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We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and
investigate the possibility for channels to form in the ice shelf base due to spatial varia-
tions in conditions at the grounding line. The model combines an extensional thin-film
description of viscous ice flow in the shelf, with melting at its base driven by a turbu-
lent ocean plume. Small transverse perturbations to the one-dimensional steady state
are considered, driven either by ice thickness or subglacial discharge variations across the
grounding line. Either forcing leads to the growth of channels downstream, with melting
driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are
smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wave-
length for channel growth. In the absence of perturbations at the grounding line, linear
stability analysis suggests that the one dimensional state is stable to initial perturbations,
chiefly due to the background ice advection.

1. Introduction

Much of the ice loss from the Antarctic and Greenland ice sheets occurs through
melting at the ice-ocean interface. Melting is enhanced by the development of buoyant
plumes, which can entrain warm ocean water and facilitate heat transfer to the ice in-
terface (MacAyeal 1985; Jenkins 1991; Motyka et al. 2003). Such plumes may form both
at the near-vertical fronts of tidewater glaciers and beneath the gently sloping base of
floating ice shelves. In the latter case, melting interacts with ice deformation to mould
the shape of the ice shelf itself, and it is this interaction that forms the focus of our study.

Ice shelves form when ice flows into sufficiently deep water that it becomes neutrally
buoyant and floats (eg. Schoof & Hewitt 2013). The line separating grounded ice from
floating ice is referred to as the ‘grounding line’, and this is also the place where subglacial
meltwater is discharged to the ocean. Even a small quantity of fresh subglacial discharge
can be influential in establishing a buoyant plume (Jenkins 2011).

A number of ice shelves have been observed to have channel-like incisions at their base,
oriented roughly in the direction of ice flow (Rignot & Steffen 2008; Bindschadler et al.
2011; Vaughan et al. 2012; LeBrocq et al. 2013). Observationally inferred basal melt rates
are enhanced within the channels compared to the neighbouring thicker ice (Rignot &
Steffen 2008; Dutrieux et al. 2013), and plumes containing a mixture of entrained warm
deep waters and ice shelf melt have been observed to emerge from under Pine Island ice
shelf in the vicinity of larger channels (Mankoff et al. 2012). The existence of channels has
an important but unclear effect on the long term evolution of an ice shelf; bending stresses
resulting from uneven melting may lead to crevassing and eventual break-up (Vaughan
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et al. 2012), while the focussing of buoyant flow may actually lower the average melt rate,
thus protecting it from ocean warming to some extent (Gladish et al. 2012; Millgate et al.
2013). It is of interest to understand how such channels are created. One hypothesis is that
the convective plume on the underside of the ice is unstable to transverse perturbations
which promote uneven melting. Another is that localized sources of subglacial outflow
at the grounding line generate stronger plumes and promote enhanced melting directly
downstream. Alternatively, the channels may reflect topography at the grounding line,
whose imprint is advected into the ice shelf, or they may reflect patterns of stress in the
ice shelf.

In this paper, we explore the potential for channels to form through the interaction
of plume-driven melting and ice-shelf topography. The basic mechanism here is that
regions of high plume velocity induce enhanced heat transfer and thus faster melting,
which increases the local transverse slope of the ice-shelf and leads to flow focussing.
There is a partial analogy with hill-slope erosion (Smith & Bretherton 1972). We seek to
determine how a one-dimensional ice-shelf profile is affected by transverse perturbations
in the conditions at the grounding line. Our goal is to gain a basic understanding of
the mechanisms rather than to make quantitative predictions; thus we adopt simplified
models for the ice shelf and the plume on its underside. The results may also provide
insight into related channelization problems where the incision of channels is caused by
gravitationally-driven focussing of a wall-bounded current.

A number of previous studies are relevant. Ice-shelf melting has been modelled ex-
tensively using depth-averaged ocean layer models (eg MacAyeal 1985; Jenkins 1991;
Holland et al. 2007), adapted from the classical theory of buoyant plumes (Morton et al.
1956; Ellison & Turner 1959). General circulation models have also been used to study
the effect of patterned ice shelf topography or subglacial discharge on the melt rate (e.g.
Millgate et al. 2013; Sciascia et al. 2013). Until recently, these models have assumed
a fixed ice shelf geometry. However, two recent numerical studies have examined the
genuinely coupled problem in which melting feeds back on the ice shelf (Gladish et al.
2012; Sergienko 2013). These studies involved simultaneous solution of a depth-averaged
ice flow model together with the buoyant plume that controls melting. They found that
channelization can occur if there are topographic perturbations at the grounding line, or
if lateral confinement of the ice shelf gives rise to across-flow variations in ice thickness.
In this paper we examine in detail the destabilizing and stabilizing processes that control
this channelization, albeit in a necessarily simplified model.

The paper is structured as follows. In section 2 we describe the elements of the model
and perform non-dimensionalization so as to obtain a minimal set of parameters and
facilitate the subsequent analysis. In section 3 we consider one-dimensional solutions for
a steady ice shelf with plume beneath, finding that under certain simplifications the
melting rate is approximately uniform. In section 4, the model equations are perturbed
from the steady state to allow small transverse variations, and in section 5 we solve for
such perturbations driven by topographical or discharge perturbations at the grounding
line. In section 6 we discuss the results along with possible extensions. Further details
and results on temporal stability are included in the appendix.

2. Model

We first outline the basic ingredients of the model, before stating the equations and
then non-dimensionalizing them. The problem is posed in two horizontal dimensions,
with x in the direction of ice flow and y transverse to the flow (see figure 1).

The ice shelf extends from the grounding line at x = 0 to the front at x = X(y, t), and
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Figure 1. (a) A schematic of the steady one-dimensional ice shelf. Ice thickness h and velocity u
evolve in the along-shelf coordinate (x) from their grounding line values (denoted with subscripts
g) due to the deformation within the ice, and sub-shelf melting. The melt rate m is controlled by
a buoyant plume layer of thickness D and velocity U , initiated by a meltwater source Qg at the
grounding line. The dynamics of the plume layer and melt rate depend on the temperature T
and salinity S of the plume, the mass of which increases with x as ocean water (with temperature
Ta and salinty Sa) is entrained at rate e. (b) A perturbation in thickness in the transverse (y)

direction will grow or decay from its grounding line magnitude h̃g to h̃(x), depending on the
effects of ice deformation and plume dynamics.

is modelled as an extensional viscous thin-film flow, characterized by its vertical thickness
h(x, y, t) and depth-averaged horizontal velocity u(x, y, t) = (u, v). In the glaciological
literature this model is referred to as the ‘shallow shelf approximation’ (MacAyeal 1989).
The front position must be determined as part of the problem; in the assumed absence
of calving, it is simply the position at which melting causes the ice thickness to reduce to
zero. Ice flow from the grounded ice sheet is assumed known, and surface accumulation
is ignored.

The plume is assumed to follow the underside of the ice without detaching, and is
modelled using a form of the turbulent plume models commonly employed to study ice-
ocean interactions (MacAyeal 1985; Jenkins 1991; Holland et al. 2007; Jenkins 2011;
Gladish et al. 2012; Sergienko 2013). The plume is characterized by its vertical thickness
D(x, y, t) beneath the ice base z = b(x, y, t), its thickness-averaged horizontal velocity
components U(x, y, t) = (U, V ), temperature T (x, y, t), and salinity S(x, y, t). The time
dependence of these quantities derives from the slow evolution of the ice-ocean interface,
with the plume dynamics themselves being treated as quasi-static on this timescale. The
plume is assumed to be initiated at the grounding line by the subglacial discharge of
buoyant water.

We make a standard Boussinesq approximation, taking the ocean water density as a
constant reference value, ρo, except when it contributes to the buoyancy of the plume



4 M. C. Dallaston, I. J. Hewitt and A. J. Wells

(see (2.5) below). Coriolis forces are also ignored. To simplify the thermodynamics, we
take the melting temperature Tm to be constant, ignoring both pressure and salinity
dependence, and assume that the ambient ocean’s temperature and salinity are spatially
uniform. These are significant simplifications of the real problem, as they ignore changes
in effective buoyancy flux that may eventually lead to detrainment further out along the
shelf, and refreezing due to change in melting temperature. However, we believe they do
not detract from the essential dynamics of channelization which is our focus, and they
allow for a more transparent analysis. The possibility of including such features in future
work is discussed in section 6.

2.1. Ice shelf model

With z = 0 corresponding to sea level, the base of the ice shelf is at z = b(x, y, t) < 0,
and its thickness is h(x, y, t) > 0. Assuming hydrostatic equilibrium, the base elevation
and the thickness are related by

b = −(ρi/ρo)h, (2.1a)

where ρo is the reference ocean density, and ρi the ice density. Mass balance and horizontal
force balance are expressed as

∂h

∂t
+∇ · (hu) = −(ρo/ρi)m, (2.1b)
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(see MacAyeal 1989, for example), where u(x, y, t) = (u, v) is the vertically uniform
ice velocity, η the effective viscosity, g the gravitational acceleration, and m is the
basal melt rate (volume of water melted per unit area, per unit time). The gradient
∇ = (∂/∂x, ∂/∂y) is a two-dimensional operator. For the commonly used Glen’s law
ice rheology, η is a function of the strain rate, but for this paper we treat the ice as
Newtonian, so the viscosity is constant.

The ice depth and velocity are assumed known at the grounding line and, as mentioned
previously, the ice depth is zero at the front, so boundary conditions are

h = hg, u = ugex, at x = 0, (2.2)

h = 0, at x = X, (2.3)

where hg(y) and ug(y) may in general vary with the transverse coordinate y. Aside from
requiring the velocity to be bounded, right hand boundary conditions on the velocity
components are not required due to the degeneracy of the stress components resulting
from h = 0 at the right hand boundary.

2.2. Melting

Melting is determined through the balance of heat transferred to and from the ice-
ocean interface. Following previous authors (eg. Jenkins et al. 2010), we parameterize
the turbulent heat transfer as proportional to the temperature difference and velocity of
the plume,

mL = cγT |U |(T − Tm). (2.4)
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Here L is the latent heat, c is the specific heat capacity of the ocean water, γT is a constant
dimensionless heat transfer coefficient, and U and T are the velocity and temperature of
the plume (i.e. outside an interfacial viscous and diffusive boundary layer). In (2.4) we
have assumed that the ice-shelf temperature is already close to the melting temperature
Tm, and so ignore conduction into the ice; the effect of colder ice can be effectively
included in (2.4) as a small correction to the latent heat (eg. Wells & Worster 2011;
Jenkins 2011).

If the salinity dependence of the melting point were included one would need, in addi-
tion to (2.4), to model the salinity at the interface; a number of parameterizations have
been developed for this in the context of both ice shelves and sea ice (Jenkins et al. 2010;
McPhee et al. 2008).

2.3. Plume model

For typical temperature and salinity variations near an ice shelf the primary control on
density is the salinity; with thermal expansion coefficient βT = 3.87 × 10−5 K−1, βS =
7.86× 10−4 psu−1 (Jenkins 2011), and with typical temperature and salinity differences
given in table 1, the percentage changes in density due to temperature and salinity
changes are ∼ 0.01% and ∼ 3%, respectively. We therefore neglect thermal expansion
and take the density difference between the ambient ocean and the plume as

ρa − ρ = ρoβSS∆, S∆ = Sa − S. (2.5)

Here ρa and ρ are the density of the ambient ocean and plume water, ρo is the reference
density, βS the haline contraction coefficient, and S∆ is the salinity deficit of the plume
water from the ambient salinity Sa.

Conservation of mass, momentum, salt and heat in the plume are expressed as

∇ · (DU) = e+m, (2.6a)

∇ · (DUU) = DgβSS∆

(
∂b
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)
+∇ · (κD∇U)− Cd|U |U (2.6b)
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)
+∇ · (κD∇V )− Cd|U |V (2.6c)

∇ · (DUS) = eSa +∇ · (κD∇S) +mSi, (2.6d)

∇ · (DUT ) = eTa +∇ · (κD∇T ) +mTm −
mL

c
. (2.6e)

Here e is the rate of entrainment of ambient water into the plume, κ is a turbulent eddy
diffusivity and eddy viscosity (assumed equal for simplicity), Cd is a constant turbu-
lent drag coefficient, Si (≈ 0) is the salinity of the ice, and Ta is the ambient ocean
temperature. The formulation of turbulent stresses follows that of Gladish et al. (2012),
Holland et al. (2007) and Payne et al. (2007). One could potentially argue for alterna-
tive formulations of these terms, either with D moved inside the final derivative or with
mixed-derivative terms that echo the viscous stretching terms in (2.1c)-(2.1d). Under the
approximations made below, such alternative formulations would make no difference to
our results.

The plume volume flux increases downstream due to entrainment of ambient fluid and
addition of meltwater according to (2.6a). Similar balances describe conservation of salt
in (2.6d) and conservation of heat in (2.6e) but with the addition of a thickness-weighted
eddy diffusion. The turbulent heat flux from the plume to the ice has been eliminated
using (2.4) giving rise to the final term in (2.6e). The three acceleration terms on the right
hand side of (2.6b) and (2.6c) are due to the action of buoyancy forces, thickness-weighted
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eddy viscosity, and interfacial drag, respectively. The buoyancy forces are determined by
the slope of the lower plume interface z = b − D (figure 1), so include both the slope
of the ice base and the gradients of the plume thickness. The latter are small, but are
included for their possible role in stabilizing transverse perturbations. Entrainment is
parameterized as proportional to the magnitudes of velocity and basal slope, (eg. Jenkins
2011)

e = E0|U ||∇b|, (2.7)

where E0 is a dimensionless entrainment constant.

Turbulent diffusion in the x direction will shortly be neglected and we therefore impose
plume boundary conditions only at the grounding line x = 0 (we make the implicit
assumption that U2 > DgβSS∆ so that the plume flow is supercritical in the language
of shallow water theory, else a condition would be required at the downstream boundary,
e.g. Stoker 1957). Conditions for fresh subglacial discharge are

DU = Qg, U = Ugex, S = 0, T = Tm, at x = 0, (2.8)

where Qg(y) and Ug(y) are the flux (in m2 s−1) and velocity of the outflow across the
grounding line, which may in general vary with the transverse coordinate.

2.4. Non-dimensionalization

To reduce the model to a minimal set of parameters we proceed to non-dimensionalize
the variables. Depth and velocity scales for the ice flow, h0 and u0, are chosen based
upon typical ice-shelf depths and speeds, and given a suitable horizontal length scale
x0 (discussed below), the timescale is taken as t0 = x0/u0. The melt rate scale m0 is
determined below from the plume dynamics, and the ice-shelf model then depends upon
three dimensionless parameters (see §2.5)

r =
ρo
ρi
, γ =

(1− ρi/ρo)ρigh0x0

8ηu0
, λ =

ρom0x0

ρih0u0
. (2.9)

Here r is the density ratio, γ measures the strength of gravitationally-driven stretching,
and λ measures the strength of melting in the ice-shelf mass balance (2.1b). Two natural
choices of length scale x0 would be such that γ = 1 (with x0 representing the length
scale over which the ice thickness changes), or such that λ = 1 (with x0 representing the
length scale of the ice shelf).

To estimate the size of terms in the plume, we take a typical size of subglacial discharge
Qg0. This determines a driving buoyancy flux Qg0gβSSa, which gives rise to natural scales
for the plume velocity and melt rate

U0 =

(
Qg0gβSSa

E0

)1/3

, m0 =
cγTU0(Ta − Tm)

L
. (2.10)

The conservation equations further suggest appropriate scalings for the plume thickness
D, salinity deficit S∆, and temperature deficit, which we define as T∆ = Ta − T . These
scalings are

D0 = E0h0, S∆0 =
Qg0Sa
D0U0

, T∆0 =
γTx0

D0
(Ta − Tm). (2.11)

Upon adopting these scalings, the plume model is found to depend on the following
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Variable Description Value Source

ρo reference water density 1030 kg m−3 common
ρi ice density 916 kg m−3

g gravity 9.8 m s−2

L latent heat of fusion 3.35× 105 J kg−1

c specific heat of water 3.98× 103 J kg−1 K−1

E0 entrainment coefficient 0.036 [J11]
βS haline contraction coefficient 7.86× 10−4 psu−1 [J11]
Cd turbulent drag coefficient 2.5× 10−3 [J11]
γT thermal transfer coefficient 5.7× 10−5 see caption
κ turbulent diffusivity 10–100 m2 s−1 representative value
η ice viscosity 2.6× 1013 Pa s representative value

u0 ice velocity scale 1000 m yr−1 [RS08]
h0 ice thickness scale 600 m [RS08]
x0 length scale 11 km (1 km) see caption
t0 time scale 11 yr (1 yr) before (2.9)
m0 melt rate scale 18 m yr−1 (2.10)

Qg0 subglacial discharge scale 10−2 m2 s−1 representative value
D0 plume thickness scale 22.6 m (2.11)
U0 plume velocity scale 0.42 m s−1 (2.10)
Ta − Tm temperature forcing 2 K [RS08]
Sa ambient salinity 34.5 psu [RS08]

r density ratio 1.12 (1.12)
(2.9)γ dimensionless stretching rate 1 (0.09)

λ dimensionless melt rate 0.37 (0.034)
ν dimensionless eddy diffusivity 0.0022–0.022 (0.024–0.24)


(2.12)

δ dimensionless buoyancy correction 0.036 (0.036)
εg subglacial flux/entrained flux 1.1× 10−3 (1.1× 10−3)
εm subshelf melt/entrained flux 6.9× 10−4 (6.3× 10−5)
µ dimensionless drag coefficient 1.27 (0.12)
β inverse Stefan number 0.024 (0.024)

Table 1. Parameters, scales and non-dimensional variables used in this paper, roughly based
on observation of the high melt region downstream of the grounding line of Petermann Glacier.
[J11] refers to Jenkins (2011) and [RS08] refers to Rignot & Steffen (2008). The length scale
x0 is chosen such that γ = 1 in (2.9). Alternatively, the smaller length scale x0 = 1 km gives
rise to the parameter values in parentheses. The thermal transfer coefficient γT is chosen to
be consistent with an observed melt rate of 18 m yr−1 for Petermann glacier (Rignot & Steffen
2008), given (2.10) and the value Qg0 of the subglacial melt flux.

dimensionless parameters (see §2.5 below)

ν =
κ

U0x0
, δ =

D0

h0
(= E0), εg =

Qg0
D0U0

εm =
m0x0

D0U0
, µ =

Cdx0

D0
, β =

c(Ta − Tm)

L
.

(2.12)

Here ν is the dimensionless eddy diffusivity, and δ represents the size of the plume-
thickness correction to the buoyancy term; both are typically small and will henceforth
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be retained only when multiplying y derivatives, to account for their possible smoothing
effect on transverse perturbations. The parameters εg and εm represent the size of the
subglacial discharge and subshelf meltwater flux, respectively, relative to the entrained
flux. Both of these ratios tend to be small, but these fluxes make important contributions
to the buoyancy and temperature. Finally, µ is the dimensionless drag coefficient and β
is the inverse Stefan number.

Representative values of these parameters are estimated in table 1 for two different
choices of length scale. We base our calculations on the values obtained by taking x0

to be the natural stretching length scale of the ice shelf, such that γ = 1 in (2.9) and
the one-dimensional ice-shelf has a dimensionless slope of order unity near the grounding
line. However, we anticipate that our analysis is most appropriate over shorter length
scales (we are primarily interested in the development of channels just downstream of
the grounding line) so we use parameter estimates on a shorter length scale x0 = 1 km
to further simplify the model in §2.6. The neglect of ambient temperature stratification
and pressure dependence of the freezing point are likely to be good approximations on
this shorter length scale.

2.5. Non-dimensional model

The non-dimensional model is summarized here, with all subsequent variables hence-
forth corresponding to dimensionless versions of their earlier dimensional counterparts.
Equations for the ice shelf are
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)
. (2.14)

The reduced equations for the plume are

∇ · (DU) = |U ||∇b|+ εmm, (2.15a)
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The last two equations for salinity and temperature deficits, S∆ and T∆, are obtained
by subtracting Sa and Ta times the mass equation (2.6a) from the equations (2.6d) and
(2.6e) for S and T , and then non-dimensionalizing.

The nondimensional boundary conditions are

h = hg, u = ugex, at x = 0, (2.16a)
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DU = εgQg, U = Ugex, S∆ = 1/εg, T∆ = β/εm, at x = 0, (2.16b)

and

h = 0, at x = X. (2.17)

The boundary values hg, ug, Qg and Ug, which may depend on the transverse coordinate
y, have been scaled with h0, u0, Qg0 and U0, respectively.

2.6. Simplification

The problem stated in §2.5 could be solved numerically to determine the coupled evo-
lution of ice shelf and plume. Indeed, the studies of Gladish et al. (2012) and Sergienko
(2013) solved similar sets of equations with a number of additional terms. Since our
purpose is to gain a more detailed understanding of the processes and parameter depen-
dencies, we take a different approach that forces us to make some further simplifications
at this point.

Specifically, we wish to study the channelization of an otherwise y-independent state
due to perturbations at the grounding line, and for this purpose it is highly advantageous
to have an analytical one-dimensional solution. Such a solution can be found if one
assumes that the buoyancy source is dominated by subglacial discharge rather than by
melting from the shelf, that the entrained ambient water provides the plume with a large
thermal inertia compared to heat transfer at the ice-ocean interface, and if one ignores
turbulent drag. Mathematically, this corresponds to taking the asymptotic limits

εm � εg, εm � β � 1, µ� 1. (2.18)

Although not necessary to obtain an analytic solution, we also take the limit εg � 1.
Under these assumptions, the plume mass is dominated by the entrained flux, and the
buoyancy flux is dominated by the initial grounding line source (εm � εg � 1); the
sub-shelf meltwater does not have an appreciable effect on plume temperature (εm � β);
and the drag does not affect the velocity (µ� 1).

As seen in the next section, the solution for the plume in this limit becomes remark-
ably simple. However, the neglect of some of these terms is hard to reconcile with the
estimates in table 1, where µ is not small, and εm is barely less than εg. Nevertheless, we
justify studying this limit on three counts: firstly, the need to make some simplification in
order to make headway; secondly, because the essential dynamics driving channelization
are still encapsulated; and thirdly and most significantly, because this limit gives a good
approximation to the full behaviour relatively close to the grounding line, where chan-
nelization is most likely to occur. This can be seen by comparing with solutions to the
full system, or by estimating the dimensionless parameters based on the smaller length
scale x0, shown in parentheses in table 1. The buoyancy source from sub-shelf melting
and the effect of turbulent drag have an increasingly important effect along the length
of the shelf, but in reality other factors that we have already neglected also come into
play on that larger scale, such as the ambient stratification, Coriolis forces, and iceberg
calving.

We adopt the limits (2.18) for the remainder of this study. Essentially, this means
neglecting all terms in εm, εg, β and µ in (2.14), (2.15), and (2.16), although some care is
required to correctly account for the boundary conditions. Terms in ν and δ are retained
for their possible stabilizing influence on perturbations.
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3. One-dimensional steady state

Taking the limits (2.18), and assuming independence of the transverse coordinate y, the
buoyancy forcing and the entrainment parameterization in (2.15) are both proportional
to the slope ∂b/∂x, and this allows the plume equations to be solved as a function of depth
z = b(x), independent of the actual shape of the interface. Moreover, with εm = 0, the
equation for the temperature deficit (2.15e) decouples from the other plume equations.
To simplify the analysis below, we define the buoyancy B = DS∆. Changing variables
according to

∂

∂x
=
∂b

∂x

∂

∂z
,

the dimensionless plume equations (2.15), with εm = µ = β = 0, are

∂

∂z
(DU) = U,

∂

∂z
(DU2) = B,

∂

∂z
(BU) = 0, (3.1)

representing increase of the mass flux by entrainment, a momentum balance between
changing inertia of the plume and the buoyancy force, and conservation of the along
slope buoyancy flux. The boundary conditions are

DU = εgQg, U = Ug, B = Qg/Ug, at z = b(0). (3.2)

For εg = 0, the equations (3.1) are satisfied by constant velocity and buoyancy, and
increasing plume thickness, that is

D = z − b(0) = (hg − h(x))/r, U = Q1/3
g , B = Q2/3

g , (3.3)

recalling that z = b(x) = −h(x)/r. This does not satisfy the boundary conditions on the
velocity or the buoyancy. However, the εg → 0 limit is singular; there is a boundary layer
with width of order εg in which these conditions are satisfied, and the solution converges
to (3.3) outside this boundary layer. In fact, an implicit solution to the system (3.1) with
conditions (3.2) can be derived by finding U in terms of Q = DU , then substituting into
the equation for ∂Q/∂z and integrating. One obtains B = Qg/U , and

U =
Q

1/3
g (ε3gU

3
gQ

2
g − ε3gQ3

g +Q3)1/3

Q
, z − b(0) =

∫ Q/Qg

εg

Q
2/3
g q

(ε3gU
3
g /Qg − ε3g + q3)1/3

dq.

(3.4)
Some examples of this solution are shown in figure 2, for different Ug. As εg → 0, the
solutions converge to that given by (3.3). For the rest of the paper, we take the limit
εg → 0, and use the simple solution (3.3). As a result, we replace the boundary condition
(3.2) with matching conditions to the boundary layer as x → 0, and hence z → b(0).
These are

D = 0, U = Q1/3
g , B = Q2/3

g , at x = 0. (3.5)

With these approximate plume dynamics, the dimensionless melt rate m = U = Q
1/3
g

is constant and scales with the one-third power of the subglacial discharge (cf. Jenkins
2011). It is interesting to note here that it is the subglacial flux Qg that is important;
the prescribed subglacial discharge velocity Ug is only important within the very narrow
boundary layer near the grounding line. Strictly, the melt rate also exhibits this order
εg wide boundary layer; since T∆(0) = β/εm the melt rate (2.14) is zero at x = 0, but
the equation for T∆ (2.15e) implies that it decays at a rate proportional to 1/Q and so
1/εg. Outside of the boundary layer, T∆ drops out of the equation for melt rate (2.14)
under the limit εm � β. The physical interpretation here is that the plume temperature
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Figure 2. The solution (3.4) for plume flux Q = DU and velocity U , versus depth z = b,
for εg = 0.05 (larger than in table 1 so as to make the boundary layer visible) and Qg = 1.
Regardless of the subglacial discharge velocity Ug, the velocity converges to U = 1 outside of an
order εg boundary layer, and the flux is close to the linear solution in (3.3) (it does not converge
exactly to that solution as there is an order εg correction which grows with z; for smaller εg the
dashed lines are much closer to the solid line)

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

velocity u

surface s

base b

λ = 2 λ = 1 λ = 0.5

x

Figure 3. Explicit solutions (3.7) for the nondimensional base-state surface s and basal elevation

b = −h/r (ice thickness h = h(x) = s − b) and ice velocity u = u(x), for dimensionless melt
rates λ = 0.5, 1, 2, and γ = 1.

is dominated by entrainment and hence lies close to the ambient temperature Ta. The
melting is therefore driven by the constant difference Ta − Tm from the melting point.

Furnished with this constant melt rate m = Q
1/3
g , the equations for the steady one-

dimensional steady ice shelf (2.13) may also be solved exactly. Taking Qg = 1 (as we are
permitted in one dimension, given the nondimensionalization), the mass and momentum
equations for the ice flow reduce to

∂

∂x
(hu) = −λ, ∂

∂x

(
h
∂u

∂x

)
− 2γh

∂h

∂x
= 0. (3.6)

Again, by the choice of scales we may take hg = ug = 1, so that h(0) = u(0) = 1, and
h(X) = 0. These are readily integrated to find (e.g. MacAyeal 1989)

X =
1

λ
, u =

(
1 + γX − γX(1− x/X)2

)1/2
, h =

(
(1− x/X)2

1 + γX − γX(1− x/X)2

)1/2

,

(3.7)
which are plotted in figure 3. The nondimensional length of the ice shelf is controlled by
the parameter λ which measures the importance of basal melting relative to stretching.
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4. Linearized perturbations

4.1. Perturbed equations

We now re-introduce the transverse coordinate y and study two-dimensional perturba-
tions from the one-dimensional state found above. Assuming small amplitude pertur-
bations and steady state in time, we derive a linear system of equations and boundary
conditions for their amplitude as a function of along-shelf distance x, and use this in
section 5 to analyse the downstream development of transverse variability at the ground-
ing line. This is not a temporal linear stability analysis; rather, we are interested in the
growth or decay of perturbations as x increases. In appendix B, we analyse an equivalent
time-dependent problem, finding no evidence of temporal instability arising from global
perturbations in the initial condition in the absence of boundary perturbations at the
grounding line.

We look for steady solutions to (2.13) and (2.15) in the form

h(x, y) = h(x) + h̃(x)eiky, (4.1)

with a similar expansion for each of the variables. Here, h(x) denotes the steady solution
from (3.7), h̃(x) the x dependence of the perturbation (to be solved for), and k is the
transverse wave number. Similar notation is used for the other variables. A perturbation
with more general y dependence could be written as a superposition of such Fourier mode
solutions.

The equations are again simplified by treating buoyancy B = DS∆ as a single variable.
We also subtract the linearized version of the equation for mass (2.15a) from that for
momentum (2.15b). From (2.13) and (2.15 the linearized corrections to the base state
satisfy

(h̃u+ hũ)′ + ikhṽ = −λŨ (4.2a)

2[h(2ũ′ + ikṽ) + 2h̃u′]′ + ikh(ikũ+ ṽ′)− 8γ(hh̃)′ = 0, (4.2b)

[h(ikũ+ ṽ′)]′ + 2ikh(ũ′ + 2kiṽ) + 2ikh̃u′ − 8γikhh̃ = 0, (4.2c)

and

UD̃′ +DŨ ′ + ikDṼ + r−1Uh̃′ = 0, (4.2d)

DUŨ ′ + (2D
′
U + νk2D)Ũ + r−1h

′
B̃ = 0, (4.2e)

DUṼ ′ + (D
′
U + νk2D)Ṽ + ikr−1Bh̃+ δikBD̃ = 0, (4.2f )

BŨ ′ + UB̃′ + ikBṼ + νk2B̃ − νk2D
−1
BD̃ = 0, (4.2g)

respectively (where primes denote a derivative with respect to x). In (4.2) we have used
that U = B = 1 are constant, but have retained them for easier interpretation of the
physical meaning of each term. We have also used b = −r−1h, changing basal elevation
to total ice thickness. Again there is no need to include an equation for the temperature
deficit correction, as its effect on the melt rate (2.14) is small; the cause of variable heat
transfer is due to variable plume velocity, rather than temperature.

4.2. Boundary conditions for perturbations

Boundary conditions for the linearized equations follow from the original conditions
(2.16a) and (2.16b). Having made the approximation εg → 0, however, the latter con-
ditions on the plume variables are now replaced with the matching conditions (3.5).
(Strictly speaking, the use of these matching conditions assumes a certain asymptotic
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ordering between the smallness of εg and the size of the linear perturbations; we do not
concern ourselves with this detail.)

We allow for perturbations in the grounding line ice thickness and subglacial discharge,
in the form hg = 1+ h̃ge

iky, Qg = 1+ Q̃ge
iky, while supposing there are no perturbations

to the ice velocity there. Thus the necessary conditions are

h̃(0) = h̃g, ũ(0) = 0, ṽ(0) = 0, (4.3)

B̃(0) = B̃g ≡ 2
3 Q̃g, D̃(0) = 0, Ũ(0) = Ug ≡ 1

3 Q̃g. (4.4)

It might be of concern that there are only six conditions here, whilst the linearized
system (4.2) is of ninth order ((4.2b) and (4.2c) are second order, while the other five
equations are first order). This is again due to the singular nature of the problem: in
(4.2), the highest derivatives of the ice velocity components are multiplied by the base-
state ice thickness h, which is zero at the right hand boundary x = X; and similarly the
derivatives of the plume velocity components are multiplied by plume thickness D, which
is zero at the left hand boundary x = 0. As is common for such singular boundary value
problems, effective conditions are provided by demanding that the system be satisfied
and variables remain bounded at the boundary. In this case, these consistency conditions
are

2ũ′(X) + ikṽ(X) = 2γh̃(X), ikũ(X) + ṽ′(X) = 0, Ṽ (0) = − ikh̃g
λ+ γ

, (4.5)

where we have used u′ = γh, and h
′
(0) = −(λ+ γ) from the base solution (3.7).

Finally, the end condition (2.17) is linearized to find the perturbation X̃ in the length
of the shelf. Inserting the expansion X ∼ X + X̃eiky into the perturbed form for h in
(4.1), and expanding as a Taylor series, the condition h = 0 at x = X becomes

h̃(X) + h
′
(X)X̃ = 0, (4.6)

where h̃(X) is determined from the solution to (4.2). Hence

X̃ = − h̃(X)

h
′
(X)

. (4.7)

Physically, this simply expresses the fact that where the ice thickness has been locally
decreased (in a channel), the shelf would be shorter, and vice versa.

5. Boundary-driven instabilities

5.1. Perturbations in grounding line thickness: numerical results

In this section we look for steady-state perturbations of the form (4.1) forced by an
ice-thickness perturbation h̃g at the grounding line, and we establish the effects of ice
deformation, plume dynamics and transverse diffusion, for different transverse wavenum-
bers k.

Numerical solution of the linearized system (4.2) is described in appendix A. Figure 4
shows an example solution for the perturbations in ice thickness h̃, and plume velocity
Ũ for transverse wavenumber k = 10. Also plotted in panel (b) are the thickness and
plume velocity perturbations in the (x, y) plane, over two wavelengths. This example
solution exhibits the typical behaviour of the system (4.2). From the grounding line,
perturbations in thickness h̃ initially decay due to ice deformation, but as transverse
flow Ṽ concentrates fresher, more buoyant water into the channels, the increased along-
channel velocity Ũ increases heat transfer into the channels, thereby leading to an increase
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in the perturbation of ice thickness (i.e. enhanced ice thinning). This positive feedback
loop is moderated by the effects of diffusion in the transverse direction.

To further understand the importance of each effect, we compute the solution of (4.2)
over a range of wavenumbers k and parameter values, comprising the following three
cases:

(i) ice deformation in the absence of plume dynamics ((4.2a–c) are solved alone, with
Ũ = 0)

(ii) coupled perturbation of ice and plume, with eddy diffusivity neglected (ν = 0),
(iii) coupled perturbation of ice and plume, with eddy diffusivity included.

In each case, we assume a unit perturbation in the ice thickness at the grounding line,
and use the value λ = 0.37. For the latter two cases, we also explore the effect of including
or excluding the buoyancy correction term δ.

The results of the numerical calculations for each of these cases are displayed in figure
5. The dependence of the thickness perturbation h̃ on both downstream distance x and
transverse wavenumber k is important, so we plot the x dependence for a given wavelength
(k = 10), and the k dependence (that is, the power spectrum) for a given position x.
The midway point x = X/2 ≈ 1.4 is chosen for this purpose. Using the values in table 1,
this corresponds to a distance approximately 15 km downstream of the grounding line,
which is on the order of the high melt region under the Petermann ice tongue (Rignot &
Steffen 2008).

The effect of ice deformation in isolation, depicted in figure 5, is to cause perturba-
tions to decay downstream from their grounding line value. This decay rate, however,
is largely independent of wavenumber k, and does not provide sufficient smoothing to
prevent channelization when the plume dynamics are included. In that case, but with-
out including eddy diffusion (ν = 0), perturbations grow rapidly downstream, and the
amplitude increases with increasing k (we show below that the growth is exponential in
k1/2 as k →∞).

The inclusion of the eddy diffusivity ν = 0.02 has the effect of smearing short wave-
length features, and thus limits the development of high wavenumber perturbations. The
amplitude is maximised for a certain value kmax, and decreases for larger k (smaller
wavelengths). As k →∞, the mode amplitude tends toward that given purely by the ice
deformation. For a smaller value ν = 0.002, the preferentially selected wavenumber kmax

is larger, and the peak amplitude is an order of magnitude larger. Note that the value of
kmax depends slightly on the value of x at which the amplitude is measured; we always
measure it at x = X/2 for consistency.

Our final numerical experiment regards the thus far neglected buoyancy correction
term proportional to δ. While the inclusion of this term moderates the amplitude of
perturbations, it does not cut off the unbounded growth for large k. The numerical
results for δ = 0.036 are included in figure 5 for each of the previous values of ν; it does
not qualitatively affect the behaviour.

5.2. Asymptotic results for large k

These numerical results may be understood in light of the asymptotic behaviour of the
system (4.2) in the limit that wavenumber k is large. From the two stress equations for
the ice flow (4.2b) and (4.2c), the ice velocity components ũ and ṽ must be of order k−2h̃
and k−1h̃, respectively. This is consistent with the magnitudes seen in the numerical
solution plotted in figure 4 for k = 10. Combining (4.2a) and (4.2c) results in

uh̃′ +

(
2γh+

1

2
u′
)
h̃ = uh̃′ +

5

2
u′h̃ = −λŨ +O(k−1), k →∞, (5.1)
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(ũ, ṽ)
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Ũ

iṼ
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Figure 4. A typical numerical solution to the linearized problem (4.2) for the magnitude of

perturbations to (a) the ice thickness h̃, (b) ice velocity components (ũ, ṽ), (c) plume velocity

components (Ũ , Ṽ ) and (d) buoyancy B̃ for transverse wavenumber k = 10, given an initial

perturbation h̃g = 1, B̃g = 0. (e) Ice thickness perturbation in the (x, y) plane, with the plume
velocity perturbation overlaid as directed streamlines. The flow is concentrated into the channels
(darker regions). Parameters are λ = 0.37, γ = 1, ν = 0.02, δ = 0.036.
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Figure 5. Numerical computation of the amplitude of a kth mode perturbation, given a unit
amplitude at the grounding line and fixed parameters λ = 0.37, γ = 1: (a) the evolution along
the ice shelf, for a given wavenumber k = 10, for various values of buoyancy correction term
δ and eddy diffusivity ν, as indicated by solid-dashed lines and symbols respectively; (b) the

magnitude of perturbations at a given position x = X/2, showing unbounded growth as k →∞
for ν = 0, while the inclusion of diffusion smooths out high wavenumber perturbations, leading
to a selected wavenumber kmax where the amplitude is largest (values of δ and ν are the same
and indicated in the same manner as in (a)); (c) the numerical and WKB approximation (5.3),

with ν = δ = 0, grow exponentially in k1/2 as k →∞; (d) Numerically computed values of the
wavenumber kmax for positive ν, asymptotically fit a −2/3 power-law as ν → 0, as shown on
a logarithmic scale. The coefficient α = 0.91 is determined by fitting a power law to the two
smallest values of ν.

where we have used u′ = γh from the base state solution (3.7). The first term on the
left hand side represents the advection of ice thickness by the background flow, while the
second term represents decay of perturbations due to both transverse flow (the h term)
and stretching (the u′ term). At leading order, these contributions balance plume-driven
melting (the −λŨ term). For large k, (5.1) may therefore be used in place of (4.2a–c).

In the absence of plume dynamics, that is, the first case discussed in the previous
subsection, Ũ = 0 and (5.1) may be integrated to give

h̃(x) ∼ h̃gu(x)−5/2, k →∞. (5.2)

Although not shown, this formula agrees with the numerical solution (marked “ice”) in
figure 5 when k is large, being within 10% of the numerical solution when k > 6, and
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within 1% when k & 60. As observed in the numerical solution, the perturbation decays
as the base state ice velocity u increases (see figure 3), but this decay rate is asymp-
totically independent of k and so does not preferentially smooth out high wavenumber
perturbations. Thus, at leading order, the viscous stretching damps all perturbations
equally.

Next we include the plume dynamics with no eddy diffusivity or buoyancy correction
term (ν = δ = 0). The unbounded growth depicted in figure 5 is explained by again
taking the large k limit. We carry this out by assuming a WKB ansatz, in which each
variable is supposed to have exponential dependence on some function of x and a power
of k, so that differentiation increases a term’s order in k. The determination of dominant
balances in (4.2d–g) shows that Ũ and Ṽ must be of order k1/2h̃, while B̃ and D̃ are of
order kh̃. The exponent in the WKB expansion, and thus differentiation, is of order k1/2.
Details of the full WKB analysis are included in appendix C. The process is similar to
that routinely performed on second order problems, although the application of boundary
conditions is hampered by the the existence of an order k−1 boundary layer near x = 0
due to the singular nature of the system (4.2d–g). The final result is that

h̃(x) ∼ h̃gAhk−3/4H(x) exp
(
k1/2C(x)

)
, k →∞, (5.3a)

where the functions H and C, and constant Ah are given by

C(x) =

∫ x

0

(
−λh′

u(1− h)2

)1/4

dx, H(x) =
(−h′)1/8

u(1− h)3/4
, Ah ≈ 0.28λ−3/8(γ + λ).

(5.3b)
This result is only valid outside the boundary layer near x = 0, as described in appendix
C. Most important to note is that the exponent is proportional to k1/2 and, roughly,
to x1/2, indicating that the perturbation grows exponentially as x increases downstream
(note that the integrand in C(x) scales as x−1/2 as x→ 0, so the integral, while improper,
is defined). In figure 5c we plot the numerical and asymptotic solutions for fixed x =
X/2 against k1/2, with the exponential dependence manifest as a straight line when
the h̃ axis is scaled logarithmically. While the numerical and asymptotic solutions are
distinguishable (the first neglected term in the expansion (5.3b) of H(x) is order k−1/2),
it is clear that the exponential dependence on k1/2 has been faithfully captured.

5.3. Channelizing mechanism

The asymptotic analysis presented above also provides a way to understand the positive
feedback loop that causes the channelizing instability. By carrying out the WKB analysis
described in appendix C, the dominant terms in each equation of the plume model (4.2d–
g) are found to be

UD̃′ ∼ −ikDṼ (5.4a)

DUŨ ′ ∼ −r−1h
′
B̃ (5.4b)

DUṼ ′ ∼ −ikr−1Bh̃ (5.4c)

UB̃′ ∼ −ikBṼ . (5.4d)

In the third balance (5.4c), the buoyancy force resulting from transverse thickness vari-
ability (ikr−1Bh̃) accelerates fluid in the transverse direction (DUṼ ′), driving flow up
into the channels. The fourth balance (5.4d) then shows that the buoyancy carried by
the increased transverse flow (ikBṼ ) has the effect of focusing buoyancy as x increases

(UB̃′). In the second balance (5.4b), the increased buoyancy in channels (−r−1h
′
B̃) ac-
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Figure 6. Numerical computation of the amplitude of a kth mode perturbation in ice thickness
h̃ given a unit amplitude perturbation in the buoyancy B̃g = −1 and no thickness perturbation

h̃g = 0 at the grounding line: (a) amplitude versus distance x for k = 10 for various values
of buoyancy correction term δ and eddy diffusivity ν, as indicated by solid-dashed lines and
symbols respectively; (b) amplitude over wavenumber k for midpoint x = X/2 (values of δ and
ν are the same and indicated in the same manner as in (a)). Eddy diffusion with ν = 0.02 is
sufficient to dominate even at relatively small wavenumbers, so no selected wavenumber kmax

arises in that case.

celerates the fluid in the along-channel direction (DUŨ ′). The increased velocity then
increases the melt rate, which enlarges the perturbations in thickness according to (5.1),
which completes the positive feedback loop. The first balance (5.4a) simply describes the
impact of transverse flow on increasing or and decreasing local plume thickness, which
does not play a dominant role in the channelizing instability.

5.4. Influence of eddy diffusivity

We do not attempt a similar WKB analysis of the system (4.2) with ν 6= 0, which
becomes rather involved. However, given the large k scalings of the terms in (4.2e–g)
obtained above, it can be seen that the diffusion terms become of the same order as the
dominant terms in each equation when k2ν = O(k1/2). Thus diffusion will dominate if
k3/2ν � 1, and we expect the maximum amplitude wavenumber to be related to the
diffusivity by

kmax ∼ αν−2/3, ν → 0, (5.5a)

for some constant α. We verify (5.5a) using the numerical solution method above, and
an optimization algorithm to find kmax (see figure 5d). The comparison also gives us a
numerical approximation of the factor α (for the given λ = 0.37, γ = 1, and x = X/2) of

α ≈ 0.91. (5.5b)

For ν = 0.02 (corresponding to a dimensional eddy diffusivity κ = 100 m2 s−1), this
results in a selected wavenumber kmax ≈ 12. Returning to the dimensions used in table
1 this corresponds to a wavelength of approximately 6 km, close to the ∼ 5 km spacing
observed on Petermann Glacier. An order of magnitude decrease in the diffusivity ν =
0.002 (κ = 10 m2 s−1) leads to a selected wavenumber kmax ≈ 54 or a wavelength of
approximately 1 km.
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5.5. Perturbations in the buoyancy flux

One can also consider grounding-line perturbations in the subglacial discharge Q̃g or

equivalently buoyancy B̃g. We perform the same numerical experiments as the previous

section calculating the amplitude of a kth mode perturbation at x = X/2, taking B̃g =
−1 (the sign is reversed so that the ice thickness perturbation has the same sign as the
previous sub-section for comparison). As before, we consider diffusion-free perturbations
before adding in diffusion. The results are plotted in figure 6.

