A quantitative forward modelling analysis of the controls on passive rift-margin stratigraphy

by

Peter Mark Burgess

Department of Earth Sciences
and
St. Cross College
Trinity Term 1994
Abstract

A quantitative forward modelling analysis of the controls on passive rift-margin stratigraphy

Peter Mark Burgess
St. Cross College

A quantitative forward model has been developed to investigate the controls on the deposition, erosion, and preservation of passive rift margin stratigraphy. The model includes thermal subsidence, variable absolute sealevel, flexural isostasy, subaerial and submarine deposition on fluvial and marine equilibrium profiles, and the facility to vary sediment supply through time. Results from the quantitative model can be used to reproduce elements of the sequence stratigraphic depositional model. Conducting sensitivity tests demonstrates that variables such as sediment supply and fluvial profile behaviour are likely to be of equal importance to thermal subsidence and eustasy in passive margin stratigraphy. Sensitivity tests with the quantitative model also demonstrate the problems associated with attempting to use a discretised stratigraphic model to investigate unforced cyclicity resulting from complex interactions in stratigraphic systems. Although the model appears capable of producing such unforced cyclical behaviour, this cyclicity is shown to be due to a numerical instability within the model which occurs with certain initial conditions and assumptions. The applicability of the model to observed stratigraphy is tested by comparing specific model output to patterns of stratigraphy from the North American Atlantic margin. The results from this test demonstrate that although the model is in many respects simplistic when compared to the complexities of natural systems, it is nevertheless capable of reproducing some of the basic elements of the observed stratigraphic patterns.
Contents

Extended Abstract .. i

Acknowledgements .. vi

Chapter 1 - Introduction
1.1 The sequence stratigraphic model ... 1
1.2 Problems with the sequence stratigraphic model ... 3
1.3 Quantitative modelling methodology ... 6
1.4 Applications of quantitative models ... 7
1.5 Aims and objectives ... 13

Chapter 2 - Methodology and Assumptions
2.1 Introduction ... 15
2.2 The formulation of the model ... 15
2.3 Basic model assumptions ... 16
2.3.1 Two versus three dimensions ... 16
2.3.2 Discretised representation of continuous processes ... 16
2.3.3 The length of the model time step .. 17
2.4 Description of the coordinate system and the data structures .. 17
2.5 Model parameters ... 21
2.6 The sequence of the algorithms ... 21
2.6.1 Model initialisation ... 22
2.6.2 Updating the model variables ... 23
2.6.3 Thermal subsidence .. 24
2.6.4 Finding the Beach ... 26
2.6.5 Depositional and erosional profiles .. 27
2.6.5.1 The concept of geometrically defined equilibrium curves 27
 Geometrical curve fitting .. 29
2.6.5.2 The implementation of the geometrical fluvial profile ... 30
 Fixed and free geometrical profiles ... 32
 Response of the free fluvial profile to absolute sea level change 34
2.6.5.3 The concept of the diffusional profile .. 35
 Diffusion from a semi-infinite half-space .. 36
 Finite difference method .. 38
2.6.5.4 A comparison of the geometrical and the diffusional methods 39
 Sealevel rise .. 39
 Sealevel fall .. 41
 Sinusoidal sealevel variation - low sediment supply ... 42
 Sinusoidal sealevel variation - higher sediment supply ... 44
 A comparison of sediment flux magnitudes ... 46
 Conclusions from the comparison ... 47
2.6.5.5 The concept of the marine equilibrium profile ... 48
 The implementation of the marine profile ... 49
2.6.6 Flexural Isostasy ... 51
 Flexural response times ... 54
2.6.6.1 Flexural response times ... 54
2.7 The Model Output .. 56

Chapter 3 - Controls on Sequence Geometry
3.1 Introduction .. 57
3.2 Reproducing the basic elements of depositional sequences ... 57
3.2.1 Initial conditions and parameter values .. 58
3.2.2 Description of the type-1 sequence .. 59
List of Figures

Chapter 1. Introduction
1.1 Modelling methodology flowchart

Chapter 2. Methodology and assumptions
2.1 The model coordinate system
2.2 The model data structure
2.3 The model flowchart
2.4 North American Atlantic margin topographic profiles and best-fit complementary error function curves
2.5 African Atlantic margin topographic profiles and best-fit complementary error function curves
2.6 The geometrical fluvial profile coordinate system
2.7 A plot of the complementary error function
2.8 The fixed fluvial profile geometry
2.9 The free geometrical fluvial profile response to falling absolute sealevel
2.10 The free geometrical fluvial profile response to slowly rising absolute sealevel
2.11 The free geometrical fluvial profile response to quickly rising absolute sealevel
2.12 Trapezium method of area calculation
2.13 Iterative calculation of the modified beach position
2.14 The diffusional profile response to absolute sealevel rise
2.15 The geometrical profile response to absolute sealevel rise
2.16 The diffusional profile response to absolute sealevel fall
2.17 The geometrical profile response to absolute sealevel fall
2.18 The diffusional profile response to sinusoidal absolute sealevel: low diffusion coefficient
2.19 A chronostratigraphic diagram for the model run shown in 2.18
2.20 The geometrical profile response to sinusoidal absolute sealevel: low external sediment supply
2.21 A chronostratigraphic diagram for the model run shown in 2.20
2.22 The diffusional profile response to sinusoidal absolute sealevel: high diffusion coefficient
2.23 A chronostratigraphic diagram for the model run shown in 2.22
2.24 The geometrical profile response to sinusoidal absolute sealevel: high external sediment supply
2.25 A chronostratigraphic diagram for the model run shown in 2.24
2.26 Sediment flux plots for the diffusional and geometrical approaches
2.27 The geometry of the proximal marine profile
2.28 The geometry of the distal marine profile
2.29 The method of calculating the position of the shelf-slope break

Chapter 3. Controls on sequence geometry
3.1 Initial conditions
3.2 A type-1 sequence, from Van Wagoner et al. (1990)
3.3 A model section showing a type-1 sequence geometry
3.4 Chronostratigraphic diagram from the type-1 example
3.5 The fluvial profile from the type-1 example after 5 chrons
3.6 The fluvial profile from the type-1 example after 10 chrons
3.7 The fluvial profile from the type-1 example after 15 chrons
3.8 The fluvial profile from the type-1 example after 20 chrons
3.9 The fluvial profile from the type-1 example after 25 chrons
3.10 A type-2 sequence, from Van Wagoner et al. (1990)
3.11 A model section showing a type-2 sequence geometry
3.12 Chronostratigraphic diagrams from the type-2 sequence
3.13 Distribution of reservoir and seal stratigraphy in the type-1 and type-2 sequences
3.14 Coastal onlap patterns, from Vail et al. (1977a)
3.15 Definition of the hinge point, the equilibrium point, and the bayline, modified from Posamentier et al. (1988)
3.16 Chronostratigraphic diagrams showing illustrating the controls on stratal onlap
3.17 Definition of controls on coastal onlap, from Posamentier et al. (1988)
3.18 A model section showing the pattern of fluvial deposition shown in the chronostratigraphic diagram in figure 3.12
3.19 A model section showing the effects of flexure
3.20 Chronostratigraphic diagrams showing the effects of flexure
3.21 A model section showing the effects of a less concave fluvial profile
3.22 Chronostratigraphic diagrams showing the effects of a less concave fluvial profile
3.23 A diagram to show how fluvial profile geometry controls subaerial accommodation space
3.24 A model section showing the effects of a more concave fluvial profile
3.25 Chronostratigraphic diagrams showing the effects of a more concave fluvial profile
3.26 A model section showing the effects of a lower fluvial-marine partitioning coefficient
3.27 Chronostratigraphic diagrams showing the effects of a lower fluvial-marine partitioning coefficient
3.28 A model section showing the effects of a higher fluvial-marine partitioning coefficient
3.29 Chronostratigraphic diagrams showing the effects of a higher fluvial-marine partitioning coefficient
3.30 A model section showing the effects of lower constant sediment supply
3.31 Chronostratigraphic diagrams showing the effects of lower constant sediment supply
3.32 A model section showing the effects of higher constant sediment supply
3.33 Chronostratigraphic diagrams showing the effects of higher constant sediment supply
3.34 A model section showing the effects of an increasing saw-tooth sediment supply curve
3.35 Chronostratigraphic diagrams showing the effects of an increasing saw-tooth sediment supply curve
3.36 A model section showing the effects of a decreasing saw-tooth sediment supply curve
3.37 Chronostratigraphic diagrams showing the effects of a decreasing saw-tooth sediment supply curve
3.38 A model section showing the effects of a sinusoidal sediment supply curve
3.39 Chronostratigraphic diagrams showing the effects of a sinusoidal sediment supply curve
3.40 A model section showing the effects of a saw tooth sediment supply curve, high thermal subsidence and constant absolute sealevel
3.41 Chronostratigraphic diagrams showing the effects of a saw tooth sediment supply curve, high thermal subsidence and constant absolute sealevel
3.42 A model section showing the effects of a combination of controls
3.43 Chronostratigraphic diagrams showing the effects of a combination of controls

Chapter 4. Complex interactions, feedback effects, and cyclicity
4.1 Initial conditions
4.2 A diagrammatic description of the feedback effect
4.3 A model section from the standard reference run
4.4 Chronostratigraphic diagrams from the standard reference run
4.5 Composite chronostratigraphic diagrams for thermal subsidence and elastic thickness sensitivity tests
4.6 Composite chronostratigraphic diagrams for fluvial and marine profile sensitivity tests
4.7 Chronostratigraphic diagrams from the model run with a time step of 0.05Myrs
4.8 Chronostratigraphic diagrams from the model run with a time step of 0.025Myrs.
4.9 Contour plot of sediment supply patterns from models run with a range of model time steps
4.10 A plot of the timing of the first sediment supply peak against the model time step
4.11 Chronostratigraphic diagram from the model run with a linear flexural response
4.12 Contour plot of sediment supply patterns from models run with a range of model time steps and a linear flexural response
4.13 A plot of the timing of the first sediment supply peak against the model time step for the model runs with a linear flexural response

Chapter 5. Modelling the Neogene stratigraphy of the North American Atlantic passive rift margin
5.1 A location map
5.2 Seismic sections and a chronostratigraphic diagram from Greenlee et al. (1988).
5.3 A summary of the chronostratigraphic diagram of Greenlee et al. (1988).
5.4 Three eustatic curves
5.5 The initial conditions
5.6 A section from the model run with the Watts and Steckler (1979) curve
5.7 Chronostratigraphic diagrams from the model run with the Watts and Steckler (1979) curve
5.8 A section from the model run with the Haq et al. (1988) curve
5.9 Chronostratigraphic diagrams from the model run with the Haq et al. (1988) curve
5.10 A section from the model run with the Greenlee and Moore (1988) curve
5.11 Chronostratigraphic diagrams from the model run with the Greenlee and Moore (1988) curve
5.12 A section from the model run with variable sediment supply
5.13 Chronostratigraphic diagrams from the model run with variable sediment supply
Extended Abstract

A quantitative forward modelling analysis of the controls on passive rift-margin stratigraphy

Peter Mark Burgess
St. Cross College

A quantitative forward model has been developed to investigate the controls on the deposition, erosion, and preservation of passive rift margin stratigraphy. Previous studies in this area have been dominated in recent years by the sequence stratigraphic methodology. In this methodology stratigraphy is subdivided into a hierarchy of units separated by significant surfaces which, it is assumed, can be used as the basis for regional correlation. The patterns of stratigraphy are controlled primarily by eustasy and thermal subsidence, with sediment supply assumed to play a modifying role. Other studies have questioned this, and there has been an increase in the use of quantitative models to examine controls on stratigraphy. These quantitative models have the advantage that they can be tested more rigorously than their qualitative equivalents, and hence problems with uniqueness which restrict the use of the qualitative models may be avoided.

The model developed in this thesis includes thermal subsidence, variable absolute sealevel, flexural isostasy, subaerial and submarine deposition on fluvial and marine profiles, and the facility to vary sediment supply through time. Thermal subsidence is calculated according to either a one-layer or a two-layer stretching model, and the stretching factors can be varied along the length of the model profile. A parameter giving the age since the onset of postrift thermal subsidence allows both young and old postrift margins to be modelled. Absolute sealevel in the model may be varied according to one or two sinusoidal curves with specified periods and amplitudes, or it can be defined outside the model using curves from the literature.
A flexural model is used to calculate the response of the model lithosphere to loading and unloading. The value for the elastic thickness can be held temporally and spatially constant, or it may be varied throughout the duration of the model run according to the three times the square root of age relationship. The value for the elastic thickness may also be varied along the length of the profile. Erosion and deposition are controlled by geometrically-defined fluvial and marine equilibrium profiles. For each time step these profiles are defined according to the position of the beach, the width of the coastal plain, and the available sediment supply. Portions of older chronos with elevations higher than these profiles are eroded, while deposition of available sediment area occurs on those parts of the profile where older chronos have lower elevations. This geometrical method is compared for the fluvial profile with a method based on diffusion, and the relative merits and failings of the two approaches are discussed.

Sediment supply can be held constant at a pre-defined value, or it can be varied through a model run. When it is variable, there are three options for calculating its magnitude. The area of sediment available for deposition may be calculated purely from erosion occurring on the fluvial and the marine profile. Alternatively, it can be varied according to a model-generated curve with, for example, a sinusoidal or a saw-tooth form. The third option for calculating sediment supply is to combine these two methods, with both an external input from a pre-defined curve, and with extra sediment provided by profile erosion.

Results from the quantitative model can be used to reproduce elements of the sequence stratigraphic depositional model. Key elements of the depositional model, such as type-1 and type-2 sequences, and the various significant surfaces, can be reproduced using the quantitative model. Conducting sensitivity tests demonstrates that variables such as sediment supply, and fluvial profile behaviour are likely to be of equal importance to thermal subsidence and eustasy in passive margin stratigraphy. These tests demonstrate the significance of the uniqueness problem to the sequence stratigraphic depositional model.
In the quantitative model, with the same absolute sealevel and subsidence parameters that are used to generate a type-1 sequence, but with a less-concave fluvial profile, it is possible to generate a pattern of stratigraphy very similar to that seen in a type-2 sequence. This illustrates the potential importance of the behaviour of the fluvial profile in stratigraphic systems. It also illustrates the problems with non-unique solutions in the sequence stratigraphic model. This can also be demonstrated in the quantitative model by keeping absolute sealevel constant, but varying sediment supply with a sawtooth curve. With these parameters, the model can reproduce some of the basic patterns seen in the standard sequence stratigraphic type-2 sequence, without the need for fluctuations in absolute sealevel. All the results presented demonstrate the potential problems inherent in trying to interpret the ancient record in order to derive details of eustatic sealevel.

Executing sensitivity tests with the quantitative model also demonstrates the existence within the model of a complex interaction between thermal subsidence, deposition, flexure and erosion which is capable of producing cyclical stratigraphy without the need for external periodic forcing. The effect occurs when thermal subsidence drives the shoreface landwards with a relative sealevel rise. Erosion on the shoreface provides a pulse of sediment which is deposited offshore. The erosion causes flexural uplift around the shoreface which then acts to prevent further landward movement of the beach. In subsequent time steps this uplift is eroded by the fluvial profile, which in turn leads to further flexural uplift, though of lesser magnitude. The cycle begins again when thermal subsidence outpaces the uplift, and the shoreface is driven landward once more by another relative sealevel rise.

The behaviour of this complex interaction is tested with a series of model runs that vary the values of the parameters critical to the effect. Several model runs are carried out, varying the magnitude of thermal subsidence, the initial thermal age of the model lithosphere, the geometry of the shoreface and the geometry of the fluvial profile.
Extended abstract

Although the details of the stratigraphic pattern are affected by these changed parameters, the basic pattern due to the feedback effect remains. Two model runs using shorter time steps are also carried out to ascertain whether or not the periodicity of the cyclicity is independent of the length of the model time step used. These two tests show that in fact the period of the cyclicity is not independent of the time step. Further sensitivity tests demonstrate that reducing the time step to values approaching zero also reduces the period of the cyclicity to values approaching zero. Thus, the feedback effect is shown to be a numerical instability due to the discretised nature of the model.

In order to further investigate the nature of the numerical instability further sensitivity tests are run using a linear flexural response function. The results from these two sensitivity tests show that the inclusion of the linear flexural response complicates the behaviour of the feedback effect, but does not remove the dependence of the periodicity of the cyclicity upon the model time step. The numerical instability in the model producing the cyclicity means that the model cannot be used to draw any conclusions regarding the operation of such feedback effects within natural stratigraphic systems.

The applicability of the model to observed stratigraphy is tested by comparing specific model output to observed patterns of stratigraphy from the North American Atlantic margin. The initial conditions for the model are taken from previous work on the margin. Three different eustatic sealevel curves are used, two containing high-frequency high-amplitude oscillations, the other consisting of a low-frequency low-amplitude signal. The model runs using these curves show that the low-frequency low-amplitude curve produces the best match with the observed stratigraphy. Using this curve the model can reproduce some of the basic features of the observed stratigraphy, such as the distance of shoreline progradation.

The fit between the model results and the observed stratigraphy is improved when the model is run with the low-frequency eustatic curve, and variable sediment supply, and a
variable value for the sediment partitioning coefficient. The accuracy of the distance of progradation is improved slightly, and the observed changes in the rates of beach progradation are also more closely matched. The results from these model runs demonstrate that although the model is in many respects simplistic when compared to the complexities of natural systems, it is nevertheless capable of reproducing some of the basic elements of the observed stratigraphic patterns.
Acknowledgements

Where to begin? Well, firstly, I would like to thank my supervisors, Phil Allen and Tony Watts. Phil has been more like a friend than a supervisor, and despite the occasional outbreak of sarcasm, has never failed to be inspirational to me in terms of both science and general childish behaviour. I would like to thank Tony for demonstrating to me the importance of honesty, and a rigorous methodology, in science.

Next comes the thanks to all those people in the Oxford Earth Sciences department. Thanks must first go to all the postgraduate students in the department, both current and ex, for their support, advice, jokes, tolerance etc. etc., especially Graham "Emotionally Inarticulate" Robertson, Andy "McKnobhead" Curtis, Andy "Granny" Bingham, Catherine "Geordy" Marr, Sanjeev "Incised Vailey" Gupta, Jon "Fan of Flagstaff" Verlander, John "lock up your daughters" Kennedy, Malcolm "Ears" Dransfield, Halcyon "What a serve" Martin, Sarah "Kiwi" Vickery, Louis "Blind date" Moresi, Neils "Wholemeal" Hovius, Duncan "Jumper" Macilroy, John "Secret" Argent, Lena "rhymes with" Stranks, Roxby "Cool" Hartley, Pete "G.P.S." Clarke, Rob "Cave" Davies, Audrey "Mc" Willet, Miguel "Manuel" Mora, Pam "Twin Peaks" Sansom, Sarah "Pope" Crampton, Claire "Show me your thong" Mandeville, Helen "Cyclicity" Morgans and last, but possibly not least, Julian "V.C." Bessa. Thanks for informative chats to Tom Martel, Steve Hesselbo and Colin Stark. Thanks to Graham Robertson, and Andy Curtis for help with the occasional mathematical question, and for treating me as cannon fodder on x-pilot. Thanks to Phil England for the curve fitting program. Thanks to all the staff, especially John O'Sullivan, Diane Relton, Steve "Saint" Usher, Martin Leese, Carol Coggins, Karen Crause and Richard Macavoy. Thanks also to many of the undergraduates for the field trips, the demonstrating, and the silence in the back of minibus during particularly tight corners, especially Ben Woodhouse, Pat Trimby, Mark Cooper, Barny Smith, Kathyrn Goodenough, Caroline Hill, Jacqui Booth, and Mike Goddard.

Onto college: Thanks to all at St Cross for providing a mostly-non-geological refuge, especially to Mark "The Wild One" Jones, Rebecca "What a tidy room!" Hunt, Christina "Bonk" Schams, Sharon "Fruit Shortcake" Newnham, Douglas "I like Clinton" Wigdor, Jim "Muscles" Huntly and to all the college staff, including the stars in the kitchen for the veggie meals.

Finally, I would like to say a big thank you to my family. Thanks Mum and Dad for the support above and beyond the call of duty, and for buying me lego when I was a child; knowing that you are so proud makes me go all soppy. Thanks to my big brother Phil for teaching me to look after myself (it is useful at conferences), and thanks to Janette for being just so downright ace as my big sister.
Chapter 1
Chapter 1 - Introduction

"I need your clothes, your boots,
and your motorcycle."

(James Cameron, Terminator II)

1.1 The sequence stratigraphic model

The conceptual model of sequence stratigraphy introduced by Mitchum et al. (1977) has been the basis for ongoing research in passive rift-margin stratigraphy for the past decade (e.g. Greenlee et al., 1988; Poag and Valentine, 1988; Ross and Ross, 1988; Greenlee et al., 1992). The model is based upon the concept of the depositional sequence, defined by Mitchum et al. (1977) as a "stratigraphic unit composed of a relatively conformable succession of genetically related strata and bounded at its top and base by unconformities or their correlative conformities." Depositional sequences are themselves built up from a hierarchy of stratigraphic units, from laminae to parasequences and system tracts (Van Wagoner et al., 1990). This hierarchy provides a framework for description of stratigraphy from a variety of data sources and at a variety of scales. Sequences are separated by unconformities or their correlative conformities, where an unconformity was defined by Van Wagoner et al. (1988) as "a surface separating younger from older strata, along which there is evidence of subaerial erosional truncation (and, in some areas, correlative submarine erosion) or subaerial exposure, with a significant hiatus indicated."

Sequences are made up of groups of systems tracts, which themselves are made up of parasequences. Parasequences are defined by Van Wagoner et al. (1990) as "a relatively conformable succession of genetically related beds or bedsets bounded by marine flooding surfaces or their correlative surfaces" where a marine flooding surface is defined as "a surface separating younger from older strata across which there is evidence of an abrupt increase in water depth." Parasequences are assumed by Van Wagoner et al. (1990) to
form in response to higher frequency relative sealevel oscillations than those responsible for the formation of sequences. Systems tracts (also referred to as parasequence sets) are groupings of parasequences which have particular stacking patterns, and form at particular positions on a relative sealevel curve. For example, the transgressive systems tract would be made up of a series of retrogradational parasequences that are deposited during a time of rising relative sealevel.

The chronostratigraphic significance of depositional sequences hinges on the assumption that sequences are globally synchronous due to the primary control of eustasy on their development (Vail et al. 1977b; Posamentier et al., 1988; Posamentier and Vail, 1988; Van Wagoner et al. 1990). Maintaining this assumption of synchronous eustatic control, it is possible to derive eustatic curves from the patterns of coastal onlap, defined by Mitchum (1977) as "the progressive landward onlap of the coastal (littoral or coastal non marine) deposits in a given stratigraphic unit" where onlap is defined as "a base-discordant relation in which initially horizontal strata terminate progressively against an inclined surface, or in which initially inclined strata terminate progressively up dip against a surface of greater initial inclination." Using coastal onlap curves to determine eustatic sealevel has led to the definition of eustatic sealevel curves for the Mesozoic and Cenozoic (Haq et al., 1987; Haq et al., 1988). Such eustatic curves are then used as the basis for global correlations of sequences between basins.

The sequence stratigraphic depositional models have become progressively more sophisticated since Mitchum et al. (1977). Posamentier et al. (1988) and Posamentier and Vail (1988) expanded on the original depositional models. This work was still based around the assumption of dominant eustatic control on sequence development, but it investigated the relationship between eustasy and tectonic subsidence in creating accommodation space. The model also used qualitative fluvial equilibrium profiles to make predictions regarding fluvial deposition and erosion in response to eustatic changes.
Van Wagoner et al. (1990) gave considerable detail on how the sequence stratigraphic depositional model can be applied to well logs, cores and outcrop data. It defines a hierarchy of stratigraphy, from laminae to megasequences, which can be used as a descriptive basis for the analysis of stratigraphy. The dominant controlling mechanism was once again stated to be eustasy, occurring in cycles from approximately 50,000 to 5Myr duration., though alternatives such as tectonics and autocyclical effects were discussed.

Posamentier (1992) took the depositional model a little further by differentiating between "forced regressions" caused by relative seal level fall, when eustatic fall outpaces tectonic subsidence, and "normal" regressions caused by excess sediment flux relative to the accommodation space available on the shelf. Eustasy was not explicitly mentioned as the controlling factor in this aspect of the model. Posamentier and Allen (1993a) attempted to apply these depositional models to an active compressional tectonic setting rather than the normally considered passive margin. The main difference considered was in the pattern of tectonic subsidence across the basin, and this affects the predictions made by the depositional model. Posamentier and Allen (1993b) examined the influence of other factors, namely sediment flux and physiography, on sequence geometries, but still concluded that eustasy and tectonic subsidence and uplift are the primary controls on sequence timing. It also stated, however, that the stratal geometries are primarily controlled by sediment flux and physiography.

1.2 Problems with the sequence stratigraphic model

An assumption central to all the sequence stratigraphic models has been that eustasy is the primary control on sequence development (e.g. Van Wagoner et al. 1990), and that the effects of eustasy can be deduced from observation of stratigraphy (e.g. Posamentier et al. 1988). Much of the appeal of the sequence stratigraphic methodology comes from its supposed ability to correlate sequence boundaries across global distances. This is obviously dependent on eustasy as a mechanism to give global synchronicity to sequence
boundaries. However, little real consideration has been given to the validity of this assumption by sequence stratigraphic workers, and alternatives such as tectonic controls and variations in sediment supply are not seriously investigated (e.g. Posamentier and Allen, 1993a).

This problem can be considered as one of uniqueness. Although the qualitative sequence stratigraphic models can explain in simple terms why a certain stratigraphic unit has certain features, there may well be several other possible explanations. It is always implicitly assumed in the sequence stratigraphic model that if its predictions match with observations, then it must be correct (e.g. Greenlee et al., 1988). This is not necessarily the case. Other models may be equally capable of reproducing observed features. Sequence stratigraphic models have been widely applied in a variety of temporal and spatial settings, (e.g. Mesozoic-Cenozoic passive margin off East Coast, US; Greenlee et al., 1992 and Baum and Vail, 1988; Carboniferous and Permian cratonic shelves; Ross and Ross, 1988). In most cases such application of the model reveals little, except that a particular piece of stratigraphy has characteristics that can be fitted to the model predictions. Since other possible models are rarely tested against the same stratigraphy, the uniqueness problem is not investigated, and no firm conclusions regarding the controls on the observed stratigraphy should be made.

Given the increasingly apparent problems with eustasy acting alone as the single control on stratigraphy, various workers have been raising the possibility of other factors such as tectonics (Hubbard et al, 1985, Underhill, 1991; Jordan and Flemings, 1991; Sloss, 1991, McGinnis et al. 1993) and sediment supply variations (Galloway, 1989; Thorne and Swift, 1991) playing a larger part than previously recognised in controlling sequence development, but it is difficult to isolate examples that can prove the case either way. The particular problem is the recognition from the preserved rock record of the role of different components such as eustasy, tectonics and sediment supply. Accurately assessing their relative contributions with only qualitative models and the rocks themselves is often
difficult, and as a result attempts have been made to overcome the problem with quantitative modelling.

Problems with correlation based on the eustatic curves have been described by Miall (1991) and Miall (1992) which argued that third order cycles defined on such curves cannot be supported because their precision is greater than that of the best chronostratigraphic methods, and that many correlations are simply statistical noise. Even the primary mechanism of ice volume changes used to account for third order eustatic changes has been called into question. Rowley and Markwick (1992) compared the oxygen isotopic composition of planktonic foraminifera with values calculated for the removal of a given water volume inferred by the Haq curve. It found that there was no correspondence, which casts doubt on glacio-eustasy as a mechanism.

Galloway (1989) showed an alternative approach to the definition of sequence boundaries and emphasised the importance of sediment supply and subsidence on sequence development, suggesting that any of the three controls may dominate, and the results would be indistinguishable. Pitman and Golovchenko (1988) suggested small amplitude sealevel changes may produce shelf wide erosional surfaces by a process of regrading, without the need for subaerial exposure of the whole shelf. This idea is particularly interesting since it is central to the model of Posamentier and Vail (1988) that such surfaces must be the result of subariel exposure due to rapid and large magnitude eustatic fall. Miall (1991) questioned the geomorphological accuracy of the depositional models of Posamentier and Vail (1988). This criticism highlights the fact that the sequence stratigraphic models are entirely qualitative, and as such have never been rigorously tested. Even a very simple quantitative analysis of the model would have demonstrated many of the weaknesses highlighted by Mial (1991). Christie-Blick (1991) questioned the timing of sequence boundaries in relation to relative sealevel changes. This has implications for the use of such surfaces in correlation, as previously discussed.
Another fundamental and yet unstated assumption in the sequence stratigraphy methodology, is that observed cyclical stratigraphy must be the result of a cyclically varying controlling mechanism or mechanisms (e.g. Posamentier et al. (1988) and Van Wagoner et al. (1990)). This is taken to be eustasy, occurring in cycles from approximately 5Myr duration to approximately 50,000 year duration. It is assumed that other controls such as tectonics cannot be responsible for such cyclical stratigraphy, since cyclicity in tectonic controls cannot be demonstrated. Therefore no consideration is given to the possibility of cyclical tectonic effects. Possible cyclical climatic variations are also ignored, as is the possibility of several non-cyclical interacting processes producing cyclical patterns. Both these possibilities are suitable for investigation by quantitative modelling methods.

1.3 Quantitative modelling methodology

Quantitative modelling has an important role to play in investigating the uniqueness problem described above, and in assessing the contribution of eustasy and other possible controls such as tectonics and sediment supply on the development of sequences. Cross and Harbaugh (1989) and Lerche (1989) outlined a methodology for the development and use of quantitative forward models. They defined forward models as models which simulate processes and responses operating on a system with some assumed initial condition and configuration. Figure 1.1 summarises the forward modelling methodology adopted in this work. Cross and Harbaugh (1989) also described a hierarchy of relationships which can be used to construct models. These range from fundamental laws, through first order approximations and empirical relationships, to gross empirical relationships.

Cross and Harbaugh (1989) suggested that the choice of relationships to use in the model is based on two main criteria; the amount of information available about the system being modelled, and the desired complexity and general applicability of the model. The amount
of information available about a system varies, but in general terms most geological systems are too poorly understood to be described with fundamental laws alone. It is necessary to compromise and combine fundamental laws such as the conservation of mass, with gross empirical relationships such as fluvial equilibrium profile geometry. Although some systems may be described more rigorously, this is often at the expense of general applicability, and may lead to overly complex models which become difficult to test.

Despite the potential pitfalls and inherent inaccuracies with quantitative modelling methodologies, used with careful consideration of these problems they do provide a very powerful method of expanding the understanding of the controls on stratigraphy. In particular, such models can provide insight into many of the problems which have been highlighted by the sequence stratigraphic methodology.

1.4 Applications of quantitative models

The development of qualitative sequence stratigraphic models has led to the formulation of a number of quantitative forward models to study controls on stratigraphy. Watts (1982) and Watts et al. (1982) showed that patterns of thermal subsidence and flexural isostatic response to sediment loads with an increase in flexural rigidity through time, for example, could produce patterns of coastal onlap which had been taken as indicative of eustatic effects (e.g. Vail et al., 1977b). This in turn led to the work of White and McKenzie (1988) which showed that such patterns of coastal onlap could also be produced without eustasy or flexure using a two layer stretching model. Jervey (1988) argued that a combination of eustasy and regional basin tilting could produce the patterns of onlap seen in basin margins, though the details of the model are sparse, and it appears extremely simplistic. For example, the model does not include erosion in any form.

Watts (1989) examined the patterns of onlap produced with a simple model of sediment progradation and flexural isostasy. The model results showed that with just a simple
Chapter 1 - Introduction

geometrical model of progradation and time-variable elastic thickness it is possible to
generate some complex patterns of onlap and offlap. Reynolds et al. (1991) included
flexural isostasy and compaction in a stratigraphic model, alongside tectonic subsidence
and eustasy, and used sensitivity tests to assess the effects of these processes on sequence
development. It concluded that the inclusion of flexure and compaction could strongly
affect the geometry of the resulting stratigraphy, including whether type-1 or type-2
unconformities were produced, and also the timing of sequence boundaries, since both
flexure and compaction can create or destroy accommodation space.

McGinnis et al. (1993) used a simple model of lithospheric flexure to investigate the
effects of marine erosional unloading on stratal geometries. The model results presented
suggested that erosion of marine shelf and slope sediments by bottom currents could
induce flexural uplift which would be capable of variously modifying stratal patterns on
the shelf. The flexural uplift could, depending on the width of the shelf, and the values for
lithospheric thickness, produce widespread relative sealevel fall on the shelf, which may
prove difficult to distinguish from an eustatically induced fall. McGinnis et al. (1993)
showed that on a narrow continental shelf, such flexurally driven relative sealevel fall
could produce stratal geometries commonly interpreted as eustatically-driven type-1
sequence boundaries. This is another strong example of the way in which the uniqueness
problem significantly weakens the sequence stratigraphic model.

Strobel et al. (1989), Kendall et al. (1991) and Kendall et al. (1992) used a stratigraphic
model called SEDPAK to simulate basin stratigraphy. The model uses user-defined
functions to determine absolute sealevel history, sediment supply and tectonic behaviour,
and is made up of a series of gross-empirical algorithms with little or no basis in actual
stratigraphic processes or geometries. The model has only been tested by direct
comparison of its output with synthesised details of observed stratigraphy. No sensitivity
tests have been carried out, and no consideration has been given to problems of uniqueness
in the model results. Given the demonstrable weakness of the model elements and the lack of rigorous testing, the model inspires little confidence.

Lawrence et al. (1990) used an essentially geometrical approach to simulate stratigraphy with the emphasis on fine scale lithology prediction. The model includes tectonic subsidence, with the subsidence at any point on the model profile either input directly, or calculated using the two-layer stretching model of Sclater and Christie (1980). Absolute sea-level is varied according to an externally input curve. Sediment supply is also defined externally, but sediment eroded on the non marine profile according to elevation and an erosion time constant, is added to the total available for deposition on the marine profile. Deposition on a marine profile is calculated according to an empirically derived exponential function. Though Lawrence et al. (1990) claimed to be able to use the model to evaluate the importance of different controls on stratigraphy, it does not do so, and the only testing criteria apparently applied to the model is whether its output matches in appearance with subsurface data.

Schroeder and Greenlee (1993) used a stratigraphic model, based on the principles of the Exxon depositional model, in an attempt to test the validity of several different eustatic sea-level curves. The modelling seems to suffer from the same problems already discussed; no real tests are applied to the output except to compare the output visually with the observed stratigraphy. One of the conclusions reached is that the eustatic curve from Watts and Steckler (1979) is incorrect because it contains no higher-order fluctuations needed in the model to explain the fine-scale patterns of onlap and facies distribution. However, no consideration is given to the possibility that such fine-scale patterns may be produced by a processes other than eustasy, which are not included in the model. Thus because of the weaknesses in the assumptions, this conclusion is of little value.

Cant (1991) defined a geometrical model to examine patterns of facies migration and erosion controlled by relative sea-level changes and sediment supply. The model suggests
that erosion surfaces can occur because of small changes in slope angles and general facies migration during relative sea-level changes. This could significantly complicate interpretations of stratigraphy. Heller et al. (1993) used a geometrical model in an attempt to illustrate how it may be possible to place quantitative limits on the potential combinations of sediment supply, subsidence, and absolute sealevel that could be responsible for any particular stratigraphic pattern. The method invoked stratigraphic solution sets, which consist of various variables such as subsidence and absolute sealevel plotted in multidimensional plots. Sub areas within the plots can then be defined, on the basis of field observations and measurements.

Several workers have used a diffusion based approach to model stratigraphy (Kenyon and Turcotte, 1985; Kaufman et al., 1992; Rivenaes, 1992). Kenyon and Turcotte (1985) use the diffusion equation to model the progradation of a delta assuming sediment movement by bulk-transport processes. This approach was shown to produce a good match between the model predictions and the present bathymetry and the historical progradation of the Fraser and Mississippi river deltas, and the Rhine delta in Lake Constance.

Kaufman et al. (1992) used a solution of the diffusion equation that allowed the diffusion coefficient to decay exponentially with water depth to model the deposition of sediment on a shallow marine siliciclastic, carbonate, and mixed siliciclastic shelf. The exponential decay of the diffusion coefficient with depth was intended to represent the exponential decrease in wave power and hence bed shear stress with water depth. However, the values for the diffusion coefficient used in the model runs appear to be rather arbitrary in that the actual values used are not based upon any direct measurements or observations.

The application of the diffusion equation in Rivenaes (1992) used two lithologies, sand and shale, in the model and defined a separate transport-coefficient function for each lithology. Diffusivity varies with water depth, and compaction of sediment is included in the mass-balance of the model equations. Tectonic subsidence and eustasy and defined as
external functions. Flexural isostasy is also included. Rivenaes (1992) used the model to predict the patterns of stratigraphy obtained with a simple sinusoidal eustatic curve, and found that the model was capable of reproducing some observed features of passive margin stratigraphy, such as shoreline migration, stratal onlap and downlap, and the trapping of sand in the coastal plain area during times of transgression.

The Rivenaes (1992) model shares a similar problem to that of Kaufman et al. (1992) in that there is a lack of quantitative observational evidence to support the values of diffusion coefficients used for the sand and shale lithologies within the model. The value for sand ranges from approximately $10000 \text{m}^2\text{yr}^{-1}$ at elevations of 10m and above, to $50 \text{m}^2\text{yr}^{-1}$ at and below 20m below sealevel. The values for shale show the same trend but with a slightly higher value at positive elevation, and a higher value in the marine environment of approximately $2.5 \text{m}^2\text{yr}^{-1}$. Although the magnitude of the curves is based on values given by other workers (e.g. Flemings and Jordan, 1989), the patterns of variation with elevation are based upon qualitative observation of the efficiency of transport of the grain size populations in different environments, and have been selected in advance to give features such as trapping of sand in the marine environment and bypassing of shale into deeper water. Such selection of diffusion coefficients, even if partly based on observational evidence, must limit the interpretation of the model results.

Thorne and Swift (1991) modelled erosion and deposition in a marine shelf setting using surfaces of dynamic equilibrium which were determined by a series of mutually interdependent variables, sediment input rate, sediment character, sediment transport rate, and the rate of relative sealevel change. Five different types of equilibrium surface are defined, of which the isostatic equilibrium profile is most useful in terms of its spatial and temporal scale, for investigating continental margin deposition. Results from the model, using another type of profile, which is dependent on the rate of relative sealevel change, simulate sequence stratigraphic systems tracts. Thorne and Swift (1991) concluded from this model work that the generation of type-1 versus type-2 sequences in the model is
dependent on the gradient of the shelf and the slope, and also the magnitude of the sediment supply. The model does not include any subaerial deposition or erosion which makes it difficult to compare the results directly with the sequence stratigraphic model.

Shaw (1987) and Slingerland (1989) raised the possibility of non-linear behaviour producing cyclicity in the stratigraphic record. Slingerland (1989) described some of the principles of chaos theory and suggested that if stratigraphic systems are chaotic, small changes in initial conditions in such a system may lead to gross differences in the final configuration of the stratigraphy. Shaw (1987) proposed that apparent periodicities in the geological record, for example periodic mass extinctions, may not be due to simple periodic forcing mechanisms, but may instead be due to more complex non-linear feedbacks between more than one mechanism. Thus examples of periodic stratigraphic phenomenon such as Milankovitch cyclicity (e.g. Matthews and Frohlich, 1991; Imbrie, 1985) may not be caused by periodic mechanisms such as orbital forcing, but may instead be due to as yet unidentified couplings and feedbacks between various autocyclic processes.

Gaffin and Maasch (1991) and Gaffin (1992) illustrated this principle with a very simple model of sedimentary basin development which showed cyclicity produced by unforced free oscillations. The model consists of a simplified low-order implementation of a general time evolution continuity equation for a sedimentary surface. The equation includes an expression for subsidence, and an expression for the non-linear diffusive transport of sediment. Although the implementation is simple, the model shows clear unforced oscillatory behaviour. This results from a feedback effect; falling relative sealevel increases the magnitude of erosion, which increases progradation, which further increases erosion exponentially, until progradation becomes unstable and a transgression occurs. Thus an apparent cyclicity in the model output is due purely to a feedback between model elements, with no periodic external input. Such unforced cyclicity could be extremely
important with respect to stratigraphy generally, and the sequence stratigraphic model in particular.

1.5 Aims and objectives

The aim of this thesis is to build upon the modelling work described above using a quantitative stratigraphic forward model to investigate passive rift margin stratigraphy. Chapter two describes the formulation of the model and the assumptions that underlie it. The implementation of the various model components is described in detail, and a comparison is made between a dynamic diffusion approach and a geometrical approach to modelling the fluvial profile.

The model is then used to three main ends. Firstly, in chapter 3, it is used to investigate the various controls on sequence geometry. This is achieved by firstly using the model to reproduce the basic conceptual sequence geometry defined by Van Wagoner et al. (1988), Posamentier et al. (1988) and Posamentier and Vail (1988), considering the discrepancies between the two, and then conducting a series of sensitivity tests in order to determine rigorously the importance of the different parameters in the model. From this it is possible to draw conclusions regarding the possible importance of various controls on the stratigraphy in actual stratigraphic systems.

Secondly, the model is used to investigate the possibility of cyclical patterns of stratigraphy produced not by an external periodic forcing mechanism, but by the complex feedback interaction between several different model elements. Chapter 4 describes such a feedback within the model, and shows a series of sensitivity tests used to investigate the feedback. The sensitivity tests demonstrate that the feedback effect is produced by a numerical instability inherent within the model. This demonstrates that discretised geometrical models are not suitable for investigating such feedback effects.
Chapter 1 - Introduction

Thirdly, in chapter 5, the stratigraphic model is used to investigate aspects of the Tertiary stratigraphy of the North American Atlantic passive margin. However, rather than simply using the model to reproduce basic aspects of the observed stratigraphy, and assuming that a good match proves the validity of the model, it is used instead to examine the envelope of possible causes for the observed stratigraphy. This is achieved by conducting sensitivity tests to determine which controls may be important, and which may not. In particular, the model is used to test three different eustatic curves, and to examine the possible effects of variable sediment supply.

The conclusions drawn from the model results presented in chapters 3, chapter 4 and chapter 5, are summarised and discussed in chapter 6. A list of the parameters used in the model is given in appendix 1, and a full listing of the source code is included in appendix.
Find appropriate fundamental laws, first order approximations, empirical relationships and gross empirical relationships to construct the model.

Construct the model with algorithms, logic statements and mathematical expressions.

Run model with appropriate parameter values and initial conditions.

Assess results, compare with other models and known stratigraphy, explain model output.

Adjust parameters and possibly model components.

Figure 1.1. A modelling methodology flowchart
Chapter 2
Chapter 2 - Methodology and Assumptions

"Travelling through hyperspace ain't like dusting crops boy! Without the precise calculations we'd fly right through a star or bounce too close to a supernova, and that would end your trip real quick wouldn't it?"

(George Lucas, Star Wars)

2.1 Introduction

This chapter describes the equations, algorithms, and parameters which together comprise a forward model of passive rift-margin stratigraphy. Also described are the assumptions which underlie the various elements of the model and the values for the model parameters. A full appreciation of the details of the model formulation, the assumptions which underlie the equations and algorithms chosen, and the values chosen for model parameters is essential in order to correctly interpret the model results. Comprehensive descriptions of the hardware, the operating systems and the programming languages used in constructing the model are given, along with a full listing of the source code, in appendix 2. The description of the methodology given below, and the source code listing in appendix 2 should together allow the model results given in subsequent chapters to be reproduced.

2.2 The formulation of the model

The model can be summarised in a simplified form as one equation which defines the contribution to the elevation of a chron in two-dimensions as a function of time and distance thus

\[H(x, t + \Delta t) = H(x, t) - S(x, t) + \Delta H(x) + F(x) \] (1)
where \(H \) is the elevation of a chron surface, \(S \) is the magnitude of thermal subsidence, \(\Delta H \) is the magnitude of deposition or erosion, and \(F \) is the magnitude of the flexural subsidence or uplift due to deposition or erosion. All these individual model elements, the model assumptions, and the details of the model coordinate system, are described in detail in the following sections.

2.3 Basic model assumptions

2.3.1 Two versus three dimensions

A fundamental assumption behind the model coordinate system is that passive rift-margin stratigraphy can be modelled as a two-dimensional section to a sufficient degree of accuracy as to make the model results useful in investigating stratigraphic patterns. In reality such stratigraphy is the result of processes operating in three dimensions, so it is important to attempt to assess the degree to which the accuracy of the model results is reduced by the assumption of two-dimensionality.

The principal fundamental law in the model is the conservation of mass, implemented as the conservation of area along the two-dimensional model profile. In natural systems the principle of the conservation of mass operates in three dimensions. Hence because the model is two-dimensional, its accuracy must be reduced, but the different model components are affected to different degrees depending predominantly upon the degree of symmetry or asymmetry inherent in the process or system being modelled. Assessing the exact effects of this weakness is difficult, but it should be considered carefully when interpreting the model output.

2.3.2 Discretised representation of continuous processes
Another fundamental problem with all quantitative models on digital computers is the need to represent continuous natural systems in a discretised format. This problem manifests itself in this model coordinate system in two ways; the horizontal spacing of data points on the model profile, and the length of the model time step.

The length of the horizontal step on the model profile controls the precision of the area calculations used to ensure the conservation of area, and also the precision of the marking of environments of deposition. The magnitude of this spacing is a trade off between accuracy, the total profile length, and the computer time required for calculations. Increasing the spacing of points on the profile allows faster model runs and longer profiles, but reduces the accuracy of the area fitting, and hence leads to small amounts of area being lost or gained. This loss of accuracy is an important constraint on the model, since larger point spacing would introduce unacceptable errors in the area calculations.

2.3.3 The length of the model time step

The length of the time step between generation of chrons is also very important to the validity and accuracy of the model. All geological processes that act to form stratigraphy are continuous in nature. Thus with a digital computer model various assumptions have to be made to approximate such continuous processes in a discretised form. In this model it is implicitly assumed that all the modelled processes, but particularly deposition and erosion, and flexure, occur instantaneously for a particular time step, after which there is a period of absolute quiescence prior to the next time step. This has some very important implications for the model results depending on the length of the time step used, and should always be considered when interpreting the model results. This problem is demonstrated with a particular example in chapter 4.

2.4 Description of the coordinate system and the data structures
The model is constructed around a three-dimensional coordinate system used to represent stratigraphy. The first two dimensions represent horizontal distance in kilometres and elevation in metres respectively. Together they define the two-dimensional model sections. The third dimension is elapsed model time (E.M.T.), measured in millions of years, or mega years (Myr). Figure 2.1 summarises this coordinate system.

The primary data structure in the model is used to represent the chronostratigraphic surfaces ("chrons" for short). The data structure consists of a two-dimensional array where the array subscripts represent E.M.T. and horizontal distance respectively, and the array contains elevation values. Figure 2.2 shows this data structure in diagrammatic form. The structure can store up to 200 chrons with 4906 elevation values along each chron. Thus if the total profile length is 1024km, the separation in kilometres between points is 0.25km.

The horizontal position, in kilometres, of each point on each chron may be calculated by dividing the profile length in kilometres by the total number of points to give the point separation, also in kilometres. Multiplying this value by the subscript value for that point gives the distance in kilometres of that point from the profile origin. All aspects of the model, such as for example, the definition of the position of the beach, and the elevation of the sealevel datum, are based around the same coordinate system described above and shown in figure 2.1.

The E.M.T. is the third dimension in this primary data structure. One chron is generated at each time step, and stored in a temporary working array, but the interval at which chrons are actually stored in the data structure can be greater than this time step. This allows a model run with time steps of, for example, 0.01Myr to run for longer than 2.0Myrs. The age of any chron is calculated by taking the array subscript values and multiplying this by the duration of each chron which is specified as a model input parameter (see appendix 1).
A second separate data structure is utilised to record the distribution of depositional environments. These environments, calculated on the basis of water depth, are represented by codes at each point on each chron (Table 2.1). The codes along the initial chron are set to the integer value of 250 to represent initial non-deposition. As each subsequent chron is generated, the depositional environments along its length are recorded. When points on the new chron are erosional, the value of points at the same horizontal position on older chron being eroded, are reset to indicate this erosion. The algorithms controlling erosion of chron are described in more detail in section 2.6.5.

<table>
<thead>
<tr>
<th>Numeric Code</th>
<th>Depositional Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fluvial</td>
</tr>
<tr>
<td>2</td>
<td>Beach and shoreface</td>
</tr>
<tr>
<td>3</td>
<td>Offshore shelf</td>
</tr>
<tr>
<td>4</td>
<td>Shelf slope</td>
</tr>
<tr>
<td>6</td>
<td>Fluvial erosion</td>
</tr>
<tr>
<td>7</td>
<td>Marine erosion</td>
</tr>
<tr>
<td>250</td>
<td>Non-deposition/non-erosion</td>
</tr>
</tbody>
</table>

Table 2.1

The final major data structure in the model is used to store values for several time-dependent model elements. These are absolute sealevel elevation, areas of sediment deposition and erosion, relative sealevel at a given point, cumulative thermal subsidence at a given point, and elevation of the point of stratal onlap. The structure consists of another two-dimensional array. The first subscript gives the number of the time step (which can be converted directly to E.M.T. as described above), and the second gives a code for the type of data contained in that array element. Table 2.2 shows these codes and the associated data types.
The absolute sealevel element differs from the other data types in that rather than recording the values of the variables as they are generated during the model run, these values are defined during model initialisation and then used as a reference to update the value of the absolute sealevel datum as the model runs. Details of the generation of the absolute sealevel curve are given in section 2.6.1.

The other elements in this data structure are used to store the relevant values calculated during the model run. Separate values for fluvial erosion, fluvial deposition, marine erosion and marine deposition are stored in the data structure. For each chron the sum of the area of fluvial deposition and the area of marine deposition should equal the sum of the area of fluvial erosion and marine erosion, since no out-of-plane sediment transport is included in the model. This is not the case, however, when the option for external sediment input is selected. In this case, the sum of the area of fluvial and marine deposition together equals just the area of external sediment input in the case of constant sediment supply, or
Chapter 2 - Methodology

the sum of the external input and the fluvial and marine erosion. The initialisation of the external sediment input curve is described in section 2.6.1.

The values of cumulative thermal subsidence and relative sealevel are calculated at a point on the profile given as a model input parameter. Relative sealevel at any point is given by calculating the elevation difference between the initial model chron, which is used as the reference surface, and the current absolute sealevel datum. This is not the same as water depth, since the initial chron may have been buried by deposition on subsequent chronos. Negative values for relative sealevel indicate elevations of the point above its initial elevation. Stratal onlap is calculated at the end of the model by taking the height of those points where the fluvial portion of a chron terminates against an older chron below.

2.5 Model parameters

The model has thirty eight parameters, not including the values used to calculate the lithospheric stretching factor profiles and the initial topography. Several of these parameters control various options in the model e.g. what type of flexure calculations are to be used, what type of sediment supply model is to be used. The remaining parameters contain values for variables used directly in the model e.g. the model time step (Myrs), and the gradient of the offshore shelf profile (mkm⁻¹). The purpose and the range of values for all these variables are given in appendix 1.

2.6 The sequence of the algorithms

Once the model parameters have been set the model must be initialised. The initialisation routines are executed once before each model run. They are described in section 2.6.1. The input parameters may also be adjusted whilst the model is running. Figure 2.3 shows a flowchart outlining the sequence of algorithms to generate each chron in the model. This indicates the order in which the equations described in the following sections should be
applied to reproduce the model output. The first step for each chron is to increment the E.M.T. by the model time step, adjust the elevation of the absolute sealevel datum according to the pre-defined absolute sealevel curve, and, if appropriate, to calculate the area of sediment to be applied to the top of the fluvial profile as the external sediment budget. The next step is to calculate the magnitude of the thermal subsidence at each point along the profile (section 2.6.3). Once this has been done, the position of the chron-sealevel datum intersection (for the sake of brevity this will be referred to more loosely as "the beach") on the profile can be found (section 2.6.4). This position is then used in the generation of first the fluvial, and then the marine equilibrium profiles. These profiles, described fully in sections 2.6.5, control erosion and deposition of stratigraphy, and can thus be used to determine the magnitude and distribution of sediment loading and unloading across the profile. The final step for each chron is to use this magnitude and distribution of loading across the profile to calculate the lithospheric flexural response (section 2.6.6).

2.6.1 Model initialisation

The first step in each model run is to initialise the model parameters, execution variables, and the model data structures. The values of the input parameters are read from input windows, and the value of key model variables (e.g. the number of chrons generated, the E.M.T.) are set to their starting values. The absolute sealevel curves are defined using sinusoidal curves or straight lines of a given gradient. The sinusoidal curves are calculated using the equation

\[
d(t) = \left(\frac{y_1 - y_2}{2}\right) + \left(\frac{y_1 - y_2}{f} \sin\left(\frac{2\pi}{f} t\right)\right)
\]

(2)

where \(y_1\) and \(y_2\) are the maximum and minimum sealevel datum elevations respectively, \(f\) is the period of the curve in mega years, and \(t\) is E.M.T. These are all given as model parameters. Two sinusoidal curves of different periods may be used. Thus a short-term
curve of period 0.1 to 1.0Myrs may be superimposed upon a longer-term curve of period 1.0 to 100.0Myrs. The longer term curve may also be defined as a simple linear increase of decrease in absolute sealevel elevation thus

\[d(t) = d(t - t_{inc}) + \left(\frac{y_1 - y_2}{f} \right) \]

(3)

where \(t_{inc} \) is the length of the model time step in Myrs. The curves controlling the area of external sediment supply (i.e. the area supplied to the top of the model fluvial profile independent of erosion on the profile) are defined using similar equations where maximum and minimum datum elevations are replaced by maximum and minimum areas of sediment. Both sinusoidal and linear curves may be defined, and also saw-tooth curves where sediment supply increases or decreases linearly for a specified period and then reverts to the original minimum or maximum value. External sediment supply can also be held at a constant given value.

Finally in the initialisation procedure the initial topography and the stretching factors required for the thermal subsidence calculations (see section 2.6.3) across the profile are set. The initial topography is defined in a data file consisting of coordinate pairs, the first value being a position on the model profile in kilometres, and the second being the elevation in metres at that point. These coordinate pairs are read two at a time, and the elevation values at each point on the profile between the specified positions are calculated using simple linear interpolation. The values for the stretching factors across the profile are defined using the same method.

2.6.2 Updating the model variables

Several model variables are updated at this point. The E.M.T. is incremented by the value of the time step parameter, and the total number of time steps completed is incremented by one. The elevation of the absolute sealevel datum is adjusted according to the pre-defined
absolute sea level curve. If appropriate, the area of external sediment supply is also adjusted according to the pre-defined external sediment supply curve.

2.6.3 Thermal subsidence

Thermal subsidence is the fundamental tectonic mechanism by which accommodation space is created in passive margin basins. It is modelled here using either the one-layer uniform stretching model of McKenzie (1978) or the two-layer non-uniform stretching model of Hellinger and Sclater (1983).

The one-layer uniform stretching equations from McKenzie (1978) allow the lithospheric stretching factor to be varied laterally across the profile, although this is not actually used in McKenzie (1978). Values for the stretching factor are specified at a small number of points on the profile. Linear interpolation is then used to calculate the stretching value at each point on the profile. The magnitude of subsidence at each point is given by:

\[S_t = e(0) - e(t) \]

(4)

where \(e \) is the subsidence in metres at a given time \(t \) in seconds, and is given by:

\[
e(t) = \frac{a \rho_m \alpha T_m}{\rho_m - \rho_w} \left\{ \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \left[\frac{\beta}{(2n+1)\pi} \sin \left(\frac{(2n+1)\pi}{\beta} \right) \right] \exp \left(-(2n+1)^2 \frac{t}{\tau} \right) \right\}
\]

(5)

Table 2.3 lists and defines the parameters used in the equations. The value for the magnitude of subsidence at each point is used to adjust the elevation of previous chronns.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>initial thickness of lithosphere</td>
<td>125 km</td>
</tr>
<tr>
<td>t_c</td>
<td>initial thickness of continental crust</td>
<td>35 km</td>
</tr>
<tr>
<td>ρ_m</td>
<td>density of mantle at 0°C</td>
<td>3330 kg m$^{-3}$</td>
</tr>
<tr>
<td>ρ_c</td>
<td>density of crust at 0°C</td>
<td>2800 kg m$^{-3}$</td>
</tr>
<tr>
<td>ρ_w</td>
<td>density of water</td>
<td>1030 kg m$^{-3}$</td>
</tr>
<tr>
<td>β</td>
<td>lithospheric stretching factor</td>
<td>input parameter</td>
</tr>
<tr>
<td>β_c</td>
<td>crustal stretching factor</td>
<td>input parameter</td>
</tr>
<tr>
<td>β_{sc}</td>
<td>subcrustal stretching factor</td>
<td>input parameter</td>
</tr>
<tr>
<td>β_L</td>
<td>ratio of t_c to stretched crustal thickness</td>
<td>dimensionless</td>
</tr>
<tr>
<td>α</td>
<td>thermal expansion coefficient</td>
<td>3.28E10$^{-5}$°C$^{-1}$</td>
</tr>
<tr>
<td>T_m</td>
<td>temperature at lithosphere base</td>
<td>1333°C</td>
</tr>
<tr>
<td>τ</td>
<td>$a^2/\pi^2\kappa$ lithospheric time constant</td>
<td>62.8 Myr</td>
</tr>
</tbody>
</table>

Table 2.3

The non-uniform stretching model works on very similar principles, except that two stretching factors are utilised, one for the crust (β_c) and a second for the lithospheric mantle (β_{sc}). Values for both stretching factors are given as initial model parameters, and the values of subsidence used to adjust previous chron elevations. The equations used in this model are taken from Hellinger and Sclater (1983). There is no facility in the model to check for space problems between the crust and the mantle caused by differential stretching. This is assumed to be done when defining the stretching value profiles.

The value for subsidence $S(t)$, where t is time in seconds, is given by:

$$S(t) = e(0) - e(t)$$ \hspace{1cm} (6)
Chapter 2 - Methodology

where \(e(t) \) is given by:

\[
e(t) = \frac{2a\alpha_p m T_m}{(\rho_m - \rho_w)\pi} \sum_{k=0}^{\infty} \frac{C_{2k+1}}{2k+1} \exp \left[\frac{-(2k + 1)^2 t}{\tau} \right]
\]

(7)

where

\[
C_n = \frac{2(-1)^{n+1}}{n^2 \pi^2} \left[(\beta_c - \beta_{sc}) \sin \left(\frac{n\pi \beta_c}{\alpha} \right) + \beta_{sc} \sin \left(\frac{n\pi \beta_{sc}}{\beta_{sc}} \right) \right]
\]

(8)

and

\[
\frac{a}{\beta_L} = \frac{t_c}{\beta_c} + \frac{a - t_c}{\beta_{sc}}.
\]

(9)

Parameters used in these equations are defined in Table 2.3.

Neither of the models used here include the effects of lateral heat flow (e.g. Steckler and Watts, 1981). Though these effects may be important during riftin and for up to 20Myr after rifting (Jarvis and McKenzie, 1980; Cochran, 1983), and in narrow basins where lateral temperature gradients are high (Pitman and Andrews, 1985), they are less important on older thermally subsiding passive margins.

2.6.4 Finding the Beach

Once the effects of thermal subsidence have been calculated and applied to all previous chrons, the position of the intersection between the last chron and the absolute sealevel datum can be found. The algorithm to find this beach position starts with the first point at the landward end of the profile and checks each point in turn to determine if it is below sealevel, i.e. its elevation is less than the elevation of the absolute sealevel datum. The first point to meet this criterion defines the position of the beach. Once the beach position is known, it can be used in the definition of the fluvial and the marine equilibrium profiles.
2.6.5 Depositional and erosional profiles

A crucial central element in a stratigraphic model is the method used to determine the distribution of deposition and erosion of stratigraphy in time and space in the model. The following section compares and contrasts two alternative approaches to the problem, namely a geometrical approach using equilibrium profile curves with a specified geometry, and a diffusional approach using a solution of the standard diffusion equation in which the rate of change of topographic elevation is proportional to the rate of change of topographic slope.

2.6.5.1 The concept of geometrically defined equilibrium curves

The concept of the fluvial equilibrium profile

Using this approach deposition and erosion of stratigraphy in both the subaerial and the submarine portions of the basin is modelled using the concept of geometrically defined equilibrium profiles. Much previous work has been done in an attempt to define equilibrium with respect to fluvial systems. Davis (1899; 1902) assumed that over a geologically significant period of time the downstream portions of rivers attain a "graded" profile in equilibrium with the prevailing conditions "by a process of cutting and filling, until an equable slope is developed along which the transport of its load is most effectively accomplished." Mackin (1948) defined a graded stream as "one in which, over a period of years, slope is delicately adjusted to provide, with available discharge and with prevailing channel characteristics, just the velocity required for the transportation of the load supplied by the drainage basin. The graded stream is a system in equilibrium; its diagnostic character is that any change in any of the controlling factors will cause a displacement of the equilibrium in a direction that will tend to absorb the effect of the change." Leopold and Bull (1979) expanded on this by suggesting that the adjustment to a "graded
(equilibrium) stream is one in which, over a period of years, slope, velocity, depth, width, roughness, pattern and channel morphology delicately and mutually adjust to provide the power and efficiency necessary to transport the load supplied from the drainage basin without aggradation or degradation of the channel."

All these definitions assume that a stream undergoes some perturbation away from its original equilibrium profile, and then regains equilibrium by adjusting one or several of the variables such as slope, channel morphology and channel width. This is referred to as static equilibrium. A second type of equilibrium, referred to as dynamic equilibrium was described (Hack, 1960; Bull, 1991) in which a stream maintains a delicate balance of variables to maintain its profile in response to constantly changing conditions. An example of this would be a stream flowing over an area of tectonic uplift. If the stream had sufficient power, it would erode downwards at a rate equivalent to the rate of tectonic uplift, and hence maintain its profile shape. This was referred to by Bull (1991) as type 1 dynamic equilibrium. Type 2 dynamic equilibrium occurs when a stream is responding to changes in conditions, such as for example, tectonic uplift, but cannot maintain a particular profile shape.

Although the concept of dynamic equilibrium may more accurately represent the behaviour of streams responding to continuous changes in conditions, the concept of static equilibrium more accurately represents the operation of an equilibrium profile in a stratigraphic model with discrete time steps with a magnitude of thousands of years. The assumption then is that such profiles can respond to changes in base-level, changes in beach position, and surface uplift and subsidence on the profile, within the duration of a model time step. This assumption raises the question of fluvial response times. Howard (1982) calculated that the Yampa and the Little Snake rivers in North America would adjust to base-level changes in three to five kiloyears, while the much larger Mississippi river would take 50 to 80Kyrs. Thus it seems reasonable to assume that with a model time
step of 100Kyrs the fluvial profile has sufficient time to adjust to changes in base-level and
profile shape.

Another question regarding the nature of stream response to changes in system variables
such as base-level was highlighted by Schumm (1993), which argued that streams can
respond to a slow fall in base-level by changing their channel pattern without the need for
aggradation or downcutting. While this may well be the case on shorter time scales, it
seems unlikely that this will apply for longer time scales when events such as avulsions
force the stream to create new channel courses in a new position on the flood plain, and
hence allow the fluvial system to aggrade or degrade while re-establishing a channel
pattern. This question does highlight the lack of data regarding the response of fluvial
systems to base-level changes over a period of a kilo year and longer. Such data would be
invaluable to stratigraphic modelling.

Geometrical curve fitting

It is possible to fit mathematically generated curves to modern river profiles. Snow and
Slingerland (1987) showed that such curves can provide a fit with only a small error to a
profile modelled from first principles using sediment transport equations. Figures 2.4 and
2.5 show four topographic profiles from rivers on the North American and African Atlantic
margins. Plotted against each topographic profile for comparison are best-fit
complementary error function curves, calculated using the Levenberg-Marquardt method
(Press et al., 1986; England, pers. comm. 1993). The complementary error function curve
has the form

\[\text{erfc}(\eta) = 1 - \left(\frac{2}{\sqrt{\pi}} \int_0^\eta e^{-t^2} dt \right) \]

(10)

where \(\eta \) is the dimensionless error function parameter, and \(\eta ' \) is a dummy variable of
integration.
Such fits are significant in the context of diffusional profiles and are discussed further in section 2.6.5.3, but if the complementary error function is treated as a purely geometrical entity, the fits are also significant, since they demonstrate that the curve has the correct geometrical form to approximate river profile geometry at a given time. This is supported by the conclusions of Snow and Slingerland (1987).

2.6.5.2 The implementation of the geometrical fluvial profile

Taking the geometrical approach to fluvial profile modelling, the fluvial profile is represented by an exponential curve or a complementary error function curve treated as a geometrical entity. The curve is scaled and fitted between the beach and a point landward of the beach which is taken to be analogous to the upstream edge of the coastal plain on a passive margin. Thus the fluvial profile in the model does not represent the whole length of a fluvial profile from the beach to the drainage divide, but rather just the lower portion of the profile where preservation potential for deposited stratigraphy is highest. The position of the landward limit of the fluvial profile can either be held fixed throughout the model run, or it can be moved landward at a rate given as a model parameter. This allows for a situation in which the width of the coastal plain increases with time with respect to the initial position of the beach.

The exponential curve has the form

\[y(x) = e^{n(x - x_1)} + d(t) - 1 \] \hspace{1cm} (11)

where

\[n = \frac{\ln(y_2 - d(t) + 1)}{(x_2 - x_1)}. \] \hspace{1cm} (12)
The variables \(x_1 \) and \(x_2 \) are the horizontal start and end points of the profile respectively, the start point being the edge of the coastal plain, the end point being the beach (see figure 2.6). The variable \(d(t) \) is the elevation of the absolute sealevel datum, and \(y_2 \) is the elevation above the zero datum of the topography at the landward limit of the profile.

The complementary error function curve has the form

\[
y(x) = \frac{\text{erfc}(x - x_1) \cdot \omega - \theta}{\Phi} + d(t)
\]

(13)

where

\[
\omega = \frac{\theta}{(x_1 - x_2)}
\]

(14)

and

\[
\Phi = \frac{1 - \theta}{y_1 - d(t)}.
\]

(15)

Figure 2.6 explains the variables \(x_1, x_2 \) and \(y_1 \) in diagrammatic form. The equations are essentially scaling functions for the output from the complementary error function. The variable \(\theta \) controls the section of the complementary error function used to define the profile such that the error function parameter values range from 1.0 to \(\theta \). It can be seen from the plot of the function in figure 2.7 that the steepness of the curve decreases with increasing values of \(x \) along the horizontal axis of the plot. Thus the value of \(\theta \) used determines the section of the curve used, and hence the concavity of the geometrical fluvial profile. Higher values of \(\theta \) increase the concavity of the profile, and vice versa.

The geometrical curves are used to control deposition and erosion by comparing at each relevant point on the model profile, the elevation of the fluvial profile generated for the
current time step, and the elevation of previous chron. This is summarised in quantitative form as

\[\Delta H(x) = y(x) - H(x, t - \Delta t) \]

(16)

where \(y \) is the elevation of the new profile, as defined in equations 11 and 13, and \(H(t - \Delta t) \) is the elevation of the chron from the previous time step. Thus positive values of \(\Delta H \) lead to deposition, since the area between the new profile and the previous chron is treated as subaerial accommodation space and filled with available sediment. Negative values of \(\Delta H \) lead to erosion as the elevation of the old chron is reduced to the elevation of the new profile. This process of deposition and erosion in the model is illustrated in figures 2.8 to 2.11.

The area deposited or eroded is subtracted from, or, depending on the model options specified, added to the total sediment budget available for deposition. Conservation of mass is maintained, so that when appropriate according to the sediment supply options chosen, the area of sediment deposited is always equal to the area of sediment eroded, plus any external input. Areas of erosion and deposition are calculated using simple trigonometry. Adjacent points on two chron form a trapezium shape, the area of which can be calculated by splitting the shape into its component rectangles and triangles (figure 2.12). The elevation difference between the older chron and the new profile is the magnitude of sediment loading and unloading used to calculate the flexural response, as explained in section 2.6.6.

Fixed and free geometrical profiles

When using a geometrically defined equilibrium profile to model the fluvial profile there are two alternative methods regarding the positioning of the beach and hence the geometry and the pattern of deposition and erosion on the profile. In the case of the fixed profile, the
beach is maintained at the position determined by the algorithm described in section 2.6.4. The profile is fixed in the sense that the profile is allowed to subside due to thermal subsidence without causing fluvial aggradation. However, any part of the profile uplifted above the original curve, for example as a result of flexural uplift, is removed. This is shown in diagrammatic form in figure 2.8. The fixed profile is thus analogous to a river system with very low sediment supply, unable to initiate significant deposition, but with sufficient power to erode uplifted parts of the profile. This algorithm is only valid for relative or absolute sealevel rise.

The second method is to allow the fluvial profile the freedom to determine the position of the beach by means of a sediment partitioning coefficient. The sediment partitioning coefficient determines the relative areas of external sediment supply that are deposited in the fluvial and the marine portions of the profile. For example, a partitioning coefficient value of 0.3 means that if there is 1.0km2 of external sediment input, 0.3km2 will be deposited as fluvial sediment and the remaining area, plus any sediment produced by fluvial and marine erosion, will be deposited as marine stratigraphy. Thus the position of the beach is determined by iteratively adjusting the beach position until the closest match is obtained between the area of fluvial stratigraphy deposited, and the required area specified by the partitioning coefficient (figure 2.13).

The partitioning coefficient is difficult to constrain as a model parameter. It can be constrained to a limited extent by examining the planform areas and thicknesses of terrestrial and marine deposition for modern systems, and using the ratio between these two volumes as the partitioning coefficient. However, such data on marine and fluvial depositional volumes are not easily available. A second and less accurate method is to use the subaerial and submarine areas of a delta to calculate the ratio. For example, the Delaware river delta has a total depositional area of 13660m2, of which 2160m2 is subaerial (Pers. comm. Hovius, 1993). This gives a fluvial-marine partitioning coefficient of 0.16. Obviously such calculations are limited by the accuracy and extent of the data.
available, and provide no information on how the partitioning coefficient should be varied through time. However, they do provide limited constraint on the values used.

Response of the free fluvial profile to absolute sealevel change

This section explains how the geometrical fluvial profile responds to absolute sealevel change, and also how the profile is used to control the distribution of deposition and erosion. Figure 2.9 shows the profile response to falling sealevel. At time 2 absolute sealevel has fallen and the elevation of the new fluvial profile is less than that of the previous profile along much of its length. Hence erosion occurs on these parts of the new profile. Beyond the position of the beach from time 1, however, the elevation of the profile is greater than the elevation of the previous chron, and hence some deposition occurs. The horizontal and vertical extent of this deposition depends upon the magnitude of the sealevel fall, the magnitude of the sediment supply, and the value of the partitioning coefficient.

The geometry of the fluvial profile during rising absolute sealevel is also dependent not only on the magnitude of the sealevel rise, but also upon the magnitude of sediment supply and the partitioning coefficient. Figure 2.10 shows the profile geometry and the distribution of deposition and erosion in response to rising absolute sealevel when either the rate of sealevel rise is slow, sediment supply is high, or the partitioning coefficient is high. In this case there is no erosion on the profile, only aggradation and progradation. Figure 2.11 contrasts this with an example of the geometry produced when sealevel rise is rapid, sediment supply is low, or the partitioning coefficient is low. In this case, there is some erosion on the upper part of the profile, accompanied by aggradation on the lower portion of the profile.

The realism of this profile behaviour will be discussed and compared with the behaviour of the diffusional profile below in section 2.6.5.4.
2.6.5.3 The concept of the diffusional profile

Diffusion describes the transport of matter in physical systems from one part of the system to another as a result of random molecular motions (Crank, 1975). The rate of transport of the matter in such cases is proportional to the concentration gradient, and this relationship leads to the classical diffusion equation

\[\frac{\partial C}{\partial t} = \kappa \frac{\partial^2 C}{\partial x^2} \]

(17)

where \(C \) is the concentration of the diffusing substance, \(t \) is time, \(x \) is the space coordinate measured normal to the section, and \(\kappa \) is the diffusion coefficient which has the units \(\text{length}^2 \text{time}^{-1} \). This diffusion equation can be used to describe, for example, the transfer of heat by conduction in a solid, or the transfer of material across some boundary between material types. It can also be used to describe the erosion, transport, and deposition of sediment by assuming that topographic height \(h \) is analogous to concentration \(C \) in equation 17, thus giving

\[\frac{\partial h}{\partial t} = \kappa \frac{\partial^2 h}{\partial x^2} \]

(18)

This is derived by combining the one-dimensional sediment continuity equation for bedload transport which conserves mass

\[\frac{\partial h}{\partial t} = \frac{1}{\rho_s(1-\lambda)} \frac{\partial Q}{\partial x} \]

(19)

where \(\rho_s \) is the density of sediment grains, \(\lambda \) is the porosity of the deposited sediment, and \(Q \) is the rate of sediment transport, with the simple diffusional relationship
where K is a sediment transport coefficient with the units $\text{length}^2 \text{time}^{-1}$. Substitution of (20) in (19) gives the diffusion equation in (18) where $\kappa = K/\rho_s(1 - \lambda)$. The value of κ for a solid volume of sediment of unit width (18) is simply K, with units of $\text{length}^2 \text{time}^{-1}$.

It is important to note that one of the fundamental assumptions that underlies the derivation of the diffusion equation as given above is that there is no change in the suspended sediment concentration in the stream flow across its bed, i.e. that the deposited sediment contains no contribution from suspended load. This is obviously unrealistic since sediment grades such as fine sand, silt and clay comprise a substantial portion of alluvial stratigraphy. Attempting to include extra terms in the diffusion equation to account for this leads to the problem that the rate of transport of non-bedload sediment may bear no relationship with flow power or slope (Leeder, 1992). Consequently, predictions made by diffusional models should be treated with caution on the basis of these difficulties.

Two methods are used in this modelling study to solve equation 18 and thus provide an alternative method in the model to describe the evolution of fluvial profiles with time.

Diffusion from a semi-infinite half-space

In order to solve the diffusion equation analytically it is necessary to define simple geometries, linear boundary conditions, and to maintain a constant value for the diffusion coefficient. One such example is to use the condition of surface evaporation from a semi-infinite medium, or half space (Crank, 1975). In this case the boundary condition for the solution describes, for example, a flow of dry air over a surface with some moisture concentration. Moisture is then lost from the surface by evaporation. The rate of flux of the
moisture depends on the relative moisture concentration on the surface, and the moisture concentration of the air. The concentration C in the air after time t is given by

$$\frac{C - C_1}{C_0 - C_1} = \text{erfc} \frac{x}{2\sqrt{(kt)}}$$

(21)

where C_0 is the constant concentration at the surface of medium, C_1 is the initial moisture concentration in the air, k is the diffusion coefficient, and C is the concentration at distance x.

