycopersicum* cv. Ailsa Craig) was grown in Levington M2 modular compost mixed with a slow release fertilizer, and were kept adequately watered. The greenhouse was kept at a constant temperature of 25°C, with a light cycle of 16 hours of light followed by 8 hours of darkness.

Dark treatments for the induction of leaf senescence were conducted using the following method that was previously described for use with *Arabidopsis*\(^1^9\). Developmentally-equivalent leaves of approximately 2-month-old plants were wrapped in aluminium foil whilst still attached to the plants, and then left under standard growth conditions for 16 to 30 days. For age-related leaf senescence analysis, leaves similar to those above were selected and marked (with paper tags), and then left uncovered as the plants were grown on under standard conditions for up to 45 days. In both cases, the degree of senescence was analysed by making measurements of chlorophyll content and photosynthetic efficiency at the end (and beginning) of the experiment.

Chlorophyll measurements

Leaf chlorophyll contents were measured using a SPAD-502 meter (Konica Minolta) following the instructions from the manufacturer\(^5^2\).

Quantification of photosynthetic efficiency

Chlorophyll fluorescence imaging was performed on freshly detached leaves using a CF Imager (Technologica Limited). Plants were dark-adapted for 30 minutes immediately before the leaves were detached for each measurement. The data were used to calculate the F_v/F_m ratio, to provide an estimation of the maximum photochemical efficiency of photosystem II in dark-adapted material\(^5^3\). At least 3 leaves (from 3 plants) were analysed per genotype in each experiment.

Identification and *in silico* analysis of tomato SP1 homologues

Tomato SP1 homologue sequences were obtained by BLAST searches of the Phytozome, Ensembl Plants, and National Center for Biotechnology Information (NCBI) databases using the Arabidopsis SP1 amino acid sequence as a query\(^5^4\). Alignments were performed using
Clustal W55, and RNF domains were predicted based on the alignment results. Transmembrane domains were predicted based on the alignment results and by using Aramemnon (TmMultiCon)56. Sequence files were managed using DNAStar Lasergene v7.2.

Constructs and tomato transformation

All primers used are listed in Supplementary Table 1. To generate the slSP1-OX construct, the complete CDS of \textit{slSP1} (Solyc06g084360) was amplified from tomato cDNA and inserted using Gateway cloning into the pDONR201 entry vector. The slSP1-KD and slSPL2-KD constructs encoded artificial microRNA (amiRNA) sequences that were designed to specifically target the respective gene57,58. The amiRNA target sequences are listed in Supplementary Table 1b. The amiRNAs were designed using the WMD3 Web MicroRNA Designer59, and carefully selected to ensure gene silencing efficiency and specificity. They were amplified from tomato cDNA using the primers listed in Supplementary Table 1c. The resulting sequences were cloned into the pRS300 vector59 to make the amiRNA precursors, and then amplified and inserted using Gateway cloning into the pDONR201 entry vector.

The \textit{slSP1} CDS and amiRNA precursor sequences (for both \textit{slSP1} and \textit{slSPL2}) were subsequently cloned into the binary vector pK7WG2D, which contains the neomycin phosphotransferase II (\textit{nptII}) gene conferring kanamycin resistance and a green fluorescent protein (GFP) marker to aid callus selection60, using a Gateway Clonase II kit (Invitrogen). This generated the pK7WG2D-slSP1 (slSP1-OX), pK7WG2D-amiRslSP1 (slSP1-KD), and pK7WG2D-amiRslSPL2 (slSPL2-KD) vectors. The resulting plasmids were freeze-thaw transformed into the \textit{Agrobacterium tumefaciens} strain GV3101 (pMP90RK)61. Plasmids were isolated from \textit{Agrobacterium} and verified by restriction digestion prior to use in tomato transformation experiments.

