Thesis icon

Thesis

Towards robust steganalysis: binary classifiers and large, heterogeneous data

Abstract:

The security of a steganography system is defined by our ability to detect it. It is of no surprise then that steganography and steganalysis both depend heavily on the accuracy and robustness of our detectors. This is especially true when real-world data is considered, due to its heterogeneity. The difficulty of such data manifests itself in a penalty that has periodically been reported to affect the performance of detectors built on binary classifiers; this is known as cover source mismatch.

It remains unclear how the performance drop that is associated with cover source mismatch is mitigated or even measured. In this thesis we aim to show a robust methodology to empirically measure its effects on the detection accuracy of steganalysis classifiers. Some basic machine-learning based methods, which take their origin in domain adaptation, are proposed to counter it.

Specifically, we test two hypotheses through an empirical investigation. First, that linear classifiers are more robust than non-linear classifiers to cover source mismatch in real-world data and, second, that linear classifiers are so robust that given sufficiently large mismatched training data they can equal the performance of any classifier trained on small matched data.

With the help of theory we draw several nontrivial conclusions based on our results. The penalty from cover source mismatch may, in fact, be a combination of two types of error; estimation error and adaptation error. We show that relatedness between training and test data, as well as the choice of classifier, both have an impact on adaptation error, which, as we argue, ultimately defines a detector's robustness. This provides a novel framework for reasoning about what is required to improve the robustness of steganalysis detectors. Whilst our empirical results may be viewed as the first step towards this goal, we show that our approach provides clear advantages over earlier methods.

To our knowledge this is the first study of this scale and structure.

Actions


Access Document


Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Computer Science
Oxford college:
Wadham College
Role:
Author

Contributors

Division:
MPLS
Department:
Computer Science
Role:
Supervisor


More from this funder
Funding agency for:
Lubenko, I
Grant:
EPSRC DTA OUCL/2009/IL


Publication date:
2013
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford


Language:
English
Keywords:
Subjects:
UUID:
uuid:c1ae44b8-94da-438d-b318-f038ad6aac57
Local pid:
ora:12467
Deposit date:
2016-05-19

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP