Supplementary Information for

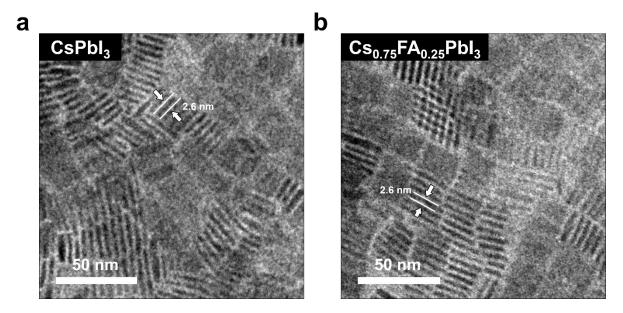
Enhanced Stability and Linearly Polarized Emission from CsPbI₃ Perovskite Nanoplatelets through A-site Cation Engineering

Woo Hyeon Jeong^{1,2}, Junzhi Ye^{2*}, Jongbeom Kim³, Rui Xu⁴, Xinyu Shen^{1,5}, Chia-Yu Chang², Eilidh L. Quinn², Hyungju Ahn⁶, Myoung Hoon Song³, Peter Nellist⁷, Henry J. Snaith⁵, Yunwei Zhang⁴, Bo Ram Lee^{1*} and Robert L. Z. Hoye^{2*}

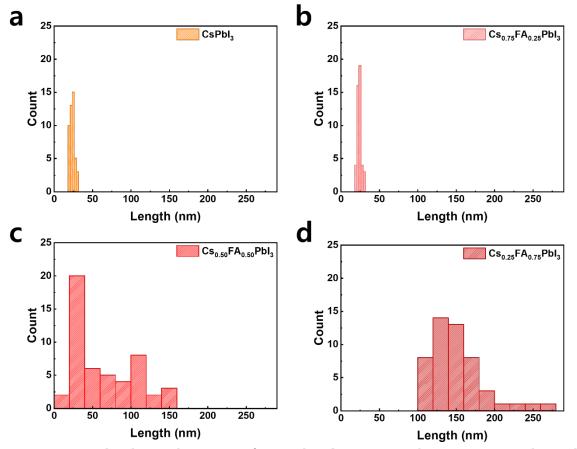
¹ School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea

² Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, United Kingdom

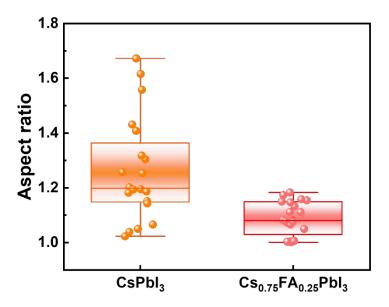
³ Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea

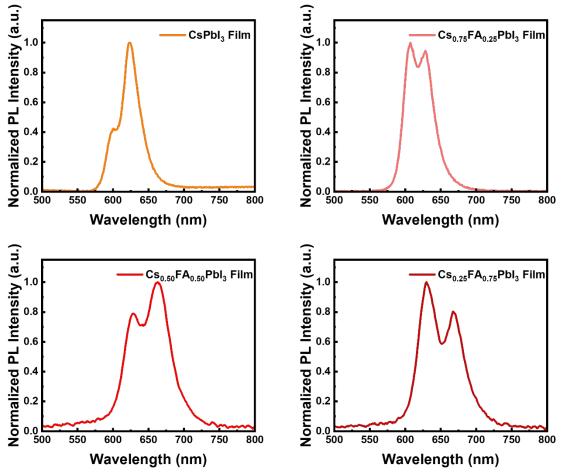

⁴School of Physics, Sun Yat-sen University, Guangzhou, 510275 China

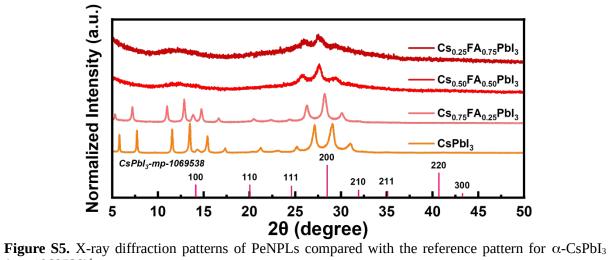
⁵ Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU United Kingdom