Tomato plant transformation was conducted by following a published protocol with minor modifications62. Before \textit{Agrobacterium} infection, tomato cotyledon leaf segments were prepared by removing the apical and basal extremities, placed on solid KCMS medium (4.4 g/L Murashige-Skoog [MS] salts with vitamins, 20 g/L sucrose, 200 mg/L KH\textsubscript{2}PO\textsubscript{4}, 0.9 mg/L thiamine, 100 μM acetylsheringone, 8 g/L agar, pH 5.7) and incubated at 25°C for 24 hours. Leaf segments were co-cultivated with the \textit{Agrobacterium} suspension (diluted in liquid KCMS medium [KCMS without agar] to a final optical density of 0.05) for 30 minutes with shaking. The segments were then dried on sterile filter paper, placed on solid KCMS medium, and incubated for 2 days at 25°C. The inoculated segments were cultured on 2Z...
medium (4.4 g/L MS salts with vitamins, 30 g/L sucrose, 2 mg/L zeatin riboside, 150 mg/L timentin, 75 mg/L kanamycin, 8 g/L agar, pH 5.8) for shoot regeneration. The medium was changed every 10 to 14 days. Newly formed shoots were cut from the calli and placed in rooting medium (4.4 g/L MS basal salts without vitamins, 30 g/L sucrose, 1 mg/L indole-3-acetic acid [IAA], 150 mg/L timentin, 30 mg/L kanamycin, 6 g/L agar, pH 5.8). The ploidy number of the transformants was checked by counting the number of chloroplasts in guard cells, and only diploid plants were selected for further analysis. The most suitable lines were grown to maturity, and T1 seeds were harvested. Transformed plants were analysed by quantitative genomic PCR of the nptII selectable marker gene in the T1 generation, to determine copy number and identify homozygous lines, and only homozygous lines with a single T-DNA insertion were selected for further analysis. The overexpression or silencing of slSP1 and slSPL2 in the T0 and T1 generations was assessed by RT-PCR, relative to expression in wild-type plants regenerated from tissue culture in parallel, and the data were normalized to slACTIN (Solyc03g078400).

Subcellular localization analysis

To produce the YFP fusion constructs for subcellular localization analysis, CDSs of slSP1 and slSPL2 without the stop codon were amplified from tomato cDNA by PCR using primers listed in Supplementary Table 1a. Amplicons were subsequently cloned, via pDONR201, into the plant expression vector p2GWY7 to provide a C-terminal YFP tag. The Gateway system (Invitrogen) was used for the cloning, and both constructs were verified by DNA sequencing.

Tomato mesophyll protoplast isolation and transient assays were both carried out using an established method, with modifications. In brief, the first pair of leaves from approximately 2-week-old plants were collected, and the abaxial epidermis was peeled off using Magic tape (3M) and discarded. The peeled leaves were incubated in enzyme solution (1% cellulase 'Onozuka' R10 [Yakult, Tokyo, Japan], 0.25% maceroenzyme 'Onozuka' R10 [Yakult], 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 0.1% bovine serum albumin [BSA], 20 mM 2-morpholinoethanesulfonic acid [MES], pH 5.7) for 2 hours with gentle shaking. The released protoplasts were collected by centrifugation at 100 × g for 3 min, washed twice with 25 mL pre-chilled W5 solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 5 mM glucose, 2 mM MES, pH 5.7) and incubated on ice for 30 min. The protoplasts were then counted, collected by centrifugation at 100 × g for 3 min, and resuspended in MMg solution (0.4 M mannitol, 15 mM MgCl2, 4 mM MES, pH 5.7) to a final concentration of 1 × 10^6
cells/mL. Approximately 0.1 mL protoplast suspension was mixed with 5 μg plasmid DNA at room temperature. An equal volume of a freshly-prepared polyethylene glycol (PEG) solution (40% [w/v] PEG-4000 [Fluka], 0.1 M CaCl₂, 0.2 M mannitol) was added, gently mixed, and incubated at room temperature for 5 min. After incubation, the solution was gently mixed with 1.5 mL W5 solution, and the protoplasts were pelleted by centrifugation at 100 × g for 2 min. This protoplast W5 washing step was repeated twice more, and the protoplasts were finally incubated in 0.5 mL W5 in 24-well plates at room temperature for 15-18 hours in the dark.

Fluorescence images were captured using a Nikon Eclipse TE-2000E inverted microscope and NIS Elements v4.00 software (Nikon). Fluorescence signals were analysed with filters for YFP (exciter HQ500/20x, emitter HQ535/30m) and chlorophyll autofluorescence (exciter D480/30x, emitter D660/50m) (Chroma Technology). All experiments were conducted at least twice with the same results, and typical images are shown.

