Thesis
Photoemission spectra of nanostructured solar cell interfaces from first principles
- Abstract:
- Photovoltaic (PV) technologies could provide abundant, clean and secure energy through the conversion of sunlight into electricity, but currently are too expensive to compete with conventional sources of power. Novel PV devices incorporating nanostructured materials, such as the dye-sensitized solar cell (DSC), have been identified as viable, low-cost alternatives to traditional solar cell designs. In spite of technological progress in the field over the last twenty years, the underlying physics governing DSC operation is still not well understood. In this thesis, first-principles (i.e. parameter-free) calculations are performed with the aim of connecting experimentally-measured photoemission data to the underlying atomistic and electronic structure of interfaces found in DSCs. The principal system under study is the interface between anatase titanium dioxide (TiO2) and the "N3" dye molecule, one of the most widely-investigated device designs in DSC research. Atomistic models of the interface are determined within density-functional theory. Core-level spectra of these interface models are then calculated using a ∆SCF approach. Comparison of the calculations to published experimental data finds that intermolecular interactions have a significant effect on the spectra. Next, the electronic structure of bulk TiO2 and of isolated N3 molecules is calculated using the GW approximation and ∆SCF method respectively. For the former, it is shown that including Hubbard U corrections in the initial Hamiltonian reduces the GW gap by 0.4 eV. These calculations are then used to determine the valence photoemission spectrum of the full interface. By including image-charge effects, thermal broadening and configurational disorder, quantitative agreement with experimentally-measured spectra is demonstrated. In addition to the N3/TiO2 system, calculations of the core-level spectra of the interfaces between TiO2 and H2O and bi-isonicotinic acid are also presented. The thesis concludes with a study of the X2Y3/TiO2 interfaces (X=Sb, Bi; Y=S, Se) found in recently-developed semiconductor-sensitized solar cells.
Actions
- Publication date:
- 2013
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- Oxford University, UK
- Language:
-
English
- Keywords:
- Subjects:
- UUID:
-
uuid:fa2333ea-7016-4d6f-8d55-aee4178482a6
- Local pid:
-
ora:6957
- Deposit date:
-
2013-07-09
Terms of use
- Copyright holder:
- Christopher Patrick
- Copyright date:
- 2013
If you are the owner of this record, you can report an update to it here: Report update to this record