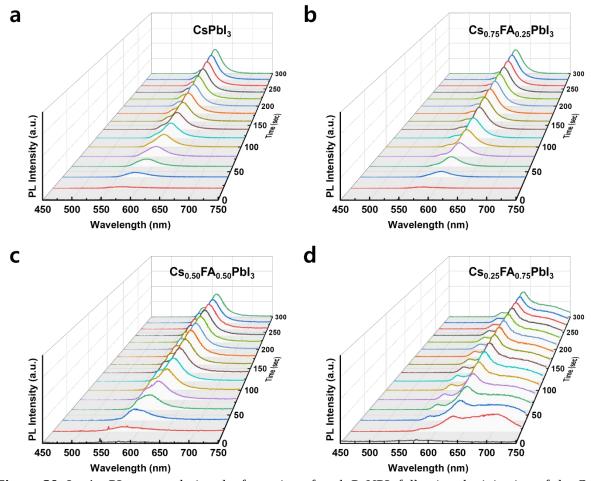

⁶ Pohang Accelerator Laboratory (PAL) Pohang, Gyeongbuk 37673, Republic of Korea

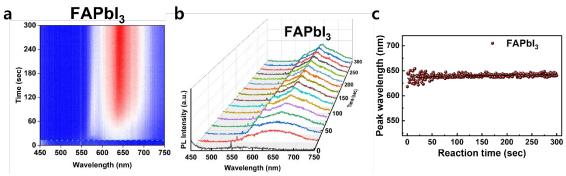
⁷ Department of Materials, University of Oxford, Oxford OX1 3PH United Kingdom

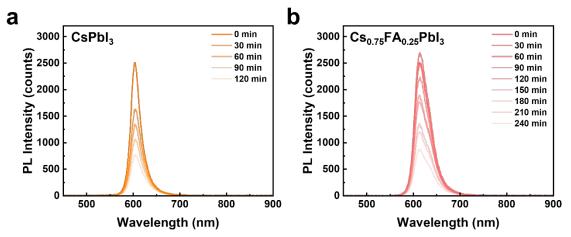

^{*}Correspondence: junzhi.ye@chem.ox.ac.uk (J.Y.), brlee@skku.edu (B.R.L.), robert.hoye@chem.ox.ac.uk (R.L.Z.H.)

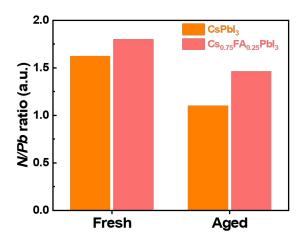

Figure S1. Transmission electron microscopy (TEM) image of **a** CsPbI $_3$ and **b** Cs $_{0.75}$ FA $_{0.25}$ PbI $_3$ PeNPLs. These nanoplatelets were dispersed in a hexane solvent, and drop cast onto a Cu TEM grid.

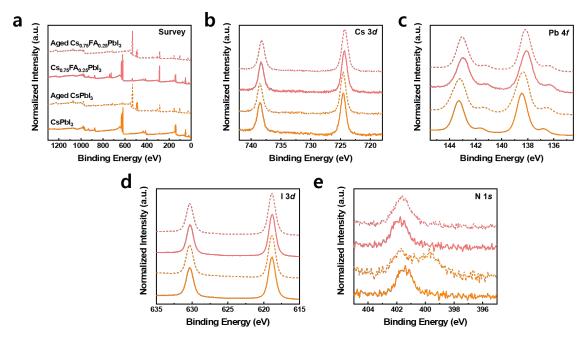

Figure S2. Size distribution histogram of **a** CsPbI₃, **b** Cs_{0.75}FA_{0.25}PbI₃, **c** Cs_{0.50}FA_{0.50}PbI₃ and **d** Cs_{0.25}FA_{0.75}PbI₃, determined from TEM measurements from Fig. 1a in the main text.

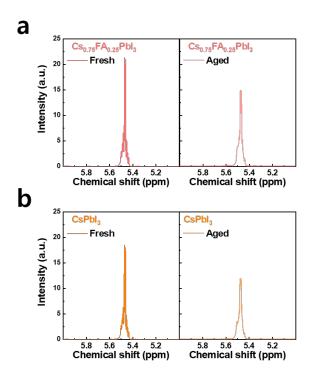

Figure S3. Distribution in the aspect ratio of PeNPLs. Data was collected from 20 individually-identified PeNPLs from Figure S1.

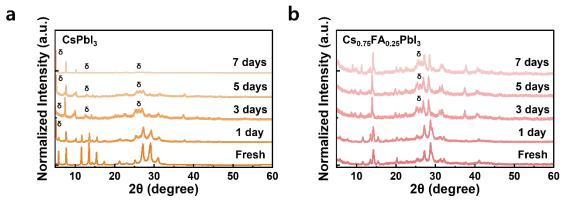

Figure S4. Photoluminescence spectra of (Cs,FA)PbI $_3$ PeNPLs drop-cast onto glass substrates. Samples were measured in an N $_2$ -filled glovebox, excited with a 405 nm wavelength CW laser at 37.3 mW cm $^{-2}$ power density.