Analysis of tomato plant DNA and RNA

Extraction of tomato DNA and RNA, and quantitative RT-PCR (qRT-PCR), were performed using the following established methods. In brief, DNA and RNA extractions were done using a DNeasy Plant Mini Kit (Qiagen) and a Spectrum Plant Total RNA Kit (Sigma-Aldrich), respectively. Reverse transcription was performed by using SuperScript IV Reverse Transcriptase (Invitrogen). For qRT-PCR, a PowerUp SYBR Green Master Mix Kit (Applied Biosystems) and a StepOnePlus Real-Time PCR System (Applied Biosystems) were employed. The primers used for PCR amplification are shown in Supplementary Table 1d. Gene expression data were normalized using data for slACTIN.

For qRT-PCR analysis of different tissues, root, stem and leaf tissues from 4-week-old tomato plants were used; and, petal and sepal flower parts from 2-month-old tomato plants were used. For qRT-PCR analysis of fruit, samples were collected from the fruit mesocarp of developing (0.5 cm fruit diameter), pre-mature green (dark green), mature green (light green), breaker, pink and red fruit stages, with later stages being differentiated using a Chroma Meter (Konica Minolta).

Fruit ripening analysis

The ripening analysis was carried out using fruits selected at the onset of breaker stage. Fruits at breaker stage were harvested and placed in a Percival growth chamber without lights at a
constant temperature of 25°C with 60% humidity. Then, fruit colour values were recorded on a daily basis all the way through to the mature red stage. Fruit colour was measured by reflectance using a Chroma Meter Model CR 400 (Konica Minolta), which records a*/b* values, an established indicator of colour development and maturation in tomato67,68. The a* value represents colours from green to red (it denotes greenness when negative, and redness when positive), whereas the b* value represents colours from blue to yellow (it denotes blueness when negative, and yellowness when positive). Konica Minolta a*/b* values of tomatoes correspond to United States Department of Agriculture (USDA) colour stages, as follows33: breaker, -0.47; turning, -0.27; pink, 0.08; light red, 0.60; red, 0.95. Each fruit was measured at four different positions at the bottom of the fruit, and a mean value was calculated and used.

Fruit size

The maximal lateral diameter of tomato fruit was measured using a Digital Caliper 150 mm (Fisher Scientific Traceable) when the fruit reached breaker stage. As noted above, the fruit were then detached from the plant and incubated at 25°C in the dark for use in ripening analysis.

Fruit firmness

Fruit firmness was measured using a Durofel XF basic durometer (Agrosta Sarl). An average value derived from four readings recorded at four different points on the circumference of each fruit was calculated and used. The firmness measurement scale was 0-100 in durometer units. Values higher than 70 units indicated hard tomatoes, and those less than 60 units indicated soft tomatoes69.

Transmission electron microscopy

Tomatoes were sampled near the base of the fruit using a scalpel, and the pieces were transferred to a Leica AMW sample basket for microwave processing (microwave-assisted chemical fixation was performed to increase speed of fixation and reduce plasmolysis). Fresh fixative was used for each batch, and consisted of: 2.5% (v/v) glutaraldehyde plus 4% paraformaldehyde (w/v) in 0.1 M sodium cacodylate buffer, pH 6.9. After fixation, samples were incubated at room temperature for 5 hours and then transferred to 4°C for 2 days. Subsequent processing steps were performed with microwave assistance. Samples were transferred to AMW baskets and then processed in the Leica AMW using Program 1 (buffer
wash; staining with 2% osmium tetroxide (w/v) plus 1.5% potassium ferricyanide (w/v) in 0.1M sodium cacodylate buffer, pH 6.9; water washing; en-bloc staining with 2% uranyl acetate (w/v); water washing; first part of ethanol dehydration) and, following a reagent change, with Program 2 (ethanol and acetone dehydration; then infiltration with TAAB Hard Plus epoxy resin). Following completion of Program 2, the baskets were disassembled and samples were submerged in fresh 100% TAAB Hard Plus epoxy resin and placed on a rotator for 24 hours. Samples were then embedded in fresh resin in flat dish embedding moulds and polymerised at 65°C for 48 hours. Semithin (500 nm) and ultrathin (90 nm) sections were taken from each block using a Leica UC7 ultramicrotome equipped with a Ditome diamond knife. Semithin sections were transferred to glass slides and stained with Toluidine blue for preliminary inspection. Ultrathin sections were transferred to formvar coated 50 mesh copper grids or 2 mm × 1 mm slot grids and post-stained for 5 minutes with lead citrate. Grids were imaged at 120 kV in a FEI Tecnai 12 TEM using a Gatan OneView camera. Quantitative data were derived from at least 30 different plastids per genotype, or more than 50 different plastoglobules per genotype, and are representative of three individuals per genotype.