Putting these boundary conditions into the context of erosion, transport and deposition of sediment, the concentration of moisture at the surface of the semi-infinite medium C_0 is analogous to the elevation of a drainage divide in a continental interior, such that there is assumed to be an infinite supply of sediment available for transport from the half space which is the continental area behind the drainage divide. The concentration of moisture in the air, C_1, is analogous to sealevel. Thus replacing the symbol C with h to represent topographic elevation and rearranging equation 21 to solve for h gives

$$h = (h_0 - h_1) \text{erfc} \frac{x}{2\sqrt{(kt)}} + h_1$$

(22)

The parameter $\sqrt{(kt)}$, termed the diffusion distance, is of significance since it has the units of length and can be calculated for modern river profiles by fitting curves generated by equation 22 to such profiles as described in section 2.6.5.2. Figures 2.4 and 2.5 show topographic profiles and best-fit complementary error function curves for two rivers from the North American and African Atlantic passive margins respectively. The North American profiles are generated from the DBDB5 global D.E.M., and the interpolated profiles are constructed by linear interpolation between valley bottoms on the profile. The African profiles are taken from 1:500,000 tactical pilotage charts, and linear interpolation is used to complete the profile between the data points. Table 2.4 shows the values of $\sqrt{(kt)}$ for the rivers in figures 2.4 and 2.5.
Thus this solution of the diffusion equation is suitable to be used as an initial condition for an iterative finite difference solution, and can be given parameters that are taken from observation of real-world examples. It should be noted, however, that this method cannot allow values of κ alone to be measured, unless t, which represents the time taken for the development of the profile, is known.

Finite difference method

In order to provide a more generally applicable solution to the diffusion equation it is necessary to resort to the use of numerical methods, rather than the more limited analytical solution, an example of which was described above. One such numerical solution utilises the explicit finite difference method. Using this method the variable space under consideration is broken down into a grid of a specified resolution, and a series of equations defined and solved to give the value of the variable at each intersection point on the grid, relative to some initial conditions, and a set of pre-defined boundary conditions.

Smith (1985) shows how this method can be applied to the diffusion equation, giving

$$h(x, t + \Delta t) = h(x, t) + \kappa \frac{\Delta t}{\Delta x^2} [h(x + \Delta x, t) - 2h(x, t) + h(x - \Delta x, t)]$$ \hspace{1cm} (23)
where Δt is the model time step, and Δx is the horizontal grid spacing. A common problem with such finite difference solutions is the stability of the solution. Smith (1985) shows that the solution in equation 23 is valid only for

$$0 < \frac{K \Delta t}{\Delta x^2} < 0.5$$

Values of 0.5 or greater lead to the formation of unstable oscillation which magnify with increasing t. As a result of this stability constraint it is necessary to reduce the size of Δt or increase the size of Δx in line with increasing values of K.

This numerical solution to the diffusion equation makes no explicit reference to sealevel. However, it is possible to implement a variable sealevel datum elevation quite simply by employing an algorithm for finding the beach position as described in section 2.6.4. The examples of diffusional profile shown in section 2.6.5.4 use this method, and set the profile below sealevel to a fixed gradient slope. This is an obvious simplification of the behaviour of the marine system, but seems justifiable here since the essential purpose is to investigate the behaviour of the fluvial profile, and hence it is desirable to keep the treatment of the marine profile as simple as possible.

2.6.5.4. A comparison of the geometrical and the diffusional methods

The following section compares and contrasts the response of the geometrical profile and the diffusional profiles to sealevel changes.

Sealevel rise

The first examples illustrate the response of the geometrical and the diffusional profiles to a 20m sealevel rise. Figure 2.14 shows the diffusional profile example. This is calculated using an initial complementary error function profile with a value for $\sqrt{\kappa t}$ of 50km. This
was chosen to approximate the initial length of the geometrical profile of 200km. The profile was then calculated for a model duration of 1.0Myrs, with a diffusion coefficient κ of $1000 \text{m}^2 \text{yr}^{-1}$, using the finite difference method described in section 2.6.5.3. Figure 2.14 shows that the sealevel rise causes landward movement of the beach, and fluvial aggradation along the whole length of the fluvial profile. The magnitude of the aggradation decreases landward along the profile, and is greatest where the rate of change of topographic slope is greatest. Thus more aggradation occurs on the lower portions of the profile where it is more concave. Aggradation behind the beach is also influenced slightly by the break in slope from the bottom of the fluvial profile onto the marine profile.

Comparing this with the geometrical approach shown in figure 2.15 shows that the main difference between the behaviour of the two profiles is in the presence of small amounts of erosion on the upper portion of the geometrical profile. Figure 2.15 was generated over the same time and with the same 20m magnitude sealevel rise as the diffusional example. A complementary error function curve with a parameter of 2.0, an external sediment budget of 1.0km^2, and a partitioning coefficient of 0.5 were used as model parameter values. The beach moves landwards in response to the sealevel rise, as it does in the diffusional example, producing aggradation in the lower fluvial profile. However, in the geometrical case, the landward movement of the beach causes shortening of the profile, which leads to small amounts of erosion on the upper portions of the fluvial profile.

Thus the most significant difference between the response of the geometrical and the diffusional models to base level rise is the presence or absence of erosion or aggradation on the upper portion of the profile. Determining which of these is the most accurate representation of actual coastal plain depositional patterns is problematic. Leopold and Bull (1979) studied via repeated surveys, the response of a number of small rivers to artificial sealevel rise induced by the construction of dams. In one case a dam approximately 0.6m high was constructed across the course of an ephemeral tributary stream in New Mexico. The presence of the dam initiated aggradation in the reaches
immediately upstream, producing a wedge of sediment approximately 30m in length, which reduced the gradient of the stream bed behind the dam site. The 200m of fluvial profile between the top of the aggradational wedge and the drainage divide appeared unaffected by the sealevel rise. The other rivers studied in the same way showed similar behaviour.

Obviously Leopold and Bull's study has the disadvantage of being conducted only on a small scale, but with a lack of data regarding the behaviour of larger systems, it seems reasonable to extrapolate similar behaviour to larger scale systems. Since aggradation does not appear to occur along the whole length of the profile after a sealevel rise, the diffusional model is inaccurate. The geometrical approach has the advantage that it predicts a wedge of aggradational deposition in response to the sealevel rise, that tapers out upstream. However, depending on the sediment supply, the partitioning coefficient and the error function parameter used, this erosion can be minimised. Consequently it seems reasonable to conclude that it is reasonable to use the geometrical approach in this case.

Sealevel fall

The next two examples show the response of the diffusional and the geometrical profiles to a 20m sealevel fall. All other parameters in both cases are the same as those used in the sealevel rise example. In the diffusional example in figure 2.16 the sealevel fall creates a pattern of continuous aggradation on most of the profile, with only a small amount of spatially limited erosion in the lower 50km of the profile. In contrast, the geometrical approach shown in figure 2.17 produces more widespread and vertically significant erosion on the lower 150km of the profile, with limited amounts of aggradation on the upper profile produced by the lengthening of the profile.

Begin *et al.* (1981) studied the effects of base level fall in a flume tank. It concluded that the effect of the sealevel fall was to initiate stream incision at the head of the stream, which
then migrated upstream towards the top of the flume tank. Wood et al. (1993) found similar results using a flume tank and fluctuating sealevel. Sealevel fall was found to cause incision which progresses upstream. However, Wood et al. (1993) also noted that the rate of the sealevel change relative to the response time of the stream, was crucial to determining the stream response, and that this response are complex in that individual episodes of deposition and erosion by the stream may have little direct link with an external forcing such as base level. For example, sediment may be stored by aggradation in the upper portions of a channel while incision is occurring downstream.

Comparing the response of the geometrical profile with that of the diffusional profile, it seems that the geometrical profile may have the advantage in that the incision in response to the sealevel fall is more clearly delineated and extends further up the profile. However, in both cases the prolonged aggradation on the upper profile seems unrealistic, though in the case of the geometrical profile such aggradation has very low preservation potential since it is very unlikely to survive reworking by profile shortening during a subsequent sealevel rise.

Sinusoidal sealevel variation - low sediment supply

Since many of the model runs through the rest of this thesis use sinusoidal absolute sealevel curves, two examples are included here to show the response of the geometrical and the diffusional profiles to the same 20m amplitude, 2.0Myrs period sinusoidal absolute sealevel oscillation. Figure 2.18 shows the diffusional example, with a transport coefficient value of 1000m²yr⁻¹, an initial value of 50km, and an elapsed model time of 2.5Myrs. The movement of the beach in response to the sealevel changes is clearly visible. The beach initially moves landward slightly in response to the initial sealevel rise, and then moves rapidly seaward as sealevel falls. It reaches its most seaward position at an E.M.T. of 1.5Myrs, after which it undergoes rapid transgression which slows as the rate of sealevel rise decreases.
The beach movement can be compared directly with the absolute sealevel curve in figure 2.19. The spatial extent of deposition, non-deposition, and erosion on the fluvial profile can be seen on the chronostratigraphic diagram in figure 2.19. Aggradation on the upper portions of the fluvial profile is continuous throughout the model run, and occurs on the lower portion of the profile from chron 1 to 10 (E.M.T. of 0.0 to 1.0Myrs) and from chron 19 to 24 (E.M.T. 1.9 to 2.4Myrs). The fluvial profile is responsible for small amounts of erosion on the lower profile during the sealevel fall and the initial rise. This 100km wide area of non-deposition and erosion is shown on the chronostratigraphic profile from chron 11 to chron 18 (E.M.T. of 1.1 to 1.8Myrs), and correspond to the time of transition from the lower portion of the falling limb of the sealevel curve to the inflexion point on the rising limb.

These patterns can be compared directly with those produced by the geometrical profile for the same sealevel variation. The model was run with a complementary error function parameter value of 2.0, a constant external sediment supply of 0.1km², and a partitioning coefficient of 0.5. The profile section in figure 2.20 shows the pattern of beach movement produced by the sinusoidal sealevel variation. The initial sealevel rise produces a landward migration of the beach of approximately 70km. The following sealevel fall causes a seaward translation of approximately 50km, and the final rise produces another landward movement of approximately 100km. Fluvial stratigraphy is only preserved from aggradation on the lower profile during the final sealevel rise. Previous deposition has subsequently been eroded by the sealevel fall, and on the upper profile, by the final sealevel rise. Only the addition of subsidence would ensure preservation beyond the duration of a single sealevel cycle.

The pattern of deposition and erosion is more clearly visible on the chronostratigraphic diagram in figure 2.21. Deposition occurred on the lower part of the profile during the initial sealevel rise, and on the upper part of the profile during the sealevel fall. All the
fluvial stratigraphy prior to chron 16 has been eroded, either by downcutting of the profile during the sealevel fall from chron 5 to 15 (E.M.T. 0.5 to 1.5Myrs) or by erosion on the upper profile due to profile shortening forced by the initial sealevel rise from chron 15 to 18 (E.M.T. 1.5 to 1.8Myrs). A period of non-deposition and erosion produced by fluvial downcutting during the sealevel fall, and approximately 100km in width, produces a similar pattern to that seen in the diffusional example.

Thus a comparison of the results from the geometrical and the diffusional profiles shows that:

- Aggradation occurs on the upper portion of the diffusional fluvial profile throughout the sealevel cycle.
- Vertically limited but horizontally extensive non-deposition and erosion occurs on the lower part of the diffusional profile during the period between the inflexion points on the lowest portion of the absolute sealevel curve.
- Aggradation occurs on the upper portion of the geometrical fluvial profile only during time of sealevel fall. This is due to profile lengthening forced by the seaward movement of the beach. During sealevel rise the upper portion of the geometrical fluvial profile is erosional.
- Vertically more significant and horizontally extensive non-deposition and erosion occurs on the lower half of the geometrical profile throughout the duration of the falling limb of the absolute sealevel curve.

Sinusoidal sealevel variation - higher sediment supply

Since the response of the geometrical profile to sealevel change is sensitive to the sediment supply, this second example using the sinusoidal sealevel variation uses a higher value of external sediment supply of 0.5km2 for the geometrical profile, and a higher value for the diffusion coefficient of 5000m2yr$^{-1}$. All the other model parameters are the same as those described in the low sediment supply example.
The higher value for the diffusion coefficient has the effect of reducing the landward movement of the beach during the sealevel rises, and increasing the thickness of fluvial aggradation, and decreasing the vertical and horizontal extent of the erosion and non-deposition produced by the sealevel fall (figure 2.22). The distance of seaward movement of the beach during the sealevel fall is not significantly affected. The reduced width of the zone of non-deposition and erosion is shown more clearly in the chronostratigraphic diagram in figure 2.23. This reduction in the width of the zone is due to the increased aggradation produced by the increased diffusion coefficient.

Increasing the external sediment supply on the geometrical profile has the effect of reducing the distance of the transgression of the beach during sealevel rise, increasing the distance of seaward movement of the beach during sealevel fall, and reducing the erosion on the upper fluvial profile during sealevel rise (figure 2.24). This change in the pattern can be seen on the chronostratigraphic diagram in figure 2.25. Deposition on chrons 1 to 7 during the initial sealevel rise is now preserved. The horizontal extent of this deposition has been increased by the higher sediment supply.

Thus a comparison of the results from the geometrical and the diffusional profiles shows that:

- Aggradation occurs on the upper portion of the diffusional fluvial profile throughout the sealevel cycle.

- Vertically and horizontally limited non-deposition and erosion occurs on the lower part of the diffusional profile during the three time steps before and during the low point on the absolute sealevel curve.

- Aggradation occurs on the upper portion of the geometrical fluvial profile only during time of sealevel fall. This is due to profile lengthening forced by the seaward movement of the beach. During sealevel rise the upper portion of the geometrical
fluvial profile is erosional, but the extent of this erosion is reduced because of the higher sediment supply acting against profile shortening.

- Vertically more significant and horizontally extensive non-deposition and erosion occurs on the lower half of the geometrical profile throughout the duration of the falling limb of the absolute sealevel curve.

A comparison of sediment flux magnitudes

Another important comparison to make between the geometrical and the diffusional approach to fluvial profile generation is in regard to the magnitudes of the sediment flux for the two approaches. Figure 2.26 shows three plots of sediment flux with distance along the profile for both the geometrical and the diffusional approaches. Both examples were generated with a 1.0Myr model run, constant sealevel and an initial profile length of approximately 200km, generated in the case of the diffusional profile with a value for $\sqrt{\kappa t}$ of 50km. The geometrical model has a partitioning coefficient value of 0.5. The three curves for each plot were generated with different values of external sediment supply in the geometrical case, and diffusion coefficient in the diffusional case. The diffusion coefficient values are based on the range of values from Flemings and Jordan (1989) and Jordan and Flemings (1991). The methods for calculating the flux differ in the two approaches. In the geometrical case the flux is calculated by subtracting the area of stratigraphy deposited at distance x from the total external sediment supply, and then dividing by the length of the time step to give a flux in $m^2 \cdot yr^{-1}$. In the diffusional case the flux is calculated using equation 20, and K and κ are assumed to have the same value.

Comparison of the two plots in figure 2.26 shows that with varying values for the external sediment supply and the diffusion coefficient shows that :

- The magnitudes of the fluxes are similar. For example, with a diffusion coefficient value of 10000m$^2 \cdot yr^{-1}$ the diffusional flux curve has a magnitude ranging from approximately 10m$^2 \cdot yr^{-1}$ to 2m$^2 \cdot yr^{-1}$, and with an external sediment supply of 1.0km2
per 0.1Myr (10m²yr⁻¹) the geometrical flux curve has a magnitude ranging from approximately 10m²yr⁻¹ to 7m²yr⁻¹.

- Both cases show reducing magnitude of flux with increasing distance from the landward end of the fluvial profile.
- The gradients on the curves also show similar trends, increasing and then decreasing with distance down the length of the profiles.

The most significant difference between the curves for the different methods is the final values of flux at the 300km point on the profile. In the diffusional case these values are controlled by the slopes at this point, which are low because of the concave shape of the profile. Thus this suggests that the sediment flux at the mouth of the river should be low. This does not agree with observation which shows that because of increased discharge downstream produced by the contribution from tributary streams, the flux actually increases in most rivers. The value of the sediment flux at 300km in the geometrical case is controlled by the external sediment supply and the value of the partitioning coefficient, not by the slope. Thus the values for the flux decrease downstream as sediment is deposited as fluvial stratigraphy in the coastal plain, but some of the available external sediment supply is bypassed into the marine portion of the profile, as determined by the partitioning coefficient. Consequently the values for the flux at the seaward end of the profile are consistently higher than in the diffusional examples, and as stated above are more in line with observations of flux in real rivers.

Conclusions from the comparison

The previous section has shown that the geometrical and diffusional approaches each have advantages and disadvantages. In general however, the geometrical approach seems most suited to use in this modelling study, since it is capable of producing patterns of erosion and deposition which are reasonably acceptable in the context of a numerical experimental approach intended to investigate aspects of the sequence stratigraphic depositional model.
For example, the diffusional profile does not produce any patterns of stratal onlap, whereas the geometrical approach does. Although the geometrical approach is probably unrealistic in some respects, such as minor erosion on the upper profile during a sealevel rise, and small amounts of aggradation on the upper profile during a sealevel fall, such inaccuracies are less severe than some of the inaccuracies produced by the diffusional profile, and they can be readily accounted for in the interpretation of the model results.

2.6.5.5 The concept of the marine equilibrium profile

The concept of a marine equilibrium profile has been described by a number of workers. Thorne and Swift (1991) gives a review of the development of the concept. Curray (1965) suggested that fine-grained nearshore sediment might over time be redeposited out on the present continental shelf, and re-establish an equilibrium profile that had been destroyed by the Holocene transgression. Swift (1970) reviewed this work, and suggested that over geological time, storm sedimentation which is capable of affecting the whole shelf, is the norm. Pitman (1978) used the concept of an equilibrium shelf profile to explain occurrences of shelf-wide unconformities in the geological record. Most recently, Swift and Thorne (1991) and Thorne and Swift (1991) discussed the equilibrium model for shelf sedimentation in terms of a regime model, which is similar to the concept of dynamic equilibrium applied to river profiles. The regime model uses surfaces of dynamic equilibrium that are determined by a series of mutually interdependent variables, namely sediment input rate, sediment character, sediment transport rate, and the rate of relative sealevel change.

Unfortunately, many of these ideas regarding marine equilibrium profiles are poorly quantified. Although Thorne and Swift (1991) presented a mathematical model for shelf and slope profiles, this model does not appear to include the shoreface. Although shoreface geometry has been shown diagrammatically by many workers (e.g. Swift and Thorne, 1991; Everts, 1987) it has never been quantified in a simple way consistent with the level
of detail required in this model. Turcotte and Kenyon (1985) used a diffusional approach to model slope transport processes on a prograding delta front, but this did not reproduce shoreface erosion. Diffusion has also been used to model marine shelf and slope deposition (e.g. Kaufman et al., 1992; Rivenaes, 1992) but suffers from the problem that the rate of transport may not be proportional to slope in the marine shelf environment, and rates of transport on the shelf are difficult to constrain.

As a result of these difficulties, and to maintain consistency with the geometrical approach adopted for the fluvial profile, the marine equilibrium profile will be represented very simplistically by a geometrically defined exponential shoreface passing laterally into a shelf of fixed gradient. This is a gross approximation of the real processes and resulting geometries, but should prove sufficient for the purposes of this modelling work.

The implementation of the marine profile

As previously discussed, the marine equilibrium profile is composed of two parts. An exponential curve is used to define the shoreface, the width and the depth input as initial model parameters. The equation for this curve has the following form:

\[y(x) = e^{k(x - x_1 - \Omega)} + y_1 - \alpha \]

(25)

where

\[k = \frac{\ln(\alpha)}{-\Omega} \]

(26)

The variables \(\alpha \) and \(\Omega \) represent the height in metres and the width in kilometres respectively of the shoreface. The profile then passes seaward into a straight line of a given gradient, which represents the offshore graded shelf. This is given by:
\[y(x) = d(t) - \alpha - mx \] (27)

where \(m \) is the shelf gradient and \(d(t) \) is the absolute sealevel datum. Figures 2.27 and 2.28 show diagrammatic examples of the proximal and distal marine equilibrium profile geometry respectively. The profile controls deposition and erosion in the same way as the fluvial profile previously described in section 2.6.5.2.

The distal end of the marine equilibrium profile consists of the marine break-of-slope where the profile passes from the shelf to the slope. The position of the marine break-of-slope is determined by sediment supply. Sediment from the fluvial profile, and sediment from erosion on the shoreface is fed onto the shelf (figure 2.28). Since the depositional model is purely 2-D, no allowance is made for effects such as submarine canyon erosion, delta lobe switching and sediment bypassing the shelf directly onto the slope and into the deep marine environment. No out-of-plane sediment transport is included either, for two reasons. Firstly, any out-of-plane removal of sediment would quite possibly be balanced by an equal out of plane addition of sediment, both due to processes of longshore drift. Secondly, the proportion of sediment area added or removed would have to be a largely arbitrarily imposed variable, given that there is little data regarding such transport on the shelves. The shelf-slope break is thus positioned to use up all the available area of sediment transported onto the shelf.

The algorithm which positions the marine break-of-slope consists of an iterative routine which searches for the position of the shelf-slope break that uses an area of sediment most closely matching the area of sediment available for deposition. The areas are calculated using the trapezium method shown in figure 2.12. The accuracy of this area fitting routine is significantly decreased when it is attempting to find the shelf-slope break position for progradation into deep water. This reduced accuracy is a function of the horizontal resolution of the model. With a point spacing on the horizontal profile of 250m, and a water depth of 500m, the difference in sediment area deposited between two points would
be 0.125km², which for sediment supplies in the order of 1km² is not insignificant. This inaccuracy affects the precision of the area of sediment deposition, but it does not significantly affect the resulting stratigraphic patterns.

A special condition can arise in which all the positions for the marine break-of-slope seaward of the beach position, result in too much sediment being deposited. When this occurs, the position of the beach must be moved landward, and the fluvial profile recalculated, until the total area of sediment deposited is as close as possible (see previous discussion of the affects of model resolution on the accuracy of area fitting) to the total available (figure 2.29). Recalculating the fluvial profile for the new beach position means that the partitioning coefficient has to be ignored, because in this situation the beach position is no longer free to move landward or seaward to balance the amount of fluvial sediment used. More marine sediment is deposited than has been specified by the sediment partitioning coefficient, since the beach has been moved landwards, reducing the area of fluvial sediment deposited. Thus, when the beach has to be moved landward in the way described, sediment is effectively bypassing the fluvial profile, and being deposited on the marine slope.

2.6.6 Flexural Isostasy

The flexural response of the lithosphere to sediment loading and unloading is calculated using a thin elastic plate model which assumes that the deflections are small compared to the plate thickness. The flexural response of the lithosphere to distributed loads is calculated using the fourth order differential flexure equation applied to the specific case of an infinite lithospheric plate of flexural rigidity D, underlain by fluid-like mantle material:

\[D \frac{d^4z}{dx^4} + (\rho_m - \rho_{\text{infill}})gz = \Delta H(x) \quad \text{(28)} \]
where z is the plate deflection due to the vertically applied load $\Delta H(x)$, assuming no applied torques or in-plane loads, ρ_m is the density of the mantle, ρ_{infill} is the density of the infilling material, g is acceleration due to gravity, and the expression $(\rho_m - \rho_{\text{infill}})gz$ gives the restoring force. Two methods of solving this equation to calculate the deflection of the lithosphere for a given load are used in the model.

The first method uses the response function technique. Solving equation 28 for a periodic load gives

$$z(x) = \frac{(\rho_{\text{infill}} - \rho_w)hg \cos(kx)}{((\rho_m - \rho_{\text{infill}})g + Dk^4)}$$

(29)

where h is the maximum height of the load, g is the average gravity, and k is the wave number of the load. If the lithosphere is considered as a filter when responding to loading, then a response function can be defined;

$$\phi_c = \left[\frac{Dk^4}{(\rho_m - \rho_{\text{infill}})g + 1}\right]^{-1}. \tag{30}$$

This can be used to calculate the flexural response using a delta function $\delta(x)$ to approximate the load function (replacing the $h \cos(kx)$ term in equation 29) where $\delta(x) = 0$ when $x \neq 0$ and

$$\delta(x)\delta(x = 1, x = 0.$$

Taking $\Delta H(k)$ and $z(k)$ as the discrete Fourier transforms of $L(x)$ and $z(x)$ respectively, then equation 29 can be reduced to

$$z(k) = \phi_c(k) \Delta H(k) \frac{(\rho_{\text{infill}} - \rho_w)}{(\rho_m - \rho_{\text{infill}})}. \tag{31}$$
Hence, to calculate the flexure $z(x)$, the periodic load $L(x)$ is transformed into the frequency domain, equation 31 is applied, and the result is inversely transformed back into the spatial domain.

The second method uses a numerical finite difference technique described by Bodine (1981). The advantage that this method has over the Fourier transform method is that it allows for lateral changes in the restoring force and also in the elastic thickness of the lithosphere via the boundary conditions used in the formulation of the finite difference solution. The changes in the restoring force are caused in this case by changes in the density of the material, either air or water, that is displaced by flexural uplift. The restoring force along the profile is calculated simply by recording which points are above and which points are below sealevel before the load is applied. For those points above sealevel, the restoring force is calculated assuming that air will be displaced. For those points below sealevel, the restoring force is calculated assuming that water will be displaced. This method introduces a small inaccuracy since flexural subsidence in the region of the beach will flood parts of the profile where the restoring force has been calculated assuming that air will be displaced. However, this inaccuracy can be shown to be negligible by comparing a flexural profile for the same load calculated first assuming water displacement across the profile, and then assuming air displacement.

The elastic thickness of the lithosphere (T_e) in the model can have a variety of values. It can be held constant, both spatially and temporally, at values of 5km or 30km. Alternatively, T_e can be varied through model time. In this case, values are calculated using the 3 times the square root of time relationship (Bodine et al., 1981). The value of T_e can also be varied spatially along the length of the model profile, but only when the finite difference technique is used to solve the flexural equations.
2.6.6.1. Flexural response times

The flexural isostatic response time of the asthenosphere and the lithosphere to surface loading and unloading is a crucial factor in this modelling work, and yet it appears to be a poorly understood parameter. Flexural response time, as it is used here, refers to the length of time required for the lithosphere and the asthenosphere to adjust, via flexure, to surface loading or unloading. The separate responses of the asthenosphere and the lithosphere, caused by their different rheological properties, together account for the flexural response to loading and unloading observed at the earth's surface. Studies of post-glacial rebound (e.g. Peltier, 1986) suggest that response times for the asthenosphere are in the order of 10kyr. Walcott (1970a) suggested a lithospheric response time to loading in the order of 10 to 20Kys. The response time of the lithosphere is more controversial, due to the more complex rheologies involved, and an often complex thermal and loading history. Bodine et al. (1981) suggested that an applied load causes stress relaxation from the initial seismic thickness of the lithosphere to the final elastic thickness, which is essentially complete within one million years or less.

Thus, due to the lack of detailed understanding, choosing and then constraining a method of implementing a finite flexural response time in the model is difficult. There is currently no consensus regarding flexural response times, and the lithosphere on passive rift margins is likely to have a complex rheology, having experienced a potentially complex thermal history. For this reason, and because the flexural response is a potentially important control on stratigraphy, the model has three simple alternative methods to implement finite response times.

The first and simplest is the instantaneous response option in which the full magnitude of the flexural subsidence and uplift generated by the present load is applied to all the present chrons at the end of the time step for which the load was generated. This is essentially assuming that either the flexural response is instantaneous, or that the response is complete...
within one time step which can range from 10Kys to 1Myr, but is generally set to be
100Kys. Thus the significance of the response time to the stratigraphy cannot be
investigated with this method.

The second method of dealing with flexural response times in the model calculates the
total magnitude of flexure due to a given load, but then does not apply it to all the chronos
immediately. Instead, the flexural response time parameter is used to calculate what
proportion of the uplift and subsidence should be applied for each time step. Thus if the
time step is 0.1 Myrs and the flexural response time parameter is set at 0.5 Myrs, for each
time step 20% of the uplift and subsidence due to the load will be applied. The algorithm
can be described by treating F, the flexure to be applied at a particular time step, as a
function of the total flexure z for a given load so that

$$F(x,t) = \sum_{n=t-T_f}^{t} z(x, n) \times \frac{t_{inc}}{T_f}$$

(32)

where t is the E.M.T., T_f is the flexural response time, and t_{inc} is the length of the model
time step, all measured in millions of years.

The algorithm is implemented using a stack structure which is used to store the flexural
profiles generated for each load applied at each time step. This can then be scanned for a
number of previous time steps dependent on the size of t_{inc} and T_f, and the appropriate
proportion of the total magnitude of the flexure applied to the chronos. The model currently
uses a linear method to calculate the magnitude of flexure applied at each time step, but
non-linear functions such as a power function or an exponential could easily be applied.
Although this method is also very simplistic, it at least has the advantage of allowing a
flexural response time greater than the model time step. This then allows the significance
of the response time to be investigated.
The third method treats the flexural response as an exponential decay function. This is implemented very simply by halving the applied flexural amplitude due to the applied load, for each subsequent time step. Thus the flexural response takes the form of an exponential decay. The disadvantage with this method is that the response time is again dependent on the length of the time step. Hence, if a time step of 100Kyrs is chosen, the time for the flexural effects due to any given load to be 96.9% complete would be 500Kyrs. Alternatively, if a time step of 1Myrs was chosen, it would take 5Myrs for 96.9% of the flexure due to any load to be completed.

2.7 The Model Output

Once a model run has been completed, the contents of the various data structures are displayed graphically. The output can be split into two groups. The first consists of sections through the stratigraphy, either the whole length of the model profile, or smaller sections of the profile which are then magnified. The second group consists of a Wheeler chronostratigraphic diagram on which horizontal distance is plotted alongside E.M.T., and a series of curves showing values of model variables through model time. Examples of this output can be seen throughout chapters three, four and five.
Figure 2.1 The model coordinate system
Figure 2.2 A diagrammatic description of the model data structure
Figure 2.3. A flowchart to show the order of calculation of model components for each time step.
Figure 2.4. Two topographic profiles from the North American Atlantic margin, with interpolated valley bottom profile and best fit complementary error function curve.
Figure 2.5. Two topographic profiles from the African Atlantic margin, produced by linear interpolation between the profile data points, and the best fit complementary error function curves.
Figure 2.6 A diagram to show the coordinate terms used in the definition of the fluvial profile.
Figure 2.7. A plot to show the form of the complementary error function curve.
Any part of the profile uplifted above the original elevation is eroded, e.g., flexural uplift behind shoreline.

New shoreline position after the relative sealevel rise.

Erosion and flooding of the lower portion of the fluvial profile due to thermal subsidence.

Hinge point.

Chron 2, time 2
Chron 1, time 1

Constant absolute sealevel at 0m

Thermal subsidence causing relative sealevel rise.

Figure 2.8 Response of the fixed fluvial profile to relative sealevel rise.
Falling relative sealevel: Fluvial degradation. Progradation dependent on possible fluvial sediment supply and magnitude of relative sealevel fall.

Figure 2.9 The response of the geometrical fluvial profile to falling absolute sealevel.
Rising relative sealevel: Fluvial aggradation, Fluvial progradation - Both dependent upon sediment supply as well as rate of relative sealevel rise

Slow relative sealevel rise, high sediment supply, or high fluvial-marine partitioning coefficient

New beach position after fluvial progradation and aggradation

Note - new beach position may be anywhere along the sealevel datum for time 2, dependent primarily on sediment supply

Old beach position

Figure 2.10 The response of the fluvial profile to rising absolute sealevel for either a slow rise, a high value of sediment supply, or a high value for the fluvial-marine partitioning coefficient.
Rising relative sealevel: Fluvial aggradation, Fluvial progradation - Both dependent upon sediment supply as well as rate of relative sealevel rise

Fast relative sealevel rise, low sediment supply, or a low value for the fluvial marine partitioning coefficient

- Fluvial erosion due to the shortening of the profile. Typically only a few metres in magnitude.
- New beach position. The rate of fluvial aggradation and progradation has not kept pace with the relative sealevel rise.
- Note - new beach position may be anywhere along the sealevel datum for time 2, depending upon the balance between the rate of relative sealevel rise and the sediment supply.
- New beach position without sufficient sediment supply for any fluvial aggradation and/or progradation
- Old beach position

Figure 2.11 The response of the geometrical profile to an absolute sealevel rise for either a fast rise, a low value of sediment supply, or a low value for the fluvial marine partitioning coefficient.
Total area between chron 1 and chron 2 for interval between point 1 and point 2
= area of trapezium defined by four points
= \((x \times y_1) + (0.5x \times y_2) + (0.5x \times y_3)\)

Figure 2.12 The geometry of the trapezium shape used to calculate areas of deposition and erosion
1. Find the initial beach position - chron-sea intersection
2. Generate a fluvial profile
3. Has sufficient fluvial sediment been deposited?
4. If not, move the position of the beach seaward.

E.G. In the example below, the external sediment input is 1.0sq.km, and the sediment partitioning coefficient is 0.5.

Figure 2.13. A diagrammatical explanation of the iterative routine used to determine the beach position and the geometry of the fluvial profile with a specified partitioning coefficient.
Figure 2.14. The response of the diffusional fluvial profile to a 20m sealevel rise.
A Position of the beach

No deposition, but small amounts of erosion on the upper coastal plain due to profile shortening driven by the sealevel rise

Error function parameter value of 2.0
20m rise in sealevel from an initial value of 0m
Elapsed model time of 1.0Myrs
Sediment supply 0.1 square kilometres per 0.1Myrs

Figure 2.15. The response of the geometrical profile to a 20m sealevel rise.
Diffusion coefficient of 1000 metres squared per year

20m fall in sealevel from an initial elevation of 20m

Elapsed model time of 1.0Myrs

Initial profile has root kappa time value of 50km

Figure 2.16. The response of the diffusional fluvial profile to a 20m sealevel fall.
Small amounts of fluvial aggradation caused by profile lengthening in response to the sealevel fall.

Erosion of underlying chron by the lower portion of the fluvial profile.

Continuous seaward movement of the beach in response to the sealevel fall.

Figure 2.17. The response of the geometrical profile to a 20m sealevel fall.
Figure 2.18. The response of the diffusional fluvial profile to a 20m amplitude sinusoidal sealevel curve with a diffusion coefficient of 1000 metres squared per year.
Figure 2.19. A chronostratigraphic diagram and an absolute sea level curve from the diffusional profile model shown in figure 2.18. The model was run with the sinusoidal absolute sea level curve shown and a diffusion coefficient value of 1000 metres squared per year. Note the region of fluvial erosion and bypass in chron 11 to 17 caused by the absolute sea level fall.
Error function parameter value of 2.0
20m amplitude, 2.0Myr period sinusoidal sealevel
Elased model time of 2.5Myrs
Sediment supply 0.1 square kilometres per 0.1Myrs

Figure 2.20. The response of the geometrical profile to a 20m amplitude sinusoidal sealevel curve with a sediment supply of 0.1 km squared per 0.1Myr timestep.
Figure 2.21. A chronostratigraphic diagram and an absolute sealevel curve from the model run shown in figure 2.20. The model used a geometric profile with an error function parameter value of 2.0 and a sediment supply of 0.1 square kilometres per year.
1. Gradual seaward movement of the beach during rising sealevel due to the high diffusion coefficient.

2. Rapid seaward movement of the beach with very minor truncation of previous chronos in response to the falling sealevel.

3. Most seaward position of the beach. Although there has been little erosion due to the sealevel fall, the chronos are closely spaced.

4. Landward movement of the beach in response to rising sealevel over the low gradients of the seaward end of the fluvial profile.

Position of the beach

Diffusion coefficient of 5000 metres squared per year
20m amplitude, 2.0Myr period sinusoidal sealevel
Elapsed model time of 2.5Myrs
Initial profile has root kappa time value of 50km

Figure 2.22. The response of the diffusional fluvial profile to a 20m amplitude sinusoidal sealevel curve with a diffusion coefficient of 5000 metres squared per year.
Figure 2.23. A chronostratigraphic diagram and an absolute sea level curve from the model run shown in figure 2.22. The model run was generated with a diffusional profile with a diffusion coefficient of 5000 metres squared per year and the absolute sea level curve shown.

Note how the increased sediment supply has reduced the width and duration of the region of fluvial erosion and non-deposition.
Position of the beach

Complex pattern of fluvial erosion and deposition due to profile lengthening and shortening. See section 3.2.2 for more detail.

Error function parameter value of 2.0
20m amplitude, 2.0Myr period sinusoidal sealevel
Elapsed model time of 2.5Myrs
Sediment supply 0.5 square kilometres per 0.1Myrs

J. Transgression and fluvial aggradation in response to the final sealevel rise

I. Landward movement of the beach in response to the initial sealevel rise

Rapid seaward movement of the beach due to combined falling sealevel and progradation due to limited accommodation space

Figure 2.24. The response of the geometrical profile to a 20m amplitude sinusoidal sealevel curve with a sediment supply of 0.5 square kilometres per 0.1Myr timestep.
Figure 2.25. A chronostratigraphic diagram and an absolute sea level curve from the geometric profile model run with an error function parameter value of 2.0 and a sediment supply of 0.5 square kilometres per year. Note the pattern of deposition and erosion on the profile. This is discussed in section 2.6.5.4.
Figure 2.26. The magnitude of sediment flux with distance along the geometrical and the diffusional fluvial profiles. Three examples for each approach are shown, with varying values for the diffusion coefficient and for the external sediment supply. See text for a full discussion of the model parameters and the methods used to calculate the sediment flux.
Figure 2.27 The marine equilibrium profile response to relative sealevel rise.
Figure 2.28 The changing position of the shelf-slope break for different chronos.
3) The beach is moved landward, and the fluvial profile is recalculated, until the total area of sediment deposited is correct. The partitioning coefficient is no longer accurately maintained.

1) Position for the beach selected by the routine to use up the available area of fluvial sediment.

2. The marine break-of-slope is moved progressively landward in an attempt to find a fit for the area of marine sediment used, until it reaches the already positioned beach.

Figure 2.29 Details of the calculation of the position of the shelf-slope break.
Chapter 3
Chapter 3 - Controls on Sequence Geometry

"'tis a tale told by an idiot,

full of sound and fury,

yet signifying nothing."

(Shakespeare, Macbeth)

3.1 Introduction

This chapter shows how results from a quantitative forward model of passive rift-margin stratigraphy compare with the conceptual qualitative models describing the development of siliclastic depositional sequence geometries, presented by various authors such as Posamentier et al. (1988), Posamentier and Vail (1988) and more recently Van Wagoner et al. (1990) and Vail et al. (1991). It is shown that the quantitative model can reproduce some of the basic features of the sequence stratigraphic models such as systems tracts (with a variety of stacking patterns), sequence bounding unconformities, and stratal onlap patterns. Using the quantitative model to perform a series of sensitivity tests, it is possible to investigate the significance of a variety of controls on these features of depositional sequences. The controls include changing absolute sealevel, thermal subsidence, flexural isostasy, variable sediment supply, and fluvial profile geometry. The results can then be used to assess the validity of the current sequence stratigraphic model, and to determine what controls may prove to be important that are not currently adequately represented in such models.

3.2 Reproducing the basic elements of depositional sequences

The qualitative sequence stratigraphic depositional models consist of three main controlling processes which can be related directly to the elements of this quantitative forward model. These processes are tectonic subsidence, eustasy, and erosion and
deposition on equilibrium surfaces. Selecting appropriate initial conditions and model parameters allows the basic features of the sequence stratigraphic depositional model to be reproduced with the quantitative model. Similarities and discrepancies between the two models can then be used to investigate some of the assumptions behind the sequence stratigraphic model.

3.2.1 Initial conditions and parameter values

In order to generate a type-1 sequence (see section 1.1) of duration 2.0Myr E.M.T. (i.e. a third order cycle using the terminology of Vail et al. (1977b)) with twenty chrons each of duration 100Kyrs, the following initial conditions and parameter values are used. Tectonic subsidence is calculated using one-layer thermal subsidence (McKenzie, 1978) with an initial lithospheric thermal age of 10Myrs, and stretching values ranging from 1.0 at 400km from the origin, to 1.01 at 500km from the origin, and 2.0 at 1024km from the origin. No lithospheric flexure is included in the calculations for these model runs. An absolute sealevel curve with a 2.0Myr period and a 20m amplitude is used. The period is chosen to produce a third-order cycle (Vail et al. 1977b). The amplitude is lower than many of the third-order cycles shown by Haq et al. (1988) to demonstrate that high-amplitude changes are not necessary to create sequence geometries. External sediment supply is held constant at an arbitrary value of 1.0km2, and the area of sediment eroded on both the marine and fluvial profiles is not added to the total sediment available for deposition on each chron so that sediment supply remains constant throughout the model run.

The fluvial profile has an initial length of 200km, based on the width of the coastal plain on the North American passive margin, and the landward end of the profile is held in a fixed horizontal and vertical position. The profile is defined using a complementary error function curve with an arbitrary error function parameter value of 2.0. Fluvial progradation is included, with the fluvial partitioning coefficient set to an arbitrary value of 0.5. The
initial topography has 200m elevation from the origin to 500km right of the origin, and then a constant slope from 0m at 500km to -500m at 1024km right of the origin. The marine profile has a shoreface 10m high and 2km wide, a shelf with a gradient of 0.5m/km and a slope with a gradient of 43.66m/km. These values for the topography are based on general passive margin topography. Uncompacted sediment density is 1.8kg/m³. These initial conditions and parameters are summarised in figure 3.1.

3.2.2 Description of the type-1 sequence

Both Van Wagoner et al. (1988) and Van Wagoner et al. (1990) show cross sections of stylised type-1 sequences (figure 3.2). The essential characteristics of a type-1 sequence are a basal unconformity due to subaerial exposure and erosion, associated with a basinward shift of facies, a downward shift in coastal onlap, and onlap of the overlying strata (Van Wagoner et al. 1988). This is stated to be caused by the rate of eustatic fall exceeding the rate of basin subsidence, hence dropping the beach over the edge of the shelf-slope break. In the example diagram (figure 3.2) both Van Wagoner et al. (1988) and Van Wagoner et al. (1990) show a highstand systems tract with a progradational trend to the parasequences overlain by a type-1 sequence boundary which is caused by a fall in relative sealevel, which in turn is caused by a fall in eustatic sealevel. The sequence boundary is overlain by the lowstand systems tract with a lowstand wedge and an incised valley fill. This is then overlain by the transgressive system tract composed of parasequences with a retrogradational trend. This passes vertically into the highstand system tract, with parasequences showing an aggradational to progradational trend. A second sequence boundary, either type-1 or type-2, overlies the highstand systems tract.

Figure 3.3 is a section from the quantitative model showing twenty five chrons generated over an E.M.T. of 2.5Myrs. This section is analogous at a basic level to the type-1 sequence examples described above. The sequence boundary in figure 3.3 is placed on chron 15, at an E.M.T. of 1.5Myrs, at the lowest point on the absolute sealevel curve. It is
defined on the basis of the resumption of fluvial deposition and hence the end of fluvial erosion in the lower portion of the fluvial profile, and the continuation of the surface basinward as a correlative conformity. The sequence boundary as it is defined here, is more difficult to fit into the standard sequence stratigraphic model for a type-1 sequence, because the pattern of fluvial down-cutting, erosion and sediment bypass in this model is more complex, and highly diachronous. The significance of this and other discrepancies are discussed fully in section 3.3.

Groupings of chrons within the model run shown in figure 3.3 are analogous in terms of geometry and positioning to the systems tracts described in the sequence stratigraphic model. Although the use of systems tracts in describing actual stratigraphy can be criticised because of the necessary assumption of the dominant control of relative sealevel change, their use here is justifiable, since in a conceptual model, either qualitative or quantitative, the influence of relative sealevel is always known. Chrons one to five represent the highstand systems tract which has been eroded and truncated by the subsequent subaerial erosion on the fluvial profile as relative sealevel dropped. Chrons 6 to 15 are analogous in some ways to the lowstand systems tract, in that fluvial deposition is minimal, the fluvial profile is eroding the old shelf surface, and the largest area of deposition is on the deep marine slope. However, the diachronous nature of the sequence boundary complicates this, since chrons 6 to 15 both underlie and overlie the sequence boundary, unlike in the sequence stratigraphic depositional model in which the lowstand systems tract overlies the sequence boundary (see figure 3.2). Chrons 16 to 25 are analogous to transgressive and highstand systems tracts in terms of their position on the eustatic sealevel curve, their stacking patterns, and their onlap patterns.

Figure 3.4 shows the corresponding chronostratigraphic diagram, absolute sealevel curve, and the stratal onlap curve. The chronostratigraphic diagram shows clearly the distribution of different environments of deposition in response to changing absolute sealevel. The beach can be seen moving basinward as absolute sealevel falls, and moving back
landwards when it starts to rise. Onlap on the fluvial profile is preserved in chron 19 to 25. The positioning of the sequence boundary, the pattern of fluvial deposition and erosion, and the pattern of downlap do not fit well with the standard sequence stratigraphic model. The significance of these differences is discussed in section 3.3.

It is important to understand at this point how the fluvial stratigraphy shown in the type-1 standard reference model develops through time in response to changing relative and absolute sealevel. Figures 3.5 to 3.9 illustrate this development. Each figure represents an E.M.T. of 0.5Myrs, and shows an enlarged view of the fluvial profile and early proximal marine portion of the model profile. Figure 3.5 shows the first five chron in the model run. The fluvial profile shows aggradation along its whole length, developed in response to a 20m rise in sealevel (figure 3.4). As the rate of absolute sealevel rise decreases, the beach changes from retrogradation to progradation.

As absolute sealevel begins to fall, an erosion surface starts to develop on the lower two thirds of the fluvial profile, while aggradation continues on the upper profile (figure 3.6). This occurs as a result of profile lengthening forced by the seaward movement of the beach in response to falling absolute sealevel. The continuing development of the surface of erosion and non-deposition (see figure 3.4), and a reduction in aggradation on the upper profile are shown in figure 3.7. At this stage the absolute sealevel curve is at its low point. When absolute sealevel starts to rise again aggradation commences on the lower third of the fluvial profile, while small amounts of erosion (less than 5m in vertical extent) form on the upper profile (figure 3.8). Aggradation occurs progressively further landward on the profile as the rate of absolute sealevel rise slows (figure 3.9) producing the pattern of stratal onlap seen in figure 3.4.

These examples show that the profile response to absolute sealevel change has both useful features such as aggradation and stratal onlap in response to absolute sealevel rise, and development of a laterally extensive surface of erosion and bypass in response to sealevel
fall. However, the profile also shows unrealistic behaviour in the form of erosion of limited vertical extent on the upper profile in response to absolute sealevel rise, and aggradation on the upper profile in response to absolute sealevel fall. These latter features should not be considered as predictive model results.

3.2.3 Description of the type-2 sequence

The essential difference between a type-1 and a type-2 sequence as described by Van Wagoner et al. (1988) and Van Wagoner et al. (1990) and shown in figure 3.10, is the lack of subaerial erosion and basinward shift in facies in a type-2 sequence (compare with the type-1 example in figure 3.2). Other factors such as coastal onlap patterns are common to both types of sequence. A type-2 sequence does not have a lowstand systems tract developed, but instead has a shelf margin system tract. This is composed of aggradational to slightly progradational parasequences which overlie the previous highstand systems tract and the sequence boundary (figure 3.10).

A section analogous to a type-2 sequence can be produced with the quantitative model by increasing the rate of tectonic subsidence, using stretching factors ranging from 1.0 at 400km to 8.0 at 1024km, and decreasing the amplitude of eustasy from 20m to 10m. Figure 3.11 shows the section from the model run with these parameters. The fluvial erosion and truncation of chronos visible in the type-1 sequence is absent from the type-2 example. However, the patterns of progradation, aggradation and retrogradation are very similar to those in the type-1 example. The shelf margin systems tract as described by Van Wagoner et al. (1988) is not developed since both the position of the beach and, when developed, the marine break-of-slope, remain progradational throughout the model run. No aggradational stacking pattern characteristic of shelf margin system tracts in type-2 sequences is developed. The lack of subaerial erosion and the reduced mobility of the beach with respect to a type-1 sequence are shown in the chronostratigraphic diagrams in figure 3.12.
3.2.4 Predictions of reservoir and seal distribution

Although detailed predictions made with the model should be treated with extreme caution, the examples of type-1 and type-2 sequences shown in figures 3.3 and 3.11 do allow general predictions regarding the distribution of possible reservoirs and seals in a sequence stratigraphic framework. Figure 3.13 shows two examples of possible reservoir and seal geometries. In the type-1 sequence example, shoreface stratigraphy that is liable to be sand-rich, is preserved beneath a type-1 sequence boundary unconformity, and hence surrounded by probably impermeable shelf and coastal plain muds. The type-2 example shows extensive shoreface stratigraphy preserved beneath a type-2 sequence boundary, and sealed laterally and vertically by probably muddy coastal plain and shelf stratigraphy.

3.3 Underlying assumptions of the sequence stratigraphic model

Quantitative modelling of stratigraphy is a powerful method for highlighting the assumptions behind the sequence stratigraphic model, and for investigating the controls on stratigraphy. Since the sequence stratigraphic model is predominantly qualitative, it is difficult to rigorously test, except by direct comparison of model predictions against stratigraphic data, and adopting this approach alone leads to important uniqueness problems. The quantitative model has the advantage that the contribution of different conditions and parameters can be more carefully examined, and thus the assumptions behind the model, and behind the qualitative sequence stratigraphic models, may be investigated.

The previous section showed how the quantitative model can reproduce aspects of the sequence stratigraphic model, namely the gross geometry of type-1 and type-2 sequences. However, there are several discrepancies. The following sections use the quantitative model to investigate these discrepancies, to highlight some of the often unstated
assumptions behind the sequence stratigraphic model and to propose some alternatives to the controls on stratigraphy described by various workers such as Vail et al. (1977b); Posamentier et al. (1988); Posamentier and Vail (1988); Van Wagoner et al. (1990); Vail et al. (1991).

3.3.1 Definition of Coastal Onlap

Vail et al. (1977a) and Posamentier et al. (1988) described how patterns of coastal onlap develop in response to eustatic change. Vail et al. (1977a) defined coastal onlap as "the progressive landward onlap of littoral and/or non marine coastal deposits" while Posamentier et al. (1988) defined coastal onlap as "the landward limit on the shelf or upper slope of sediment distribution - marine or non marine." Controls on coastal onlap patterns will be discussed below, but it is important first to examine the methods by which coastal onlap is measured from preserved stratigraphy.

Vail et al. (1977a) showed several theoretical examples of coastal onlap patterns. Both a vertical component, termed coastal aggradation, and a horizontal component termed coastal encroachment can be measured from the termination of strata against an initial depositional surface as described by Vail et al. (1977a) (figure 3.14). These patterns of stratal termination occur and can be measured in the quantitative model results presented here. Such onlap will be referred to as stratal onlap rather than coastal onlap, since in this model the onlap occurs entirely within fluvial stratigraphy, and at elevations of up to several hundred metres. The vertical components are measured and shown as stratal onlap curves (e.g. figure 3.4).

3.3.2 Magnitude of coastal onlap and derivation of relative sealevel curves

Vail et al. (1977a) assumed that measurements of coastal onlap could be used as a direct quantification of relative sealevel change. It did however, point out complications with
such measurements arising from variations in sediment supply which can lead to an absence of a coastal plain, and so affect onlap measurement, and also with topography on the coastal plain which can introduce an error to the relative sealevel determination. Posamentier et al. (1988) show theoretical coastal onlap curves calculated using essentially the same method as given in Vail et al. (1977a).

The importance of topography on the coastal plain has been underestimated in Vail et al. (1977a). Fluvial processes may create accommodation space for fluvial deposition tens, or even hundreds of metres above sealevel. Thus landward onlapping stratal terminations in fluvial stratigraphy may occur at significant elevations above sealevel. The resulting amplitude of stratal onlap is likely to be more strongly controlled by the dynamics of the fluvial system than by the amplitude of the eustatic sea level change.

To illustrate this point, albeit in a relatively simplistic way, figure 3.4 shows the stratal onlap pattern measured from the type-1 sequence example model stratigraphy, generated with an absolute sealevel curve of 20m amplitude and a 2.0Myr period. The amplitude of the vertical component of the stratal onlap for chron 19 to 25 is almost 200m. If this aspect of the fluvial profile behaviour is realistic, and fluvial stratigraphy can be deposited and preserved at such altitudes on a fluvial profile, the whole concept of coastal onlap patterns derived from seismic sections and used to determine amplitude of eustatic change, is fundamentally flawed. In order to derive relative sealevel change from a stratal onlap pattern such as that shown in figure 3.4, it would be necessary to know details of the behaviour of the fluvial profile upon which the strata was deposited. Deducing such details from preserved fluvial stratigraphy may well prove impossible.

3.3.3 Definition of the tectonic hinge point, the equilibrium point, and the bayline

Many of the assumptions behind the depositional sequence stratigraphic model were not clearly stated by Vail et al. (1977a) or Posamentier et al. (1988) but are implicit in the
results that they described. The basic assumption that was clearly stated is that coastal onlap is controlled by an interaction of eustasy and tectonic subsidence, with sediment supply possibly acting as a modifying influence. This assumption lead to the definition of three key points on a depositional profile (Posamentier et al., 1988). These are the tectonic hinge point, the equilibrium point, and the bayline.

The hinge point was not strictly defined in the model, but appears to be the point on the model profile separating a tectonically subsiding profile surface from a tectonically uplifting profile surface. This assumed a simplistic tilting beam model for tectonic subsidence. The equilibrium point is defined as that point on the profile where the rate of eustatic change is equal to the rate of tectonic subsidence. The bayline is defined as the boundary on the model profile between fluvial sediments deposited above sea level and deltaic and coastal plain sediments deposited at sea level. These points are shown diagrammatically in figure 16 of Posamentier et al. (1988), summarised here in figure 3.15.

The movement of the points on the model profile through time in response to eustatic change, is assumed in the sequence stratigraphic model, to control the pattern of deposition of stratigraphy. For example, figure 18 in Posamentier et al. (1988) showed how onset of fluvial deposition should occur when the bayline and the equilibrium point were at the same position on the depositional profile.

3.3.4 Quantitative implementation of the tectonic hinge point, the equilibrium point, and the bayline

Attempting to implement the definition of the key points on the profile such as the equilibrium point and the bayline in the quantitative model is problematical. Tectonic subsidence in the model is calculated using a one or two-layer stretching model with the magnitude of subsidence dependent on the stretching factor, β. Thus there is no direct
equivalent of the hinge point where subsidence passes laterally into uplift. This leads to problems quantifying the equilibrium point, since there is no persistent tectonic uplift in the model, so the equilibrium point cannot be landward of the hinge point during a eustatic rise. Although flexure produces uplift due to deposition and erosion, this uplift is not persistent, since its distribution and magnitude changes with each time step. Flexural effects do not produce a simple transition from subsidence to uplift across a hinge zone, and hence flexure cannot be used to define an equilibrium point in the way described by Posamentier et al. (1988).

There is also a problem with the respective rates of eustasy and tectonic subsidence. At the equilibrium point the rate of eustatic change is said to equal the rate of tectonic uplift or subsidence. However, a third order eustatic cycle typical of those shown by Haq et al. (1988) has an amplitude of, for example, 50m and occurs over a period of, for example, 1.0Myrs. This gives a rate of 5m/100Kyr model time step. With a stretching factor of 1.5, at 20Myrs since the onset of thermal subsidence, the rate of thermal subsidence is 1.54m/100Kyr. Increasing the stretching factor to 4.0 gives a rate of 3.43m/100Kyr. After 50Myrs, the rate of subsidence is reduced to 0.95m/100Kyr with a stretching factor of 1.5, and 2.08m/100Kyr with a stretching factor of 4.0. Thus using the McKenzie model of thermal subsidence (McKenzie, 1978) very high stretching factors are needed to maintain equilibrium with falling sealevel throughout a cycle of sealevel fall. Therefore, the conceptual sequence stratigraphic model is unrealistic in assuming that rates of tectonic subsidence can match rates of eustatic fall throughout a third order type cycle, especially on an old (20Myrs or longer since the end of the synrift phase) passive margin.

The concept of the bayline has been criticised by Miall (1991) which pointed out that the bayline concept implied that there was no slope on the delta top, which is obviously erroneous since streams on the delta top still need a gradient in order to flow seawards. Even if the gradients are small, they still exist. Thus, since it appears to be a flawed
concept, the bayline is ignored in the quantitative model. The fluvial equilibrium profile is graded to the sealevel datum at the shoreline.

These problems with quantifying elements of the depositional model described by Posamentier et al. (1988) which are stated to control onlap patterns stem from the non-quantitative nature of the model. Many aspects of the model appear only to have been formulated in diagrammatic form, and thus problems such as relative rates of eustasy and tectonic subsidence have not been adequately considered.

3.3.5 Controls on stratal onlap patterns

Figure 3.16 is a chronostratigraphic diagram showing stratigraphy generated over two cycles of absolute sealevel, which is equivalent to figure 3.17, taken from figure 18 of Posamentier et al. (1988). Comparing the two diagrams it is possible to reach some interesting conclusions regarding controls on stratal onlap. The main differences between the two diagrams are due to the shape of the fluvial profile and erosion of older chrons by the fluvial profile.

Timing of fluvial deposition

The most obvious discrepancy between the two depositional patterns (figures 3.16 and 3.17) is that in the sequence stratigraphic model, fluvial deposition is limited to the period between the highstand on the eustatic curve, and the inflexion point on the falling limb. During this time the equilibrium point and the bayline are in superposition, and it is this superposition that is assumed to cause fluvial deposition. In the quantitative model fluvial deposition is more complex, occurring on different parts of the fluvial profile, depending on the position on the absolute sealevel curve. During periods of rising absolute sealevel, when the beach is transgressive, or nearly stationary, deposition occurs along the length of the fluvial profile. During periods of falling absolute sealevel, when the beach is
regressive, deposition is restricted to the upper landward portion of the profile, and there is an area of non-deposition on the basinward section of the profile.

Although elements of the profile behaviour are unrealistic (see discussion in section 3.2.2), this result highlights the importance of the assumption in the sequence stratigraphic model that fluvial deposition only occurs on the lower portion of the profile, and only in response to falling eustatic sea level which is controlling the addition of accommodation space. What is not considered is that more complex behaviour of the fluvial system may also create accommodation space for fluvial sediments. Such behaviour has to be understood before predictions of the type made by Posamentier and Vail (1988) can be shown to have true predictive power.

The importance of fluvial erosion

The second factor which the qualitative sequence stratigraphic model does not account for is the modifying effect of fluvial erosion on the pattern of stratigraphy. For example, the chronostratigraphic diagram in figure 3.16 shows that on the lower portion of the fluvial profile deposition of fluvial stratigraphy from chron 10 to 19 is subsequently eroded by downcutting of the fluvial profile during the falling limb of the absolute sea level curve. The section from the same model run in figure 3.18 shows that truncation of fluvial chron by this process is very important in the pattern of stratal termination in the fluvial stratigraphy.

3.3.6 Timing of significant surfaces

In the type-1 sequence example in figure 3.4 the sequence boundary is defined at chron 15, at an E.M.T. of 1.5Myrs, since this is when subaerial erosion on the fluvial profile stops. Identifying other characteristics of a type-1 sequence boundary is difficult. There is no instant basinward shift of stratal onlap, only a gradual offlap from an E.M.T. of 1.0Myrs to
an E.M.T. of 2.0, which has subsequently been modified by fluvial and marine erosion. Stratal onlap commences at 1.9Myrs and continues until the end of the model run at 2.5Myrs.

This result is very significant to the sequence stratigraphic model for two reasons. The first is that it is assumed in that model in the way that the sequence boundary is defined, that fluvial erosion of the subaerially exposed shelf ceases before the onset of deposition of the lowstand systems tract. The sequence boundary is implied to be a single chronostratigraphic surface. This is not the case in the quantitative model. Fluvial erosion continues as long as absolute sealevel and hence base level continues to fall. Thus the sequence boundary as it is defined in the model is highly diachronous in the sense that it truncates stratigraphy of varying age and forms over several time steps. For example, in figure 3.4, the sequence boundary cuts chrons 1 to 13 (0.1 to 1.3Myrs E.M.T.) and forms over a period of 0.9Myrs. Hence accurate correlation between sequence boundaries, if they formed in this way, would be very difficult, since they actually represent quite prolonged periods of time in their formation.

This leads to the second point which is that it is the lowest point of absolute sealevel on the sealevel curve, not the inflexion point, which is significant in this model. Thus, the rate of absolute sealevel change is not the crucial control, but the lowest point on the sealevel curve. This point is demonstrated in figure 3.4. Fluvial erosion creating a subaerial unconformity, with sediment bypassing, continues until chron 15, at the low point on the absolute sealevel curve. Hence the timing of the sequence boundary is controlled by the low point on the absolute sealevel curve, not the inflexion point. This same point applies to the maximum flooding surface, which is shown to occur at the inflexion point in Posamentier et al. (1988) (figure 3.17). The time of maximum flooding in the quantitative model occurs at some time between the inflexion point and the highest point on the absolute sealevel curve (e.g. chron 23 in figure 3.4), depending upon the magnitude of
Chapter 3 - Controls on sequence geometry

Sediment supply. This complicates the interpretation and hence correlation of maximum flooding surfaces.

The digital nature of the quantitative model and the weaknesses with the geometrical profile approach makes it difficult to assess the significance of these results regarding the timing of the formation of surfaces. The sequence stratigraphic depositional model notes the importance of the balance between different processes with regard to the creation and filling of accommodation space, but since it is entirely qualitative, it is not possible to fully assess the significance of this balance with that model. Using a quantitative model to test this concept is also difficult, since the results may well be influenced by the length of the time step chosen. However, it seems safe to conclude that the assumption within the sequence stratigraphic depositional model as described by Posamentier et al. (1988) and Posamentier and Vail (1988) of the timing of sequence boundaries and maximum flooding surfaces at inflexion points in an absolute sealevel curve, should be treated with extreme caution until it can be tested further.

3.4. Sensitivity Tests - Alternative controls on sequence geometry

The following sections show results from the model run with the initial conditions described in section 3.2.1 plus the addition of an extra factor such as flexure, variable sediment supply, or a different fluvial profile geometry. The purpose of these model runs is to establish the degree of relative control that absolute sealevel variations, sediment supply, flexure and fluvial profile geometry exert over the model stratigraphy.

3.4.1 Flexure

The standard model parameter set described in section 3.2.1 has an infinitely rigid lithosphere which does not respond to sediment loading or unloading due to erosion. In order to test the importance of flexure on the standard results shown in figure 3.3, and 3.4,
the model was run with a constant value for Te of 10km. The value of Te is also constant along the length of the model profile, so potential changes in strength of the lithosphere across the hinge zone are ignored. All the other parameters and initial conditions where the same as those for the standard model run.

Figure 3.19 shows the section from the model run with flexure included. The pattern of stratigraphy is basically similar to that of the standard model run. There are two noticeable differences.

- More of the seaward end of the fluvial profile is preserved with the addition of flexure (i.e. chron 10 to 15). This is due to flexural subsidence creating a few metres more accommodation space and thus keeping the stratigraphy below falling absolute sealevel so that it cannot be eroded by the fluvial profile.

- The beach moves further landward during the transgression when absolute sealevel is rising. This is also due to flexural subsidence depressing the lower portion of the fluvial profile and thus allowing the shoreface to move further landward.

Both of these differences in the stratigraphic pattern are also clearly visible in figure 3.20 which is the chronostratigraphic plot, absolute sealevel curve and stratal onlap curve from the model run with flexure included. Although the timing of the sequence boundary (positioned on the basis of the resumption of fluvial deposition on the lower fluvial plain) is different in figure 3.20, occurring at chron 16 rather than chron 15 in the standard model run, the difference is not particularly significant, since it is caused by very small changes in elevation caused by flexural uplift and subsidence.

Despite the small differences described, the overall pattern of model stratigraphy is very similar. The influence of absolute sealevel change is still clearly visible on the stratigraphic pattern. For example, the period of stratal onlap from 1.9Myrs E.M.T. to 2.5Myrs E.M.T. is very similar in both runs. Thus it can be concluded that in the model flexure is of secondary importance when compared to changes in absolute sealevel.
3.4.2 The geometry of the fluvial profile

The geometry of the fluvial profile has not previously been considered a major control on sequence geometry in the sequence stratigraphic model. Although Posamentier et al. (1988) and Posamentier and Vail (1988) consider fluvial response to base level change using the concept of fluvial equilibrium profiles, they do not attempt to quantify such profiles, which is a necessary step in order to understand their significance to, and control upon stratigraphy. Even though the geometrically defined profile used here produces some unrealistic features, it still represents an advance over the purely qualitative profile geometries used by Posamentier et al. (1988).

In the standard model run described in section 3.2.1, the complementary error function parameter used to model the fluvial profile is 2.0 (see section 2.6.5.2). The effects of decreasing the value of this length scale to 1.2 can be seen in figure 3.21 and 3.22. The model section in figure 3.21 demonstrates how a less concave profile creates more accommodation space for fluvial sediment (see figure 3.23) and hence prevents much fluvial erosion, even during the 40m drop in absolute sea level from 0.5Myrs to 1.5Myrs E.M.T. The stratigraphic pattern produced is actually more like a type-2 sequence than the type-1 example shown in figures 3.3 and 3.4.

Figures 3.24 and 3.25 show the standard model run modified to include a more concave fluvial profile with a length scale of 2.8. This, like the less concave profile, appears to be a first order control on the model stratigraphy. In the model section in figure 3.24 the thickness of the preserved fluvial stratigraphy is slightly less than that in the standard model, and the beach has moved further landward during the transgression from 1.7 to 2.5Myrs E.M.T. This movement of the beach and the altered pattern of fluvial erosion and deposition can also be seen on the chronostratigraphic diagram in figure 3.25. The stratigraphic gap below the sequence boundary, produced by increased erosion and
reduced deposition on the more concave profile as absolute sealevel has dropped, is wider and more prolonged. Once again, as with the flexural example, the timing of the sequence boundary has been slightly altered, this time as a result of the more concave profile continuing to erode for one time step longer than in the standard model.

These results demonstrate that the geometry of the fluvial profile is a first order control on stratigraphy in the model, along with thermal subsidence and changes in absolute sealevel. The degree to which this is true in actual natural systems is difficult to determine. The main weakness in the assumption of the fluvial profile geometry is the lack of a direct link to observable fluvial processes, and the unrealistic nature of some of the profile behaviour. However, despite these important weaknesses, it still seems reasonable to conclude from these results that the quantitative model demonstrates the importance of the fluvial profile behaviour to the resulting stratigraphic patterns, and hence to the use of the sequence stratigraphic depositional model as a predictive tool.

3.4.3 The sediment partitioning coefficient

In the standard model run the sediment partitioning coefficient (see section 2.5.7) was set to 0.5, so that 50% of the available sediment was deposited on the fluvial portion of the model profile, and the second 50% was deposited on the marine portion of the profile, which is made up of the shoreface, the shelf and the marine slope. Since this parameter controls both the distance of fluvial progradation and the magnitude of sediment supplied to the marine portion of the model profile, it will act as an important control on model stratigraphy.

To test this possibility, the model was run with the parameters and initial conditions as described in section 3.2.1, except that the partitioning coefficient was reduced from 0.5 to 0.2. The results from this model run can be seen in figures 3.26 and 3.27. The section in figure 3.26 shows the much wider shelf deposits developed because of the increased
Chapter 3 - Controls on sequence geometry

sediment supply to the sea, and the much reduced fluvial deposits caused by the increased bypassing of sediment through the fluvial system. The chronostratigraphic diagrams in figure 3.27 also shows the differences in marine and fluvial deposition and erosion. In particular, more of the previously deposited fluvial stratigraphy has been eroded than in the standard model (e.g. a wider band of erosion in chron 1 to 6), because of the different fluvial profile geometry caused by reduced fluvial progradation. This has lead to increased erosion on the upper profile during a relative sea level rise, which is probably unrealistic, and should be noted when interpreting this model result.

To contrast with the low partitioning coefficient, figures 3.28 and 3.29 show results from the model run with a higher value of 0.8. The effect on the stratigraphy is to increase fluvial progradation so that little or no shoreface and shelf are produced. The pattern of fluvial stratigraphy shown in the chronostratigraphic diagram is very similar to that in the standard model, except that stratal onlap is less well developed. This is due to the increased fluvial deposition competing with the absolute sea level rise and reducing the distance of transgression, and hence the production of stratal onlap on the fluvial profile.

These results suggest that the degree of sediment partitioning between fluvial and marine portions of a basin is an important control on stratigraphy in the model. Very different patterns of erosion and deposition are produced depending on the value of the partitioning coefficient chosen. It seems likely that the same could be true of a real system. A lack of sediment being deposited on the shelf is taken in the sequence stratigraphic model to be indicative of a time of transgression. However, it may be possible that other things, independent of eustasy, such as climatic variations affecting drainage basin development, could control partitioning. If more sediment were being trapped in the drainage basin and the coastal plain, due to a decrease in the transport capability of the drainage basin, possibly due to a change, for example, to a more arid climate, the partitioning coefficient would change. This possibility could lead to phenomenon such as condensed sections being misinterpreted within a eustatic framework.
3.4.4 Variable sediment supply

In the standard model run the sediment supply is kept constant at 1.0 km\(^2\) per time step. In order to investigate the significance of variations in sediment supply, the model has been run with a number of different sediment supply configurations.

Figure 3.30 and figure 3.31 were produced by the model running with the standard parameters and initial conditions, except that sediment supply was reduced to 0.5 km\(^2\), and held constant at that value. The reduced sediment supply increases the incidence of fluvial erosion so that little fluvial stratigraphy is preserved from before 1.5 Myrs E.M.T., and causes the beach to move approximately 70 km further landward during the transgression from 1.5 to 2.5 Myrs E.M.T. This movement of the beach produces a marine ravinement surface which is clearly visible on the section in figure 3.30, and on the chronostratigraphic diagram in figure 3.31. The enhanced landward movement of the beach and the production of the ravinement surface are both due to the shift in balance from fluvial progradation to landward shoreface retreat, due in turn to the reduced sediment supply.

Increasing the sediment supply to 1.5 km\(^2\) per time step has the opposite effect, shifting the balance to fluvial progradation. The impact of this on the stratigraphy is to increase the distance of basinward progradation of the sediment wedge. This is shown in figures 3.32 and 3.33. Despite this increase in the distance of progradation, the overall pattern of erosion, deposition, and the movement of the shoreline is very similar to the standard model.

It can be concluded from these two model runs that reducing sediment supply has a more pronounced effect on the pattern of stratigraphy in the model than increasing sediment supply. If this is true in real systems, the implications are important. Sediment supply could be reduced independently of eustatic sealevel rise by, for example, climatic effects.
such as a reduction in rainfall. Reduced sediment supply during an absolute sealevel rise might accentuate features such as transgressive ravinement surfaces and condensed sequences. Such effects could easily be misinterpreted as due to eustatic effects within a sequence stratigraphic framework of interpretation.

The previous two model runs held sediment supply constant throughout the duration of the run. The sequence stratigraphic depositional models (Posamentier et al. 1988; Posamentier and Vail, 1988; Van Wagoner et al., 1990) all assume constant sediment supply, but state that when studying any particular example of stratigraphy, the effects of variable sediment supply should be accounted for before the models are applied. No indication is given as to how this can be achieved. One possibility is to begin by studying the effects of variable sediment supply in a stratigraphic forward model.

The following three model runs all have variable sediment supply. The sediment supply curves have either a saw-tooth or a sinusoidal geometry and areas eroded on the fluvial and marine profiles were not added to the total available for deposition. The saw-tooth and sinusoidal curves could be considered to represent changes in sediment supply due to factors such as drainage basin morphology, point-source switching, climatic change or tectonic effects, or combinations of all three. The saw-tooth curves particularly may be analogous to sudden changes in sediment supply due to point-source switching.

Figures 3.34 and 3.35 show model output with sediment supply varying in a saw tooth pattern. The curve (figure 3.31) has a period of 1.6Myrs; sediment supply starts at 0.1km2 per time step, and increases to 1.0km2 at 1.6Myrs E.M.T. before returning to 0.1km2 at 1.7Myrs E.M.T. The solid red and green lines show the area of fluvial and marine stratigraphy deposited respectively, and the blue line is the combined total of the two. The dotted lines represent the areas eroded on the fluvial and marine profiles and can be ignored.
The effect of the sudden reduction in sediment supply at 1.7Myrs E.M.T. is quite striking (figures 3.34 and 3.35). The shoreline immediately begins to retreat landward, reversing the previous progradational trend. This is partly due to the rise in absolute sealevel from 1.5 to 2.5Myrs E.M.T., but the movement is exacerbated by the sudden reduction in sediment supply. Most of the fluvial stratigraphy prior to chron 16 is eroded by the sudden jump in the shape of the fluvial profile, and by a marine ravinement surface produced by the transgression, though the fluvial erosion should be disregarded since it is probably an unrealistic fluvial response to absolute sealevel rise.

Figures 3.36 and 3.37 show the effects of using a saw-tooth sediment supply curve also with a period of 1.5Myrs, but with supply decreasing from 1.0km2 to 0.1km2 per time step during each period. This is thus a rapid rise-slow fall type of curve. The impact of the change in sediment supply at 1.5Myrs E.M.T. is much less noticeable. Two effects are visible, particularly on the chronostratigraphic diagram in figure 3.37.

- A decrease in the distance of progradation in chron 10 to 15 due to decreasing sediment supply.
- An increase in the spatial distribution of fluvial and marine erosion of stratigraphy in chron 1 to 10. This is caused in part by profile shortening when the beach jumps landward at chron 16 (and thus should be disregarded as unrealistic), and by an increase in fluvial erosion on the lower fluvial profile during the period of low absolute sealevel due to the reduced fluvial progradation.

Overall, however, the differences between this model run and the standard model run are much less striking than the previous example. This is due mostly to the timing of the change in sediment supply. Low sediment supply during the rising limb of the absolute sealevel curve has a far more pronounced effect on the stratigraphy than low sediment supply during the falling limb. Conversely, high sediment supply during the transgression reduces the effect of the transgression by providing sediment for fluvial progradation, and maintains more closely the pattern of stratigraphy seen in the standard model.
The third model run with varying sediment supply uses a sinusoidal curve with a period of 2Myrs and an amplitude of 1km2. Figures 3.38 and 3.39 show the model output for this run. Most of the differences in the stratigraphic pattern, such as the lack of fluvial deposition in chron 10 to 15, from 1.0 to 1.5Myrs E.M.T., slightly more landward movement of the shoreline from 0.0 to 0.5Myrs and 1.5Myrs to 2.5Myrs, and a different stratal onlap pattern in chron 19 to 25, from 1.9 to 2.5Myrs, can be attributed to the low sediment supplies at 0.1Myrs, 1.2Myrs and 2.5Myrs E.M.T.

3.4.5 Variable sediment supply and constant absolute sealevel

From figures 3.34 and 3.35, produced with the model using a saw-tooth sediment supply curve, it is apparent that a sudden reduction in sediment supply may be a major control on sequence development. In that example, significant portions of the stratigraphy were eroded during erosional shoreface retreat due to the sudden drop in sediment supply combined with rising absolute sealevel. Figures 3.40 and 3.41, therefore, show the effects of running the model with the same saw-tooth sediment supply curve, but with absolute sealevel constant at 0m, and with a higher magnitude of thermal subsidence (stretching values from 1.0 to 8.0) which can act to preserve more of the stratigraphy eroded in the previous example.