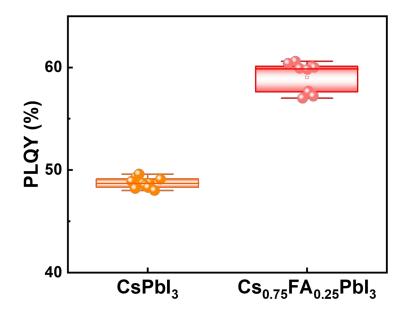

(mp-1069538)¹.

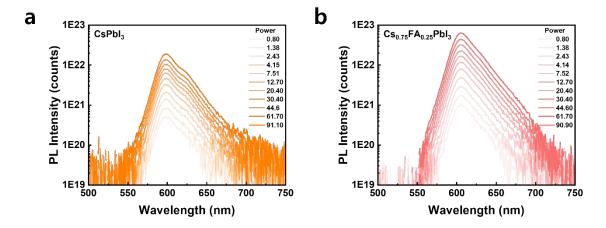

Figure S6. *In-situ* PL spectra during the formation of each PeNPL following the injection of the Cs-oleate/FA-oleate into the PbI_2 -ligand solution. These spectra are displayed in Fig. 2b in the main text. Spectra obtained at 20 s time intervals. Samples were measured in an in ambient air during synthesis (see Methods in the main text), excited with a 405 nm wavelength CW laser at 37.3 mW cm⁻² power density.

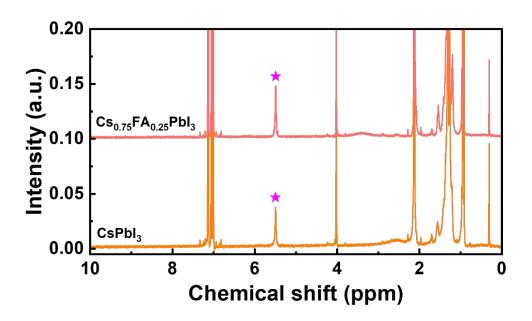

Figure S7. a, b *In-situ* PL spectra during the formation of FAPbI₃ PeNPLs. Spectra were collected at 20 s intervals from the time the FA-oleate was injected into the PbI₂-ligand solution. **c** Detailed kinetics of the photoluminescence peak wavelength evolution over time after injecting the FA oleate solution into the reaction mixture. Data points were collected at 1 s time intervals. Samples were measured in an in ambient air during synthesis (see Methods in the main text), excited with a 405 nm wavelength CW laser at 37.3 mW cm⁻² power density.

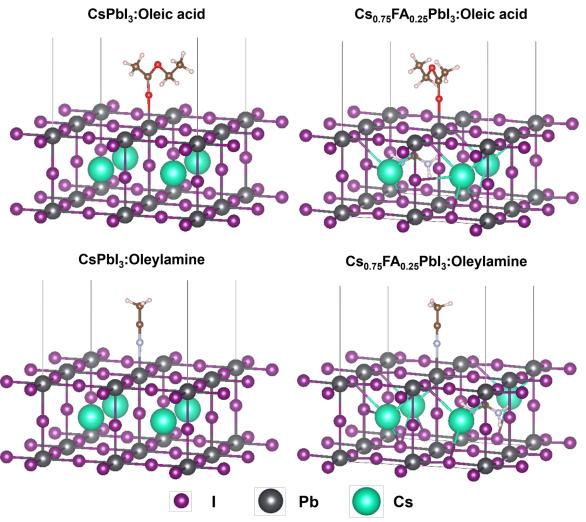

Figure S8. PL spectra of colloidal PeNPL solutions of **a** CsPbI $_3$ and **b** Cs $_{0.75}$ FA $_{0.25}$ PbI $_3$ heated to 80 °C as a function of time 0 to 240 min. Samples were measured at 80 °C in ambient air, excited with a 405 nm wavelength CW laser at 37.3 mW cm $^{-2}$ power density.

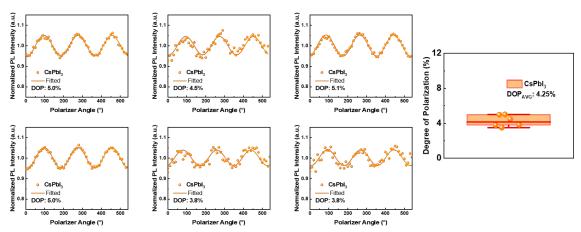

Figure S9. N/Pb ratios from XPS measurements of in $CsPbI_3$ and $Cs_{0.75}FA_{0.25}PbI_3$ PeNPLs before and after 7 days of ambient aging.