Profiling of tomato fruit metabolites

Sample preparation and metabolite profiling of tomato fruit tissues was carried out using established methods. Tomatoes were sampled exactly as described above for TEM analysis, taking equivalent tissue. The samples were immediately covered with aluminium foil and subjected to freeze-drying in an Alpha 2-4 LD (Martin Christ) for at least two days. Then the freeze-dried fruit pieces were ground into a fine powder in liquid nitrogen, and were stored at -80°C or used in following HPLC, IC-MS and GC-MS analyses.

For HPLC analysis of pigments, approximately 15 mg fruit tissue powder was mixed with 1 mL hexane/acetone/methanol 2:1:1 as an extraction solvent and 25 µL of a 10% (w/v) solution of canthaxanthin (Sigma) in chloroform as an internal control. The mixture was vortexed for 10 seconds and lysed using 4 mm glass beads for 1 minute at 30 Hz in a TissueLyser II (Qiagen) homogenizer. After adding 100 µL milli-Q water and mixing for 1 minute in the TissueLyser, samples were centrifuged for 3 minutes at 500 × g and 4°C. The organic phase was evaporated using a SpeedVac system, and the extracted pigments were resuspended in 200 µL acetone by using an ultrasound bath (Labolan). Separation and detection of carotenoids was next performed using an Agilent 1200 series HPLC system (Agilent Technologies)17. Eluting chlorophylls and carotenoids were monitored using a
photodiode array detector, whereas tocopherols were identified using a fluorescence detector. Peak areas of chlorophylls (650 nm), coloured carotenoids (470 nm for lycopene, β-carotene, lutein and canthaxanthin), phytoene (280 nm), and tocopherols (330 nm) were determined using Agilent ChemStation HPLC 2D 32 bit, version G2175BA, software. Quantification was performed by comparison with commercial standards (Sigma).

For IC-MS analysis, approximately 50 mg fruit powder was further homogenized in a Precellys Evolution homogenizer (Bertin Instrument) with 500 μL 100% methanol solvent (a 100 mg/mL final ratio) and ceramic beads; homogenization was undertaken in two steps, each at 100% power for 10 seconds with a 20 second interval between steps to prevent sample heating. Samples were filtered through Ultra Centrifugal Filters (10 kD cut-off; Amicon) to remove proteins, and processed using a Dionex Ultimate 3000 UHPLC system (Dionex) coupled to a Q-Exactive HF hybrid quadrupole-Orbitrap mass spectrometer (Thermo Scientific). The data were analysed using Progenesis QI version 2.0 for small molecules (Waters).

For GC-MS, metabolites were extracted by mixing approximately 10 mg fruit powder with 400 μL 100% methanol solvent and 60 μL of a 0.1 mg/mL solution of ribitol (Sigma-Aldrich) as an internal standard. Extraction was done by brief vortexing and then shaking for 15 minutes at 70°C. Samples were centrifuged for 10 minutes at 20,000 x g, and then the supernatants were further extracted by mixing with 250 μL chloroform and 500 μL water through vortexing. After centrifugation for 15 minutes at 2000 x g, 100 μL polar phase was analysed using an Intuvo 9000 GC system (Agilent Technologies) coupled to a 5977 Series MSD detector (Agilent Technologies). The data were analysed using Agilent MassHunter Workstation Software, Quantitative Analysis, version B.08.00 for GC-MS.

In Figure 5, lycopene, phytoene, lutein, chlorophylls, tocopherols were detected by HPLC; neoxanthin, caffeic acid, galacturonic acid, arginine, methionine, glycerol were detected by IC-MS; glutamic acid, alanine, glycine, serine and lysine were detected by GC-MS.

Tomato protein extraction

Tomato leaf protein extraction was conducted by following a procedure similar to that described previously for *Arabidopsis*. Approximately 20 mg leaf tissue was used for each sample, and only leaf lamina tissue was collected to avoid the thick midvein.
Tomato fruit protein extraction was performed using a published method\(^73\). Tomato fruit tissue was ground in liquid N\(_2\) to a fine powder using a TissueLyser (Qiagen) at 20 Hz for 1 minute. Ground tissue samples (1 g) were each suspended in 3 mL extraction buffer (500 mM Tris-HCl, 50 mM ethylenediaminetetraacetic acid [EDTA], 700 mM sucrose, 100 mM KCl, pH 8.0; 2% (v/v) \(\beta\)-mercaptoethanol and 1 mM phenylmethylsulfonyl fluoride were added just before use) by vortexing, and incubated on ice with shaking for 10 minutes. An equal volume of Tris-buffered phenol was added to each sample, and samples were incubated with shaking (180 rpm) at room temperature for 10 minutes. After centrifugation at 5500 \(\times\) g and 4°C for 10 minutes (all centrifugation steps below were similar), the upper phenolic phase was recovered in each case, and an additional 3 mL extraction buffer was added and mixed thoroughly before further centrifugation. The phenolic phase was again recovered to a new tube, and then four volumes of precipitation solution (0.1 M ammonium acetate in cold methanol) was added per sample, with mixing by inverting the tubes. Samples were incubated at -20°C for 4 hours or overnight, and then proteins were pelleted by centrifugation. Pellets were washed three times with ice-cold precipitation solution, and finally with ice-cold acetone; after each washing step, the samples were centrifuged. The final pellet was dried under vacuum for 1 hour, and then resuspended in 2 \(\times\) protein loading buffer (4% [w/v] sodium dodecyl sulphate [SDS], 20% [v/v] glycerol, 120 mM Tris-HCl, pH 6.8, 50 mM dithiothreitol, 0.02% [w/v] bromophenol blue).

SDS-PAGE, immunoblotting and quantification

For SDS-PAGE, immunoblotting and quantification thereof, procedures were as previously described\(^74,75\). Total protein samples of 10 to 20 μg, prepared from tomato leaf or fruit, were typically analysed. Primary antibodies were: anti-atToc75-III (Translocon at the outer envelope membrane of chloroplasts, 75 kD) antibody\(^76\), anti-atTic40 (Translocon at the inner envelope membrane of chloroplasts, 40 kD) antibody\(^66\), anti-PsbO/OE33 (Photosystem II subunit O / Oxygen evolving complex, 33 kD) antibody\(^10,77\), anti-PsaD (Photosystem I subunit D) antibody\(^78\), anti-PGL35 (Plastoglobulin 35) antibody (Agrisera)\(^79\), and anti-H3 histone antibody (Abcam)\(^66\). Secondary antibody was anti-rabbit immunoglobulin G (IgG) conjugated with horseradish peroxidase (Santa Cruz Biotechnology). Chemiluminescence employed an EZ-ECL Chemiluminescence Detection Kit (Geneflow) and an ImageQuant LAS-4000 imager (GE Healthcare Life Sciences). Bands intensities were quantified in silico using Aida Image Analyzer v4.27 Software (Raytest). Quantification data were obtained from...
the results of at least three experiments all showing a similar trend, and typical images are shown.

Statistical analysis

Statistical calculations (mean, standard error of the mean [SEM], and t-test) were performed by using GraphPad Prism v8.3.0 software. The statistical significance of differences between two experimental groups was assessed by using an unpaired two-tailed Student’s t-test. Differences between two datasets were considered significant at $p < 0.05$. The wild type was used as the reference group for all statistical analyses.

Data availability

All data generated or analysed during this study are included in this published article or its supplementary information.

All unique materials are readily available from the authors upon request.
Extended Data Figure Legends

Extended Data Fig. 1 | Expression profiles of the *slSP1* and *slSPL2* genes. The expression profiles shown are based on Affymetrix GeneChip data and were generated using the Development (a) and Anatomy (b) functions of Genevestigator80. Data from ATH arrays are shown in scatter-plot diagrams. In a, the x-axis represents the following developmental stages, from left to right: young seedling, developed seedling, flower, green fruit, ripening fruit, and mature fruit. Values are means ± SEM, and for each data point the number of samples is indicated. Medium expression levels are defined as the interquartile range (IQR; light grey boxes); values below the IQR are defined as low expression (white boxes), and values above the IQR as high expression (HIGH; dark grey boxes). The presented data provide a complement to the data in Fig. 1d, and confirm that *slSPL2* is generally more weakly expressed than *slSP1*.

Extended Data Fig. 2 | Assessment of the extent of knockdown or overexpression of the *slSP1* and *slSPL2* genes in the transgenic tomato plants. Total leaf RNA was extracted from 2-week-old tomato plants of the indicated genotypes; three independent T1 generation transformants (#1-3) were analysed for each construct. Quantitative RT-PCR analysis of *slSP1* and *slSPL2* expression was performed on the corresponding transgenic lines, in comparison with wild-type controls, as indicated. Relative gene expression levels were calculated by normalization using the reference gene, *slACTIN*. All values are expressed relative to the corresponding value for wild type, which in each case is set to 1. Values are means ± SEM (\(n = 3 \) [WT-1, slSPL2-KD #2 and #3], 4 [slSP1-KD #3], or 5 [all other genotypes] technical replicates).