The pattern of stratigraphy is in some respects very similar to that shown in figures 3.11 and 3.12 from the model run which attempted to reproduce the salient elements of a type-2 depositional sequence. The sudden drop in sediment supply at 1.7Myrs E.M.T. causes the shoreline to move rapidly landwards as would be expected in a transgressive systems tract. This is followed by fluvial progradation analogous to that seen in highstand systems tracts. The important point is that there is no change in absolute sealevel during the model run, only a constant rate of rise in relative sealevel. Thus, within the model, variable sediment supply can produce patterns of stratigraphy similar to those created by variable absolute
Chapter 3 - Controls on sequence geometry

sealevel. This is an unequivocal demonstration of the uniqueness problem as it applies to
the sequence stratigraphic depositional model.

It should be noted, however, that in this model at least, a change in sediment supply cannot
cause the vertical juxtaposition of fluvial stratigraphy over marine stratigraphy, separated
by a surface of subaerial erosion. This is one of the prime features of a type-1 sequence,
and it is very difficult to see how such a feature can occur without at least relative sealevel
fall. So although the uniqueness problem is important with respect to controls on
stratigraphy and the sequence stratigraphic depositional model, it should be noted that
some patterns of stratigraphy are more tightly constrained in their possible causes than
others.

3.4.6 Combined controls

The deposition and erosion of stratigraphy in a real sedimentary basin is probably
controlled by a variety of complex, often interacting controls each with a varying degree of
importance to the resulting stratigraphy. Most models, whether quantitative or qualitative,
attempt to simplify this situation down to one or two controls which may or may not
interact (e.g. tectonic subsidence and eustasy in the sequence stratigraphic depositional
model described by Posamentier et al. (1988) and Van Wagoner et al. (1990); thermal
subsidence and flexure, Watts (1982)). This is often necessary in order to keep the model
simple enough to be useful, especially in qualitative models. This means that to a large
extent, the effect of the interaction of several different controls on stratigraphic patterns
has not been investigated. Such simplification, however, may lead to misconceptions
regarding the apparent simplicity of stratigraphic systems, and the importance of the
uniqueness problem when using models, both quantitative and qualitative.

Figure 3.42 is a section from the model run for 10Myrs E.M.T., generating 100 chron.}

The absolute sealevel curve used in the model run is a combination of a 2Myr, 20m curve
superimposed on a 15Myr 100m amplitude curve. The sediment supply curve is a sinusoidal curve, with a 1.6Myrs period, and an amplitude of 0.5km2. The partitioning coefficient is varied through time according to a curve with a period of 1.4Myrs and a range from 0.2 to 0.8. Flexure is included in this model run, with a laterally and temporally constant value of Te of 10km. Other parameters and initial conditions are the same as those for the standard model.

The section from this model run (figure 3.42) demonstrates the complexity of the stratigraphy produced. There are several sequences visible, and the pattern of stratal onlap, truncation, offlap and downlap can be seen to be complex. Some of this pattern is produced by absolute sealevel change. Other aspects are caused by variable sediment supply, and the stratigraphy is modified by flexure. Figure 3.43 shows the chronostratigraphic diagram, absolute sealevel curve and sediment supply curve for the model run. The influence of absolute sealevel changes on the stratigraphy are readily apparent, but only through reference to the sealevel curve and sediment supply curve together is it possible to fully explain particular stratigraphic patterns.

For example, the pronounced transgressive ravinement surface at chron 62 (6.2Myrs E.M.T.) and the shift in the stratal onlap and downlap pattern may easily be misinterpreted to be due to a absolute change in sealevel alone, whereas it is actually due to a combination of rising absolute sealevel and reduced sediment supply. Accurately interpreting such a feature observed in ancient stratigraphy would be considerably more difficult, especially if insufficient consideration was given to the contribution of sediment supply, leading to an over-emphasis on the role of absolute sealevel change.

Consequently, these model results suggest again that the uniqueness problem is very important when considering such stratigraphy influenced by various controls. While one may be able to explain a particular feature, as due, for example, to eustasy, it is important
always to consider that this is unlikely to be a unique solution. Other controls could be responsible, or at least important.

3.5 Summary

The sequence stratigraphic depositional model makes detailed predictions regarding the geometry of stratigraphy preserved in sedimentary basins, on the basis of a series of assumptions, foremost of which is that a combination of eustasy and tectonic subsidence are the primary controls on stratigraphy. The model is entirely qualitative, and many of the assumptions behind it have been insufficiently investigated and tested. The quantitative forward model presented here has been used to test some of these assumptions and to investigate some possible alternative controls on stratigraphy.

1. The quantitative forward model can reproduce the general geometry of type-1 and type-2 sequences, but cannot reproduce some details such as particular aggradational parasequence set stacking patterns which require very specific distributions of accommodation space.

2. Calculation of the amplitude of absolute sealevel changes from coastal onlap patterns may be greatly complicated by the geometry of the fluvial profile.

3. The concepts of the hinge point and the equilibrium point used in the sequence stratigraphic model are flawed.

4. Flexure is not a first order control on the model stratigraphy when absolute sealevel is varied.

5. The behaviour of the fluvial profile is a first order control on model stratigraphy. For example, a less concave profile produces a stratigraphic pattern very different from that
produced by a more concave profile. Despite the weaknesses of the geometrical implementation of profile evolution through time, the model results suggest that profile geometry will be very a significant control in natural systems.

6. The sediment partitioning coefficient is also a first order control in the model, and the effects of sediment partitioning in stratigraphic systems could conceivably be misinterpreted to be due to eustasy.

7. Variable sediment supply is a first order control on model stratigraphy, and has a particularly pronounced impact on the stratigraphic pattern when sediment supply is low during a time of rising absolute sealevel.

8. Variable sediment supply alone, without any contribution from variable absolute sealevel, is capable in the model of producing stratigraphic patterns in some ways similar to those seen in type-2 sequences. This suggests that stratigraphy influenced by variable sediment supply due to factors such as point source switching, climatic changes, drainage basin morphology, or combinations of these, could in limited circumstances be misinterpreted as being due to eustasy alone. However, it should be noted that the model cannot reproduce the vertical juxtaposition of fluvial and marine stratigraphy across a subaerial erosion surface without a relative sealevel fall.

9. Combined complex controls on stratigraphy should not be underestimated in terms of the potential difficulty in correctly interpreting the results in the ancient record. A model run with combined controls is difficult to interpret, even given the simplicity of the model, and the availability of the complete details of all the model parameters, such as the absolute sealevel curve, and the sediment supply curve.
Landward limit of the coastal plain

Fluvial profile, length scale 2.0, partition coefficient 0.5

Shoreface, 10m high, 2km wide

Sediment supply: Constant at 1.0sq km

Absolute sea level datum: Sinusoidal curve, 20m amplitude, 2Myr period

Figure 3.1 The initial conditions for the standard type-1 sequence model run
Figure 3.2 The depositional sequence stratigraphic model of a type-1 sequence, from Van Wagoner et al. (1990).
Distance (km)

Figure 3.3. A reproduction of a type-1 sequence. See section 3.2.1 for a discussion of the parameters used to generate this example. Many of the features observable in this example are directly comparable with features of the depositional sequence stratigraphic model described, for example, by Van Wagoner et al. (1988). The thicker purple line marks the position of the type 1 sequence boundary. This model run forms the standard reference for the subsequent model runs throughout the rest of chapter 3.
Figure 3.4. A chronostratigraphic diagram, an absolute sealevel curve, and a stratal onlap curve from the standard reference model run. The pattern of stratigraphy is analogous to the type-1 sequence described, for example, by Van Wagoner et al. (1988). The forcing of the stratigraphic pattern by changing absolute sealevel is clearly apparent. The choice of timing for the sequence boundary is described in section 3.3.6.
Fluvial aggradation

Progradation as the rate of absolute sealevel rise decreases

Figure 3.5. An enlargement of the area of fluvial deposition after the first 5 chron (0.5Myrs E.M.T.) from the standard reference model run. The profile shows aggradation along most of its length in response to the rise in absolute sealevel. Note how progradation of the beach started at chron 4 in response to the decreasing rate of sealevel rise.
Figure 3.6. An enlargement of the area of fluvial deposition after the first 10 chron (1.0 Myrs B.M.T.) from the standard reference model run. The profile shows the formation of the erosion surface as the fluvial profile responds to the fall in absolute sea level. Note the laterally limited aggradation on the upper part of the profile caused by profile lengthening in turn forced by falling absolute sea level.
Figure 3.7. An enlargement of the area of fluvial deposition after the first 15 chrons (1.5Myrs E.M.T.) from the standard reference model run. The profile shows the final development of the erosion surface which forms the sequence boundary. By chron 15 deposition of fluvial sediment above this sequence boundary chron has commenced.
Figure 3.8. An enlargement of the area of fluvial deposition after the first 20 chrons (2.0Myrs E.M.T.) from the standard reference model run. The profile shows the aggradation on the lower profile due to rising absolute sealevel, and the erosion on the upper profile due to profile shortening also forced by the absolute sealevel rise. Note that this erosion only removes a few metres of fluvial stratigraphy.
Figure 3.9. An enlargement of the area of fluvial deposition after completion of all 25 chron (2.5Myrs E.M.T.) from the standard reference model run. The profile shows the stratal onlap produced on the upper part of the profile by the final absolute sealevel rise.
Figure 3.10 The depositional sequence stratigraphic model of a type-2 sequence, from Van Wagoner et al. (1990).
Figure 3.11. A section from the model run with higher magnitudes of thermal subsidence, and a lower amplitude absolute sealevel curve, both chosen to reproduce some of the features of a type-2 sequence. All the other parameters for this model run are the same as those for the standard reference model. Note that with the higher subsidence and reduced magnitude of absolute sealevel change the fluvial profile is no longer erosive during falling absolute sealevel.
Figure 3.12. A chronostratigraphic diagram, an absolute sealevel curve, and a stratal onlap curve from the model run with higher magnitudes of thermal subsidence, and a lower amplitude of absolute sealevel change, both chosen to reproduce some of the features of a type-2 sequence. All the other parameters for this model run are the same as those for the standard reference model. With the increased subsidence and reduced magnitude fall in absolute sealevel, deposition on the lower portion of the fluvial profile is continuous. Note that the erosion on the upper fluvial profile during the sea-level rise represents only a few metres in thickness of lost stratigraphy.
Coastal plain muds

An example of a stratigraphic trap, as seen in figure 3.3. Shoreface sands are preserved beneath a type 1 sequence boundary unconformity, and are surrounded and sealed by shelf and coastal plain muds.

Shelf muds

Type 1 unconformity

Example of a stratigraphic trap, as seen in figure 3.7 which shows a series of shoreface sands preserved beneath a type 2 sequence boundary and surrounded and sealed by coastal plain and shelf muds.

Coastal plain muds

Type 2 sequence boundary unconformity, overlain by more coastal plain mud.

Shoreface sands

Shelf muds

Figure 3.13. An example of how output from the model could be used to make general predictions regarding the type of stratigraphic traps that might be found in particular conditions of subsidence, absolute sea level, and sediment supply.
Figure 3.14 A diagram to illustrate the definition of coastal onlap in the sequence stratigraphic depositional model, from Vail et al. (1977a).
Figure 3.16. A chronostratigraphic diagram, an absolute sealevel curve and a stratal onlap curve from the model run with parameters set to reproduce the elements of the coastal onlap pattern shown in figure 18 of Posamentier et al. (1988) (figure 3.17). See the text for a full description of the model parameters. The pattern of deposition and erosion in this model is considerably more complex than that suggested by figure 3.17. In this case fluvial deposition is not controlled simply by movement of the bayline, but rather by a more complex interaction between subsidence, absolute sealevel change, and the response of the fluvial profile.
Figure 3.17 A diagram showing the elements of the coastal-onlap curve as defined in the depositional sequence stratigraphic model, from Posamentier et al. (1988).
Figure 3.18. An enlargement of the area of fluvial deposition from the model run with parameters set to reproduce the elements of the coastal onlap pattern shown in figure 18 of Posamentier et al. (1988) (figure 3.17). See the text for a full description of the model parameters. The plot illustrates the complex pattern of fluvial deposition, sediment bypass, and erosion that develops in response to the interplay between subsidence, absolute sea level change and the fluvial profile geometry.
Figure 3.19. A section from the model run with the addition of a flexural isostatic response to deposition and erosion. All other parameters are the same as those for the standard reference model. The flexure is calculated using a value for elastic thickness of 10km. The impact on the pattern of the stratigraphy in the section is negligible, although the increased accommodation space does increase preservation and erosion on some chrons, but only by a few metres. The flexural forebulge produced in front of the prograding sediment wedge is clearly visible.
Figure 3.20. A chronostratigraphic diagram, absolute sealevel curve, and a stratal onlap curve from the model run with the addition of a flexural isostatic response to deposition and erosion. All other parameters are the same as those for the standard reference model. The flexure is calculated using a value for elastic thickness of 10km. The chronostratigraphic diagram shows that the basic pattern of deposition and erosion in response to the sealevel change is unaffected by the flexure. However, details such as the exact pattern of preservation on the lower fluvial profile during falling absolute sealevel are changed, and this changes the timing of the sequence boundary from chron 15 to chron 16 (1.6 Myrs B.M.T.).
Figure 3.21. A section from the model run with a lower value for the complementary error function curve parameter of 1.2, giving a less concave fluvial profile geometry. All other parameters are the same as those for the standard reference model. The less concave fluvial profile has the effect of reducing the magnitude and lateral extent of fluvial erosion, producing a stratigraphic pattern similar to that seen for the type-2 sequence in figure 3.11, even though all the other model parameters such as the subsidence magnitude, and the absolute sealevel curve amplitude are the same as those for the type-1 sequence example in the standard reference model.
Figure 3.22. A chronostratigraphic diagram, an absolute sealevel curve, and a stratal onlap curve from the model run with an error function parameter value of 1.2. All other parameters are as described for the standard reference model. The chronostratigraphic diagram shows that the less concave fluvial profile has considerably reduced the lateral distribution of the erosion and non-deposition due to the absolute sealevel fall. The pattern is similar to that seen in the type-2 sequence example shown in figure 3.12.
Figure 3.23. A diagram to show the effects on fluvial deposition and erosion of using a less concave and a more concave fluvial profile geometry.
Figure 3.24. A section from the model run with an increased value of 2.8 for the error function parameter, thus making the fluvial profile more concave. All other parameters are the same as those used in the standard reference model. The more concave fluvial profile has the effect of increasing the lateral extent and the magnitude of erosion, both on the lower profile during the relative sea level fall, and on the upper profile during the relative sea level rise.
Figure 3.25. A chronostratigraphic diagram, an absolute sealevel curve and a stratal onlap curve from the model run with a more concave fluvial profile produced using an error function parameter value of 2.8. All other model parameters are the same as those given for the standard reference model. The more concave profile has lead to more erosion, on the lower profile during relative sealevel fall, and on the upper profile during relative sealevel rise. As a result the thickness and extent of fluvial stratigraphy preserved has been reduced. Also, the lower slopes on the seaward portion of the fluvial profile have accentuated the development of the transgressive ravinement surface.
Figure 3.26. A section from the model run with a low value of 0.2 for the fluvial-marine partitioning coefficient. All other model parameters are the same as those used in the standard reference model. The lower partitioning coefficient reduces the area of deposition in the fluvial profile, increases deposition on the marine profile, and allows the beach to transgress further landward during an absolute sea-level rise, thus accentuating the development of the transgressive ravinement surface, and the erosion on the upper portion of the fluvial profile due to profile shortening.
Figure 3.27. A chronostratigraphic diagram, an absolute sealevel curve, and a stratal onlap curve from the model run with a low value of 0.2 for the fluvial-marine partitioning coefficient. All other model parameters are the same as those used in the standard reference model. The lower value for the partitioning coefficient has reduced the initial deposition and subsequent preservation of fluvial stratigraphy, as well as significantly increasing the lateral extent of the marine erosion produced by the passage of the transgressive ravinement surface.
Figure 3.28. A section from the model run with a high value of 0.8 for the fluvial-marine partitioning coefficient. All other model parameters are the same as those used in the standard model. The higher value for the partitioning coefficient has increased the deposition on the fluvial profile, and the degree of fluvial progradation. The shelf is less well developed than in previous examples. The landward distance of the transgression and hence the development of the transgressive ravinement surface has been reduced by the increased fluvial progradation.
Figure 3.29. A chronostratigraphic diagram, an absolute sea level curve, and a stratal onlap curve from the model run with a high value of 0.8 for the fluvial-marine partitioning coefficient. All other model parameters are the same as those used in the standard model. The higher value for the partitioning coefficient has increased the deposition on the fluvial profile, and the distance of fluvial progradation. In this example minimal erosion occurs on the upper profile during the transgression, and the marine erosion is reduced in both lateral and vertical extent.
Figure 3.30. A section from the model run with a low value for external sediment supply of 0.5 square kilometres per timestep. All other model parameters are the same as those used in the standard reference model. The lower sediment supply has a similar effect to lowering the partitioning coefficient in that it has increased the influence of the absolute sealevel changes. For example, the transgression during the absolute sealevel rise is accentuated. Both fluvial and marine deposition are reduced as a direct result of the lower sediment supply.
Figure 3.31. A chronostratigraphic model, an absolute sea level curve and a stratal onlap curve from the model run with a low value for external sediment supply of 0.5 square kilometres per timestep. All other model parameters are the same as those used in the standard reference model. The lower sediment supply has a similar effect to lowering the partitioning coefficient in that it has increased the influence of the absolute sea level changes. For example, the transgression has driven the beach further landward, shortening the fluvial profile, and leading to the erosion of all the stratigraphy previously deposited on the upper fluvial profile.
Figure 3.32. A section from the model run with a high value for external sediment supply of 1.5 square kilometres per timestep. All other model parameters are the same as those used in the standard reference model. The higher sediment supply has the effect of reducing the influence of the absolute sea level change by increasing the distance of fluvial and marine progradation. This leads to increased thickness of fluvial and marine deposition, and increased preservation of the fluvial stratigraphy, particularly on the upper fluvial profile.
Figure 3.33. A chronostratigraphic diagram, an absolute sealevel curve, and a stratal onlap curve from the model run with a high value for external sediment supply of 1.5 square kilometres per timestep. All other model parameters are the same as those used in the standard reference model. The higher sediment supply has the effect of reducing the influence of the absolute sealevel change. This is shown by the decreased lateral extent of the transgression, and the increase in fluvial deposition and preservation.
Limited fluvial deposition with rising sediment supply

Highly erosive transgressive ravinement surface

Sequence boundary eroded by transgression

Figure 3.34. A section from the model run with a saw-tooth external sediment supply curve ranging from 0.1 to 1.0 square kilometres per timestep with a period of 1.6Myrs. Sediment supply increases steadily until chron 17 when it drops sharply. All other model parameters are the same as those used in the standard reference model. The section is dominated by the results of the drop in sediment supply, which occurring as it does during a time of rising absolute sea level, precipitates a major transgression, eroding much of the previous stratigraphy.
Figure 3.35. A chronostratigraphic diagram, an absolute sealevel curve, and a sediment supply curve from the model run with a saw-tooth external sediment supply curve ranging from 0.1 to 1.0 square kilometres per timestep with a period of 1.6Myrs. Sediment supply increases steadily until chron 17 when it drops sharply. All other model parameters are the same as those used in the standard reference model. The stratigraphy is dominated by the effects of the drop in sediment supply, which occurring as it does during a time of rising absolute sealevel, precipitates a major transgression, eroding much of the previous stratigraphy on a laterally more extensive transgressive ravinement surface.
Figure 3.36. A section from the model run with a saw-tooth external sediment supply curve ranging from 1.0 to 0.1 square kilometres per timestep with a period of 1.6Myrs. Sediment supply decreases steadily until chron 17 when it rises sharply. All other model parameters are the same as those used in the standard reference model. In this example the effects of the saw tooth sediment supply curve are less pronounced, only really being visible on the section as a condensation on the marine slope for chron 5 to 15. The increased sediment supply during the absolute sealevel rise prevents the formation of the extensive transgressive ravinement surface seen in figure 3.34.
Figure 3.37. A chronostratigraphic diagram, an absolute sealevel curve, and a sediment supply curve from the model run with a saw-tooth external sediment supply curve ranging from 1.0 to 0.1 square kilometres per timestep with a period of 1.6Myrs. Sediment supply decreases steadily until chron 17 when it rises sharply. All other model parameters are the same as those used in the standard reference model. In this example the effects of the saw tooth sediment supply curve are less pronounced since the gradual fall in sediment supply occurs during a time of falling absolute sealevel, and the rise in sediment supply at an E.M.T. of 1.7Myrs reduces the erosive effect of the transgression.
Figure 3.38. A section from the model run with a sinusoidal external sediment supply curve with an amplitude of 0.45 square kilometres and a period of 1.6Myrs (see figure 3.39). All the other model parameters are the same as those used in the standard reference model run. The impact of the variable sediment supply in this run is less pronounced than in some previous examples (e.g. figure 3.34) because the low point on the sediment supply curve occurs during a low point on the absolute sealevel curve. Consequently the period of low supply is expressed as a series of condensed chrons on the marine slope.
Figure 3.39. A chronostratigraphic diagram, absolute sealevel curve, and a sediment supply curve from the model run with a sinusoidal external sediment supply curve with an amplitude of 0.45 square kilometres and a period of 1.6Myrs. All the other model parameters are the same as those used in the standard reference model run. The impact of the variable sediment supply in this run is less pronounced than in some previous examples (e.g. figure 3.35) because the low point on the sediment supply curve occurs during a low point on the absolute sealevel curve. However, an increase in the lateral extent of fluvial erosion, and a reduction in the deposition of marine stratigraphy during the period of low sediment supply (E.M.T. 0.75 - 1.5Myrs) are clearly visible.
Figure 3.40. A section from the model with constant absolute sealevel, high thermal subsidence, and a saw-tooth sediment supply curve. All other model parameters are the same as those in the standard reference model. This example shows that some of the features of a type-1 sequence such as the stratal onlap and a transgressive ravinement surface can be produced in the model by variable sediment supply without absolute sealevel variations. However, it also demonstrates that one of the prime features of a type-1 sequence boundary, the vertical juxtaposition of fluvial stratigraphy against marine stratigraphy with a surface of erosion in between cannot be generated in this way.
Figure 3.41. A chronostratigraphic diagram, a sediment supply curve, and a stratal onlap curve from the model with constant absolute sealevel, high thermal subsidence, and a saw-tooth sediment supply curve. All other model parameters are the same as those in the standard reference model. This example shows that some of the features of a type I sequence such as the stratal onlap and a transgressive ravinement surface can be produced in the model by variable sediment supply without absolute sealevel variations. However, it also demonstrates that one of the prime features of a type-I sequence boundary, the juxtaposition of fluvial stratigraphy against marine stratigraphy with a surface of erosion or non-deposition in between cannot be generated in this way.
Figure 3.42. A section from the model run for 100 chronos (10Mryrs) with a composite absolute sealevel curve made up from a 20m amplitude 2.0Myr sinusoidal curve superimposed upon a 15Myr 100m linear rise, a sinusoidal sediment supply curve with an amplitude of 0.45 square kilometres and a period of 1.6Myrs, a sinusoidally varying partitioning coefficient with an amplitude of 0.3 and a period of 1.4Myrs, and flexural isostasy with an elastic thickness value of 10km. All the remaining parameters are the same as those used in the standard reference model run. See the main text for a discussion of this model output.
Figure 3.43. A chronostratigraphic diagram, an absolute sealevel curve, and a sediment supply curve from the model run for 100 chron (10Myrs) with a composite sealevel curve made up from a 20m amplitude 2.0Myr sinusoidal curve superimposed upon a 15Myr 100m constant gradient rise, a sinusoidal sediment supply curve with an amplitude of 0.45 square kilometres and a period of 1.6Myrs, a sinusoidally varying partitioning coefficient with an amplitude of 0.3 and a period of 1.4Myrs, and flexural isostasy with an elastic thickness value of 10km. All the remaining parameters are the same as those used in the standard reference model run. See the main text for a discussion of this model output.
Chapter 4
Chapter 4 - Complex interactions, cyclicity and numerical instabilities

"I'll keep a vigil in a wilderness of mirrors,
where nothing here is exactly as it seems.
We stand so close, but never understand it,
for all that we see is not all that it seems.

Am I blind?"

(Derek Dick, Vigil)

4.1 Introduction

The purpose of this chapter is to use the quantitative stratigraphic model to illustrate some of the problems that can occur in attempting to use a discretised model to investigate cyclical stratigraphic systems. Simple numerical experiments demonstrate the existence within the model of a complex feedback effect between thermal subsidence, deposition, erosion, and flexure. The feedback effect in the model produces cyclical stratigraphic patterns without external cyclical forcing. It is shown that the effect occurs in the model with a variety of initial conditions. However, the feedback effect is due to a numerical instability in the model. Consequently no conclusions can be drawn from the model behaviour regarding the possible existence of such feedbacks in natural stratigraphic systems.

4.2 Previous work

It is a common assumption in stratigraphic studies that periodic cyclicity in stratigraphy must be the result of external periodic forcing mechanisms (e.g. Steiner, 1973; Hays et al. 1976; Posamentier et al. 1988; Van Wagoner et al. 1990; Fischer, 1991; Vail et al. 1991; Quinn, 1991). Such assumptions are often based on tenuous evidence. For example, Van
Wagoner et al. (1990) attributed observed parasequence geometries to fourth or fifth order cycles in eustatic sealevel. No attempt was made to provide a mechanism for such high-order eustatic cycles, and this is particularly problematical since such parasequences are found throughout the stratigraphic column. Even if glacioeustasy is invoked as a causal mechanism, many periods of earth history show little or no evidence of the extensive ice sheets necessary to drive such glacioeustatic cycles.

More recently, attention has started to focus on possible alternative explanations. Shaw (1987) and Slingerland (1989) showed how even simple non-linear dynamic systems can produce periodic results through non-linear coupling between components in the system. This raises the possibility of such behaviour in natural stratigraphic systems, which often seem to be non-linear systems (Slingerland, 1989) and hence prone to such behaviour. Swift et al. (1991) discussed briefly the possibility that periodic stratigraphy at the parasequence level may be produced by non-linear interaction between components of stratigraphic systems such as sediment input rate, sediment character, sediment transport rate, and relative sea level change.

Gaffin and Maasch (1991) and Gaffin (1992) took the idea of non-linear interactions in stratigraphic systems a step further, and developed a simple stratigraphic model derived from a mass-conservation model for palaeo-ice sheet cyclicity. The stratigraphic model showed how base level instability resulting from positive feedbacks within the system can lead to non-linear behaviour, including free oscillations, which produce periodicity without external forcing.

Although Gaffin (1992) presented some very interesting ideas, the model is very simplistic, being heavily dependent upon the idea of a diffusion front beyond which sediment is not transported to provide a non linearity and hence a feedback effect in the model. In order to investigate the concepts of unforced oscillations in stratigraphy further, it is necessary to use a more detailed stratigraphic model. The model results presented
Chapter 4 - Complex interactions, cyclicity, and numerical instabilities

below give an example of how complex interaction between non-periodic model components can produce periodic patterns in modelled stratigraphy, and illustrate some of the potential problems in using discretised models to investigate non-linear oscillating systems.

4.3 Initial conditions

Figure 4.1 summarises in diagrammatic form some of the initial conditions for the standard reference model. The values selected are generally arbitrary values, but are constrained by observations of passive rift margins (e.g. Watts, 1988; Klitgord et al. 1988). The model run consists of fifty chron units generated with an interval of 100Kyrs, giving a total elapsed model time of 5Myrs. Thermal subsidence is produced by the one-layer stretching model of McKenzie (1978) with arbitrary stretching values from 1.0 at 400km, to 1.1 at 500km, to 4.0 at 1024km (figure 4.1). The lithosphere is given an arbitrary initial thermal age, or age since the onset of thermal subsidence, of 10Myrs. Absolute sealevel is held constant at 0.0m throughout the model run.

The flexural response of the lithosphere to deposition and erosion is calculated assuming an instantaneous response. The value of T_e is held constant at 10km over the period of the model run. The density of loading and unloading is taken as 1800kgm$^{-3}$ to represent the density of uncompacted sediment.

The fluvial profile is modelled using a complementary error function with a length scale value of 3.0, which produces a steep upstream section, and a relatively flat coastal plain. The profile maintains a fixed geometry through the model run, as described in section 2.6.5.2. Portions of the profile which are uplifted due to flexure are eroded such that the original profile geometry is maintained. However, the lower portion of the profile is allowed to subside and be inundated in a relative sealevel rise without responding by aggradation (figure 2.8). This behaviour is analogous to a fluvial system with very low
sediment supply that is unable to aggrade following the relative sealevel rise. The length of the profile is held constant at 200km. The submarine profile consists of a 10m high, 2km wide shoreface, which passes into a shelf profile of gradient 0.001m/km^{-1}. This is in turn passes into a marine slope with a gradient of 0.04m/km^{-1}. Sediment supply is calculated for each time step from the area of sediment eroded on the fluvial and marine profiles. There is no external sediment input.

4.4 Model results

Results from the model run with the initial conditions described in section 4.3 show a complex interaction between four model components, namely thermal subsidence, erosion, flexure, and deposition.

4.4.1. The feedback mechanism

Figure 4.2 shows a simplified diagrammatic explanation of the feedback mechanism.

- 4.2.A shows the initial conditions, with thermal subsidence on the lower portion of the fluvial profile about to cause a relative sealevel rise, allowing a marine transgression.
- Figure 4.2.B shows the shoreface has jumped landward in response to the thermal subsidence, and erosion on the shoreface has caused flexural uplift in response to the unloading.
- Figure 4.2.C shows how this uplift on the lower portion of the fluvial profile is then removed by subsequent fluvial erosion, which in turn creates more uplift, of lower amplitude.
- This uplift is then removed by further fluvial erosion (figure 4.2.D), and thermal subsidence is on the point of outpacing the uplift, which will lead to a further transgression.
This cycle is repeated until the shoreface approaches the hinge point, where the stretching values are so low that thermal subsidence can no longer drive the shoreface landward, and the feedback effect ceases.

4.4.2. The standard reference model

Figure 4.3 shows a section from the model run with the standard parameters described in section 4.3. The main features to note in the section are the pulses of greater deposition visible in the distal portion of the stratigraphy. These are interspersed with chronos which do not extend so far into the basin, and represent periods of lower sediment supply. The distance of progradation of progressively younger chronos into the basin gradually decreases, until by the time of chron 30, deposition is minimal.

The chronostratigraphic diagram, and the sediment supply curve (figure 4.4) show more clearly the pattern of stratigraphy produced by the feedback effect. The spikes of erosion and deposition produced by the landward migration of the shoreface can be clearly seen. Each spike on the sediment supply curve matches a pulse of deposition on the Wheeler diagram (e.g. chron 5 at 0.5Myrs E.M.T.), and a jump landward in the position of the beach. The periods in between spikes show more restricted deposition, much of which has been removed by subsequent marine erosion. The Wheeler diagram also shows that the position of the beach stabilises after chron 15 at approximately 430km. After this time the beach continues to move landward very slowly, and there are no more jumps in the beach position. The position on the profile of the transition is determined by the distribution of thermal subsidence on the model profile. Landward of the 420km position the magnitude of the thermal subsidence is insufficient to cause further landward jumps, but the beach continues to move gradually landward, towards the hinge zone at 400km, driven by the small amounts of thermal subsidence still occurring (see the initial conditions shown in figure 4.1 and the discussion in section 4.3).
4.4.3. Sensitivity tests

Systematically changing some of the key parameters from the values used in the standard reference model run should identify the critical parameters, and the initial conditions, necessary for the feedback effect to operate. This will lead to a better understanding of the sensitivity of the effect to the model parameter values. Such understanding is important in order to correctly interpret the significance of the effect, and to determine under which conditions, if any, such a feedback effect may operate in natural stratigraphic systems.

Thermal subsidence and elastic thickness of the lithosphere

Thermal subsidence and flexure appear to play a key role in the feedback mechanism. Figure 4.5 shows chronostratigraphic diagrams and sediment supply curves from the model run with high and low values for the stretching factors, and high and low values for the lithospheric elastic thickness. The model runs show that the presence of the oscillatory behaviour is unaffected by the changed parameters, although in each case the exact detail of deposition and erosion is changed. The most significant change the shortening of the duration of the feedback effect shown in the example with higher magnitudes of thermal subsidence (figure 4.5.B). This reduced duration is due simply to the higher magnitudes of thermal subsidence moving the shoreline towards the hinge point more rapidly.

Fluvial and marine profile geometry

These profile geometries are the other two model parameters likely to be of significance to the feedback effect. To test this possibility, figure 4.6 shows another set of four chronostratigraphic diagrams and sediment supply curves from the model run with more and less concave fluvial profile geometries, and two different shoreface geometries. The shoreface geometry does not significantly alter the basic pattern of oscillations and
deposition and erosion of stratigraphy. The geometry of the fluvial profile, however, plays a more important role in the feedback.

The example in figure 4.6.A shows the effect of using a less concave profile. The reduction in profile concavity leads to higher slopes on the lower fluvial profile, and this inhibits the landward movement of the beach, forcing it to move landward in smaller jumps. Consequently the amplitude of the flexural uplift is reduced to such an extent that it no longer acts to block landward beach movement, and the oscillations no longer occur. The example in figure 4.6.B shows that increasing the concavity of the profile has the opposite effect, the lower slopes accentuating the jumps in beach position, leading to increased amplitude sediment supply peaks, and a reduced duration for the feedback.

These sensitivity tests demonstrate that the feedback effect is relatively insensitive to shoreface geometry, but very sensitive to the geometry of the fluvial profile.

Duration of the model time steps

Since the model is a discretised representation of continuous processes, it is important to test, as far as possible, the impact of the discrete model time steps on the feedback effect. The model includes several elements that are not time dependent such as the fluvial and marine profiles, and it is these elements that have the potential to introduce unstable behaviour to the model.

Figure 4.7 shows output from the model run with a time step of 50Kyrs, which is half the value used in the standard reference model. Looking at the sediment supply curve it is apparent that the oscillations in sediment supply are still present with the reduced time step. Most significantly, the oscillations in this model run have a period of two or three time steps, as they do in the standard reference model. However, since the model time step in figure 4.7 has been halved, the periodicity of the oscillations has also been halved, from
200 - 300 Kyr, to 100 - 150 Kyr. This suggests that the periodicity is directly dependent upon the magnitude of the time step used. The total duration of the oscillations in figure 4.7 is thirty five time steps, or 1.75 Myr. This is slightly more than half the total duration of 2.95 Myr of the oscillations in the standard reference model. Thus halving the model time step halves the periodicity of the sediment supply oscillations, and reduces by a factor of 0.59 the total duration of the oscillations.

Halving the model time step once more to a value of 25 Kyrs shows a similar result. The period of the oscillations in figure 4.8 is again two to three model steps, or 50 to 75 Kyrs. The duration of the oscillations has been reduced to thirty six model time steps, or 0.9 Myr, which is close to half the duration of 1.75 Myr seen in figure 4.7.

These two model runs strongly suggest that the oscillatory behaviour produced by the model with the specified initial conditions and parameter values is a numerical instability created by the discretised nature of the model. The fact that the period of the oscillation is halved when the model time step is halved suggests that the period would approach zero as the model time step approached zero. Figure 4.9 shows a contour plot of sediment supply values produced from one thousand model runs each with twenty five time steps ranging in magnitude from 0.1 Kyrs to 0.1 Myr. The contours pick out the peaks of sediment supply produced by the feedback effect in the model. The first two peaks in each model run occur consistently at model steps one and four for each of the one thousand model runs. Thus the period of the oscillations ranges from 0.3 Myr to 0.3 Kyrs, demonstrating irrevocably that the periodicity is dependent only upon the model time step. Note that the magnitude of the sediment supply peaks decrease as the time step decreases. This is due to the reduced distance of movement of the beach with smaller time steps, and is a further indication of numerical instability.

Figure 4.10 is a plot showing how the timing of the second sediment supply peak varies with model time step duration. The plot demonstrates the well-defined linear trend
between timing of the peak and the model time step for the first twenty model runs shown in figure 4.9. The intercept value on the best fit line is zero which demonstrates that as the time step duration is reduced to zero, the periodicity of the sediment supply is also reduced to zero. Thus the oscillations in the model described can be said with confidence to be the result of a numerical instability resulting from the time-independent discretisation represented by several of the model components.

Flexural response time

Thermal subsidence is the only time dependent component of the model used in the model runs in figures 4.4 to 4.8. This section investigates the effects on model output of introducing a simple time dependency to the flexural component of the model.

Studies of the response of the lithosphere and the asthenosphere to post-glacial unloading (Walcott, 1970a; Walcott, 1970b; Peltier, 1986; Bills and May, 1987; Sigmundson, 1991) suggest that both require a finite period of time in order to return to compensated equilibrium after a loading or unloading event. Walcott (1970b) suggests a response time for the asthenosphere in the order of 10 to 20Kyrs on the basis of the continued up-warping of the region of Canada previously covered by the Laurentide Ice Sheet. Sigmundson (1991) suggests a much shorter time period, in the order of 1000 years, from studies of postglacial rebound in Iceland.

The response of the lithosphere to loading and unloading is still poorly understood. There are few data or model information regarding the response of the lithosphere in the period between the very short term, (i.e. 10^3 yrs) when the response is controlled by the seismic thickness of the lithosphere, and the long term (i.e. 10^6 yrs) when the response is controlled by the elastic thickness (Bodine et al. 1981). The interval between is controlled by a process of stress relaxation, the understanding of which is crucial to understanding the lithospheric flexural response. Although work has been done regarding stress relaxation
using the concept of the yield strength envelope (e.g. Watts et al. 1980; Bodine, 1981; Bodine et al. 1981), understanding of the processes involved is still poor.