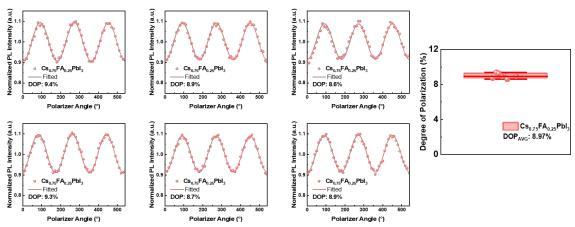

Figure S10. a Survey XPS spectra, **b** Cs 3d, **c** Pb 4f, **d** I 3d and **e** N 1s core level spectra of CsPbI₃ and Cs_{0.75}FA_{0.25}PbI₃ PeNPLs before and after 7 days of ambient aging.


Figure S11. 1H -NMR spectra of **a** CsPbI $_3$ and **b** Cs $_{0.75}FA_{0.25}PbI_3$ PeNPLs before and after 7 days of ambient aging.


Figure S12. Change in the X-ray diffraction patterns of **a** CsPbI $_3$ and **b** Cs $_{0.75}$ FA $_{0.25}$ PbI $_3$ PeNPL films over time after storage in ambient conditions (40% relative humidity, 20 °C, stored in the dark).


Figure S13. PLQY distributions of colloidal PeNPLs Samples were measured by Quantaurus-QY Absolute PL quantum yield spectrometer (HAMAMATSU).


Figure S14. Change in the PL spectra of colloidal PeNPLs of **a** CsPbI $_3$ and **b** Cs $_{0.75}$ FA $_{0.25}$ PbI $_3$ depending on excitation power densities (in mW cm $^{-2}$) from Fig. 4a in the main text. Samples were measured in ambient air, and excited with a 405 nm wavelength CW laser.


Figure S15. ¹H-NMR spectra of colloidal PeNPL solutions in deuterated-toluene. Magenta stars indicate peaks corresponding to the oleic acid and oleylamine ligands.

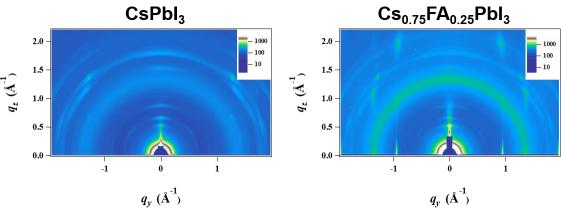

Figure S16. Calculation of the surface binding energy between the halide perovskite (CsPbI $_3$ and Cs $_{0.75}$ FA $_{0.25}$ PbI $_3$) and oleic acid and oleylamine ligand using electron localization functions from DFT.

Figure S17. Polarization dependence of the normalized PL intensity of $CsPbI_3$ PeNPLs films made in different batches, along with the distribution in the degree of linear polarization (DOP) determined from these measurements. Measurements performed inside a N_2 -filled glovebox with a 405 nm wavelength CW laser at 37.3 mW cm⁻² power density.

Figure S18. Polarization dependence of the normalized PL intensity of $Cs_{0.75}FA_{0.25}PbI_3$ PeNPLs film made in different batches, along with the distribution in the degree of linear polarization (DOP) determined from these measurements. Measurements performed inside a N_2 -filled glovebox with a 405 nm wavelength CW laser at 37.3 mW cm⁻² power density.

Figure S19. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns of edge-up oriented CsPbI₃ and Cs_{0.75}FA_{0.25}PbI₃ PeNPL thin films. Sharper Bragg spots along q_z in the x = 0.25 PeNPL indicate improved vertical alignment of the PeNPL superlattice.

Table S1. XPS analysis of each PeNPLs.

Sample configuration	Atomic %			
	Cs	Pb	1	N
CsPbl ₃	0.89	1.00	4.02	1.62
Aged-CsPbl ₃	0.45	1.00	2.35	1.10
Cs _{0.75} FA _{0.25} PbI ₃	0.76	1.00	4.01	1.80
Aged- Cs _{0.75} FA _{0.25} Pbl ₃	0.61	1.00	3.12	1.46

REFERENCES

Lin, C.-C. *et al.* Exploring the Origin of Phase-Transformation Kinetics of CsPbI3 Perovskite Nanocrystals Based on Activation Energy Measurements. *The Journal of Physical Chemistry Letters* **11**, 3287-3293 (2020). https://doi.org/10.1021/acs.jpclett.0c00443