Extended Data Fig. 3 | Determination of tomato fruit sizes. Measurement of the maximal equatorial diameter of Day 8 breaker-stage tomato fruit, from T2 generation transgenic plants, was performed using a calliper. The fruits were then detached from the plants and incubated at 25°C in the dark for the ripening analysis presented in Figure 3. Values are means ± SEM (\(n = 26-27 \) fruits per genotype). The data demonstrate that fruit size in the slSP1-KD, slSP1-OX and slSPL2-KD transgenic lines at breaker stage was not significantly different from that in the wild type, as revealed by an unpaired two-tailed Student’s *t*-test (\(p = 0.4125 \) [slSP1-KD],...
0.7132 [slSP1-OX], and 0.8001 [slSPL2-KD]). This rules out the possibility of nonspecific effects due to fruit size differences, which is important because ripening in detached tomato fruit is dependent on proper maturation up to the mature green stage.\(^{17}\)

Extended Data Fig. 4 | Determination of firmness of detached tomato fruits. Fruit firmness was measured using a durometer at the breaker (Day 1) and red stages (a) \(n = 20-28\) [breaker stage] or 10-13 [red stage] fruits per genotype; or at specific days post breaker stage (b) \(n = 20-28\) [Day 1, Day 5, Day 9], 10-13 [Day 12], or 10-12 [Day 14] fruits per genotype). Note that slSP1-OX fruit at Day 14 were too soft to give a reading using the durometer. All values are means ± SEM. The fruit used in this analysis were randomly chosen from the fruit populations of T2 generation plants used in the ripening analysis in Figure 3.

Extended Data Fig. 5 | Analyses of the effects of slSP1 on ripening-related gene expression. Total fruit RNA was extracted from wild-type (WT), slSP1-KD (KD), and slSP1-OX (OX) tomato plants at the Day 8 post-breaker stage (Day 8) stage and the red stage (the same fruit as those used in Figure 6). Relative mRNA expression levels were analysed by qRT-PCR using primers specific for genes involved in ethylene synthesis (a), cell wall modification (b), carotenoid biosynthesis (c), and master, ripening-related transcription factors (d). It was reported previously that all of these ripening-related genes are upregulated during fruit ripening; typically, in wild-type fruit, their transcript levels will reach a peak at the pink stage, and then reduce at the red stage.\(^{35-37}\) Correspondingly, in our analysis, wild-type fruit at the Day 8 post-breaker stage (pink-looking) show higher expression levels than fruit at the red stage. Although the slSP1-KD and slSP1-OX fruits both showed similar lower mRNA levels of ripening-related genes at the red stage, at Day 8 they showed striking differences in mRNA levels. In general, slSP1-KD fruit (green-looking) had markedly reduced mRNA levels, while slSP1-OX fruit (red-looking) had gene expression levels in between those of wild-type and slSP1-KD fruits. Overall, these results indicated that slSP1-KD fruit show delayed transcriptional changes of ripening-related genes relative to wild-type fruit, whereas slSP1-OX fruit displayed accelerated transcriptional changes relative to wild-type fruit. Expression data for the genes of interest were normalized using data for the reference gene, \(slACTIN\). All values are expressed relative to the corresponding value for wild type, which in each case is set to 1. Values are means ± SEM of three replicates. \(ACO1\), \(1\text{-Aminocyclopropane-1-carboxylate oxidase 1}\); \(ACS2/4\), \(1\text{-}
Aminocyclopropane carboxylic acid synthase 2/4; NR, Never ripe; PME, Pectin methylesterase; PG2a, Polygalacturonase 2a; PDS, Phytoene desaturase; PSY1, Phytoene synthase 1; RIN, Ripening inhibitor; TDR4, Agamous-like MADS-box protein AGL8 homolog.
Supplementary Table 1 | Primers used during the course of the study.