The perturbation in h̃ still increases exponentially in k1/2 in the absence of diffusion,
although the prefactor is an order of k smaller than when the grounding line thickness
is perturbed directly. The addition of diffusivity ν = 0.02 as in table 1 is sufficient to
suppress the growth of perturbations completely, while for intermediate values of ν a
preferentially selected wavelength kmax does appear.

The smaller size of the developing ice-thickness perturbation compared to the case
of imposed thickness changes at the grounding line is revealed in the large k WKB
approximation. As seen in appendix C the asymptotic behaviour in this case is

h̃(x) ∼ −B̃gABk−7/4H(x) exp
(
k1/2C(x)

)
, k →∞, (5.6)

where H and C are the same as in (5.3b), and AB ≈ 0.21λ1/8(λ+ γ)3/2. The power of k
on the prefactor in (5.6) is one less than that in (5.3a).

Again, the inclusion of the buoyancy correction term δ has only a minor effect on the
overall picture, failing to remove the exponential growth of large wavenumber perturba-
tions in the absence of diffusion, and having an appreciable effect on the diffusive system
only when ν is much smaller than δ.

6. Discussion and Conclusion

By employing an idealized model we have analysed the spatial instability of an under
ice-shelf plume that leads to the growth of channels in the ice shelf base from perturba-
tions in grounding line conditions. The numerical and asymptotic results derived in this
paper help to understand the behaviour of more comprehensive models.

The chief mechanism of the spatial instability is the concentration of fresher, buoyant
water due to transverse flow into pre-existing channels, which increases along-flow velocity
and thus turbulent heat transfer. A similar instability, though of lower order in transverse
wavenumber, is observed due to growth of perturbations in the along-shelf slope itself,
which becomes important when there are lateral variations in subglacial discharge at the
grounding line, rather than ice thickness.

Transverse ice motion driven by the ice-thickness gradient has a slight smoothing
effect to counteract channel growth, but this effect does not preferentially smooth short
wavelength perturbations. Stabilisation of short wavelengths is due to the turbulent eddy
diffusivity within the plume layer, and the transverse wavelength of maximum growth has
a two-thirds power law dependence on the diffusivity. For physical parameters in table 1
and channelization caused by variations in ice thickness at the grounding line, this leads
to a preferred wavelength of ∼ 1–6 km for eddy diffusivity κ = 10–100 m2 s−1, compared
to the ∼ 5 km spacing observed on Petermann Glacier. Despite the simplified nature
of our analysis, the fact that these values are comparable lends some support to this
mechanism of wavelength selection. If the diffusivity is too large then channelization does
not occur, as we observed in the case of variable subglacial discharge and κ = 100 m2 s−1.
Of course, even with the simplified physics in this model, the actual pattern that should
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be seen depends on the relative amplitudes of each wavelength of the initial grounding-line
perturbation, and on the non-linear interaction between this spectrum of wavelengths.

We have concentrated on the development of steady-state channels, seeded by trans-
verse variability in the boundary conditions at the grounding line. Another issue is the
possibility of time-dependent channelization due to instability from an initial perturba-
tion, which could potentially occur even if the grounding line thickness and buoyancy flux
are uniform in y. Sergienko (2013) has shown that such “self-channelization” is possible
if the base state thickness varies with y due to lateral confinement, but using numeri-
cal simulations found no evidence that a one-dimensional state is unstable. In appendix
B we have adapted the linearised perturbations from section 4 to include a temporal
growth rate σ, and analyse the temporal stability by determining the growth rates from
the corresponding eigenvalue problem. The eigenvalues all appear to have negative real
part, suggesting that the one-dimensional state is indeed stable to such perturbations.
On the other hand, this stability is likely to be of limited relevance to the real world,
where transverse perturbations at the grounding line are presumably rife.

It has been suggested that the shape of the ice-ocean interface affects the average melt
rate across the shelf (eg. Gladish et al. 2012). Given that our study deals only with linear
perturbations, the melting rate always averages out across the width, so it unfortunately
does not allow us to say anything about the net effect of channelization on melting.

We now turn our attention to the limitations of this study, and to possible extensions.
Some of the terms that we have neglected (such as thermal expansion, and plume volume
flux increase from melting) can be shown formally to be small. Other simplifications pose
more serious restrictions, such as the neglect of turbulent drag and changes in plume
buoyancy resulting from melting. We argue that at least over small spatial length scales
from the grounding line, the reduced model includes the dominant dynamics relevant
to channel growth and decay. Of course, the assumption of small perturbations that is
necessary to allow linearization, is not valid far from the grounding line if the growth
rate is large, nor if the initial perturbations are large. Thus, our analysis should be seen
as examining the tendency for channelizing or smoothing of the ice shelf base rather than
predicting its eventual evolution.

Arguably the most serious omissions are the changes in buoyancy along the shelf. These
may be due both to the neglected buoyancy source from sub-shelf melting (the εm/εg
term in (2.15d)) which increases buoyancy, and due to the ambient salinity stratification,
which generally decreases it. The major cost of including these effects in the linearized
model such as (4.2) is that the base state no longer has an explicit representation (as in
(3.3), (3.7)), and must itself be computed numerically.

Another simplification is our use of Newtonian rheology for the ice flow. The same
analysis as performed in this paper could be carried out for a power-law rheology; there
is still an exact solution for the one-dimensional base state (MacAyeal 1989), and the
equivalent linearized system to (4.2) could be derived with a variable effective viscosity.
We expect the results to be very similar to those found here, since the perturbations
in ice deformation velocity (ũ, ṽ) have little effect on short wavelength perturbations,
compared to the destabilising effects of the plume dynamics.

The simple parameterizations of turbulent entrainment (2.7) and heat transfer (2.4) are
based on those of Jenkins (2011). These in turn are approximations of parameterizations
with more complicated dependence on the Richardson number (for entrainment) and
Reynolds number (for heat transfer) (Payne et al. 2007; Holland et al. 2007), which were
used in the numerical studies of Sergienko (2013) and Gladish et al. (2012). With such
additional complexities, the base state would again have to be computed numerically.
However, the basic form of these parametersations is by no means certain. With regard
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to the heat transfer, it is the dependence of melt rate m on plume velocity U that is
instrumental in producing the channelization outlined in this paper. As long as the melt
rate is an increasing function of velocity, the linearization around the base state will
produce a melt rate perturbation proportional to the velocity perturbation Ũ , resulting
in a similar expression to (4.2a) but with modified prefactors. For example, if the salinity
dependence of the melting temperature were included, together with a parameterization
of the interfacial salinity using the three equation formulation of Jenkins (2011), one can
show that a modification of the melting rate occurs, but this should not significantly
change any of our conclusions.