The response time of the lithosphere to loading and unloading events of various magnitudes and wavelengths may well be important in the behaviour of the feedback effect, and yet as discussed, it is not well understood. In order to test this possibility, the following model runs use a very simple method to spread the flexural response over several model time steps. The methodology is described in detail in section 2.6. Although it is very simplistic, it should be adequate to test the importance of flexural response time to the feedback effect.

Linear flexural response

Figure 4.11 shows a chronostratigraphic diagram and a sediment supply curve from the model run with a time step of 25Kyrs and a flexural response time of 0.1Myrs. This is significantly longer than the response time suggest by Walcott (1970b), but the purpose of this model run is simply to test the potential importance of a response time longer than the duration of the model time step. Figure 4.11 shows the effect of this response time on the behaviour of the feedback coupling. The pulses of deposition and erosion have been spread out such that the period between the three major pulses at chron 1, chron 7 and chron 13 has a mean value of 0.163Myrs. The fact that the inclusion of the linear flexural response in this model run changes the periodicity suggests that it contributes significantly to the model behaviour, and thus warrants further investigation.

Figure 4.12 is a contour plot of sediment supply of the same type as that shown in figure 4.9. Exactly the same methodology was used to generate both plots, but the model runs used to produce figure 4.12 included a linear flexural response with a response time of 0.1Myrs. Comparison of the two plots shows that the complexity of the model behaviour has been increased with the inclusion of the linear flexural response. Whereas in figure 4.9
the peaks in sediment supply occur consistently at particular model steps, in figure 4.12 this is no longer the case. For example, for a model time step duration of 40Kyrs, the second peak of sediment supply occurs at step five. However, for time step durations of 80Kyrs and 20Kyrs, the second peak occurs at step seven. The timing of the second peak for time step durations of 20Kyrs and less shows an interesting trend. As the time step duration decreases, the peak occurs at later step numbers, reduces in magnitude, and other peaks are introduced at earlier steps.

Converting the model step number to a value of elapsed model time shows that the peak is not occurring at the same E.M.T. This is demonstrated in figure 4.13 which plots the timing of the occurrence of the peak for different time steps. The plot shows that the relationship between the time of the peak occurrence and the model time step is non-linear. The non-linearity has been introduced by the inclusion of the flexural response time.

Thus although the inclusion of the finite flexural response time in the model has added an element of time dependency to the pattern of the oscillations of sediment supply, it has not removed the numerical instability.

4.5 Summary

1. There exists within the model, when run with the initial conditions described, a feedback effect between thermal subsidence, shoreface erosion, flexure and fluvial erosion, which is capable of producing cycles of synthetic stratigraphy without any external periodic forcing.

2. The effect occurs with a variety of initial conditions. Though variations in the initial conditions affect the details of the stratigraphic pattern, the basic pattern produced by the feedback effect is present in all the sensitivity tests which varied thermal subsidence, flexural and geomorphological model parameters.
3. Running the model with different time steps demonstrates that the period of the oscillations in sediment supply is entirely dependent upon the length of the time step used. Peaks in sediment supply always occur at the same chron regardless of the E.M.T. that the chron represents. As the model time step is reduced towards zero, so the period of the oscillation approaches zero. This demonstrates that the feedback effect in the model is a numerical instability resulting from the discretised nature of the model.

4. Running the model with a finite value for the flexural response time that is longer than the length of the time step shows that the inclusion of the response time complicates the unstable behaviour of the model, but does not surmount the fundamental problem of the instability. The timing and period of the oscillations are still dependent on the duration of the time step used, but no longer show a simple linear relationship with time step duration.

5. Although it seems intuitively possible that the feedback mechanism described may occur in natural stratigraphic systems, the stratigraphic model presented here can provide no indication either way of the existence of such a feedback. This is due to the numerical instability inherent in the model as a result of the discretised representation of continuous functions. Further investigation of potential feedback effects would thus require a model formulated with continuous time-dependent equations.
Figure 4.1 A diagrammatic summary of the initial conditions for the standard reference model. Note particularly the distribution of stretching values, the position of the hinge zone, and the starting position of the beach.
A) Initial conditions - thermal subsidence is set to cause a relative sealevel rise and force the shoreface landwards.

B) Shoreface erosion causes flexural uplift.

C) Fluvial erosion removes the uplift, causing further flexure of lower amplitude.

D) Fluvial erosion and thermal subsidence combine to lower the coastal plain ready for another transgression.

Figure 4.2
Figure 4.3. A section from the standard reference model run. The run is composed of 50 chron units with an interval of 0.1Myrs. Stretching factors range from 1.0 at 400km, to 1.1 at 500km, and 4.0 at 1000km. Elastic thickness is held constant at 10km. Absolute sealevel is constant at 0m. Sediment supply is calculated from the fluvial and marine profile erosion, with no external sediment input. Significant features of the model run such as the shortened fluvial profile, the erosion on the inner shelf, and the pulses of deposition on the more distal portions of the profile are clearly visible.
Figure 4.4. A chronostratigraphic diagram and a sediment supply curve from the standard reference model run. The model run is composed of 50 chronons, with an interval of 0.1Myr. Stretching factors range from 1.0 at 400km, to 1.1 at 500km, and 4.0 at 1000km. Elastic thickness is held constant at 10km. Absolute sealevel is constant at 0m. Sediment supply is calculated from fluvial and marine profile erosion, with no external sediment input. Note the cyclicity in the pattern of marine downlap and sediment supply due to the landward jumps in the beach position.
Figure 5. Characteristic diagrams and sediment supply curves from model runs with low and high thermal subsidence, and low and high elastic thickness values. The plots demonstrate the feedback effect present in these different model parameters.
Figure 4.6. Chronostratigraphic diagrams and sediment supply curves from model runs with different fluvial and shoreface profile geometries. The diagram demonstrates the sensitivity of the feedback effect to decreasing the concavity of the fluvial profile, and its relative insensitivity to a more concave fluvial profile and different shoreface geometries.
Figure 4.7: A chronostratigraphic diagram and a sediment supply curve from the model run with a timestep of 0.05Myrs. All other parameters are the same as those used in the standard reference model. The halving of the timestep duration has halved the period of the sediment supply oscillations. Note also that the magnitude of the sediment supply has been reduced due to the lower magnitude of thermal subsidence per time step.
Figure 4.8. A chronostratigraphic diagram and a sediment supply curve from the model run with a timestep of 0.025Myrs. All other parameters are the same as those used in the standard reference model. The period of the oscillations in sediment supply show the same trend as in figure 4.7, i.e. halving the time step has halved the period of the oscillations.
Figure 4.9. A contour plot of sediment supply for 100 model runs, each with twenty five time steps. The model time step duration ranges from 100 years to 0.1 Myrs over the 1000 runs. All the other parameters are the same as those used in the standard reference model. The contours are plotted at intervals of 0.1 square kilometres, for a range of values from 0.1 square kilometres to 1.5 square kilometres. The plot illustrates that the periodicity of the peaks in sediment supply is dependent on the model time step used.
Figure 4.10. A plot to show the relationship between the timing of a sediment supply peak in E.M.T. and the model time step. The values are taken from figure 4.9. The plot shows that there is a simple linear relationship between the timing of the peak and the time step. The intercept on the best-fit line is zero, which shows that the timing of the peak goes to zero as the time step goes to zero.
Figure 4.11. A chronostratigraphic diagram and a sediment supply curve from the model run with a timestep of 250 kys and a linear flexural response time of 0.1 Myr. All other parameters are the same as those used in the standard reference model. The inclusion of the linear flexural response time in the model has increased the number of model timesteps over which the oscillations in sediment supply occur.
Figure 4.12. A contour plot of sediment supply for 1000 model runs, each with 25 time steps. The model time step duration ranges from 100 years to 0.1 Myrs over the 1000 runs. The model run uses a linear flexural response time of 0.1 Myrs. All the other parameters are the same as those used in the standard reference model. The contours intervals are the same as those in figure 4.9. The introduction of time dependence in the flexure has complicated the relationship between the signal period and the time step duration, particularly for the time step duration of 40 Kyrs and less, but the period of the peaks is still not consistently independent of the time step duration.
Figure 4.13. A plot to show the relationship between the timing of a sediment supply peak in E.M.T. and the model time step. The values are taken from the model runs with time dependent flexure shown in figure 4.12. The plot demonstrates that the timing of the peak still varies with the time step used, but it shows that the relationship is not a linear one, due to the influence of the flexural response time.
Chapter 5
Chapter 5 - Modelling the Neogene stratigraphy of the North American Atlantic passive rift margin

"My dog barks some. Mentally you picture
my dog, but in fact I have not told you
the type of dog which I have."

(David Lynch, Wild At Heart)

5.1 Introduction

The purpose of this chapter is to test the quantitative stratigraphic model developed here against an actual example of passive rift margin stratigraphy, namely the Neogene stratigraphy of the Atlantic margin of North America. In particular, the model will be used to investigate aspects of the Miocene progradation, such as the sediment supply, subsidence and sealevel history which may have been necessary to cause the progradation. This chapter will also demonstrate that this stratigraphic model is only capable of accurate fits with observed data on a very coarse scale, such as the overall sediment thickness, and the approximate distance of progradation. The model is not accurate enough to produce meaningful fits with observed stratigraphy at a more detailed level. For example, it cannot accurately reproduce details of onlap patterns.

5.2 Previous work on the North American Atlantic passive margin basins - constraints on model output

The stratigraphy on the North American Atlantic margin ranges in age from Triassic to Pleistocene and reaches a maximum thickness in excess of 15km in the Baltimore Canyon Trough (Grow and Sheridan, 1988). Rifting began in the Triassic, with the synrift phase of basin evolution lasting into the Jurassic when postrift thermal subsidence began (Klitgord et al. 1988). The tectonic and stratigraphic history of the margin has been deduced from a
mixture of interpretation of surface, subsurface and geophysical data (e.g. Klitgord et al. 1988,) and modelling studies (e.g. Watts, 1982; Steckler and Watts, 1982; Sawyer et al. 1983).

5.2.1 Chronostratigraphy

There exists a large and comprehensive database on the stratigraphy of the North American Atlantic margin (e.g. Poag and Valentine, 1988; Riggs and Belknap, 1988; Greenlee et al. 1992) based upon both surface and subsurface data. Greenlee et al. (1988) provides the most useful synthesis of stratigraphic data derived from seismic and borehole evidence which is displayed as both interpreted seismic sections and chronostratigraphic diagrams. Figure 5.1 shows the location of the seismic line and the surrounding boreholes. Figure 5.2 shows the seismic line, the interpreted seismic line, and the chronostratigraphic diagram from Greenlee et al. (1988). Throughout this chapter, the uninterpreted seismic data is referred to as observational data, while the interpreted seismic data, and the chronostratigraphic diagram are referred to as interpreted data. Figure 5.3 is modified from the chronostratigraphic chart from Greenlee et al. (1988). The interpreted data can be used to compare directly with model output. However, before doing this, it is important to examine the data and determine how it was derived, in order to appreciate possible biases of interpretation and other such weaknesses.

The chronostratigraphic diagram in plate 7 of Greenlee et al. (1988), shown in figure 5.2, and summarised in figure 5.3, shows the lateral extent through time of fluvial, coastal plain, nearshore marine, and slope basin sediments. However, little information is given regarding the exact methodology by which this information was derived. The age of the units shown on the chart was established on the basis of biostratigraphic age dating from available wells (figure 5.1), and correlation with the global cycles chart of Haq et al. (1988).
Greenlee et al. (1992) describe problems with the biostratigraphy relating to, for example, downhole sampling problems, and the limited environmental distribution of many of the diagnostic species of foraminifera used. As a result, the resolution of the dating of any particular surface is only plus or minus one or two million years. This limit on the resolution of the dating of the stratigraphy is of particular interest since the chronostratigraphic chart shows many breaks in deposition, which are presumably based on the biostratigraphic age data for the units and the correlation to the global cycles chart. With the limited resolution, such correlations may be particularly susceptible to the problems with correlation described by Mial (1992). If these data are prone to error, the interpretation of units separated by discreet breaks is suspect. Hence, in figure 5.3 no breaks are shown in the stratigraphy, except where there is observational evidence of erosion on an unconformity.

The distribution of the environments through time appears to have been based on observation of the seismic characteristics of the dated reflectors on the seismic line, i.e. the seismic facies. The methodology for this procedure for marine clastic sediments was described in Sangree and Widmier (1977) and Mitchum et al. (1977), but the procedure would appear to be very subjective and prone to interpretative error. For example, a fluvial mud will have the same acoustic impedance and other such physical characteristics as a marine mud, may well show the same type of reflector geometry (e.g. shingled, hummocky), and will have undergone similar post-depositional processes of diagenesis and compaction. Therefore, the suggested distribution of the environments from Greenlee et al. (1988), particularly the transition from fluvial to coastal plain and nearshore marine, should be treated with extreme caution. However, in the absence of better publicly available data (i.e. logged cores), this data must suffice for modelling comparisons.

Both the problems with the dating of reflector surfaces and the difficulty in accurately identifying the distribution of depositional environments from the seismic data must cast doubt upon the sequence stratigraphic interpretation being placed upon the observed
stratigraphy. For example, there appears to be no direct evidence on the seismic section for rapid landward or seaward movements of the beach, as suggested by Schroeder and Greenlee (1992). As already discussed, direct observational evidence for breaks in deposition as shown on the chronostratigraphic chart of Greenlee et al. (1988), are also lacking. These examples illustrate the potential pitfalls involved in the application of the sequence stratigraphic methodology beyond the limits of the data available.

5.2.2 Tectonics and subsidence history

Much previous work has concentrated on attempting to deduce the overall tectonic structure of the passive margin (e.g. Klitgord et al., 1988; Sheridan et al., 1988; Grow et al., 1988; Watts, 1988) and in particular the subsidence history of the passive margin (e.g. Watts and Steckler, 1979; Steckler et al. 1988). Both areas of work provide essential data regarding attempts at quantitative forward modelling. In particular, Watts (1988) gives estimates for the crustal and subcrustal stretching factors on the passive margin, based upon subsidence studies. These are used as parameter values in the model (see section 5.3). Smith et al. (1976) gives values for palaeobathymetry in the COST-B2 well through the Miocene. These values are very useful, since they can be used to constrain the model output.

5.2.3. Eustatic curves

Figure 5.3 shows three eustatic sealevel curves derived from or used in, studies of North American Atlantic margin stratigraphy. The first of these curves is the Watts and Steckler (1979) curve. This was derived from backstripping studies by comparing a least squares fit exponential curve with the actual backstripped curve, and assuming that the difference is due to eustatic sealevel changes. The second curve is the Haq et al. (1988) curve. This was derived from studies of coastal onlap made within the framework of the sequence stratigraphic depositional model (Vail et al., 1977a), and is thus based upon the
assumption that coastal onlap is controlled by fluctuations in eustatic sealevel, so that where global synchronicity can allegedly be established, the coastal onlap curve can be taken to represent eustatic fluctuations.

The third curve is the Greenlee and Moore (1988) curve. This was also calculated using coastal onlap and the sequence stratigraphic depositional model, but was based purely on interpretations of data from the Baltimore Canyon Trough, while the Haq et al. (1988) curve claims to be a more regional synthesis of stratigraphic interpretation. Despite this, the two curves share some common features i.e. the gross timing of most falls and rises. If the curves were derived from widely separated localities, this would strengthen the case for a global control on coastal onlap patterns, but this geographical diversity has yet to be demonstrated, and would still not be conclusive. The two curves also have quite different amplitudes. For example, the maximum amplitude of the Haq et al. curve is 144m above present sealevel, while the maximum amplitude of the Greenlee and Moore curve is 68m. This discrepancy must also cast doubt on the validity of one or both of the curves. The validity and use of the curves is discussed further in section 5.4.

5.2.4. Previous modelling work

Steckler and Watts (1982) studied the subsidence of the North American Atlantic margin via backstripping, and modelled the total stratigraphy using a thermo-mechanical model. The thermal element of the model was based on McKenzie (1978) and the mechanical element was derived from models of flexural isostasy with a time dependent elastic thickness. The model reproduces at a very coarse scale some of the elements of passive margin stratigraphy such as the approximate maximum thickness of the synrift and postrift sediment, and the gross pattern of stratal onlap on the Coastal Plain. Steckler and Watts (1982) suggested that this onlap was due to the increasing flexural rigidity of the lithosphere with age, rather than eustasy (Vail et al. 1977b) or two-layer lithospheric stretching (White and McKenzie, 1988).
Watts and Thorne (1984) developed this model further by adding two-layer stretching (e.g. Hellinger and Sclater, 1983), sediment compaction, a very simplistic model for subaerial erosion, based upon an average elevation algorithm acting upon the flexural forebulge, and changes in absolute sealevel. It was claimed that this model could reproduce the basic details of the observed stratigraphy on the North American Atlantic margin. However, there are several problems with this claim. Firstly, there is the problem of scale. Although the model does reproduce the overall pattern of stratal onlap, it does so at a time scale which is large enough to miss much of the finer detail, such as possible third order cycles. For example, the model groups the Aptian stage into one chron. Hence any detail during the Aptian is not reproduced by the model. Therefore, it is not viable to claim that the model negates the necessity for higher-order sealevel variations such as those proposed by Vail et al. (1977b).

The second problem with the Watts and Thorne (1984) model is related to the processes included in the model, and the way in which these processes are modelled. If the assumptions behind the model are weak, for example, constant palaeobathymetry over the duration of the model run, constant compaction, and a very simplistic model for erosion, then this weakens the conclusions which may be safely drawn from the model results.

The problem is also related to scale, since such assumptions probably do not significantly weaken the conclusion that thermal subsidence and flexural subsidence due to sediment loading are the most important controls on the overall development of the passive margin stratigraphy. However, they are important when looking, for example, at the details of the stratigraphy on the Coastal Plain. Thus it seems important to try and look at sections of the stratigraphy on the North American Atlantic margin using a model with a finer time resolution and a set of assumptions which are more suited to modelling stratigraphy at finer scale, both temporal and spatial.
Schroeder and Greenlee (1993) examined the stratigraphy of the North American Atlantic margin at a finer temporal scale with a quantitative model which attempted to reproduce the observed stratigraphy in the Neogene, over a period of approximately 18 Myrs, and thus test the applicability of a variety of eustatic sealevel curves for this period. No details of the formulation of the model are given, except for some very crude flowcharts to indicate the sequence of events to generate each chron. Stratigraphy is modelled at each time step by taking the position on the eustatic curve, and then generating a geometric shape based on this position. For example, if the current portion of the eustatic curve was the lowstand limb, the model would generate a triangular wedge onlapping on the front of previous model stratigraphy. Thus, the model appears to be a model of a model, in that it is derived entirely from the conceptual sequence stratigraphic models of Vail et al. (1984), Jervey (1988), Posamentier et al. (1988) and Posamentier and Vail (1988). This approach has some very obvious drawbacks in terms of a lack of direct links with observed stratigraphic processes, and a large element of circular reasoning.

For example, Schroeder and Greenlee (1993) conclude that the sealevel curves of Haq et al. (1988) and Greenlee and Moore (1988), which include high-frequency eustatic oscillations, better fit the interpreted data than the curve of Watts and Steckler (1979), which lacks such high-frequency eustatic oscillations. However, the Haq et al. (1988) and Greenlee and Moore (1988) curves were calculated using the sequence stratigraphic model, the quantitative model of Schroeder and Greenlee (1993) was developed using the sequence stratigraphic model, with little or no reference to actual observed stratigraphic processes, and the data used for testing that model was interpreted using the sequence stratigraphic model (Greenlee et al. 1988). Central to the sequence stratigraphic model is the need for eustasy as a driving mechanism for variations in coastal onlap, and stratal geometry. Therefore, the conclusion of Schroeder and Greenlee (1993) regarding which eustatic curve best fits the interpreted data, is not surprising, and is probably not significant, being purely a function of a circular methodology.
Schroeder and Greenlee (1993) also concluded that the "Miocene progradation event", in which clinoforms prograded approximately 100km across the passive margin, was caused by higher than average sediment supply, combined with a low magnitude of thermal subsidence, and a second-order eustatic sealevel fall. Though this seems quite possible, it is important to test this interpretation further with more sensitivity tests using a more sophisticated model with some different basic assumptions.

The model used here has already been extensively described in chapter 2. The model has a strong link with those described in Steckler and Watts (1982) and Watts and Thorne (1984). All these stratigraphic models invoke a lithospheric stretching model, in the form of either the one layer model of McKenzie (1978) or a two-layer model (e.g. Hellinger and Sclater, 1983), and flexural isostasy, which together seem capable of accounting for the gross architecture of passive margin stratigraphy (Watts et al., 1982). The predominant difference between those previous models, and the model presented here is the higher time resolution of this model, which can be applied to periods of 20 - 30Myrs. Previous models such as Watts and Thorne (1984) are applicable for longer periods of up to 150Myrs. The higher time resolution, and the inherent different model assumptions and components, are essential in order to further investigate the details of passive margin stratigraphy, rather than the overall gross architecture, as has been done previously (Steckler and Watts, 1982; Watts and Thorne, 1984).

However, looking at stratigraphy at finer time scales (i.e. 10 -20Myr periods) raises the problem of the complexity of the sedimentary and geomorphological systems in comparison with the relatively simplistic nature of current stratigraphic models. This discrepancy in complexity means that any fits between model output and observed data are going to be generally low-resolution fits. In the case presented here, a broad fit between observed clinoform structure, sediment thickness, and distance of progradation is being aimed for. Details of onlap patterns and erosion patterns are very unlikely to match due to the discrepancy in complexity. A significant increase in model complexity and
sophistication, in terms of the processes included, and basic assumptions such as two-dimensionality, will be necessary to make more progress at this higher resolution time scale.

5.3 Initial standard model conditions

The total model run time is set to be 15Myrs. This model run time is split into 150 time steps, each of 0.1Myrs duration. This model duration represents the period from 18Ma, in the Early Miocene, to 3Ma in the Late Pliocene. This time interval was chosen because it spans the duration of the Miocene progradation being studied, but the exact timing was chosen on the basis of the chronostratigraphic chart of Greenlee et al. (1988) which covers this period of geological time.

As already discussed in section 5.2.1, the large-scale tectonic evolution of the North American Atlantic margin has been well studied (e.g. Watts and Steckler, 1979; Watts and Thorne, 1984; Klitgord et al. 1988; Watts, 1988; Watts, 1989) and seems to be well understood. Watts (1988) gave crustal and subcrustal stretching values across the Baltimore Canyon Trough estimated from backstripping, and gravity modelling across the basin. These values have been used as the initial conditions for crustal and subcrustal stretching in the model (figure 5.4) using the two-layer stretching model of Hellinger and Sclater (1983). The initial thermal age of the model is taken to be 180Myrs, which represents in the model the time elapsed since the end of the synrift phase of basin subsidence. This age is chosen on the basis of the age of the oldest sediments known to overlie the postrift unconformity which are thought to be Early or possibly Middle Jurassic in age (Klitgord et al. 1988; Poag and Valentine, 1988).

This value for the thermal age of the lithosphere is also used in the initial conditions for the modelled flexure. The standard reference model uses a time-dependent Te where Te is equal to approximately three times the square root of the thermal age of the lithosphere.
Chapter 5 - Neogene stratigraphy, North American Atlantic margin

(see section 2.6). This gives values in a range from 40.2km at 0Myrs E.M.T., to 41.89km at 15Myrs E.M.T. The value of Te does not vary with distance along the profile. The Te is high enough during the Miocene that such variations would make little difference to the final stratigraphy, since the amplitudes of flexure are so small.

The initial topography for the standard model run was selected on the basis of a combination of present day topographic data and estimates of shelf morphology and water depth at 18Ma. The maximum elevation of the profile at its landward end is set at 150m, which is based on the present elevation of the edge of the Coastal Plain (Klitgord, 1988). The submarine topography is derived from measurements of the clinoform height on the 18Ma chron on the interpreted seismic section of Greenlee et al. (1988), using the given value for vertical exaggeration with reference to the horizontal scale. These measurements suggest a probable initial water depth of, very approximately, 600m in front of the prograding clinoforms (e.g. the 17.5Ma clinoform at approximately 45km from the landward end of the profile), and increasing basinward. The initial topography, therefore, consists of a slope from 0m at the initial beach position at 400km, to -600m at 450km, -700m at 500km, and -2000m at 1024km.

A fluvial profile 200km in length is cut into this topography. The length of the profile is based on measurements of modern rivers on the Coastal Plain, and on the width of the present Coastal Plain (Klitgord, 1988). The profile is modelled using a complementary error function with an arbitrary length scale value of 2.0 (see section 2.6.5.2) The landward limit of the fluvial profile is fixed in position, since the Coastal Plain does not appear to have widened to any significant degree by headward movement of the limit of fluvial deposition during the Neogene (Judson, 1975).

A fluvial-marine partitioning coefficient of 0.11 is used (see section 2.5.7). This is a very difficult parameter to constrain, yet it is critical to the stratigraphic patterns produced. In this case, the value for the parameter was chosen to provide a fit with the interpreted data.
However, some very loose constraint on the value can be derived from studies of areas of deposition of modern deltas. Comparison of the subaerial and submarine planform areas of the Delaware river delta suggest a fluvial-marine partitioning coefficient value of 0.16 (Pers. comm., Hovius, 1993). This value is surprisingly close to the value chosen on the basis of the model fit.

The marine equilibrium profile consists of a shoreface 10km in width and 20m in height, a shelf with a gradient of 0.5mkm⁻¹, and a continental slope with a gradient of 4.366mkm⁻¹. These values are based on the present morphology of the North American Atlantic margin (Shor and McClennen, 1988). Three different eustatic curves (figure 5.4) are used in the model runs. The curves were taken from Schroeder and Greenlee (1993). Sediment supply was held steady for the standard run at 0.48km² per 100Kyr time step. This value was chosen to produce a fit in the model with the observed distance of clinoform progradation, but it is in general agreement with Judson (1975) which suggests a rate of denudation of 0.03mkyr⁻¹ between the Coastal Plain and the main divide, based on the volume of sediment observed offshore. Multiplying this figure by the distance across which the erosion occurred, approximately 200km, gives a figure of 0.6km² per 100Kyr.

The magnitude of post-Palaeozoic erosion, estimated on the basis of observed stratigraphic gaps along the East Coast, varies from approximately 0.25km to approximately 6km depending on structure. This gives an erosion rate of between 0.001mkyr⁻¹ and 0.02mkyr⁻¹, and demonstrates the potential variability of denudation rates along the passive margin. These figures give a much lower sediment supply value of between 0.0002km²Kyr⁻¹ and 0.004km²Kyr⁻¹. Although they are obviously gross average estimates, they do provide a guide line around which modelling can proceed. Thus, although the figure used of 0.48km² per time step was chosen to facilitate a fit with observed data, it is only slightly higher than the maximum value calculated on the basis of the estimated erosion rates, and is only slightly lower than the value calculated on the basis of offshore sediment volumes.
5.4 Model Output

The following model runs have the parameter values described above in section 5.3, and include one of the three pre-defined absolute sealevel curves described in section 5.2.5. The model runs are not dependent upon the sequence stratigraphic depositional model, as were the modelling results of Schroeder and Greenlee (1993), but instead form a more independent, less inherently circular, test of the validity of the three curves. The results also provide an insight into the other stratigraphic controls which may have been responsible for the observed Neogene stratigraphy.

5.4.1 The Watts and Steckler curve results

Figure 5.5 shows a model section produced using the standard initial conditions and parameters described in section 5.2 along with the Watts and Steckler sealevel curve. The section shows a steady progradation of submarine clinoforms into deep water, with approximately 700m thickness of marine slope sediment deposited in the clinoform foresets. The clinoform topsets are made up of shoreface sediment, possibly with a narrow shelf, topped by aggradational and progradational fluvial stratigraphy. The maximum thickness of fluvial sediment deposited is approximately 60m over the original position of the beach at 400km.

Figure 5.6 shows the chronostratigraphic diagrams from the model run. The Wheeler diagram shows the influence of the absolute sealevel curve on the pattern of beach and shelf-slope break progradation. Changes in the rate of sealevel fall at an E.M.T. of 4.4Myrs and 8.8Myrs (13.6Ma and 9.2Ma) clearly alter the rate of progradation of the beach. Changes in the rate of beach progradation in the interpreted data (figure 5.3) appear to occur at 15Ma, 13Ma and 5.5ma, though the exact position of the beach is not mapped, only the interpreted transition from fluvial to coastal plain and nearshore sediments, which
adds a margin of error in the beach position of between 25 and 50km. This in turn makes changes in rate of progradation difficult to establish exactly.

Comparing the timing of changes in model beach progradation rates and interpreted beach progradation shows poor correlation. However, what is very apparent is that the observed changes in the rate of beach progradation occur with a similar frequency to those in the model driven by the Steckler and Watts absolute sealevel curve. There is no evidence in the observed data for higher frequency variations in the rate of beach progradation which could be used to imply higher-order cycles of eustatic change.

Changes in the rate of progradation of the shelf-slope break in the interpreted data appear to occur at 16Ma and 10Ma. In the modelled stratigraphy, there is a steady decrease in the rate of shelf-slope progradation from 0.0Myrs E.M.T. to 4.0Myrs E.M.T. (18Ma to 14Ma) followed by steady progradation. This change in gradient is a function of the initial topography, so it can largely be dismissed as an artefact of the initial conditions, which as stated before, are poorly constrained.

Thus, comparing the model output with interpreted data from Greenlee et al. (1988) shows that the model output successfully reproduces some of the basic elements of the data:

- The overall uncompacted thickness of approximately 700m of the marine sediment in the model is in the same order of magnitude as the observed post-compaction thickness ranging from approximately 700m to 1250m.
- The 100km of beach progradation in the model matches well the interpreted distance of beach progradation of between 60km and 108km.
- The basic clinoform structure in the model produced by the progradation of the beach and the shelf-slope break matches the gross clinoform structure seen in the interpreted seismic section (figure 5.2).
Chapter 5 - Neogene stratigraphy, North American Atlantic margin

- The decrease in water depth due to the progradation of the clinoforms matches the decrease in water depth through the Miocene shown in the palaeobathymetry curve of Smith et al. (1976).

These points of a basic match between the interpreted data and the model output suggest that, within the constraints imposed by uniqueness problems leading to multiple possible solutions, the processes represented in the model are probably essentially those responsible for the gross stratigraphic geometry. A combination of thermal subsidence, flexure, slowly varying absolute sealevel, and constant sediment supply can reproduce the interpreted gross stratigraphic geometry.

Looking at the results in slightly greater detail, however, shows that there are some discrepancies between the interpreted data and the model output:
- None of the stratal onlap onto the prograding clinoforms, or the stratal terminations beneath younger strata visible on interpreted seismic sections (figure 5.2) occur in the model.
- The model shows continuous deposition on the fluvial profile throughout the run, producing a maximum thickness of approximately 100m of fluvial sediment. There is no erosional truncation as observed on the Coastal Plain (e.g. Olsson et al. 1988), though on the basis of stratigraphic relationships, this truncation may have occurred in post-Miocene times, in which case it can be considered to be beyond the scope of the model run.

These discrepancies are most likely due to the difference between the relatively simplistic model and the much more complex stratigraphic systems. Many processes which are known, or suspected, to operate in the marine and terrestrial environments on the passive rift margins, are not adequately represented in the model. For example, several studies have shown that slope failure and mass wasting are very significant processes that strongly affect patterns of preserved stratigraphy (e.g. May et al., 1983; Miller et al., 1985; Shor
and McClennen, 1988; Pers. Comm., Hesselbo 1993). No such processes are included in the model, though it seems possible that they could be responsible for patterns of onlap observed at the base of some of the clinoforms. Also, as stated in chapter 2, the behaviour of the fluvial profile through time is very poorly understood, and is only grossly approximated in this model. Therefore, it is not surprising that the fit between the model and the observed data on the coastal plain area is poor.

The importance of circular reasoning with regards to the use of the Haq et al. (1988) and the Greenlee and Moore (1992) eustatic curves in the quantitative modelling study of Schroeder and Greenlee (1992) has been demonstrated. The possibility of circular reasoning in the use of the Watts and Steckler (1979) eustatic curve in this modelling study must also be investigated. As described in section 5.2.5, the Watts and Steckler curve was derived from a backstripping study. The study make assumptions regarding isostatic adjustment to sediment loading, compaction of sediment, and water depth at the time of sediment deposition. It does not make any assumptions regarding a stretching model, or any other components included in this model. Therefore, there is no element of circular reasoning involved. The basic fit between the interpreted data and the model output using the Watts and Steckler curve is not a result of circularity in the methodology of the modelling.

5.4.2 The Haq et al. curve results

Figure 5.7 shows a section generated using the standard model parameters with the addition of the Haq et. al. (1988) eustatic curve. Scrutiny of the section shows that the pattern of stratigraphy is very different to that shown in figure 5.5 and 5.6. The primary cause of this is the high-order cyclicity in the absolute sealevel curve which is absent in the Watts and Steckler curve.
Chapter 5 - Neogene stratigraphy, North American Atlantic margin

The most notable features of the model stratigraphy shown in figure 5.7 are the 400m thick wedge of marine slope sediment, separated from approximately 100m of fluvial, shelf and slope stratigraphy by a marine erosion surface produced by the last major transgression at 12.5Myrs E.M.T. The 100m of shelf stratigraphy was all deposited in the last 2.5Myrs of model time. Older stratigraphy has been eroded by a combination of fluvial and shelf erosion driven by the rapid high-amplitude changes in absolute sealevel. The chronostratigraphic diagrams in figure 5.8 show the spatial and temporal extent of this erosion, some of which should be disregarded as an unrealistic artefact of the geometrical fluvial profile implementation. The position of the beach on the Wheeler diagram is clearly controlled by the absolute sealevel curve.

Comparison of the model output with the interpreted data shows a very poor fit. Even the basic details of the stratigraphy successfully reproduced using the Watts and Steckler curve are absent in this case. For example, the distance of the progradation of the clinoforms is approximately 50km which is outside the limits suggested by the chronostratigraphic diagram of Greenlee at al. (1988). The overall thickness of the stratigraphy also fits the observed data less accurately.

There are two end-member possibilities for the poorness of fit between the model results and the interpreted data. The first is that the Haq et al. eustatic sealevel curve is fundamentally flawed. There are a number of possible explanations for this. For example, the sequence stratigraphic methodology used to derive the curve may be flawed. Alternatively, the features of the stratigraphy used to derive the curve may be due to a process or processes other than eustasy, such as, for example, submarine mass wasting. The second possible explanation for the poorness of the fit is that the stratigraphic model is flawed. Such a fault with the model is most likely to be a result of the assumptions behind the model.
One such assumption which is obviously inaccurate is the assumption of two-dimensionality. This could well be a critical weakness in this particular case. The chronostratigraphic diagram from Greenlee et al. (1988) is derived from interpretation of a seismic section (figure 5.2), the location of which is shown in figure 5.1. However, the seismic line does not run parallel to or along the interpreted axis of Miocene fluvial sediment transport, also shown in figure 5.1. Therefore, the section imaged on the seismic line does not show features such as fluvial incisions if they are present, but rather shows the laterally equivalent surface which may not have been significantly incised. This is in direct contrast to the model section, which is exactly along the axis of fluvial transport, since the model is only operating in two-dimensions. Hence the model results show all the effects of fluvial incision and aggradation. This feature alone could be enough to explain the poorness of fit, and makes it impractical to draw other conclusions regarding the validity of the model results versus the validity of the interpreted data. The only solution to this is to extend the quantitative model into three dimensions.

5.4.3 The Greenlee and Moore curve results

Figure 5.9 shows a section from the model run with the standard parameters plus the addition of the Greenlee and Moore (1988) eustatic curve. The results are broadly similar to those obtained with the Haq et al. (1988) curve. The two curves are very similar with respect to the frequency and timing of eustatic falls and rises, and this similarity is responsible for the basic similarity of the two model runs. However, the curves do differ in magnitude, such that the Greenlee and Moore curve has only half the maximum amplitude (=70m) of the Haq et al. (1988) curve (=140m). These different amplitudes account for the differences in the two model sections.

For example, the 12.5Myr E.M.T. transgressive surface in the Haq et al. run was very well developed and remained largely unburied by subsequent deposition (figure 5.7). In the Greenlee and Moore model section shown in figure 5.9 this is not the case. The magnitude
of the eustatic rise at 12.5Myrs E.M.T. is less, and hence the transgressive surface is less well developed. The lower water depths on the shelf following the transgression (=30m as opposed to =80m) mean that there is less accommodation space and so shallow water sediments can prograde further onto the shelf and bury the transgressive surface.

The quality of the fit of the model run using the Greenlee and Moore curve is no better than that of the model run using the Haq et al. curve. The same problems regarding the off-transport-axis nature of the data, and the two-dimensionality of the model apply equally in this case. As already stated, this makes it very difficult to draw conclusions regarding the validity of the curves from the model output. The only solution is to develop a three-dimensional stratigraphic model.

5.4.4 Variable sediment supply

The standard reference model run held sediment supply constant at 0.48km2 per time step through the model run. One of the features of the section from the model run with the Watts and Steckler curve was the basic fit between the observed distance of beach and shelf-slope break progradation and the distance shown in the model section (figure 5.5). However, the rates of beach movement through time in the model did not match with the rates of beach movement implied from the Greenlee et al. (1988) chronostratigraphic diagram. To improve the fit, it is necessary to include variable sediment supply and variable fluvial-marine partitioning coefficient, since aside from the absolute sealevel curve, these are the major controls in the model on the gradient of the beach and shelf-slope break progradation.