a, Primers used to generate various constructs.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Used to generate …</th>
</tr>
</thead>
<tbody>
<tr>
<td>AttB1-SP1-F</td>
<td>AAAAAGCAGGCTCCACCGGAATGGTTCCATG</td>
<td>… slSP1 CDS, for the slSP1-OX construct, and for the C-terminal YFP fusion [NS: no stop codon]</td>
</tr>
<tr>
<td>AttB2-SP1-R</td>
<td>AGAAAGCTGGGTTCATGGCGAAAAAGTTTTTCAC</td>
<td></td>
</tr>
<tr>
<td>slSP1-NS-R</td>
<td>AGAAAGCTGGGTATGGCGAAAAAGTTTTCAACA</td>
<td></td>
</tr>
<tr>
<td>slSP1-L-F</td>
<td>AAAAAGCAGGCTCCATGTCAATACACACACAGCGCTGGCA</td>
<td></td>
</tr>
<tr>
<td>slSP1-L-R</td>
<td>AGAAAGCTGGGTATGGCGAAAAAGTTTTCAACA</td>
<td></td>
</tr>
<tr>
<td>A-attB1</td>
<td>ACAAAAAAGCAGGCTCTGCAAGGCCGATTAAGTTGGGTAAC</td>
<td>… complete Gateway recombination sites for cloning into pDONR201</td>
</tr>
<tr>
<td>B-attB2</td>
<td>ACAAGAAAGCTGGGTCAGGATACACACACAGGGAAACAG</td>
<td></td>
</tr>
</tbody>
</table>

b, amiRNA target sequences.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Target sequence (5’ to 3’)</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>slSP1</td>
<td>TCATATGACCACACGCCACAA</td>
<td>917-937</td>
</tr>
<tr>
<td></td>
<td>TAAGTAGATATACACACGAC</td>
<td>698-718</td>
</tr>
<tr>
<td>slSPL2</td>
<td>TTGGCGTACGAGTGATTTGTACA</td>
<td>92-112</td>
</tr>
<tr>
<td></td>
<td>GAGACAGTTATCATCAGTTC</td>
<td>562-582</td>
</tr>
</tbody>
</table>

c, Primers used to amplify the coding sequences of the amiRNAs.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ to 3’)*</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>solSP1-AmR-1-I</td>
<td>gaTCATATGACCACACGCCGACAAatctcttttgttgtttc</td>
<td>slSP1</td>
</tr>
<tr>
<td>solSP1-AmR-1-II</td>
<td>gaTTGTCGCGTGTGGTCATAGAtcaagagaatcaatga</td>
<td></td>
</tr>
<tr>
<td>solSP1-AmR-1-III</td>
<td>gaTTATCGCGTGTGACATGTcagagctgtgtatg</td>
<td></td>
</tr>
<tr>
<td>solSP1-AmR-1-IV</td>
<td>gaACATATGTCAGCGCATAAtctacatatatatatatatata</td>
<td></td>
</tr>
<tr>
<td>Primer name</td>
<td>Primer sequence (5’ to 3’)</td>
<td>Gene</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>solSP1-AmR-2-I</td>
<td>gaTAAGTAGATATACACTGACAGctctcttttgatcc</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSP1-AmR-2-II</td>
<td>gaCTGTACGTGTATATCTACTTTATcaagagtatag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSP1-AmR-2-III</td>
<td>gaCTATGACTGATACTACTTTTtcacaggtatag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSP1-AmR-2-IV</td>
<td>gaAAAGTAGTAGTATACACTGATAGctctcttttgatcc</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-92-I</td>
<td>gaTGAAAAATCTCCGTACGCAAtctctcttttgatcc</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-92-II</td>
<td>gaTTGGCGTACGGAGTTATGTCAaagagtatag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-92-III</td>
<td>gaTTACGTACGGAGATTGTCTtcatagttagttag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-92-IV</td>
<td>gaAGACAATCTCCGTACGCAAtctctcttttgatcc</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-562-I</td>
<td>gaTACGGATGATAAACTGTCTTTtcacaggtatag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-562-II</td>
<td>gaGAGACAGTTTATCATCATCTACTTTcatagttagttag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-562-III</td>
<td>gaAAACATTTTATCTTATCTTCTTcatagttagttag</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-AmR-562-IV</td>
<td>gaAAAGTAGATAAAACTGTCTTTTtcacaggtatag</td>
<td>solSP1</td>
</tr>
</tbody>
</table>

* Nucleotides shown in lower case do not correspond to the target gene, but instead correspond to linker sequences or mutation sites.