The neglect of Coriolis forces was necessary to avoid an essentially two-dimensional
base state for the ice thickness. Numerical evidence suggests that Coriolis forcing will
tend to deflect the path of channels on longer spatial scales, and produce channels with
asymmetric cross-sectional profiles, but not quantitatively change the spacing of channels
(Sergienko 2013). For this reason we believe it will not have a serious impact on the basic
channel-forming mechanism outlined here, but we acknowledge that Coriolis forces are
an inherent aspect of the real system.
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Appendix A. Numerical solution method

The system of equations (4.2) for perturbations to the base thickness and velocity
is a linear, but non-constant coefficient boundary value problem. Because D vanishes at
x = 0 and h vanishes at x = X, the order of the system is reduced at these points and the
boundary value problem is therefore singular. Given the form of the base state (3.3), (3.7),
an analytic or series solution of even the linearized problem is intractable. In order to
compute numerical solutions to (4.2), we adopt a Chebyshev spectral collocation method.
The seven unknown variables are represented by their values at N discrete Chebyshev
nodes (mapped to the interval [0, X]), and concatenated into a single solution vector

y =
[
h̃ ũ iṽ rD̃ Ũ iṼ B̃

]T
∈ R7N−4. (A 1)

Four variables, h̃(0), ũ(0), ṽ(0) and B̃(0), are prescribed from the four nonsingular left
hand boundary conditions, namely (4.3) and the first of (4.4), so are removed from the
solution vector y; the remaining singular conditions in (4.4) and (4.5) are enforced natu-
rally from solving the remaining components of the linear system at the boundary points.
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In addition, the problem has been simplified by suitable definition of the dependent vari-
ables that appear in (A 1). Firstly, solving for rD̃ instead of D̃, along with the definition
rD = 1−h from (3.3), removes the parameter r explicitly from (4.2). Secondly, including
the imaginary constant i with the transverse ice and plume velocities ṽ and Ṽ results
in a linear system (and therfore solution vector y) with purely real elements (note that
all imaginary constants i in (4.2) cancel upon making this substitution of dependent
variables).

For given values of λ, γ, k, ν and δ, the system (4.2) may then be represented by a
single matrix equation

My = b, M ∈ R(7N−4)×(7N−4), b ∈ R7N−4. (A 2)

The derivatives in (4.2) are represented in M by the (dense) Chebyshev differentiation
matrix (Trefethen 2000), while the rows and columns corresponding to the nonsingular
boundary conditions are removed and used to construct b. Typically we use N = 50–100
nodes to compute the results contained in this paper; this runs in a negligible amount
of time using MATLAB on a personal computer, which allows us to explore the system
over a wide range of parameters.

Appendix B. Stability with respect to initial perturbations

We consider the temporal linear stability of our system to time-dependent perturba-
tions by adding a growth rate σ to the perturbations (4.1), as

h(x, y, t) = h(x) + h̃(x)eσt+iky, (B 1)

and similarly for the other variables. The linearized system of equations is then identical
to that in (4.2), except for the first equation (in which the only time derivative appears),
which becomes

σh̃+ (h̃u+ hũ)′ + khiṽ = −λŨ (B 2)

To determine the linear stability of this modified system we compute eigenvalues σ and
eigenfunctions h̃ (and other variables) using a variant of the numerical code outlined in
section A. We set all boundary conditions to be homogeneous (i.e. no grounding line
perturbations), and impose further the right hand condition h̃(X) = 1 to remove the
trivial solution. The eigenvalues σ are found by solving the problem without the left
hand condition on h̃(0), and then using a root-finding algorithm to obtain the values of
σ such that h̃(0) = 0. For simplicity we only report results here for the case ν = δ = 0,
although we found that their inclusion does not qualitatively affect the stability.

The eigenvalues σ thus found are shown in figure 7. The eigenvalues are complex with
negative real part, with corresponding oscillatory eigenfunctions that grow exponentially
in x. This downstream growth leads to a great deal of sensitivity in detecting the eigen-
values; indeed, we found it difficult to resolve the values for k & 6. However, the real
parts Re(σ) thus computed are all negative, with a maximum occuring at k ≈ 1 for each
eigenvalue; Re(σ) tends to −∞ both as k → 0 and as k → ∞. This strongly suggests
that all eigenvalues have negative real part for all k and the system is stable.

The structure of complex eigenvalues and oscillatory eigenfunctions depicted in figure 7
is primarily due to the advection of the underlying ice flow. Indeed, this appears to be the
primary reason for the lack of an inherent global instability here; there is no mechanism
to cause information about perturbations to propagate backwards and interact with the
forwards advection of the interface (c.f. Gladish et al. 2012).
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Figure 7. (a) The first 6 eigenvalues σ in the complex plane, for varying k. Re(σ) appear to
tend to −∞ as k → 0 and k →∞, with maximum around k = 1. (b) An expanded view of the

path of the first eigenvalue as k varies. (c) The first six eigenfunctions Re(h̃) for k = 1. Note
the increasing frequency of oscillations as Im(σ) increases.

Appendix C. WKB analysis of channel growth

The large k behaviour of the system (4.2) is determined by using a WKB-type ansatz,
that is, expansions of the form

h̃(x) ∼ Aka(H0(x) + k−1/2H1(x)) exp(k1/2C(x)), k →∞, (C 1)

and similar for other variables (an examination of the dominant balance indicates that Ũ
and Ṽ are order k1/2h̃, while B̃ and D̃ are order kh̃). As with the standard application
of WKB analysis (e.g. Holmes 1995), the exponent function C is determined from the
leading order problem in large k, while the first coefficient function H0 (and those of the
other variables) comes from the equations at next order. After considerable algebra, we
find that

C ′(x) =

(
−λh′

u(1− h)2

)1/4

, H0(x) =
(−h′)1/8

u(1− h)3/4
. (C 2)
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The prefactor constant A and exponent a must be determined from the boundary con-
ditions. Note for large k, (5.1) implies

h̃(0) = h̃g, h̃′(0) = −λ
2
B̃g −

5

2
γh̃g +O(k−1) (C 3)

(recall that u(0) = 1, u′(0) = γ, and that Ũ(0) = B̃g/2 from (4.4) ). However, these
conditions cannot be applied directly to (C 1) as the system (4.2) possesses an order k−1

boundary layer at x = 0 due to its singular nature there. From the base state solution

(3.7) we have u(0) = 1, h
′
(0) = −(γ + λ), D(0) = 0 and D

′
(0) = (γ + λ)/r. Defining the

inner variable ξ by

x =

√
λ+ γ

λ
k−1ξ, (C 4)

the leading order plume equations (4.2e–g) and large k ice flow equation (5.1) can be
rearranged into a single fourth order ODE

ξ2h̃ξξξξ + 6ξh̃ξ + 4h̃ξξ − h̃ = 0, (C 5a)

with boundary conditions from (C 3)

h̃(0) = h̃g, h̃ξ(0) = −k−1

√
λ+ γ

λ

(
λ

2
B̃g +

5

2
γh̃g

)
. (C 5b)

The perturbation in buoyancy B̃g appears only in the O(k−1) derivative condition; thus,

the channel growth is dominated by the perturbations in ice thickness (assuming h̃g 6= 0).

For h̃(0) = 1 and h̃ξ(0) = 0, the far field behaviour of (C 5) is

h̃ ∼ 0.28ξ−3/4e2
√
ξ, ξ →∞. (C 6)

On the other hand, if h̃(0) = 0 and h̃ξ(0) = 1, the far field behaviour of (C 5) is

h̃ ∼ 0.42ξ−3/4e2
√
ξ, ξ →∞. (C 7)

Here the factors of 0.28 and 0.42 have been determined numerically by comparing the
asymptotic behaviour to the exact series solutions of (C 5).

Transforming ξ 7→ x and matching to the behaviour of the outer problem as x → 0
gives the coefficients A and exponent of k for each case. For h̃g 6= 0, the leading order
behaviour in large k is given by (C 6), thus

A ≈ 0.28h̃gλ
−3/8(γ + λ), a = −3/4. (C 8)

For h̃g = 0, the behaviour follows from (C 7), thus

A ≈ −0.21B̃gλ
1/8(γ + λ)3/2, a = −7/4. (C 9)

These are the two results given in (5.3) and (5.6), respectively.