Figures 5.11 and 5.12 show the section and the chronostratigraphic diagrams from the model run with the Watts and Steckler eustatic curve and time-variable sediment supply and fluvial-marine partitioning coefficient. The sediment supply curve is shown in figure 5.12. The partitioning coefficient changes with the same timing as the sediment supply
curve, from a value of 0.1, to 0.6, and then back to 0.1. The section in figure 5.11 shows two major differences from the section in figure 5.5.

- The thickness of the fluvial stratigraphy in the landward portion of the fluvial profile is slightly reduced, and topped by an erosive surface cause by the drop in sediment supply and the fluvial-marine partitioning coefficient at 9.0Myrs E.M.T. Again, this should be disregarded as an unrealistic model artefact.

- The shoreface and shelf are no longer as well developed. Instead, because of the different values of the fluvial-marine partitioning coefficient and the different values of sediment supply, the fluvial profile passes directly into the marine slope.

The chronostratigraphic diagrams in figure 5.12 shows the improved fit between the model result and the interpreted data more clearly. Comparison of the interpreted chronostratigraphic diagram with that shown in figure 5.12 shows that the match with the rate of interpreted beach progradation is now much better. For example, in the model, the beach changes its rate of progradation at 3Myrs E.M.T. from approximately 22kmMyr\(^{-1}\) to a higher value of approximately 59kmMyr\(^{-1}\). A similar change of rate can be seen in the interpreted chronostratigraphic diagram at the equivalent time of 15Ma, though the actual values are quite different, from near zero to approximately 10kmMyr\(^{-1}\). Much of this discrepancy can be explained by the broad bands of possible positions for the beach on the interpreted chronostratigraphic diagram.

The significance of this fit is limited by the simplistic nature of the model, and the problem of non-unique solutions. However, it is still significant in that it shows how a combination of control on stratigraphy by eustasy, thermal subsidence, palaeobathymetry, sediment supply and fluvial-marine partitioning can be used to reproduce and hence provide a possible explanation for the pattern of Miocene progradational stratigraphy observed on one section of the North American Atlantic margin.
5.5 Summary

The primary conclusion from this attempt to fit modelled stratigraphy with observed stratigraphy in the Miocene of the North American Atlantic margin is that there still exists a large discrepancy in terms of complexity between stratigraphic systems and stratigraphic models. While such complexity may not be apparent at longer time scales, it does become apparent when the temporal resolution of modelling is increased. The only solution to this is to continue to build more sophisticated models which account for more of this apparent complexity. Extending models into three dimensions, and including slope wasting processes seem like the most obvious steps forward in the case of modelling the stratigraphy of the North American Atlantic margin.

However, despite the problems with the simplistic nature of this stratigraphic model, it is possible to draw some conclusions on the basis of this modelling exercise:

1. The gross large-scale features of the Miocene stratigraphy such as the distance of clinoform migration, and the thickness of the succession, can be reproduced with the model using the parameter values outlined above. Even given the inevitable uniqueness problems, it seems safe to conclude from this that the basic processes of thermal subsidence, flexural isostasy, eustasy, and sediment progradation are those responsible for the basic features of the observed stratigraphy.

2. The higher-order eustatic curves of Haq *et al.* (1988) and Greenlee and Moore (1988) produce significantly worse fits in the model than the lower-order curve of Watts and Steckler (1979). There are large elements of circular reasoning in both the methodology used to define these higher-order curves, and in the methods previously used to test them (e.g. Schroeder and Greenlee, 1993). Even though the problem of the two-dimensionality of the model cannot be ruled out in explaining the poor fits, it still seems reasonable to
conclude that there are severe problems in using such high-order eustatic curves to explain the geometry of the observed stratigraphy.

3. Varying sediment supply and the fluvial-marine partitioning coefficient improves some of the details of the basic fit between the model and the interpreted data.
Figure 5.1 Location map from Greenlee et al. (1988) showing the location of the seismic line and boreholes providing the database which was used to compile the chronostratigraphic chart also given in Greenlee et al. (1988).
Depositional sequences, Baltimore Canyon trough.

Mesozoic global cycle chart

Continental Margin: U.S.

Geology of North America (GNA-I2)

Seismic section from the seismic line.
Figure 5.3 A summary of the chronostratigraphic diagram presented in figure 5.2.
Figure 5.4 The three eustatic sea-level curves used in the model runs.
Figure 5.5 The initial conditions for the standard model run

- Sediment supply: Constant at 0.48 sq.km
- See text for description of absolute sea level curves
- Crustal and subcrustal stretching factors from Watts (1988)
Figure 5.6. A section from the model run with the parameters described in the text and the Watts and Steckler (1979) absolute sea level curve (figure 5.4.C). The model run successfully reproduces the basic 60-108km of beach progradation and the basic clinoform structures visible on the data and interpretations from Greenlee et al. (1988), but fails to reproduce many of the higher resolution interpreted features such as onlap and downlap patterns. The changes in the rate of beach progradation at, for example, chron 44, are due to changes in the rate of absolute sea level change.
Figure 5.7. A chronostratigraphic diagram and an absolute sealevel curve from the model run with the parameters described in the text and the Watts and Steckler (1979) absolute sealevel curve. The figure shows that the model run successfully reproduces the basic 60-108km of beach progradation visible on the data and interpretations from Greenlee et al. (1988), but fails to reproduce many of the higher resolution interpreted features such as onlap and downlap patterns. The changes in the rate of beach progradation at, for example, chron 44 due to changes in the gradient of absolute sealevel curve, are clearly visible.
Figure 5.8. A section from the model run with the parameters described in the text and the Haq et al. (1988) absolute sea level curve. The influence of the high-order fluctuations in absolute sea level can be clearly seen. The stratigraphy is split spatially into two distinct parts. The stratigraphy on right of the section consists of distal slope deposits formed at various times during the model run, generally at low points on the absolute sea level curve. The stratigraphy on the left is younger, representing deposition during the final 2.5 Myrs of E.M.T., from 12.5 to 13 Myrs E.M.T. Stratigraphy deposited in shallow water previously to this has been eroded by the 12.5 Myr E.M.T. transgression.
Figure 5.9. A chronostratigraphic diagram and an absolute sealevel curve from the model run with the parameters described in the text and the Haq et al. (1988) absolute sealevel curve. The influence of the high-order fluctuations in absolute sealevel on the distribution of stratigraphy is apparent. In particular, the absolute sealevel rise at 12.5Myrs E.M.T., and the subsequent fall at 14.3Myrs E.M.T. has removed much of the previous stratigraphy through both fluvial and marine erosion. The movement of the beach through time in response to the absolute sealevel fluctuations is also shown very clearly.
Approximately 400m of slope deposition

Figure 5.10. A section from the model run with the parameters described in the text and the Greenlee and Moore (1988) absolute sealevel curve. Though this curve has similar high-order fluctuations to the Haq curve, the amplitudes are less, and the detail different. The effect of these differences is to change details of the stratigraphic pattern produced. In particular the stratigraphy formed in the last 2.5Myrs of the model run progrades further, burying the 12.5Myr transgressive surface. This transgressive surface in this case eroded less of the older stratigraphy than in the surface produced at the same time by the Haq curve because of the lower amplitude of the Greenlee and Moore curve.
Figure 5.11. A chronostratigraphic diagram and an absolute sealevel curve from the model run with the parameters described in the text and the Greenlee and Moore (1988) absolute sealevel curve. Though this curve has similar high-order fluctuations to the Haq curve, the amplitudes are less, and the detail different. The effect of these differences is to change details of the stratigraphic pattern produced. For example, the exact pattern of beach movement is different in this example. Also the stratigraphy from the last 2.5Myrs has prograded further into the basin, burying the 12.5Myr transgressive surface which remains uncovered in the example generated with the Haq curve.
Figure 5.12. A section from the model run with variable sediment supply, variable partitioning coefficient values, and the Watts and Steckler (1979) absolute sea level curve. All other parameters are as described for the initial model run in figure 5.6. Values for the partitioning coefficient vary from 0.1 to 0.6 in synchrony with the changes in the sediment supply (figure 5.13). The visible effects of the changed sediment supply parameters are a change in the overall distance of progradation, and a distinct change in the pattern of shelf and shoreface deposition. The fluvial stratigraphy is topped by an erosion surface of minor vertical significance, and this should be ignored as an unrealistic artifact of the profile geometry.
Figure 5.13. A chronostratigraphic diagram and an absolute sea level curve from the model run with variable sediment supply, variable partitioning coefficient values, and the Watts and Steckler (1979) absolute sea level curve. All other parameters are as described for the initial model run in Figure 5.6. Values for the partitioning coefficient vary from 0.1 to 0.6 in synchrony with the changes in the sediment supply. The variable sediment supply and partitioning coefficient have the desired effect of changing the rate of progradation such that it is more similar to the rates shown in the chronostratigraphic diagram from Greenlee et al. (1988) (summarised in figure 5.3).
Chapter 6
Chapter 6 - The conclusions

"I have something to say.
It's better to burn out than to fade away.
There can be only one!"
(Gregory Widen Highlander)

6.1 Introduction

This chapter describes the conclusions that have been drawn from the modelling results presented in chapters three, four and five. It also attempts to indicate where future work in the study of passive rift-margin stratigraphy might focus to answer some of the specific points raised by this work.

6.2 Controls on sequence geometry

In chapter three, the quantitative forward model was used to investigate the possible controls on sequence geometry using the depositional sequence stratigraphic model of, for example, Posamentier et al. (1988) and Van Wagoner et al. (1990) as a framework for comparison. This work lead to the following conclusions:

- The quantitative forward model is capable of reproducing the general geometry of type-1 and type-2 sequences in the sense of Posamentier et al. (1988), and Van Wagoner et al. (1990), but it cannot reproduce all of the parasequence stacking patterns shown in the depositional sequence stratigraphic model. This is because some of the patterns, such as the aggradational stacking pattern require a very specific distribution of accommodation space balanced with a very specific magnitude of sediment supply. The inability of the quantitative model to reproduce these patterns may be indicative of the rather unlikely pattern of accommodation space necessary to produce them.
• Calculation of the amplitude of absolute sealevel changes from coastal onlap patterns may be greatly complicated by the geometry of the fluvial profile. The model results show that the amplitude of the vertical component of the stratal onlap in the model is more dependent on the fluvial profile geometry than on the magnitude of the relative or absolute sealevel change. This result should be considered bearing in mind the weaknesses of the fluvial profile implementation in the model.

• The concepts of the hinge point and the equilibrium point used in the sequence stratigraphic model are flawed. The relative rates of thermal subsidence and absolute sealevel change mean that only during the points of lowest gradient on the absolute sealevel curve, can the rate of thermal subsidence or uplift on a passive rift margin equal the rate of absolute sealevel change.

• Flexural isostasy is not a first order control on the model stratigraphy when absolute sealevel is varied. Even with reasonably low values of T_e of, for example, 10km, the flexural subsidence simply adds small amounts of accommodation space, but does not significantly alter the basic pattern of stratigraphy preserved.

• The behaviour of the fluvial profile is a first order control on model stratigraphy. For example, a less concave profile produces a stratigraphic pattern very different from that produced by a more concave profile. Despite the unrealistic nature of aspects of the profile behaviour and the lack of direct link with physical process, the model results suggest that profile geometry may well be a very significant control on stratigraphic patterns.

• The sediment partitioning coefficient is also a first order control in the model, and the effects of sediment partitioning in natural systems could conceivably be misinterpreted to be due to eustasy. For example, a reduction in the amount of sediment being deposited subaerially, and an increase in bypassing of sediment into the sea, may produce a transgressive pattern of stratigraphy which would be difficult to distinguish from that due to an absolute sealevel rise.

• Variable sediment supply is a first order control on model stratigraphy. It has a particularly pronounced impact on the stratigraphic pattern when sediment supply is
low during a time of rising absolute sealevel. This has often been underestimated in
other studies on stratigraphic controls. Accurately distinguishing in the ancient record
between effects due to variable sediment supply, and effects due to variable absolute
sealevel may prove very difficult.

- Variable sediment supply alone, without any contribution from variable absolute
sealevel, is capable in the model of producing stratigraphic patterns with some
similarities to those seen in type-2 sequences. This suggests that stratigraphy
influenced by variable sediment supply due to factors such as point source switching,
climatic changes, drainage basin morphology, or combinations of these, may be
misinterpreted as being due to eustasy. However, a relative sealevel fall is still
necessary in the model to cause the vertical juxtaposition of fluvial and marine
stratigraphy across a subaerial erosion surface.

- Combined complex controls on stratigraphy should not be underestimated in terms of
the difficulty in correctly interpreting the results. A model run with combined controls
is difficult to interpret, even given the simplicity of the model, and the availability of
the complete details of all the model parameters, such as the absolute sealevel curve,
and the sediment supply curve. This highlights once more, the non-unique nature of
most explanations of stratigraphic patterns.

Future work in this area should concentrate on the further investigation of the contribution
of sediment supply and fluvial profile behaviour to stratigraphic patterns. Further work
should also be carried out on processes which are as yet poorly understood in terms of their
contribution to passive rift-margin stratigraphy. For example, the response of the fluvial
profile to relative sealevel change, and the significance of submarine erosion, both on the
shelf and on the slope, and its link with flexural uplift, all require further study.
6.3 Complex interactions, feedback effects and cyclicity

In chapter four, the quantitative forward model was used, via a series of sensitivity tests, to investigate the possibility of complex interactions within the model, and the generation by the model of patterns of cyclical sedimentation without the requirement for periodic external forcing. This work lead to the following conclusions:

- There exists within the model, when run with the initial conditions set to low fluvial sediment supply producing a transgressive beach, a feedback effect between thermal subsidence, shoreface erosion, flexure and fluvial erosion, which is capable of producing cycles of stratigraphy without any external periodic forcing.

- The effect occurs with a variety of initial conditions, including high and low magnitudes of thermal subsidence, a different shoreface geometry, and different fluvial profile geometries. Though variations in the initial conditions affect the details of the stratigraphic pattern, the basic pattern produced by the feedback effect is present in all these sensitivity tests.

- Running the model with different time steps demonstrates that the period of the oscillations in sediment supply is entirely dependent upon the length of the time step used. Peaks in sediment supply always occur at the same chron regardless of the E.M.T. that the chron represents. As the model time step is reduced towards zero, so the period of the oscillation approaches zero. This demonstrates that the feedback effect in the model is a numerical instability resulting from the discretised nature of the model.

- Running the model with a finite value for the flexural response time that is longer than the length of the time step shows that the inclusion of the response time complicates the unstable behaviour of the model, but does not surmount the fundamental problem of the instability. The timing and period of the oscillations are still dependent upon the duration of the time step used, but no longer show a simple linear relationship with the time step duration.
Chapter 6 - Conclusions

• Although it seems intuitively possible that the feedback mechanism described may occur in natural systems, the stratigraphic model presented here can provide no indication either way of the existence of such a feedback. This is due to the numerical instability inherent in the model as a result of the discretised representation of continuous functions. Further investigations of potential feedback effects would thus require a model formulated with continuous time-dependent equations.

6.4 Modelling the Neogene stratigraphy of the North American Atlantic passive rift margin

In chapter five, the quantitative forward model was used to investigate the contributory factors behind the pattern of stratigraphy preserved in the Neogene of the North American Atlantic margin. This investigation also served to test the ability of the model to reproduce the broad general patterns observed in an actual example of passive rift-margin stratigraphy. This work lead to the following conclusions:

• The gross large-scale features of the Miocene stratigraphy such as the distance of clinoform migration, and the thickness of the succession, can be reproduced with the model using the parameter values described in section 5.3. Even given the inevitable uniqueness problems, it seems safe to conclude from this that the basic processes of thermal subsidence, flexural isostasy, eustasy, and sediment progradation are those responsible for the basic features of the observed stratigraphy.

• The higher-order eustatic curves of Haq et al. (1988) and Greenlee and Moore (1988) produce significantly worse fits in the model than the lower-order curve of Watts and Steckler (1979). There are large elements of circular reasoning in both the methodology used to define the high-order curves, and in the methods previously used to test them (e.g. Schroeder and Greenlee, 1993). Even though the problem of the two-dimensionality of the model cannot be ruled out in explaining the poor fits, it still seems fair to conclude that there are severe problems in using such high-order eustatic curves to explain the geometry of the observed stratigraphy.
• Varying the magnitude of sediment supply and the value of the fluvial-marine partitioning coefficient improves some of the details of the basic fit between the model and the interpreted data. There is an element of circular reasoning in this, since the value of sediment supply was chosen on the basis of the requirement to reproduce the correct distance of progradation. However, despite this circularity, it still seems that variable sediment supply and sediment partitioning through time are necessary to reproduce the stratigraphic pattern if high-order eustatic changes are not occurring.

Future work in this area should concentrate on refining the model to include more processes, such as, for example, slope wasting and mass movement. It would also be desirable in the longer term to extend the model into three dimensions, so that the model output could be more readily and more accurately compared with observational data such as seismic lines and borehole cores. The addition of extra processes to the model may provide insights into the details of stratigraphic patterns, such as the fine scale onlap and downlap patterns, that the model cannot presently reproduce.
Appendix 1
Appendix 1 - Model Parameters

This appendix describes the model parameters in terms of their use in the model, and the range of values to which they can be set.

Chron Parameters

Total number of chrons: Integer, 1 - 200.
This specifies the total number of chrons that can be generated in any model run.

Number of chrons per execution step: Integer, 1 - 200.
This specifies the number of chrons generated by the model at each execution step before the output is displayed. For example, the total number of chrons may be 100, but the number of chrons generated before the model output is displayed could be 10.

Chron interval: Float, 0.01 - 10.0 Myrs.
This gives the length of each model time step in millions of years.

Frequency of chron storage: Float, 0.01 - 10.0 Myrs.
This defines the number of time steps between storage of chron surfaces. For example, the model time step may be 0.1Myrs, but the storage frequency may be 0.5Myrs, which would mean that only every fifth chron would be stored in the model data structure.

General Parameters

Profile length: Integer, 128 - 4196 km.
The length of the profile in kilometres. The values of the lengths used are powers of two in the range specified to allow the calculation of flexure using both a finite difference method and a FFT method.

Density of uncompacted sediment: Float, 1.0 - 3.0 kgm\(^{-3}\).
The density of the sediment deposited and eroded on the profile. This is used in the flexure calculations.
Appendix 1 - Model parameters

Initial profile topography:
This is defined as a series of coordinate pairs, horizontal distance in kilometres and elevation in metres, which are used as the points for interpolation to define the topographic profile.

Fluvial Profile Parameters

Fluvial curve type:
A flag to indicate whether the model should use an exponential or a complementary error function curve for the fluvial profile.

Length of the fluvial profile: Integer, 0 - 2000km.
This determines the length of the fluvial profile from the beach to the landward end of the depositional profile.

Rate of lengthening of the profile: Float, 10.0 - 0.001km per time step.
This defines the landward movement per time step of the landward end of the fluvial profile.

Error function length scale: Float, 1.0 - 5.0.
This parameter determines the portion of the complementary error function to be used to determine the fluvial profile. For example, a length scale of 1.0 means that the portion of the curve from 0.0 to 1.0 is scaled to fit between the beach and the fall line position. This would produce a less concave profile than if, for example, a length scale of 3.0 was used.

Fluvial-marine partitioning coefficient: Float, 0.0 - 1.0.
This determines the areas of sediment deposited on the fluvial and marine portions of a chron. For example, a value of 0.4 means that 40% of the available area is deposited as fluvial stratigraphy, while the remaining 60% is deposited as marine stratigraphy.

Marine Profile Parameters

Shelf gradient: Float, 0.0 - 0.5 mkm\(^{-1}\).
This parameter determines the gradient of the shelf profile.

Slope gradient: Float, 0.5 - 100.0 m/km.

This parameter defines the gradient of the marine slope.

Height of shoreface: Integer, 1.0 - 50.0 m.

This is the height of the shoreface, which defines the depth at which the transition from shoreface to offshore shelf occurs.

Width of shoreface: Integer, 1.0 - 50 km.

This is the width of the shoreface zone which marks the transition from the fluvial to the marine profile.

Tectonic Parameters

Beta stretching factors:
Values for the stretching factor used in the one and two-layer stretching models. Stretching values are given with a specified position on the profile, in kilometres. Linear interpolation between these points is used to define stretching values for the complete length of the profile.

Sigma stretching values:
Sub-crustal stretching factor used in the two-layer stretching model. These values are given in the same format as the beta stretching factors, and similarly defined across the complete profile by linear interpolation.

Depth to the two-layer boundary: 0 - 150 km.

The depth to the boundary between the upper and lower layers in the two-layer stretching model.

Initial lithospheric thermal age: 0 - 200 Myrs.

The age in millions of years, at the beginning of the model run, since the end of the rifting phase and the start of the postrift phase. This is used in both the stretching models and in the flexural model.

Elastic thickness of the lithosphere: Integer, 0, 5, 30, infinite or time-variable
Appendix 1 - Model parameters

This parameter defines the value of the elastic thickness of the lithosphere to be used in the flexure calculations.

Te profile

Values for the elastic thickness of the lithosphere are defined at points on the profile, and linear interpolation is used to define values for the complete profile. These values are used in the calculation of flexure when the option for laterally varying T_e is selected.

Flexural response type:

This parameter defines the type of flexural response to loading and unloading to be used in the flexural model. It can be either instantaneous, a linear relaxation, or a exponential relaxation.

Flexural response time: Float, 0.1 to 100.0Myrs

This parameter defines the time taken by the modelled lithosphere to relax after a loading event when the linear relaxation option is used.

Absolute sealevel curve parameters

Type of absolute sealevel change:

Absolute sealevel in the model can be held constant at 0m, varied according to the curve parameters described below, or varied according to an external predefined file. If the latter is chosen, the file containing the values must have the same time-step values as chosen for the chrons in the model. For example, with a chron interval of 0.1Myrs, there must be a value in the absolute sealevel file at 0.1Myr intervals.

Short-term curve type:

The short-term curve can be either a simple linear curve, a minimum-to-maximum saw-tooth curve, a maximum-to-minimum saw-tooth curve, an initially increasing sinusoidal curve, or an initially decreasing sinusoidal curve.

Short-term curve minimum: Integer, -50 - 0m.

This parameter gives the lowest value for the short term curve.

Short-term curve maximum: Integer, 0 - 50m.
This parameter gives the highest value for the short term curve.

Short-term curve period: Float, 0 - 10Myrs.

This defines the period of the short-term absolute sealevel curve in millions of years.

Long-term curve type:

The long term absolute sealevel curve can be a linearly increasing curve, a linearly decreasing curve, an initially rising sinusoidal curve, or an initially falling sinusoidal curve.

Long-term curve minimum: Integer, -100 - 0m.

This parameter gives the lowest value for the long term curve.

Long-term curve maximum: Integer, 0 - 100m.

This parameter gives the highest value for the long term curve.

Long-term curve period: Integer, 1 - 100Myrs.

This defines the period of the long-term absolute sealevel curve in millions of years.

Sediment supply parameters

Sediment supply model type:

Sediment supply in the model can be calculated in one of four ways determined by this parameter; it can be held constant, or it can be calculated purely from erosion and deposition on the fluvial and marine profiles, or it can be calculated from profile erosion, with the addition of area from a pre-calculated curve, or it can be calculated purely from a pre-calculated curve.

Sediment supply curve type:

The sediment supply curve can have several forms; a simple linear increase, a simple linear decrease, an initially rising sinusoidal curve, an initially falling sinusoidal curve, a minimum-to-maximum saw tooth curve or a maximum-to-minimum saw tooth curve. The curve may also be defined from an external file.

Maximum sediment area: Float, 0 - 4km2.
Appendix 1 - Model parameters

This parameter defines the maximum value for the sediment supply curves, or the value for the area available for deposition for each time step when the constant sediment supply option is used.

Minimum sediment area: Float, 0 - 4km².

This parameter defines the minimum value for the sediment supply curves.

Sediment supply curve period: Float, 0 - 10Myrs.

This parameter defines the period of the sediment supply curve in millions of years. If a saw tooth curve is selected, for example, it defines the period between sudden falls or rises.

Sediment release coefficient: Integer, 0 - 100.

This parameter specifies the percentage of the area of sediment eroded on the fluvial profile that is to be released for deposition on the model profile for each time step. For example, if a release coefficient of 50% were specified, then for each time step 50% of the eroded sediment area would be released, the remaining area would be added to the total area held for future release in subsequent time steps.
Appendix 2
Appendix 2 - Details of the computer system and the source code listings

This appendix describes the requirements of the model in terms of hardware, and software. A full listing of the model module and the include file are given.

Hardware requirements

The model system has been developed on a network of SUN Microsystems workstations, of various types and specifications ranging from Sun 3/80s acting as x-terminals, to a SPARC 2 colour workstation. File service is provided by a central fileserver. Output from the model was produced using a laser printer, and a QMS Colourscript 100 model 10 colour printer.

Software requirements

The software is written predominantly in C, though some routines such as the flexure calculations are written in FORTRAN. The C code has been compiled using the SUN cc compiler. The model uses the Openwindows graphical interface. The library files that have been used are shown in the model include file. Postscript output was produced from the model using the CAL2PS library routines.

The code listings

The program has been developed as five separate modules which fulfil individual functions. The main modules contains the majority of the actual model code. The other modules contain the code to define the model windows, canvases, and menus, to define the behaviour of the interface between the windows and the user, and to plot the model output, both directly onto the screen, and also into a postscript file. Many of the data structures
used throughout the modules are defined globally in the include file. For the sake of brevity, and because the details of the window definitions and the graphics output are not essential to the arguments in this thesis, only the header file and the main model module are listed here.
/* Program to forward model stratigraphy in a passive rift margin basin. */

#include "includes/Xbasin.header.h"

struct File_params files;
struct Pararas params;
struct Options options;
struct Zoombox zoombox;
struct Eustasy eustasy;
struct Sed_budget sed_budget;
struct Strat strat;
struct Tect tect;
struct Post post;
struct Exec exec;
struct Exec_flags exec_flags;
struct Chrono_plot chrono_plot;

Xv_notice notice;
FILE *info;
sed curve file, "chrons," *beach;

void main(argc, argv)
 Call the windows or the batch routine depending on command line arguments */
int argc;
char **argv;

/* Defined in include file set windows.c */
if (argc == 1)
 else
 files.batch = TRUE;

void batch_job(argc, argv)
 /* Control model execution if the program is being run as a batch job */
int argc;
char **argv;

 /* Defined in include file set windows.c */
if (argc == 1)
 else
 files.batch = TRUE;

void batch_job(argc, argv)
 /* Control model execution if the program is being run as a batch job */
int argc;
char **argv;

 /* Defined in include file set windows.c */
if (argc == 1)
 else
 files.batch = TRUE;

printf(stderr, "Batch mode operation not currently supported

n")

do load();
exec_flags.initialised = TRUE;
printf(info, "Running model...");
run_proc();
printf(info, "Complete

done() /*
Model source code

```c
if (100, (double) xv_get(prof_len, PANEL_VALUE));
params.profil - pow(2.0, (double) xv_get(prof_len, PANEL_VALUE));
params.profil_gap = params.profil / (float) USEDPTS;
params.marker_point = (int) xv_get(marker_point_item, PANEL_VALUE) / params.
else
exec.sealevel = read_user_seacurve();
exce.te = set_TE_start();
set_strat(FALSE);
set_load_beta_Te_arrays();
set_strat(0); /* Constant sealevel */
exec.sealevel = strat.beach(0) - find_chron_sea_intersection();
set_presev_data();
exce.flags.diagpos = 0;
exce.flags.execution_complete = FALSE;
exce.flags.initialised = TRUE;
flo_full_screen_drawing(); /* Draw the profile to show the initial condition.

void get_pararas()
/* Retrieve the input parameters from the parameter windows, and put these values into the appropriate parts of the various program structures */
/* xv_get retrieves the specified item to put into the struct.*/
char buffer[40];
/ */
*/ Retrieve the input parameters from the parameter windows, and put these values into the appropriate parts of the various program structures */
*/
params.loadfile = (char *) xv_get(loadfile_item, PANEL_VALUE);
params.cutback_rate = atof(char *) xv_get(cutback_rate_item, PANEL_VALUE);
params.length_scale = atof(char *) xv_get(length_scale_item, PANEL_VALUE);
params.fluv_depos_cutoff = atof(char *) xv_get(fluv_depos_cutoff_item, PANEL
params.chronint = atof(char *) xv_get(chronint_item, PANEL_VALUE);
params.chronfreq = atof(char *) xv_get(chronfreq_item, PANEL_VALUE);
params.chronfreq = (int) xv_get(chronfreq_item, PANEL_VALUE);
```
May 25 1994 00:18:28 Main model source code Page 5

```
eustasy.freq2 = (int) xv_get(seafreq_item2, PANEL_VALUE); 

eustasy.curve_type2 = (int) xv_get(seacurve_item2, PANEL_VALUE); 

sed_budget.supply_flag = (int) xv_get(supply_flag_item, PANEL_VALUE); 

/* Needs to be converted to square metres */ 

sed_budget.maxsed = atof((char *) xv_get(sedmax_itera, PANEL_VALUE) ) * 1.0E6;  

sed_budget.minsed = atof((char *) xv_get(sedmin_item, PANEL_VALUE) ) * 1.0E6;  

sed_budget.freq = atof((char *) xv_get(sedf req_item, PANEL_VALUE) ) ;  

sed_budget.drainage_ratio = (int) xv_get(drain_rat_item, PANEL_VALUE) ;  

sed_budget.release_perc = (int) xv_get(release_itera, PANEL_VALUE) ;  

sed_budget.curve_type = (int) xv_get(sedcurve_item, PANEL_VALUE) ;  

sed_budget.pc_type_flag = (unsigned short int) xv_get(pc_f lag_itera, PANEL_VALUE);  

/* Get the numbers for drawing the chron strat */ 

chrono_plot.eustasy = (unsigned short int) xv_get(active_diags_item, PANEL_VALUE); 

eustasy_width = (unsigned short int) xv_get(wheighter_width_item, PANEL_VALUE); 

eustasy_supply = (unsigned short int) xv_get(supply_supply_item, PANEL_VALUE); 

chrono_plot.zoom_left = (int) xv_get(wheelzoom_left_item, PANEL_VALUE); 

chrono_plot.zoom_right = (int) xv_get(wheelzoom_right_item, PANEL_VALUE); 

```

May 25 1994 00:18:28 Main model source code Page 6

```
if ((testfile = fopen(params.loadfile, "r")) == NULL) 

{ /* Check some of the major parameters are within proscribed limits. Returns TRUE if t */ 

problem = TRUE;  

fclose(testfile);  

/* Needs to be converted to square metres */  

sed_budget.external_budget = (int) xv_get(external_budget_item, PANEL_VALUE) ;  

sed_budget.maxsed = atof((char *) xv_get(sedmax_itera, PANEL_VALUE) ) * 1.0E6;  

sed_budget.minsed = atof((char *) xv_get(sedmin_item, PANEL_VALUE) ) * 1.0E6;  

sed_budget.freq = atof((char *) xv_get(sedf req_item, PANEL_VALUE) ) ;  

sed_budget.drainage_ratio = (int) xv_get(drain_rat_item, PANEL_VALUE) ;  

sed_budget.release_perc = (int) xv_get(release_itera, PANEL_VALUE) ;  

sed_budget.curve_type = (int) xv_get(sedcurve_item, PANEL_VALUE) ;  

sed_budget.pc_type_flag = (unsigned short int) xv_get(pc_f lag_itera, PANEL_VALUE);  

chrono_plot.eustasy = (unsigned short int) xv_get(active_diags_item, PANEL_VALUE); 

eustasy_width = (unsigned short int) xv_get(wheighter_width_item, PANEL_VALUE); 

eustasy_supply = (unsigned short int) xv_get(supply_supply_item, PANEL_VALUE); 

chrono_plot.zoom_left = (int) xv_get(wheelzoom_left_item, PANEL_VALUE); 

chrono_plot.zoom_right = (int) xv_get(wheelzoom_right_item, PANEL_VALUE); 

```

NOTICE_MESSAGE_STRINGS, "Number of chron per step greater than total number of chron!", "Reduce total or increase number of chron per step.", NULL,
NOTICE_BUTTON, "Continue", 1,
XY_SHOWN, TRUE, NULL;

problem = TRUE;
return (problem);

void set_seastartO
/* Initialise the sealevel curve, dependent on which curve type has been chosen. */
(float temp;
temp = (float) (eustasy.max level1 - eustasy.min level1);
exec. sealevel = 0.0;
switch (eustasy.curve type1)
1
case 0 : exec. sea change1 = (fabs(temp * 2.0) / (float) (eustasy.freq1 * 10.0)) ;
break;
case 1 : exec. sea change1 = fabs(temp) / (float) (eustasy.freq1 * 10.0);
break;
default : exec. sea change1 = 0;

exec. sea marker1 = exec. sealevel;
exec. sea marker2 = exec. sealevel;

void init_sea_curve1()
/* Set a value of absolute sealevel for each time step depending on which type of curve has been chosen */
<int loop;
(float sealevel1 = 0.0, sealevel2 = 0.0;
strat. curves data[0][0] = 0.0;
strat. curves data[0][SEALEVEL] = 0.0;
for (loop = 1; loop <= params.chrons; loop++)
switch (eustasy.curve type1)
1
case 0 : sealevell += sea_smooth_linearO;
break;
case 1 : sealevell -= sea_decreased;
break;
default : break;

strat. curves data[loop][SEALEVEL] = sealevell + sealevel2;
}
float sea_smooth_linear0
/* Change sea level with smooth linear curve */
(float *sealevel;)
if (exec. sealevel < eustasy.min level1 || exec. sealevel > (eustasy.max_level1 + fabs(temp) / 2.0))
exec. sea change1 = -(exec. sea change1);
return (exec. sea change1);

void sea_saw_tooth(sealevel)
/* Change sea level with saw tooth curve */
(float *sealevel;)
if (exec. sealevel < eustasy.min level1 || exec. sealevel > (eustasy.max_level1 + fabs(temp) / 2.0))
exec. sea change1 = -(exec. sea change1);
return (exec. sea change1);

/* If sealevel is at specified maximum or minimum reverse the sign of change */
if (exec. sea Evel <= eustasy.min level1 || exec. sea Evel >= (eustasy.max level1 + fabs(temp) / 2.0))
exec. sea change1 = -(exec. sea change1);
return (exec. sea change1);

/* Change sea level with saw tooth curve */
(float *sealevel;)
if (exec. sealevel < eustasy.min level1 || exec. sealevel > (eustasy.max_level1 + fabs(temp) / 2.0))
exec. sea change1 = -(exec. sea change1);
return (exec. sea change1);
/* Calculate sealevel after cycle-elapsed time as a sine function with
wavelength eustasy.freq, amplitude range and center point marker. Start curve increasing. */

float temp = (6.2831853 / (float) eustasy.freq) * (loop * params.chronint);
sealevel = exec.sea_marker1 + (exec.sea_change1 * sin(temp));

/* Do the same but for a maximum to minimum curve */

float temp = (6.2831853 / (float) eustasy.freq) * (loop * params.chronint);
else if (sed_budget.supply_flag == 0)
 sealevel - exec. sea_marker1 + (exec. sea_change1 * sin(temp));
else if (sed_budget.supply_flag == 2 || sed_budget.supply_flag == 3)
 switch (sed_budget.curve_type)
 case 0:
 exec.sed_change = (two_amplitude) / 2.0;
 exec.external_budget = sed_budget.minsed;
 exec.external_budget = sed_budget.maxsed;
 break;
 case 1:
 exec.sed_change = -(two_amplitude) / 2.0;
 exec.external_budget = sed_budget.maxsed;
 exec.external_budget = sed_budget.minsed;
 break;
 case 2:
 exec.sed_change = -(temp / 2.0);
 exec.sed_change = (temp / 2.0);
 exec.external_budget = sed_budget.maxsed;
 exec.external_budget = sed_budget.minsed + fa;
 break;
 case 3:
 exec.sed_change = (temp / 2.0);
 exec.sed_change = -(temp / 2.0);
 exec.external_budget = sed_budget.maxsed;
 exec.external_budget = sed_budget.minsed + fa;
 break;
 case 4:
 exec.sed_change = (temp / 2.0);
 exec.sed_change = (temp / 2.0);
 exec.external_budget = sed_budget.maxsed;
 exec.external_budget = sed_budget.minsed;
 break;
 case 5:
 exec.sed_change = -(temp / 2.0);
 exec.sed_change = (temp / 2.0);
 exec.external_budget = sed_budget.maxsed;
 exec.external_budget = sed_budget.minsed;
 break;
 case 6:
 exec.sed_marker = sed_curve_file = fopen("/home/ewiore/pets/basincode/data/sed
supply.dat" , "r");
 break;
}

exec.sed_marker = exec.external_budget;
exec.sed_stack_ptr = 0;
}

/* Negative sinusoidal */

float temp = (float) sed_budget.maxsed - sed_budget.minsed;
freq_convert = sed_budget.freq / params.chronint;

/* Positive sinusoidal */

exec.sed_pc = exec.pc_marker = sed_budget.pc_max - exec.pc_change;
break;