d. Primers used in qRT-PCR experiments.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>solACT-F</td>
<td>TTGCTGACCAGCATTAGGAGCAAG</td>
<td>slACTIN</td>
</tr>
<tr>
<td>solACT-R</td>
<td>GGACAATGGATGGACCCAGAGC</td>
<td>slACTIN</td>
</tr>
<tr>
<td>solSP1-F1</td>
<td>ATGATTCATGCGCTGAACCTCTC</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSP1-R1</td>
<td>TCAATGGCAGAAATTTTACAC</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSP1-F2</td>
<td>TGCTGTGGATATATCTACTTGT</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSP1-R2</td>
<td>TTTCATCTTATCTTATCTTG</td>
<td>solSP1</td>
</tr>
<tr>
<td>solSPL2-F1</td>
<td>ATGTCAATATACGATCAAAGG</td>
<td>solSPL2</td>
</tr>
<tr>
<td>solSPL2-R1</td>
<td>GCTCGTAAGAATCATATAATCC</td>
<td>solSPL2</td>
</tr>
<tr>
<td>solSPL2-F2</td>
<td>TACGGAGATTGTCAGTCTTCA</td>
<td>solSPL2</td>
</tr>
<tr>
<td>solSPL2-R2</td>
<td>CTCAGATGTTGCAGAAAGA</td>
<td>solSPL2</td>
</tr>
<tr>
<td>solACO1-F</td>
<td>TTGAAGCAATGAGGAAGGCAATGGAA</td>
<td>slACO1</td>
</tr>
</tbody>
</table>

Ling and Sadali et al., Supplementary Table 1, page 2 of 3
<table>
<thead>
<tr>
<th>solACO1-R</th>
<th>AACTTTATTCTACCATACTAAGAAGAGCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>solACS2-F</td>
<td>CGTTTGAGTCAAGAGCCAGG</td>
</tr>
<tr>
<td>solACS2-R</td>
<td>TCAGCAGCGCAATATCAAC</td>
</tr>
<tr>
<td>solACS4-F</td>
<td>AAATCTCCACCTTCACATAAGAAGAGCA</td>
</tr>
<tr>
<td>solACS4-R</td>
<td>CCTAAGTCCTTGAAAGACTAGACAC</td>
</tr>
<tr>
<td>solNR-F</td>
<td>CTCCCAGAGGCAGATTGAAC</td>
</tr>
<tr>
<td>solNR-R</td>
<td>TCCACAGACATCCCACCATC</td>
</tr>
<tr>
<td>solPME-F</td>
<td>ATCGCTGGTGTGGGCAGT</td>
</tr>
<tr>
<td>solPME-R</td>
<td>TGTCTCTTGAAACATCCCA</td>
</tr>
<tr>
<td>solPG2a-F</td>
<td>TCAAGGGAAGTGCAACAAAAGG</td>
</tr>
<tr>
<td>solPG2a-R</td>
<td>TCGACAGCGCTCTGATGTGGTT</td>
</tr>
<tr>
<td>solPDS-F</td>
<td>AGCAACGCTTTTCTCTGATG</td>
</tr>
<tr>
<td>solPDS-R</td>
<td>TCAGGATTTTGCAACATGG</td>
</tr>
<tr>
<td>solPSY1-F</td>
<td>ACAGGCAGGTCTACGCTGATG</td>
</tr>
<tr>
<td>solPSY1-R</td>
<td>AGCTCAATTTCTGCACGCCT</td>
</tr>
<tr>
<td>solRIN-F</td>
<td>GCTAGGTAAGGATGTGGGCAA</td>
</tr>
<tr>
<td>solRIN-R</td>
<td>AATTTGCCTCAATGATGAATCCA</td>
</tr>
<tr>
<td>solTDR4-F</td>
<td>ACTGGACTTCTCTACCTTGGG</td>
</tr>
<tr>
<td>solTDR4-R</td>
<td>AGCTGACCTTGTGCTGTGA</td>
</tr>
</tbody>
</table>

stACS2 (Solyc01g095080)
stACS4 (Solyc05g050010)
stNR (Solyc09g075440)
stPME (Solyc12g098340)
stPG2a (Solyc10g080210)
stPDS (Solyc03g123760)
stPSY1 (Solyc03g031860)
stRIN (Solyc05g012020)
stTDR4 (Solyc06g069430)
Figure 6a
Figure 6a

Tic40
Figure 6c
Figure 6c
Figure 6c

PsbO
Figure 6c
Figure 6e
Figure 6e
Figure 6e
Figure 6e

WT KD OX
Figure 6e

H3

WT KD OX