/* Decreasing sawtooth */

exec.sed_pc = exec.pc_marker = sed_budget.pc_min + exec.pc_change;
break;
void zero_curve_data()

int loop;

for (loop = 0; loop < MAX_STEPS; loop++)

for (loop = 0; loop < MAX_CHRONs; loop++)

if (abval) {
 int loop1, loop2;

 for (loop1 = 0; loop1 < params.chrons[loop1++];)
 for (loop2 = 0; loop2 < params.chrons[loop2++];)
 if (abval1) {
 if (strat.chrons[loop1][loop2] > 0) — strat.chrons[loop1][loop2] = 0.0;
 else strat.chrons[loop1][loop2] = abs(strat.chrons[loop1][loop2]);
 } else {
 strat.chrons[loop1][loop2] = 0.0;
 strat.depos[loop1][loop2] = NO DEPOS;
 strat.fles_hist[loop1][loop2] = 0.0;
 }
 }

 if (abval) {
 int loop1, loop2;
 for (loop1 = 0; loop1 < params.chrons[loop1++];)
 for (loop2 = 0; loop2 < params.chrons[loop2++];)
 if (abval1) {
 if (strat.chrons[loop1][loop2] > 0) — strat.chrons[loop1][loop2] = 0.0;
 else strat.chrons[loop1][loop2] = abs(strat.chrons[loop1][loop2]);
 } else {
 strat.chrons[loop1][loop2] = 0.0;
 strat.depos[loop1][loop2] = NO DEPOS;
 strat.fles_hist[loop1][loop2] = 0.0;
 }
 }
 }

void set_preserv_data()

/* Set the stratigraphy to zero as an initial value */

int loop;

for (loop = 0; loop < MAX_STEPS; loop++)

for (loop = 0; loop < MAX_CHRONs; loop++)

if (strat.equilb_point[loop] = 0; /* Set to zero so the drawing routine

knows not to draw */

if (strat.onlap[loop] = 0; strat.beach[loop] = 0; strat.chrons[loop] = 0;)

if (strat.chrons[loop] = 0;)

if (strat.depos[loop] = 0; strat.fles_hist[loop] = 0;)

if (strat.equilb_point[loop] = 0;)

if (strat.onlap[loop] = 0; strat.beach[loop] = 0; strat.chrons[loop] = 0;)

if (strat.depos[loop] = 0; strat.fles_hist[loop] = 0;)

if (strat.equilb_point[loop] = 0;)

if (strat.onlap[loop] = 0; strat.beach[loop] = 0; strat.chrons[loop] = 0;)

if (strat.depos[loop] = 0; strat.fles_hist[loop] = 0;)

if (strat.equilb_point[loop] = 0;)

if (strat.onlap[loop] = 0; strat.beach[loop] = 0; strat.chrons[loop] = 0;)

if (strat.depos[loop] = 0; strat.fles_hist[loop] = 0;)

...
Code Snippet 1

```c
void init_expo_curved()
{
    int loop;
    for (loop = 0; loop < ENVIRON; loop++)
    {
        strat.presev_info[loop][0] = strat.presev_info[loop][1] = 0.0;
    }
}

void init_drainage()
{
    int loop;
    switch (options.curve_type)
    {
    case 0 : init_expo_curved();
            break;
    case 1 : init_erfc_curved();
    case 2 : init_fixed_fluv_prof();
            break;
    } /* Define nick point positions and cut a river profile into basement (chrons[0][x]) *
    for (loop = exec.drainage_divide; loop < exec.beach_pos; loop++)
    {
        strat.presev_info[loop][0] = strat.presev_info[loop][1] - 0.0;
        strat.chrons[0][loop] = strat.chrons[0][loop - 1] - vert_inc;
        exec.base_chron[loop] = exec.work_chron[loop] - elevation;
        beach_bit_done = check_equilibrium_grad(loop, exec.beach_pos);
    }
}
```

Code Snippet 2

```c
float x_scale = params.length_scale / (exec.beach_pos - exec.drainage_divide);
for (loop = exec.drainage_divide; loop < exec.beach_pos; loop++)
{
    x = x_scale * (loop - exec.drainage_divide);
    y = exp((const - (loop - exec.beach_pos))) + exec.sealevel - 1.0;
}
```

Code Snippet 3

```c
for (loop = exec.drainage_divide; loop < exec.beach_pos; loop++)
{
    strat.chrons[0][loop] = strat.chrons[0][loop - 1] - vert_inc;
    exec.base_chron[loop] = exec.work_chron[loop] - elevation;
    beach_bit_done = check_equilibrium_grad(loop, exec.beach_pos);
}
```
May 25 1994 00:18:26Main model source code Page 15

913 beach = fopen("beach.dat", "w");
914 if (!exec.flags.initialized || exec.flags.execution_complete)
915 notice_prompt(Frame: mainframe, Event: NULL,
916 NOTICE_MESSAGE_STRINGS,
918 "Model has not been initialized, or run has been completed.",
919 "Select the 'Initialise' button then try again.", 0,
920 NOTICE_BUTTON.Yes, "Continue", 0);
921 else
922 {
923 /* Do first chron after elapsed time equal to
924 the duration of a chron interval [0.1 Ma units].
925 N.B. This means time 0 will be basement only, no depos. */
926 Myr */
927 exec.elapsed = calc_onlapO;
928 exec.time_steps_done++; /* Has to be inc. before curves are c
929 calc onlapO ;
930 exec.flags.initialized = FALSE;
931 exec.flags.execution_complete = TRUE;
932
933 if (options.Ttype == 0) /* Time dependant Te */
934 exec.chronelapsed += 1;
935 if (options.curve_type <= 2)
936 {
937 change_curves_data[exec.time_steps_done+1][0] = -99.0;
938 if (options.curve_type <= 2)
939 calc_new_prof_area();
940 }
941 change_saleslevel();
942 change_sesspec();
943 change_drainage();
944 fprintf(stderr, "PC %f ", exec.sed_pc);
945 fprintf(stderr, "Chron number %d ...", exec.layer + !)
946 if (flag = 1) /* Time dependent Tu */
947 change_temp();
948 change_sed_budget();
949 change_sesspec();
950 change_drainage();
951 fprintf(stderr, "Chron number %d ...", exec.layer + !)
952 /* Store the current chron if the number of chronos generated
953 is appropriate */
954 if (exec.chronelapseq == chrono_storage_freq)
955 {
956 copy_chron();
957
958 }
959 exec.chronelapseq = 0;
960 exec.total_chrons_done++;
961 exec.layer++;
962 /* Set base chron to last preserved strat layer. Set work ch
963 on to same before
964 if (flag == 1)
965 set_base_chron_to_last_preserved_strat_layer();
966 exec.base_chron[loop] = exec. work chron[loop] - exec. last ch
967 /* Set eq prof. to current base chron to cover areas outside
968 */
969 exec.eq_prof[loop] = exec. eq_prof[loop] - exec. base_chron[loop];
970 exec.old_eq_prof[loop] = exec. old_eq_prof[loop];
971 exec.loadprof[loop] = 0.0;
972 exec.loadprof[loop] = 0.0;
973 exec.eq_prof[loop] = exec. eq_prof[loop];
974 exec.old_eq_prof[loop] = exec. old_eq_prof[loop];
975 exec.new_eq_prof[loop] = exec. new_eq_prof[loop];
976 exec.base_chron[loop] = exec. base_chron[loop];
977
978 while (exec.step_chrons_done != params.step_chrons) /* Check to see if
979 the model step is done*/
980 exec.step_chrons_done = 0;
981 calc_onlapO();
982 if (exec.total_chrons_done == params.chrons) /* The model run is comp
983 */
984 exec.flags.execution_complete = FALSE;
985 strat.curves_data[exec.time_steps_done + 1][0] = -99.0;
986 compile_preserv_info();
987
988 }
989 else
990 {
991 /* Call all the appropriate routines to generate one chron. */
992 calc_onlapO;
* 0.250,
fprintf (stderr, "Therm. Sub. . .")
double tempi, temp2, temp3, temp4, temp5, temp6, temp7,
int loop;

1060
1061
1064
1065
1066

1058
1059
1060
1061
1062

1054
1055
1056
1057
1058

1048
1049
1050
1051
1052

1034
1035
1036
1037
1038

1020
1021
1022
1023
1024

1006
1007
1008
1009
1010

1028
1029
1030
1031
1032

1014
1015
1016
1017
1018

1000
1001
1002
1003
1004

1038
1039
1040
1041
1042

1024
1025
1026
1027
1028

1010
1011
1012
1013
1014

1000
1001
1002
1003
1004

1036
1037
1038
1039
1040

1022
1023
1024
1025
1026

1014
1015
1016
1017
1018

1000
1001
1002
1003
1004
1178 return(\((A \ast \alpha \ast \beta \ast \gamma) / (P_m - P_d) \) \ast 0.4052847 \ast \sum);
1179
1180 void get_two_layer_subs()
1181 /* Calculate the thermal subsidence across the profile for the two-layer model */
1182
1183 int loop;
1184 for (loop = 0; loop < USEDPTS; loop++)
1185
1186 if (exec.betaprof[loop] > 1.0 II exec. sigmaprof[loop] > 1.0)
1187 exec.new_tect_sub[loop] = strat. curves.data(exec. time steps d
1188 one)[THERM_SUB] - exec. refsub[loop] - one two layer sub (exec. betaprofd
1189 lop].
1190 else
1191 exec.new_tect_sub[loop] = 0.0;
1192)
1193
1194 float one_two layer sub(beta, sigma, crust age)
1195 /* Calculate one two-layer subsidence value */
1196 float beta,
1197 sigma,
1198 crust_age;
1199
1200 float ratio, C, summation,
1201 temp1, temp2, temp3, Pmant = params.Pmant * 10e2.
1202 Pwater = params.Pdisp * 10e2,
1203 a = 12500.0,
1204 crust_thick = 35000.0,
1205 alpha = 3.28e-5,
1206 Tmant = 1333.0,
1207 time = (crust age + exec. elapsed) \ast 60.0 \ast 60.0 \ast 24.0 \ast 365.0 \ast 1.0e6;
1208
1209 ratio = a / ((crust thin / beta) + ((a - crust thick) / sigma));
1210 temp2 = (M PI \ast crust thick) / (a * beta);
1211 C = (2.0 / (M PI + M PI)) \ast (((beta - sigma) \ast sin(temp2)) + (sigma * sin(M PI / ratio)));
1212 summation = C \ast exp(-time / tau);
1213 temp1 = 2.0 \ast a \ast alpha * Pmant \ast Tmant;
1214 return(temp1 \ast temp2 \ast summation);
1215
1216 int find chron sea_intersection()
1217 /* Find the point on the profile at which the chron surface and the sealevel datum in
1218 this is done by looping along the profile until the first point is encountered which
1219 is below sealevel */
1220 int loop = 0;
1221 while (loop < USEDPTS & exec.base_chron[loop] > exec.sealevel)
1222 return(loop);
1223
1224 void adjust_beach_position(temp beach)
1225 /* Find the position of the beach which is closest to using all the available fluvial
1226 sediment */
1227 int temp beach;
1228 int pos inc = 50,
1229 too much used = FALSE,
1230 too little used = FALSE,
1231 rep count1 = 0,
1232 rep count2 = 0,
1233 float discrep, discrepl, discrep2, discrep3;
1234
1235 /* Loop adjusting the position of the beach by the amount pos inc. When discour
1236 ep has been both positive and negative i.e. the beach has been both left and right of it
1237 a ideal position, divide pos inc by two and continue. Should get the beach pos at its
1238 optimum position */
1239 do
1240
1241 /* Discrep will be set to FALSE, i.e. 0.0 if there is a problem with
1242 the curve fitting routine */
1243 discreet = sufficient_red_used(*temp beach);
1244 if (discrep < 0.0)
1245 {
1246 (*temp beach) += pos inc;
1247 too much used = TRUE;
1248 }
1249 else
1250 {
1251 (*temp beach) -= pos inc;
1252 too little used = TRUE;
1253 }
1254 if (too much used || too little used)
1255
1256 notice = xv create(mainframe, NOTICE,
1257 NOTICE_MESSAGE_STRINGS, "Cannot find the beach!", "Things could well get messy...", NULL)
1258
1259 return(loop);
1260
1261 int find_coast()
1262 /* Loop along the profile to find the coastline, i.e. the first point significantly a
1263 nove sealevel.
1264 */
return((4 * A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}
}

int find coast()
{
 int loop;
 while (loop < USEDPTS && exec. base_chron[loop] > exec. sealevel)
 {
 loop++;
 }
 return(loop);
}

int find chron sea intersection()
{
 float temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta);
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find coast()
{
 return((A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}

int get two layer sub()
{
 float one two_layer sub(beta, sigma, crust age)
 float beta, alpha, crust thick, tau, Pwater, Pmant, tempi, temp2, temp3;
 int loop;
 float ratio, C, sumation;
 temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find chron sea intersection()
{
 float temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find coast()
{
 return((A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}

int find chron sea intersection()
{
 float temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find coast()
{
 return((A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}

int find chron sea intersection()
{
 float temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find coast()
{
 return((A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}

int find chron sea intersection()
{
 float temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find coast()
{
 return((A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}

int find chron sea intersection()
{
 float temp1, temp2, temp3, temp4;
 float Pm = params.Pmant * 10e2;
 float Pwater = params.Pdisp * 10e2;
 float tau = 1333.0 * (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float time = (crust thick + exec.elapsed) * 60.0 / (a * beta);
 float ratio = a / ((crust thick / beta) + (a - crust thick / beta));
 float C = (2.0 / (M_PI * M_PI)) * (((beta - sigma) * sin(temp2)) + (sigma * sin(M_PI * crust thick)) / (a * beta));
 float sumation = C * exp(-time / tau);
 float temp1 = (M_PI * crust thick) / (a - crust thick / beta);
 float temp2 = (Pm - Pwater) * M_PI;
 return((temp1 / temp2) * sumation);
}

int find coast()
{
 return((A * T0 + A * alpha * T0) / (Pm - Pd) + 0.452897 * sum);
}
while (pos_inc > 0 && discrep1 > discrep2) { discrep2 = discrep1; discrep1 = discrep2; }

/* Move the beach until the discrepancy is smaller than for points to the left and right. */
for (loop = 0; loop < 100; loop++)
{
 discrep2 = sufficient_sed_used(*temp_beach); /* Has to be last of three to ensure profile is left generated to the correct pos */
 if (fabs(discrep2) > fabs(discrep1)) { (*temp_beach)++; }
 else { (*temp_beach)--; }
}

do {
 discrep2 = sufficient_sed_used(*temp_beach) + (*temp_beach++) + (*temp_beach)++;
 discrep1 = sufficient_sed_used(*temp_beach) - 1;
 discrep3 = sufficient_sed_used(*temp_beach) + 1;
} while (pos_inc > 0 && discrep1 > discrep2 < 0.0 ? (*temp_beach)++ : (*temp_beach)--);

discrep2 = sufficient_sed_used(*temp_beach); /* Has to be last of three to ensure profile is left generated to the correct pos */

Note, this is just testing for the correct beach position, so don't alter global variables!

Note, this is just testing for the correct beach position, don't alter global variables!

void find equilib point()

/* equilibrium point : the point on the profile at which rate of thermal subsidence is equal to the rate of eustatic change. Find it by looping along the profile comparing the two until there sub is greater. NOTE - such a point rarely exists on the profile. See discussion in chapter 3. */

float #ustasy_change = fabs(exec.sealevel - strat.curves_data[exec.layer][SEALEVEL]);

/* Move the beach until the discrepancy is smaller than for points to the left and right. */
for (loop = 0; loop < 100; loop++)
{
 discrep2 = sufficient_sed_used(*temp_beach); /* Has to be last of three to ensure profile is left generated to the correct pos */
 if (fabs(discrep2) > fabs(discrep1)) { (*temp_beach)++; }
 else { (*temp_beach)--; }
}

do {
 discrep2 = sufficient_sed_used(*temp_beach) + (*temp_beach++) + (*temp_beach)++;
 discrep1 = sufficient_sed_used(*temp_beach) - 1;
 discrep3 = sufficient_sed_used(*temp_beach) + 1;
} while (pos_inc > 0 && discrep1 > discrep2 < 0.0 ? (*temp_beach)++ : (*temp_beach)--);

discrep2 = sufficient_sed_used(*temp_beach); /* Has to be last of three to ensure profile is left generated to the correct pos */

Note, this is just testing for the correct beach position, so don't alter global variables!

Note, this is just testing for the correct beach position, don't alter global variables!

void find equilib point()

/* equilibrium point : the point on the profile at which rate of thermal subsidence is equal to the rate of eustatic change. Find it by looping along the profile comparing the two until there sub is greater. NOTE - such a point rarely exists on the profile. See discussion in chapter 3. */

float #ustasy_change = fabs(exec.sealevel - strat.curves_data[exec.layer][SEALEVEL]);

/* Move the beach until the discrepancy is smaller than for points to the left and right. */
for (loop = 0; loop < 100; loop++)
{
 discrep2 = sufficient_sed_used(*temp_beach); /* Has to be last of three to ensure profile is left generated to the correct pos */
 if (fabs(discrep2) > fabs(discrep1)) { (*temp_beach)++; }
 else { (*temp_beach)--; }
}

do {
 discrep2 = sufficient_sed_used(*temp_beach) + (*temp_beach++) + (*temp_beach)++;
 discrep1 = sufficient_sed_used(*temp_beach) - 1;
 discrep3 = sufficient_sed_used(*temp_beach) + 1;
} while (pos_inc > 0 && discrep1 > discrep2 < 0.0 ? (*temp_beach)++ : (*temp_beach)--;)

discrep2 = sufficient_sed_used(*temp_beach); /* Has to be last of three to ensure profile is left generated to the correct pos */

Note, this is just testing for the correct beach position, so don't alter global variables!

Note, this is just testing for the correct beach position, don't alter global variables!

void find equilib point()

/* equilibrium point : the point on the profile at which rate of thermal subsidence is equal to the rate of eustatic change. Find it by looping along the profile comparing the two until there sub is greater. NOTE - such a point rarely exists on the profile. See discussion in chapter 3. */

float #ustasy_change = fabs(exec.sealevel - strat.curves_data[exec.layer][SEALEVEL]);
```c
int profile_endpoint;

*beach_pos;
<

tempi, temp2.

float time_step - 100.0,

old temp prof (USEDPTS) ,

temp sealevel;

/* Use a finite difference solution of the diffusion equation applied to topography t

time~loop.

increments = params .chronint / (100.0 / 1000000.0),
dist_loop.

count = 0;

if ( (params. diff coeff * time step) / (x step * x step) >= 0.5)

printf(stderr, "Calculating diffusion profile");

NOTICE MESSAGE STRINGS, message.

char message [ 80 ] ;

NOTICE BUTTON, "Continue", 1,

XV SHOW, TRUE, NULL) ;

for (dist loop = 0; dist loop < USEDPTS; dist loop++)


fluv~eroded.

x break pos.

for (dist loop - exec. drainage divide; dist loop < USEDPTS; dist loop++)

old temp prof[dist loop] = exec.new_eq prof[dist_loop];

*beach_pos = exec.beach_pos;

if (count -- 100)

} fprintf(stderr,"Beach at %d with new profile elevation of %f".

exec.beach_p

os.

exec.new_eq prof(exec.beach_pos));

void perm fluv prof (profile endpoint, beach pos)

/* Generate the geometry for the marine profile */

int generate marine profile; (fluv eroded * (float) sed budget .drainage rat

switch (sed budget . supply flag)

case 0 :

raarine_budget - fluv_eroded * (float) sed budget .drainage rat

break;

case 3 : 

raarine_budget = exec. external budget - fluv depos;

break;

case 1 : marine_budget - fluv_eroded * (float) sed budget .drainage rat

break;

case 2 :

raarine_budget = fluv depos;

break;

case 4 : marine_budget = fluv eroded - fluv depos;

break;

switch (sed_budget_supply_flag)

break;

calc_fluv_area depos(exec.drainage divide, strat .beachtexec . layer ), exec.beac

h_pos, exec.new_eq prof(exec.beach_pos);

switc
```
ss_break_pos = find_shelf_slope_break(marine_budget);
return(ss_break_pos);

int find_shelf_slope_break(external_budget)
/* Find the position of the marine break-of-slope which most nearly uses the correct area of sediment */

int pos_inc = 50,
too_much_used = FALSE,
too_little_used = FALSE,
rep_count1 = 0,
rep_count2 = 0,
slope_met_beach = FALSE;
float discrep, discrep1, discrep2, discrep3;

do
{
 /* Loop adjusting the position of the beach by the amount pos_inc. When discrep has been both positive and negative i.e. the beach has been both left and right of its optimum position, divide pos_inc by two and continue. Should get the beach pos at its NOTE - discrep < 0 when too LITTLE sediment has been used, positive when too much */
 [printf(stderr,"Finding the shelf slope break...");
 do
 {
 /* Mustn't allow the ss-break to be moved landward of the beach here, so if it is just required */
 if (temp_ss_break < exec.beach_pos)
 discrep = 1.0;
 else
 discrep = test_slope_pos(temp_ss_break, external_budget);
 } while (fabs(discrep) > fabs(discrep1) || fabs(discrep) > fabs(discrep2) || fabs(discrep3) > 100)
 temp_ss_break = exec.beach_pos + 60,
 slope_met_beach = TRUE;
 else
 return(exec.beach_pos);
}

float test_slope_pos(pos, external_budget)
/* Calls the function to generate the shelf and shoreface profile, drops the slope from the shelf-slope break position, sets the basinward eq. prof. to base chron and returns the total area deposited */

while (fabs(discrep) > fabs(discrep1) && fabs(discrep2) > fabs(discrep3) && fabs(discrep2) > fabs(discrep3) && fabs(discrep2) > fabs(discrep3) && fabs(discrep2) > fabs(discrep3))
 temp_ss_break = 0 && temp_ss_break < <USEPTS && rep_count2++ < 100
 temp_ss_break = exec.beach_pos + slope_met_beach;
 if (rep_count1 == 100 || rep_count2 == 100 || temp_ss_break > USEPTS) |
 notice = xv_create(mainframe, NOTICE,
 NOTICE_MESSAGE_STRINGS, "Cannot find a suitable position for the shelf slope break.", "Model integrity may fail...", NULL,
 NOTICE_BUTTON, "Continue", 1,
 XV_SHOW, TRUE, NULL);
 return(temp_ss_break);
 else
 return(exec.beach_pos);

int main()
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

1718

1717

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716

1702
1703
1704
1705

1697
1698
1699
1700
1701

1688
1689
1690
1691
1692
1693
1694
1695
1696

1681
1682
1683
1684
1685
1686
1687

1672
1673
1674
1675
1676
1677
1678
1679
1680

1668
1669
1670
1671

Page 27

/

(- shore_width_points);

else

exec.beach_pos = exec.ss_break pos;
slope_meets_beach();

tot_eroded,
old_tot_depos,
new~tot~depos,
fluv_eroded, fluv_depos,
total_sed_available;

do

calc_total_area_depos(«new_tot_depos, «tot_eroded, exec.new_eq_prof);

float

void slope_meets_beach()
/ If there is insufficient marine sediment available to build the slope from the bea
ch position,
the beach must be moved landward until sufficient sediment is available to build the
slope. This
means that when this function is called the partition between marine and fluvial brea
ks down /

t

if (exec.ss_break_pos <= exec.beach_pos)

/* Check the position of the shelf slope break.
he slope meets beach
function */

If it is at the beach, need to calc t

exec.new_eq_prof[loop) - exec.new eq_prof[loop - 1] - vert_in

beach_bit_done = check_equilib_grad(loop) ;

exec.new_eq_prof[loop] = exp((constant *
(loop - (exec.beach_pos + shore_width_points))))
+ (exec.new_eq_prof(exec.beach_pos] - params.wave_bas

exec.beach_pos + 1; loop <» ss_break; loop++)
for (loop
if (!beach_bit_done &s options,sheTf_prof)

constant = log (params.wave_base)

loop,
beach_bit_done - FALSE;
constant,
vert_inc - params.shelf_grad * params,prof_gap * 1000.0,
shore_width_points = params.shore_width / params.prof_gap, erosion -

void check_ss_break_pos()

c;
1

e)

0.0;

float

int

void generate_shelf profile(ss_break)
/* Generate the marine equilibrium profile with an expo shoreface and a fixed slope s
helf /
int
ss_break;

if (sed_budget.supply_flag == 0 I I sed budget.supply_flag == 3)
~
return(external budget - deposT;
else
return((eroded + external_budget) - depos);

calc_marine_area_depos(strat.beach(exec.layer], exec.beach_pos, ieroded, sdep
~
os, exec.new_6q_prof);

exec.new_eq_prof[loop] - exec.base_chron[loop++];

while (loop < USEDPTS)

May 251994 OQ:i8:26Main model source code

1786
1787
1788
1789
1790

1777
1778
1779
1780
1781
1782
1783
1784
1785

1771
1772
1773
1774
1775
1776

1770

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

1756
1757

1754
1755

1752
1753

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751

1731
1732
1733
1734
1735
1736
1737
1738
1739

1730

0.0);

calc_total_area_depos(snew_tot_depos, stot_eroded, exec.new_eq_prof);

test_slope_pos(exec.ss_break_pos,

if (sed_budget.supply flag ~ 1 I I sed_budget.supply_flag -- 2)
total_sed_avallable - exec.external_budget + fluv_eroded;
else
total_sed_available •* exec.external_budget;

exec.new_eq_prof, sfluv_eroded, Sfluv_depos);

calc_fluv_area_depos(exec.drainage_divide, strat.beach[exec.layerJ, e

gene rat e_fluvial_pro file (s exec. bea ch__pos) ;

old_tot_depos - new_tot_depos;
exec.beach_pos--;
exec.ss_break_pos--;

the marine slope, and calculate the new total area */

/* Move the beach and the ss-brea)c left one space, redefine the fluvi

Page 28

float get_total_water_depth(profile_point)
/* Return the thickness of the accomodation space at for the given elevation of chron
surface.
Calculated by taking magnitude of space between upper surface of latest strat
and current sea level.
Need to account for three possibilities and calc slightly differently :
1) Positive sealevel, negative strat.
2) Positive sealevel, positive strat.

if (grad <= params.shelf_grad && loop > exec.beach pos + 2)
return (TRUE) .else
return(FALSE);

grad - fabs(exec.new_eq_prof[loop - 2] - exec.new eq prof[loop - 1]) / (param
~ ~
s.prof_gap * 1000.0);

float grad;

the exponential beach profile to the fixed slope shelf. */
int loop;

proscribed shelf gradient or FALSE if it is greater. This is used to control the tran
sition from

int check_equilib_grad(loop)
/* Calculates the gradient between two points on the profile and returns TRUE if it's
less than the

strat.beach[exec.layer + 11 = exec.beach_pos;

test_slope_pos(exec.ss_break_pos, 0.0) ;r

generate_fluvTal_profile(&exec.beach_pos);

if (fabs(new_tot_depos - total_sed_available) > fabs(old_tot_depos - total_se
~~
d_available))
f
exec.beach_pos + + ;
exec.ss_break pos++;

if (fabs(new_tot_depos - exec.external_budget) > fabs(old_tot_depos - exec.ex
ternal_budget))*/

/* If the discrep. between the total deposited and the budget was less for th
e previous beach pos
use that oen instead. Need to redefine profiles

while (new_tot_depos > total_sed_available); /" Keep looping while insuff. to
t. sed. used "/

xec.beach_pos.

al profile and

May 251994 oo:i8:26Main model source code


Negative sealevel, negative strat. (Strat must always be negative to be below neg. sealevel) */

```c
float profile_point;

if (exec.sealevel > 0)
    if (profile_point < 0)
        temp = fabs(profile_point) + exec.sealevel;
    else
        temp = exec.sealevel - profile_point;
else
    temp = fabs(profile_point - exec.sealevel);

return(temp);
```

```c
void prograde([[left, right]])
/* Call the routines to create a sed wedge of given area */

float temp;

int "left, "right;

fprintf(stderr, "Marine prog...");

if (options.shelf_prof)
    gen_mar_prof();

float calc_marine_prog_area(new beach pos)
/* Calculate and return the area of sediment that has been used up below sealevel by
the progradation of the fluvial system. This sediment is part of the marine deposition budget */

int new beach pos;

int loop, old beach pos - strat.beach[exec.layer],

float old beach elev - strat.chrons[exec.layer][old beach pos].

new~beach elev - exec.work.chron[new beach pos].

area used = 0.0;

if (old beach pos > exec.beach pos)
    return(0);
else
    beach_interpolation(old beach pos, exec.beach pos);
for (loop = old beach pos + 1; loop <= new beach pos; loop++)
    if (new beach elev > old beach elev)
        area_used += calc_onetrap(exec.beach_array[loop],
            exec.base.chron[loop - 1], exec.beach_array[loop]);
```

```c
/* Zero marine sediment used if beach has moved landward since last chron,
or if the new beach is below the old beach, in which case the old beach has probably been eroded */

if (old beach pos > exec.beach pos)
    return(0);
else
    beach_interpolation(old beach pos, exec.beach pos);
for (loop = old beach pos + 1; loop <= new beach pos; loop++)
    if (new beach elev > old beach elev)
        area_used += calc_onetrap(exec.beach_array[loop],
            exec.base.chron[loop - 1], exec.beach_array[loop]);
```

```c
void record_exposed()
/* Record the environment at the current point */

int loop;

if (loop < exec.ses_break pos)
    if (water_depth > params.wave base)
        strat.depos[exec.layer + 1][loop] = OFFSHORE_SHELF;
else
    strat.depos[exec.layer + 1][loop] = SHOREFACE;
else
    if (exec.new_eq_prof[loop] > exec.base.chron[loop])
        strat.depos[exec.layer + 1][loop] = SLOPE;
```


```c
#define OFFSHORE SHELF
#define SHOREFACE
#define SLOPE
#define FLUVIAL
#define ENVIRONS
#define RAD CONV
#define AERIAL EROSION
#define TWOPI
#define PI
#define MARKER
#define COAST ONLAP
#define NO DEPOS
#include <xview/scrollbar.h>
#include <xview/notice.h>
#include <xview/panel.h>
#include <xview/canvas.h>
#include <xview/xview.h>
/* include files for the windows and graphics routines */
#define REL SEA
#define EX SED
#define MAR EROD
#define MAR DEP
#define FLUV DEP
#define V ONLAP
#define V const
#define Econst
#define Vrecall
#define Enew
#define CRUST
#define TO
#define ALPHA
#define abs(i) (i) < 0 ? (i) : (-i)
#define raax(a,b) ((a) > (b) ? (a) : (b))
#define TAU
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define PI
#define EMT
#define P SED
#define max(a,b)
#define TAU
#define min(a,b)
#define PI
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define PI
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
#define P SED
#define min(a,b)
#define P MANT
#define max(a,b)
#define TAU
#define min(a,b)
#define EMT
```
May 25 1994 01:10:12 Basin model header file

632
633
634 struct Tect
635 float flex_hist[MAXCHRON][MAXPTS];
636 float disp_coef[MAXCHRON];
637 float response_time;
638 unsigned short int response_type;
639);
640
641 struct Eustasy {
642 unsigned short int change_flag;
643 int max_level;
644 int min_level;
645 float freq1;
646 int curve_type1;
647 int max_level2;
648 int min_level2;
649 int freq2;
650 int curve_type2;
651 char curve_fname[80];
652 };
653
654 struct Sed_budget {
655 unsigned short int supply_flag;
656 int release_perc;
657 int maxsed, minsed, freq;
658 unsigned short int pc_type_flag;
659 unsigned short int pc_max, pc_rain, pc_freq;
660 float maxsed, minsed, freq;
661 float maxsed, minsed, freq;
662 };
663
664 struct File_params {
665 char directory[80];
666 unsigned short int batch;
667 unsigned short int crossplot_X_var;
668 unsigned short int crossplot_Y_var;
669 unsigned short int crossplot_width;
670 unsigned short int crossplot_height;
671 unsigned short int crossplot_ONLAP;
672 unsigned short int crossplot_SHOW;
673 unsigned short int crossplot_EUSTASY;
674 unsigned short int crossplot_SED_SUPPLY;
675 unsigned short int crossplot_SUBSID;
676 unsigned short int crossplot_RELSEA;
677 unsigned short int onlap_width;
678 unsigned short int subsid_width;
679 unsigned short int relsea_width;
680 unsigned short int wheeler_width;
681 unsigned short int subsid_width;
682 unsigned short int crossplot_x_var;
683 unsigned short int crossplot_y_var;
684 unsigned short int crossplot_ONLAP;
685 unsigned short int crossplot_SHOW;
686 unsigned short int crossplot_EUSTASY;
687 unsigned short int crossplot_SED_SUPPLY;
688 unsigned short int crossplot_SUBSID;
689 unsigned short int crossplot_RELSEA;
690 unsigned short int onlap_width;
691 unsigned short int subsid_width;
692 unsigned short int relsea_width;
693 unsigned short int wheeler_width;
694 unsigned short int subsid_width;
695 unsigned short int crossplot_x_var;
696 unsigned short int crossplot_y_var;
697 unsigned short int crossplot_ONLAP;
698 unsigned short int crossplot_SHOW;
699 unsigned short int crossplot_EUSTASY;
700 unsigned short int crossplot_SED_SUPPLY;
701 unsigned short int crossplot_SUBSID;
702 unsigned short int crossplot_RELSEA;
703 unsigned short int onlap_width;
704 unsigned short int subsid_width;
705 unsigned short int relsea_width;
706 unsigned short int wheeler_width;
707 unsigned short int subsid_width;
708 unsigned short int crossplot_x_var;
709 unsigned short int crossplot_y_var;
710 unsigned short int crossplot_ONLAP;
711 unsigned short int crossplot_SHOW;
712 unsigned short int crossplot_EUSTASY;
713 unsigned short int crossplot_SED_SUPPLY;
714 unsigned short int crossplot_SUBSID;
715 unsigned short int crossplot_RELSEA;
716 unsigned short int onlap_width;
717 unsigned short int subsid_width;
718 unsigned short int relsea_width;
719 unsigned short int wheeler_width;
720 unsigned short int subsid_width;
721 unsigned short int crossplot_x_var;
722 unsigned short int crossplot_y_var;
723 unsigned short int crossplot_ONLAP;
724 unsigned short int crossplot_SHOW;
725 unsigned short int crossplot_EUSTASY;
726 unsigned short int crossplot_SED_SUPPLY;
727 unsigned short int crossplot_SUBSID;
728 unsigned short int crossplot_RELSEA;
729 unsigned short int onlap_width;
730 unsigned short int subsid_width;
731 unsigned short int relsea_width;
732 unsigned short int wheeler_width;
733 unsigned short int subsid_width;
734 unsigned short int crossplot_x_var;
735 unsigned short int crossplot_y_var;
736 unsigned short int crossplot_ONLAP;
737 unsigned short int crossplot_SHOW;
738 unsigned short int crossplot_EUSTASY;
739 unsigned short int crossplot_SED_SUPPLY;
740 unsigned short int crossplot_SUBSID;
741 unsigned short int crossplot_RELSEA;
742 unsigned short int onlap_width;
743 unsigned short int subsid_width;
744 unsigned short int relsea_width;
745 unsigned short int wheeler_width;
746 unsigned short int subsid_width;
747 unsigned short int crossplot_x_var;
748 unsigned short int crossplot_y_var;
749 unsigned short int crossplot_ONLAP;
750 unsigned short int crossplot_SHOW;
751 unsigned short int crossplot_EUSTASY;
752 unsigned short int crossplot_SED_SUPPLY;
753 unsigned short int crossplot_SUBSID;
754 unsigned short int crossplot_RELSEA;
755 unsigned short int onlap_width;
756 unsigned short int subsid_width;
757 unsigned short int relsea_width;
758 unsigned short int wheeler_width;
759 unsigned short int subsid_width;
760 unsigned short int crossplot_x_var;
761 unsigned short int crossplot_y_var;
762 unsigned short int crossplot_ONLAP;
763 unsigned short int crossplot_SHOW;
764 unsigned short int crossplot_EUSTASY;
765 unsigned short int crossplot_SED_SUPPLY;
766 unsigned short int crossplot_SUBSID;
767 unsigned short int crossplot_RELSEA;
768 unsigned short int onlap_width;
769 unsigned short int subsid_width;
770 unsigned short int relsea_width;
771 unsigned short int wheeler_width;
772 unsigned short int subsid_width;
773 unsigned short int crossplot_x_var;
774 unsigned short int crossplot_y_var;
775 unsigned short int crossplot_ONLAP;
776 unsigned short int crossplot_SHOW;
777 unsigned short int crossplot_EUSTASY;
778 unsigned short int crossplot_SED_SUPPLY;
779 unsigned short int crossplot_SUBSID;
780 unsigned short int crossplot_RELSEA;
781 unsigned short int onlap_width;
782 unsigned short int subsid_width;
783 unsigned short int relsea_width;
784 unsigned short int wheeler_width;
785 unsigned short int subsid_width;
786 unsigned short int crossplot_x_var;
787 unsigned short int crossplot_y_var;
788 unsigned short int crossplot_ONLAP;
789 unsigned short int crossplot_SHOW;
790 unsigned short int crossplot_EUSTASY;
791 unsigned short int crossplot_SED_SUPPLY;
792 unsigned short int crossplot_SUBSID;
793 unsigned short int crossplot_RELSEA;
794 unsigned short int onlap_width;
795 unsigned short int subsid_width;
796 unsigned short int relsea_width;
797 unsigned short int wheeler_width;
798 unsigned short int subsid_width;
799 unsigned short int crossplot_x_var;
800 unsigned short int crossplot_y_var;
801 unsigned short int crossplot_ONLAP;
802 unsigned short int crossplot_SHOW;
803 unsigned short int crossplot_EUSTASY;
804 unsigned short int crossplot_SED_SUPPLY;
805 unsigned short int crossplot_SUBSID;
806 unsigned short int crossplot_RELSEA;
807 unsigned short int onlap_width;
808 unsigned short int subsid_width;
809 unsigned short int relsea_width;
810 unsigned short int wheeler_width;
811 unsigned short int subsid_width;
812 unsigned short int crossplot_x_var;
813 unsigned short int crossplot_y_var;
814 unsigned short int crossplot_ONLAP;
815 unsigned short int crossplot_SHOW;
References
References

References

VAIL, P. R., MITCHUM, R.M., & THOMPSON, S., (1977b). Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level, in:

